Coverage Report

Created: 2022-11-30 06:20

/src/openssl/crypto/bn/bn_exp.c
Line
Count
Source (jump to first uncovered line)
1
/* crypto/bn/bn_exp.c */
2
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3
 * All rights reserved.
4
 *
5
 * This package is an SSL implementation written
6
 * by Eric Young (eay@cryptsoft.com).
7
 * The implementation was written so as to conform with Netscapes SSL.
8
 *
9
 * This library is free for commercial and non-commercial use as long as
10
 * the following conditions are aheared to.  The following conditions
11
 * apply to all code found in this distribution, be it the RC4, RSA,
12
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13
 * included with this distribution is covered by the same copyright terms
14
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15
 *
16
 * Copyright remains Eric Young's, and as such any Copyright notices in
17
 * the code are not to be removed.
18
 * If this package is used in a product, Eric Young should be given attribution
19
 * as the author of the parts of the library used.
20
 * This can be in the form of a textual message at program startup or
21
 * in documentation (online or textual) provided with the package.
22
 *
23
 * Redistribution and use in source and binary forms, with or without
24
 * modification, are permitted provided that the following conditions
25
 * are met:
26
 * 1. Redistributions of source code must retain the copyright
27
 *    notice, this list of conditions and the following disclaimer.
28
 * 2. Redistributions in binary form must reproduce the above copyright
29
 *    notice, this list of conditions and the following disclaimer in the
30
 *    documentation and/or other materials provided with the distribution.
31
 * 3. All advertising materials mentioning features or use of this software
32
 *    must display the following acknowledgement:
33
 *    "This product includes cryptographic software written by
34
 *     Eric Young (eay@cryptsoft.com)"
35
 *    The word 'cryptographic' can be left out if the rouines from the library
36
 *    being used are not cryptographic related :-).
37
 * 4. If you include any Windows specific code (or a derivative thereof) from
38
 *    the apps directory (application code) you must include an acknowledgement:
39
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40
 *
41
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51
 * SUCH DAMAGE.
52
 *
53
 * The licence and distribution terms for any publically available version or
54
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
55
 * copied and put under another distribution licence
56
 * [including the GNU Public Licence.]
57
 */
58
/* ====================================================================
59
 * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
60
 *
61
 * Redistribution and use in source and binary forms, with or without
62
 * modification, are permitted provided that the following conditions
63
 * are met:
64
 *
65
 * 1. Redistributions of source code must retain the above copyright
66
 *    notice, this list of conditions and the following disclaimer.
67
 *
68
 * 2. Redistributions in binary form must reproduce the above copyright
69
 *    notice, this list of conditions and the following disclaimer in
70
 *    the documentation and/or other materials provided with the
71
 *    distribution.
72
 *
73
 * 3. All advertising materials mentioning features or use of this
74
 *    software must display the following acknowledgment:
75
 *    "This product includes software developed by the OpenSSL Project
76
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77
 *
78
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79
 *    endorse or promote products derived from this software without
80
 *    prior written permission. For written permission, please contact
81
 *    openssl-core@openssl.org.
82
 *
83
 * 5. Products derived from this software may not be called "OpenSSL"
84
 *    nor may "OpenSSL" appear in their names without prior written
85
 *    permission of the OpenSSL Project.
86
 *
87
 * 6. Redistributions of any form whatsoever must retain the following
88
 *    acknowledgment:
89
 *    "This product includes software developed by the OpenSSL Project
90
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91
 *
92
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103
 * OF THE POSSIBILITY OF SUCH DAMAGE.
104
 * ====================================================================
105
 *
106
 * This product includes cryptographic software written by Eric Young
107
 * (eay@cryptsoft.com).  This product includes software written by Tim
108
 * Hudson (tjh@cryptsoft.com).
