/src/openssl/providers/implementations/encode_decode/decode_pem2der.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2020-2025 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * RSA low level APIs are deprecated for public use, but still ok for |
12 | | * internal use. |
13 | | */ |
14 | | #include "internal/deprecated.h" |
15 | | |
16 | | #include <string.h> |
17 | | |
18 | | #include <openssl/core_dispatch.h> |
19 | | #include <openssl/core_names.h> |
20 | | #include <openssl/core_object.h> |
21 | | #include <openssl/crypto.h> |
22 | | #include <openssl/err.h> |
23 | | #include <openssl/params.h> |
24 | | #include <openssl/pem.h> |
25 | | #include <openssl/proverr.h> |
26 | | #include "internal/nelem.h" |
27 | | #include "internal/sizes.h" |
28 | | #include "prov/bio.h" |
29 | | #include "prov/decoders.h" |
30 | | #include "prov/implementations.h" |
31 | | #include "endecoder_local.h" |
32 | | |
33 | | static int read_pem(PROV_CTX *provctx, OSSL_CORE_BIO *cin, |
34 | | char **pem_name, char **pem_header, |
35 | | unsigned char **data, long *len) |
36 | 0 | { |
37 | 0 | BIO *in = ossl_bio_new_from_core_bio(provctx, cin); |
38 | 0 | int ok; |
39 | |
|
40 | 0 | if (in == NULL) |
41 | 0 | return 0; |
42 | 0 | ok = (PEM_read_bio(in, pem_name, pem_header, data, len) > 0); |
43 | |
|
44 | 0 | BIO_free(in); |
45 | 0 | return ok; |
46 | 0 | } |
47 | | |
48 | | static OSSL_FUNC_decoder_newctx_fn pem2der_newctx; |
49 | | static OSSL_FUNC_decoder_freectx_fn pem2der_freectx; |
50 | | static OSSL_FUNC_decoder_decode_fn pem2der_decode; |
51 | | |
52 | | /* |
53 | | * Context used for PEM to DER decoding. |
54 | | */ |
55 | | struct pem2der_ctx_st { |
56 | | PROV_CTX *provctx; |
57 | | char data_structure[OSSL_MAX_CODEC_STRUCT_SIZE]; |
58 | | char propq[OSSL_MAX_PROPQUERY_SIZE]; |
59 | | }; |
60 | | |
61 | | static void *pem2der_newctx(void *provctx) |
62 | 115k | { |
63 | 115k | struct pem2der_ctx_st *ctx = OPENSSL_zalloc(sizeof(*ctx)); |
64 | | |
65 | 115k | if (ctx != NULL) |
66 | 115k | ctx->provctx = provctx; |
67 | 115k | return ctx; |
68 | 115k | } |
69 | | |
70 | | static void pem2der_freectx(void *vctx) |
71 | 115k | { |
72 | 115k | struct pem2der_ctx_st *ctx = vctx; |
73 | | |
74 | 115k | OPENSSL_free(ctx); |
75 | 115k | } |
76 | | |
77 | | static const OSSL_PARAM *pem2der_settable_ctx_params(ossl_unused void *provctx) |
78 | 0 | { |
79 | 0 | static const OSSL_PARAM settables[] = { |
80 | 0 | OSSL_PARAM_utf8_string(OSSL_DECODER_PARAM_PROPERTIES, NULL, 0), |
81 | 0 | OSSL_PARAM_utf8_string(OSSL_OBJECT_PARAM_DATA_STRUCTURE, NULL, 0), |
82 | 0 | OSSL_PARAM_END |
83 | 0 | }; |
84 | 0 | return settables; |
85 | 0 | } |
86 | | |
87 | | static int pem2der_set_ctx_params(void *vctx, const OSSL_PARAM params[]) |