109
 *
110
 */
111
112
#include "cryptlib.h"
113
#include "constant_time_locl.h"
114
#include "bn_lcl.h"
115
116
#include <stdlib.h>
117
#ifdef _WIN32
118
# include <malloc.h>
119
# ifndef alloca
120
#  define alloca _alloca
121
# endif
122
#elif defined(__GNUC__)
123
# ifndef alloca
124
#  define alloca(s) __builtin_alloca((s))
125
# endif
126
#elif defined(__sun)
127
# include <alloca.h>
128
#endif
129
130
#include "rsaz_exp.h"
131
132
#undef SPARC_T4_MONT
133
#if defined(OPENSSL_BN_ASM_MONT) && (defined(__sparc__) || defined(__sparc))
134
# include "sparc_arch.h"
135
extern unsigned int OPENSSL_sparcv9cap_P[];
136
# define SPARC_T4_MONT
137
#endif
138
139
/* maximum precomputation table size for *variable* sliding windows */
140
#define TABLE_SIZE      32
141
142
/* this one works - simple but works */
143
int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
144
0
{
145
0
    int i, bits, ret = 0;
146
0
    BIGNUM *v, *rr;
147
148
0
    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
149
0
            || BN_get_flags(a, BN_FLG_CONSTTIME) != 0) {
150
        /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
151
0
        BNerr(BN_F_BN_EXP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
152
0
        return -1;
153
0
    }
154
155
0
    BN_CTX_start(ctx);
156
0
    if ((r == a) || (r == p))
157
0
        rr = BN_CTX_get(ctx);
158
0
    else
159
0
        rr = r;
160
0
    v = BN_CTX_get(ctx);
161
0
    if (rr == NULL || v == NULL)
162
0
        goto err;
163
164
0
    if (BN_copy(v, a) == NULL)
165
0
        goto err;
166
0
    bits = BN_num_bits(p);
167
168
0
    if (BN_is_odd(p)) {
169
0
        if (BN_copy(rr, a) == NULL)
170
0
            goto err;
171
0
    } else {
172
0
        if (!BN_one(rr))
173
0
            goto err;
174
0
    }
175
176
0
    for (i = 1; i < bits; i++) {
177
0
        if (!BN_sqr(v, v, ctx))
178
0
            goto err;
179
0
        if (BN_is_bit_set(p, i)) {
180
0
            if (!BN_mul(rr, rr, v, ctx))
181
0
                goto err;
182
0
        }
183
0
    }
184
0
    if (r != rr && BN_copy(r, rr) == NULL)
185
0
        goto err;
186
187
0
    ret = 1;
188
0
 err:
189
0
    BN_CTX_end(ctx);
190
0
    bn_check_top(r);
191
0
    return (ret);
192
0
}
193
194
int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
195
               BN_CTX *ctx)
196
0
{
197
0
    int ret;
198
199
0
    bn_check_top(a);
200
0
    bn_check_top(p);
201
0
    bn_check_top(m);
202
203
    /*-
204
     * For even modulus  m = 2^k*m_odd,  it might make sense to compute
205
     * a^p mod m_odd  and  a^p mod 2^k  separately (with Montgomery
206
     * exponentiation for the odd part), using appropriate exponent
207
     * reductions, and combine the results using the CRT.
208
     *
209
     * For now, we use Montgomery only if the modulus is odd; otherwise,
210
     * exponentiation using the reciprocal-based quick remaindering
211
     * algorithm is used.
212
     *
213
     * (Timing obtained with expspeed.c [computations  a^p mod m
214
     * where  a, p, m  are of the same length: 256, 512, 1024, 2048,
215
     * 4096, 8192 bits], compared to the running time of the
216
     * standard algorithm:
217
     *
218
     *   BN_mod_exp_mont   33 .. 40 %  [AMD K6-2, Linux, debug configuration]
219
     *                     55 .. 77 %  [UltraSparc processor, but
220
     *                                  debug-solaris-sparcv8-gcc conf.]
221
     *
222
     *   BN_mod_exp_recp   50 .. 70 %  [AMD K6-2, Linux, debug configuration]
223
     *                     62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc]
224
     *
225
     * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
226
     * at 2048 and more bits, but at 512 and 1024 bits, it was
227
     * slower even than the standard algorithm!
228
     *
229
     * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
230
     * should be obtained when the new Montgomery reduction code
231
     * has been integrated into OpenSSL.)
232
     */
233
234
0
#define MONT_MUL_MOD
235
0
#define MONT_EXP_WORD
236
0
#define RECP_MUL_MOD
237
238
0
#ifdef MONT_MUL_MOD
239
    /*
240
     * I have finally been able to take out this pre-condition of the top bit
241
     * being set.  It was caused by an error in BN_div with negatives.  There
242
     * was also another problem when for a^b%m a >= m.  eay 07-May-97
243
     */
244
    /* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */
245
246
0
    if (BN_is_odd(m)) {
247
0
# ifdef MONT_EXP_WORD
248
0
        if (a->top == 1 && !a->neg
249
0
            && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0)
250
0
            && (BN_get_flags(a, BN_FLG_CONSTTIME) == 0)
251
0
            && (BN_get_flags(m, BN_FLG_CONSTTIME) == 0)) {
252
0
            BN_ULONG A = a->d[0];
253
0
            ret = BN_mod_exp_mont_word(r, A, p, m, ctx, NULL);
254
0
        } else
255
0
# endif
256
0
            ret = BN_mod_exp_mont(r, a, p, m, ctx, NULL);
257
0
    } else
258
0
#endif
259
0
#ifdef RECP_MUL_MOD
260
0
    {
261
0
        ret = BN_mod_exp_recp(r, a, p, m, ctx);
262
0
    }
263
#else
264
    {
265
        ret = BN_mod_exp_simple(r, a, p, m, ctx);
266
    }
267
#endif
268
269
0
    bn_check_top(r);
270
0
    return (ret);
271
0
}
272
273
int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
274
                    const BIGNUM *m, BN_CTX *ctx)
275
0
{
276
0
    int i, j, bits, ret = 0, wstart, wend, window, wvalue;
277
0
    int start = 1;
278
0
    BIGNUM *aa;
279
    /* Table of variables obtained from 'ctx' */
280
0
    BIGNUM *val[TABLE_SIZE];
281
0
    BN_RECP_CTX recp;
282
283
0
    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
284
0
            || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
285
0
            || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
286
        /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
287
0
        BNerr(BN_F_BN_MOD_EXP_RECP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
288
0
        return -1;
289
0
    }
290
291
0
    bits = BN_num_bits(p);
292
0
    if (bits == 0) {
293
        /* x**0 mod 1 is still zero. */
294
0
        if (BN_is_one(m)) {
295
0
            ret = 1;
296
0
            BN_zero(r);
297
0
        } else {
298
0
            ret = BN_one(r);
299
0
        }
300
0
        return ret;
301
0
    }
302
303
0
    BN_CTX_start(ctx);
304
0
    aa = BN_CTX_get(ctx);
305
0
    val[0] = BN_CTX_get(ctx);
306
0
    if (!aa || !val[0])
307
0
        goto err;
308
309
0
    BN_RECP_CTX_init(&recp);
310
0
    if (m->neg) {
311
        /* ignore sign of 'm' */
312
0
        if (!BN_copy(aa, m))
313
0
            goto err;
314
0
        aa->neg = 0;
315
0
        if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0)
316
0
            goto err;
317
0
    } else {
318
0
        if (BN_RECP_CTX_set(&recp, m, ctx) <= 0)
319
0
            goto err;
320
0
    }
321
322
0
    if (!BN_nnmod(val[0], a, m, ctx))
323
0
        goto err;               /* 1 */
324
0
    if (BN_is_zero(val[0])) {
325
0
        BN_zero(r);
326
0
        ret = 1;
327
0
        goto err;
328
0
    }
329
330
0
    window = BN_window_bits_for_exponent_size(bits);
331
0
    if (window > 1) {
332
0
        if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx))
333
0
            goto err;           /* 2 */
334
0
        j = 1 << (window - 1);
335
0
        for (i = 1; i < j; i++) {
336
0
            if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
337
0
                !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx))
338
0
                goto err;
339
0
        }
340
0
    }
341
342
0
    start = 1;                  /* This is used to avoid multiplication etc
343
                                 * when there is only the value '1' in the
344
                                 * buffer. */
345
0
    wvalue = 0;                 /* The 'value' of the window */
346
0
    wstart = bits - 1;          /* The top bit of the window */
347
0
    wend = 0;                   /* The bottom bit of the window */
348
349
0
    if (!BN_one(r))
350
0
        goto err;
351
352
0
    for (;;) {
353
0
        if (BN_is_bit_set(p, wstart) == 0) {
354
0
            if (!start)
355
0
                if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
356
0
                    goto err;
357
0
            if (wstart == 0)
358
0
                break;
359
0
            wstart--;
360
0
            continue;
361
0
        }
362
        /*
363
         * We now have wstart on a 'set' bit, we now need to work out how bit
364
         * a window to do.  To do this we need to scan forward until the last
365
         * set bit before the end of the window
366
         */
367
0
        j = wstart;
368
0
        wvalue = 1;
369
0
        wend = 0;
370
0
        for (i = 1; i < window; i++) {
371
0
            if (wstart - i < 0)