88 | 7 | { |
89 | 7 | struct pem2der_ctx_st *ctx = vctx; |
90 | 7 | const OSSL_PARAM *p; |
91 | 7 | char *str; |
92 | | |
93 | 7 | p = OSSL_PARAM_locate_const(params, OSSL_DECODER_PARAM_PROPERTIES); |
94 | 7 | str = ctx->propq; |
95 | 7 | if (p != NULL |
96 | 7 | && !OSSL_PARAM_get_utf8_string(p, &str, sizeof(ctx->propq))) |
97 | 0 | return 0; |
98 | | |
99 | 7 | p = OSSL_PARAM_locate_const(params, OSSL_OBJECT_PARAM_DATA_STRUCTURE); |
100 | 7 | str = ctx->data_structure; |
101 | 7 | if (p != NULL |
102 | 7 | && !OSSL_PARAM_get_utf8_string(p, &str, sizeof(ctx->data_structure))) |
103 | 0 | return 0; |
104 | | |
105 | 7 | return 1; |
106 | 7 | } |
107 | | |
108 | | /* pem_password_cb compatible function */ |
109 | | struct pem2der_pass_data_st { |
110 | | OSSL_PASSPHRASE_CALLBACK *cb; |
111 | | void *cbarg; |
112 | | }; |
113 | | |
114 | | static int pem2der_pass_helper(char *buf, int num, int w, void *data) |
115 | 0 | { |
116 | 0 | struct pem2der_pass_data_st *pass_data = data; |
117 | 0 | size_t plen; |
118 | |
|
119 | 0 | if (pass_data == NULL |
120 | 0 | || pass_data->cb == NULL |
121 | 0 | || !pass_data->cb(buf, num, &plen, NULL, pass_data->cbarg)) |
122 | 0 | return -1; |
123 | 0 | return (int)plen; |
124 | 0 | } |
125 | | |
126 | | static int pem2der_decode(void *vctx, OSSL_CORE_BIO *cin, int selection, |
127 | | OSSL_CALLBACK *data_cb, void *data_cbarg, |
128 | | OSSL_PASSPHRASE_CALLBACK *pw_cb, void *pw_cbarg) |
129 | 0 | { |
130 | | /* |
131 | | * PEM names we recognise. Other PEM names should be recognised by |
132 | | * other decoder implementations. |
133 | | */ |
134 | 0 | static struct pem_name_map_st { |
135 | 0 | const char *pem_name; |
136 | 0 | int object_type; |
137 | 0 | const char *data_type; |
138 | 0 | const char *data_structure; |
139 | 0 | } pem_name_map[] = { |
140 | | /* PKCS#8 and SubjectPublicKeyInfo */ |
141 | 0 | { PEM_STRING_PKCS8, OSSL_OBJECT_PKEY, NULL, "EncryptedPrivateKeyInfo" }, |
142 | 0 | { PEM_STRING_PKCS8INF, OSSL_OBJECT_PKEY, NULL, "PrivateKeyInfo" }, |
143 | 0 | #define PKCS8_LAST_IDX 1 |
144 | 0 | { PEM_STRING_PUBLIC, OSSL_OBJECT_PKEY, NULL, "SubjectPublicKeyInfo" }, |
145 | 0 | #define SPKI_LAST_IDX 2 |
146 | | /* Our set of type specific PEM types */ |
147 | 0 | { PEM_STRING_DHPARAMS, OSSL_OBJECT_PKEY, "DH", "type-specific" }, |
148 | 0 | { PEM_STRING_DHXPARAMS, OSSL_OBJECT_PKEY, "X9.42 DH", "type-specific" }, |
149 | 0 | { PEM_STRING_DSA, OSSL_OBJECT_PKEY, "DSA", "type-specific" }, |
150 | 0 | { PEM_STRING_DSA_PUBLIC, OSSL_OBJECT_PKEY, "DSA", "type-specific" }, |
151 | 0 | { PEM_STRING_DSAPARAMS, OSSL_OBJECT_PKEY, "DSA", "type-specific" }, |
152 | 0 | { PEM_STRING_ECPRIVATEKEY, OSSL_OBJECT_PKEY, "EC", "type-specific" }, |