372
0
                break;
373
0
            if (BN_is_bit_set(p, wstart - i)) {
374
0
                wvalue <<= (i - wend);
375
0
                wvalue |= 1;
376
0
                wend = i;
377
0
            }
378
0
        }
379
380
        /* wend is the size of the current window */
381
0
        j = wend + 1;
382
        /* add the 'bytes above' */
383
0
        if (!start)
384
0
            for (i = 0; i < j; i++) {
385
0
                if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
386
0
                    goto err;
387
0
            }
388
389
        /* wvalue will be an odd number < 2^window */
390
0
        if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx))
391
0
            goto err;
392
393
        /* move the 'window' down further */
394
0
        wstart -= wend + 1;
395
0
        wvalue = 0;
396
0
        start = 0;
397
0
        if (wstart < 0)
398
0
            break;
399
0
    }
400
0
    ret = 1;
401
0
 err:
402
0
    BN_CTX_end(ctx);
403
0
    BN_RECP_CTX_free(&recp);
404
0
    bn_check_top(r);
405
0
    return (ret);
406
0
}
407
408
int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
409
                    const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
410
0
{
411
0
    int i, j, bits, ret = 0, wstart, wend, window, wvalue;
412
0
    int start = 1;
413
0
    BIGNUM *d, *r;
414
0
    const BIGNUM *aa;
415
    /* Table of variables obtained from 'ctx' */
416
0
    BIGNUM *val[TABLE_SIZE];
417
0
    BN_MONT_CTX *mont = NULL;
418
419
0
    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
420
0
            || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
421
0
            || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
422
0
        return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
423
0
    }
424
425
0
    bn_check_top(a);
426
0
    bn_check_top(p);
427
0
    bn_check_top(m);
428
429
0
    if (!BN_is_odd(m)) {
430
0
        BNerr(BN_F_BN_MOD_EXP_MONT, BN_R_CALLED_WITH_EVEN_MODULUS);
431
0
        return (0);
432
0
    }
433
0
    bits = BN_num_bits(p);
434
0
    if (bits == 0) {
435
        /* x**0 mod 1 is still zero. */
436
0
        if (BN_is_one(m)) {
437
0
            ret = 1;
438
0
            BN_zero(rr);
439
0
        } else {
440
0
            ret = BN_one(rr);
441
0
        }
442
0
        return ret;
443
0
    }
444
445
0
    BN_CTX_start(ctx);
446
0
    d = BN_CTX_get(ctx);
447
0
    r = BN_CTX_get(ctx);
448
0
    val[0] = BN_CTX_get(ctx);
449
0
    if (!d || !r || !val[0])
450
0
        goto err;
451
452
    /*
453
     * If this is not done, things will break in the montgomery part
454
     */
455
456
0
    if (in_mont != NULL)
457
0
        mont = in_mont;
458
0
    else {
459
0
        if ((mont = BN_MONT_CTX_new()) == NULL)
460
0
            goto err;
461
0
        if (!BN_MONT_CTX_set(mont, m, ctx))
462
0
            goto err;
463
0
    }
464
465
0
    if (a->neg || BN_ucmp(a, m) >= 0) {
466
0
        if (!BN_nnmod(val[0], a, m, ctx))
467
0
            goto err;
468
0
        aa = val[0];
469
0
    } else
470
0
        aa = a;
471
0
    if (BN_is_zero(aa)) {
472
0
        BN_zero(rr);
473
0
        ret = 1;
474
0
        goto err;
475
0
    }
476
0
    if (!BN_to_montgomery(val[0], aa, mont, ctx))
477
0
        goto err;               /* 1 */
478
479
0
    window = BN_window_bits_for_exponent_size(bits);
480
0
    if (window > 1) {
481
0
        if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx))
482
0
            goto err;           /* 2 */
483
0
        j = 1 << (window - 1);
484
0
        for (i = 1; i < j; i++) {
485
0
            if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
486
0
                !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx))
487
0
                goto err;
488
0
        }
489
0
    }
490
491
0
    start = 1;                  /* This is used to avoid multiplication etc
492
                                 * when there is only the value '1' in the
493
                                 * buffer. */
494
0
    wvalue = 0;                 /* The 'value' of the window */
495
0
    wstart = bits - 1;          /* The top bit of the window */
496
0
    wend = 0;                   /* The bottom bit of the window */
497
498
0
#if 1                           /* by Shay Gueron's suggestion */
499
0
    j = m->top;                 /* borrow j */
500
0
    if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
501
0
        if (bn_wexpand(r, j) == NULL)
502
0
            goto err;
503
        /* 2^(top*BN_BITS2) - m */
504
0
        r->d[0] = (0 - m->d[0]) & BN_MASK2;
505
0
        for (i = 1; i < j; i++)
506
0
            r->d[i] = (~m->d[i]) & BN_MASK2;
507
0
        r->top = j;
508
        /*
509
         * Upper words will be zero if the corresponding words of 'm' were
510
         * 0xfff[...], so decrement r->top accordingly.
511
         */
512
0
        bn_correct_top(r);
513
0
    } else
514
0
#endif
515
0
    if (!BN_to_montgomery(r, BN_value_one(), mont, ctx))
516
0
        goto err;
517
0
    for (;;) {
518
0
        if (BN_is_bit_set(p, wstart) == 0) {
519
0
            if (!start) {
520
0
                if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
521
0
                    goto err;
522
0
            }
523
0
            if (wstart == 0)
524
0
                break;
525
0
            wstart--;
526
0
            continue;
527
0
        }
528
        /*
529
         * We now have wstart on a 'set' bit, we now need to work out how bit
530
         * a window to do.  To do this we need to scan forward until the last
531
         * set bit before the end of the window
532
         */
533
0
        j = wstart;
534
0
        wvalue = 1;
535
0
        wend = 0;
536
0
        for (i = 1; i < window; i++) {
537
0
            if (wstart - i < 0)
538
0
                break;
539
0
            if (BN_is_bit_set(p, wstart - i)) {
540
0
                wvalue <<= (i - wend);
541
0
                wvalue |= 1;
542
0
                wend = i;
543
0
            }
544
0
        }
545
546
        /* wend is the size of the current window */
547
0
        j = wend + 1;
548
        /* add the 'bytes above' */
549
0
        if (!start)
550
0
            for (i = 0; i < j; i++) {
551
0
                if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
552
0
                    goto err;
553
0
            }
554
555
        /* wvalue will be an odd number < 2^window */
556
0
        if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx))
557
0
            goto err;
558
559
        /* move the 'window' down further */
560
0
        wstart -= wend + 1;
561
0
        wvalue = 0;
562
0
        start = 0;
563
0
        if (wstart < 0)
564
0
            break;
565
0
    }
566
#if defined(SPARC_T4_MONT)
567
    if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) {
568
        j = mont->N.top;        /* borrow j */
569
        val[0]->d[0] = 1;       /* borrow val[0] */
570
        for (i = 1; i < j; i++)
571
            val[0]->d[i] = 0;
572
        val[0]->top = j;
573
        if (!BN_mod_mul_montgomery(rr, r, val[0], mont, ctx))
574
            goto err;
575
    } else
576
#endif
577
0
    if (!BN_from_montgomery(rr, r, mont, ctx))
578
0
        goto err;
579
0
    ret = 1;
580
0
 err:
581
0
    if ((in_mont == NULL) && (mont != NULL))
582
0
        BN_MONT_CTX_free(mont);
583
0
    BN_CTX_end(ctx);
584
0
    bn_check_top(rr);
585
0
    return (ret);
586
0
}
587
588
#if defined(SPARC_T4_MONT)
589
static BN_ULONG bn_get_bits(const BIGNUM *a, int bitpos)
590
{
591
    BN_ULONG ret = 0;
592
    int wordpos;
593
594
    wordpos = bitpos / BN_BITS2;
595
    bitpos %= BN_BITS2;
596
    if (wordpos >= 0 && wordpos < a->top) {
597
        ret = a->d[wordpos] & BN_MASK2;
598
        if (bitpos) {
599
            ret >>= bitpos;
600
            if (++wordpos < a->top)
601
                ret |= a->d[wordpos] << (BN_BITS2 - bitpos);
602
        }
603
    }
604
605
    return ret & BN_MASK2;
606
}
607
#endif
608
609
/*
610
 * BN_mod_exp_mont_consttime() stores the precomputed powers in a specific
611
 * layout so that accessing any of these table values shows the same access
612
 * pattern as far as cache lines are concerned.  The following functions are
613
 * used to transfer a BIGNUM from/to that table.