153 | 0 | { PEM_STRING_ECPARAMETERS, OSSL_OBJECT_PKEY, "EC", "type-specific" }, |
154 | 0 | { PEM_STRING_SM2PARAMETERS, OSSL_OBJECT_PKEY, "SM2", "type-specific" }, |
155 | 0 | { PEM_STRING_RSA, OSSL_OBJECT_PKEY, "RSA", "type-specific" }, |
156 | 0 | { PEM_STRING_RSA_PUBLIC, OSSL_OBJECT_PKEY, "RSA", "type-specific" }, |
157 | | |
158 | | /* |
159 | | * A few others that there is at least have an object type for, even |
160 | | * though there is no provider interface to handle such objects, yet. |
161 | | * However, this is beneficial for the OSSL_STORE result handler. |
162 | | */ |
163 | 0 | { PEM_STRING_X509, OSSL_OBJECT_CERT, NULL, "Certificate" }, |
164 | 0 | { PEM_STRING_X509_TRUSTED, OSSL_OBJECT_CERT, NULL, "Certificate" }, |
165 | 0 | { PEM_STRING_X509_OLD, OSSL_OBJECT_CERT, NULL, "Certificate" }, |
166 | 0 | { PEM_STRING_X509_CRL, OSSL_OBJECT_CRL, NULL, "CertificateList" } |
167 | 0 | }; |
168 | 0 | struct pem2der_ctx_st *ctx = vctx; |
169 | 0 | char *pem_name = NULL, *pem_header = NULL; |
170 | 0 | size_t i; |
171 | 0 | unsigned char *der = NULL; |
172 | 0 | long der_len = 0; |
173 | 0 | int ok = 0; |
174 | 0 | int objtype = OSSL_OBJECT_UNKNOWN; |
175 | |
|
176 | 0 | ok = read_pem(ctx->provctx, cin, &pem_name, &pem_header, |
177 | 0 | &der, &der_len) > 0; |
178 | | /* We return "empty handed". This is not an error. */ |
179 | 0 | if (!ok) |
180 | 0 | return 1; |
181 | | |
182 | | /* |
183 | | * 10 is the number of characters in "Proc-Type:", which |
184 | | * PEM_get_EVP_CIPHER_INFO() requires to be present. |
185 | | * If the PEM header has less characters than that, it's |
186 | | * not worth spending cycles on it. |
187 | | */ |
188 | 0 | if (strlen(pem_header) > 10) { |
189 | 0 | EVP_CIPHER_INFO cipher; |
190 | 0 | struct pem2der_pass_data_st pass_data; |
191 | |
|
192 | 0 | ok = 0; /* Assume that we fail */ |
193 | 0 | pass_data.cb = pw_cb; |
194 | 0 | pass_data.cbarg = pw_cbarg; |
195 | 0 | if (!PEM_get_EVP_CIPHER_INFO(pem_header, &cipher) |
196 | 0 | || !PEM_do_header(&cipher, der, &der_len, |
197 | 0 | pem2der_pass_helper, &pass_data)) |
198 | 0 | goto end; |
199 | 0 | } |
200 | | |
201 | | /* |
202 | | * Indicated that we successfully decoded something, or not at all. |
203 | | * Ending up "empty handed" is not an error. |
204 | | */ |
205 | 0 | ok = 1; |
206 | | |
207 | | /* Have a look to see if we recognise anything */ |
208 | 0 | for (i = 0; i < OSSL_NELEM(pem_name_map); i++) |
209 | 0 | if (strcmp(pem_name, pem_name_map[i].pem_name) == 0) |
210 | 0 | break; |
211 | |
|
212 | 0 | if (i < OSSL_NELEM(pem_name_map)) { |
213 | 0 | OSSL_PARAM params[5], *p = params; |
214 | | /* We expect these to be read only so casting away the const is ok */ |