614
 */
615
616
static int MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top,
617
                                        unsigned char *buf, int idx,
618
                                        int window)
619
0
{
620
0
    int i, j;
621
0
    int width = 1 << window;
622
0
    BN_ULONG *table = (BN_ULONG *)buf;
623
624
0
    if (top > b->top)
625
0
        top = b->top;           /* this works because 'buf' is explicitly
626
                                 * zeroed */
627
0
    for (i = 0, j = idx; i < top; i++, j += width) {
628
0
        table[j] = b->d[i];
629
0
    }
630
631
0
    return 1;
632
0
}
633
634
static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top,
635
                                          unsigned char *buf, int idx,
636
                                          int window)
637
0
{
638
0
    int i, j;
639
0
    int width = 1 << window;
640
0
    volatile BN_ULONG *table = (volatile BN_ULONG *)buf;
641
642
0
    if (bn_wexpand(b, top) == NULL)
643
0
        return 0;
644
645
0
    if (window <= 3) {
646
0
        for (i = 0; i < top; i++, table += width) {
647
0
            BN_ULONG acc = 0;
648
649
0
            for (j = 0; j < width; j++) {
650
0
                acc |= table[j] &
651
0
                       ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1));
652
0
            }
653
654
0
            b->d[i] = acc;
655
0
        }
656
0
    } else {
657
0
        int xstride = 1 << (window - 2);
658
0
        BN_ULONG y0, y1, y2, y3;
659
660
0
        i = idx >> (window - 2);        /* equivalent of idx / xstride */
661
0
        idx &= xstride - 1;             /* equivalent of idx % xstride */
662
663
0
        y0 = (BN_ULONG)0 - (constant_time_eq_int(i,0)&1);
664
0
        y1 = (BN_ULONG)0 - (constant_time_eq_int(i,1)&1);
665
0
        y2 = (BN_ULONG)0 - (constant_time_eq_int(i,2)&1);
666
0
        y3 = (BN_ULONG)0 - (constant_time_eq_int(i,3)&1);
667
668
0
        for (i = 0; i < top; i++, table += width) {
669
0
            BN_ULONG acc = 0;
670
671
0
            for (j = 0; j < xstride; j++) {
672
0
                acc |= ( (table[j + 0 * xstride] & y0) |
673
0
                         (table[j + 1 * xstride] & y1) |
674
0
                         (table[j + 2 * xstride] & y2) |
675
0
                         (table[j + 3 * xstride] & y3) )
676
0
                       & ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1));
677
0
            }
678
679
0
            b->d[i] = acc;
680
0
        }
681
0
    }
682
683
0
    b->top = top;
684
0
    bn_correct_top(b);
685
0
    return 1;
686
0
}
687
688
/*
689
 * Given a pointer value, compute the next address that is a cache line
690
 * multiple.
691
 */
692
#define MOD_EXP_CTIME_ALIGN(x_) \
693
0
        ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
694
695
/*
696
 * This variant of BN_mod_exp_mont() uses fixed windows and the special
697
 * precomputation memory layout to limit data-dependency to a minimum to
698
 * protect secret exponents (cf. the hyper-threading timing attacks pointed
699
 * out by Colin Percival,
700
 * http://www.daemonology.net/hyperthreading-considered-harmful/)
701
 */
702
int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
703
                              const BIGNUM *m, BN_CTX *ctx,
704
                              BN_MONT_CTX *in_mont)
705
0
{
706
0
    int i, bits, ret = 0, window, wvalue;
707
0
    int top;
708
0
    BN_MONT_CTX *mont = NULL;
709
710
0
    int numPowers;
711
0
    unsigned char *powerbufFree = NULL;
712
0
    int powerbufLen = 0;
713
0
    unsigned char *powerbuf = NULL;
714
0
    BIGNUM tmp, am;
715
#if defined(SPARC_T4_MONT)
716
    unsigned int t4 = 0;
717
#endif
718
719
0
    bn_check_top(a);
720
0
    bn_check_top(p);
721
0
    bn_check_top(m);
722
723
0
    if (!BN_is_odd(m)) {
724
0
        BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME, BN_R_CALLED_WITH_EVEN_MODULUS);
725
0
        return (0);
726
0
    }
727
728
0
    top = m->top;
729
730
0
    bits = BN_num_bits(p);
731
0
    if (bits == 0) {
732
        /* x**0 mod 1 is still zero. */
733
0
        if (BN_is_one(m)) {
734
0
            ret = 1;
735
0
            BN_zero(rr);
736
0
        } else {
737
0
            ret = BN_one(rr);
738
0
        }
739
0
        return ret;
740
0
    }
741
742
0
    BN_CTX_start(ctx);
743
744
    /*
745
     * Allocate a montgomery context if it was not supplied by the caller. If
746
     * this is not done, things will break in the montgomery part.