215 | 0 | char *data_type = (char *)pem_name_map[i].data_type; |
216 | 0 | char *data_structure = (char *)pem_name_map[i].data_structure; |
217 | | |
218 | | /* |
219 | | * Since this may perform decryption, we need to check the selection to |
220 | | * avoid password prompts for objects of no interest. |
221 | | */ |
222 | 0 | if (i <= PKCS8_LAST_IDX |
223 | 0 | && ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) |
224 | 0 | || OPENSSL_strcasecmp(ctx->data_structure, "EncryptedPrivateKeyInfo") == 0 |
225 | 0 | || OPENSSL_strcasecmp(ctx->data_structure, "PrivateKeyInfo") == 0)) { |
226 | 0 | ok = ossl_epki2pki_der_decode(der, der_len, selection, data_cb, |
227 | 0 | data_cbarg, pw_cb, pw_cbarg, |
228 | 0 | PROV_LIBCTX_OF(ctx->provctx), |
229 | 0 | ctx->propq); |
230 | 0 | goto end; |
231 | 0 | } |
232 | | |
233 | 0 | if (i <= SPKI_LAST_IDX |
234 | 0 | && ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) |
235 | 0 | || OPENSSL_strcasecmp(ctx->data_structure, "SubjectPublicKeyInfo") == 0)) { |
236 | 0 | ok = ossl_spki2typespki_der_decode(der, der_len, selection, data_cb, |
237 | 0 | data_cbarg, pw_cb, pw_cbarg, |
238 | 0 | PROV_LIBCTX_OF(ctx->provctx), |
239 | 0 | ctx->propq); |
240 | 0 | goto end; |
241 | 0 | } |
242 | | |
243 | 0 | objtype = pem_name_map[i].object_type; |
244 | 0 | if (data_type != NULL) |
245 | 0 | *p++ = |
246 | 0 | OSSL_PARAM_construct_utf8_string(OSSL_OBJECT_PARAM_DATA_TYPE, |
247 | 0 | data_type, 0); |
248 | | |
249 | | /* We expect this to be read only so casting away the const is ok */ |
250 | 0 | if (data_structure != NULL) |
251 | 0 | *p++ = |
252 | 0 | OSSL_PARAM_construct_utf8_string(OSSL_OBJECT_PARAM_DATA_STRUCTURE, |
253 | 0 | data_structure, 0); |
254 | 0 | *p++ = |
255 | 0 | OSSL_PARAM_construct_octet_string(OSSL_OBJECT_PARAM_DATA, |
256 | 0 | der, der_len); |
257 | 0 | *p++ = |
258 | 0 | OSSL_PARAM_construct_int(OSSL_OBJECT_PARAM_TYPE, &objtype); |
259 | |
|
260 | 0 | *p = OSSL_PARAM_construct_end(); |
261 | |
|
262 | 0 | ok = data_cb(params, data_cbarg); |
263 | 0 | } |
264 | | |
265 | 0 | end: |
266 | 0 | OPENSSL_free(pem_name); |
267 | 0 | OPENSSL_free(pem_header); |
268 | 0 | OPENSSL_free(der); |
269 | 0 | return ok; |
270 | 0 | } |
271 | | |
272 | | const OSSL_DISPATCH ossl_pem_to_der_decoder_functions[] = { |
273 | | { OSSL_FUNC_DECODER_NEWCTX, (void (*)(void))pem2der_newctx }, |
274 | | { OSSL_FUNC_DECODER_FREECTX, (void (*)(void))pem2der_freectx }, |
275 | | { OSSL_FUNC_DECODER_DECODE, (void (*)(void))pem2der_decode }, |
276 | | { OSSL_FUNC_DECODER_SETTABLE_CTX_PARAMS, |
277 | | (void (*)(void))pem2der_settable_ctx_params }, |
278 | | { OSSL_FUNC_DECODER_SET_CTX_PARAMS, |
279 | | (void (*)(void))pem2der_set_ctx_params }, |
280 | | OSSL_DISPATCH_END |
281 | | }; |