747
     */
748
0
    if (in_mont != NULL)
749
0
        mont = in_mont;
750
0
    else {
751
0
        if ((mont = BN_MONT_CTX_new()) == NULL)
752
0
            goto err;
753
0
        if (!BN_MONT_CTX_set(mont, m, ctx))
754
0
            goto err;
755
0
    }
756
757
0
#ifdef RSAZ_ENABLED
758
    /*
759
     * If the size of the operands allow it, perform the optimized
760
     * RSAZ exponentiation. For further information see
761
     * crypto/bn/rsaz_exp.c and accompanying assembly modules.
762
     */
763
0
    if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024)
764
0
        && rsaz_avx2_eligible()) {
765
0
        if (NULL == bn_wexpand(rr, 16))
766
0
            goto err;
767
0
        RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d,
768
0
                               mont->n0[0]);
769
0
        rr->top = 16;
770
0
        rr->neg = 0;
771
0
        bn_correct_top(rr);
772
0
        ret = 1;
773
0
        goto err;
774
0
    } else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) {
775
0
        if (NULL == bn_wexpand(rr, 8))
776
0
            goto err;
777
0
        RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d);
778
0
        rr->top = 8;
779
0
        rr->neg = 0;
780
0
        bn_correct_top(rr);
781
0
        ret = 1;
782
0
        goto err;
783
0
    }
784
0
#endif
785
786
    /* Get the window size to use with size of p. */
787
0
    window = BN_window_bits_for_ctime_exponent_size(bits);
788
#if defined(SPARC_T4_MONT)
789
    if (window >= 5 && (top & 15) == 0 && top <= 64 &&
790
        (OPENSSL_sparcv9cap_P[1] & (CFR_MONTMUL | CFR_MONTSQR)) ==
791
        (CFR_MONTMUL | CFR_MONTSQR) && (t4 = OPENSSL_sparcv9cap_P[0]))
792
        window = 5;
793
    else
794
#endif
795
0
#if defined(OPENSSL_BN_ASM_MONT5)
796
0
    if (window >= 5) {
797
0
        window = 5;             /* ~5% improvement for RSA2048 sign, and even
798
                                 * for RSA4096 */
799
        /* reserve space for mont->N.d[] copy */
800
0
        powerbufLen += top * sizeof(mont->N.d[0]);
801
0
    }
802
0
#endif
803
0
    (void)0;
804
805
    /*
806
     * Allocate a buffer large enough to hold all of the pre-computed powers
807
     * of am, am itself and tmp.
808
     */
809
0
    numPowers = 1 << window;
810
0
    powerbufLen += sizeof(m->d[0]) * (top * numPowers +
811
0
                                      ((2 * top) >
812
0
                                       numPowers ? (2 * top) : numPowers));
813
0
#ifdef alloca
814
0
    if (powerbufLen < 3072)
815
0
        powerbufFree =
816
0
            alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
817
0
    else
818
0
#endif
819
0
        if ((powerbufFree =
820
0
             (unsigned char *)OPENSSL_malloc(powerbufLen +
821
0
                                             MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH))
822
0
            == NULL)
823
0
        goto err;
824
825
0
    powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
826
0
    memset(powerbuf, 0, powerbufLen);
827
828
0
#ifdef alloca
829
0
    if (powerbufLen < 3072)
830
0
        powerbufFree = NULL;
831
0
#endif
832
833
    /* lay down tmp and am right after powers table */
834
0
    tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
835
0
    am.d = tmp.d + top;
836
0
    tmp.top = am.top = 0;
837
0
    tmp.dmax = am.dmax = top;
838
0
    tmp.neg = am.neg = 0;
839
0
    tmp.flags = am.flags = BN_FLG_STATIC_DATA;
840
841
    /* prepare a^0 in Montgomery domain */
842
0
#if 1                           /* by Shay Gueron's suggestion */
843
0
    if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
844
        /* 2^(top*BN_BITS2) - m */
845
0
        tmp.d[0] = (0 - m->d[0]) & BN_MASK2;
846
0
        for (i = 1; i < top; i++)
847
0
            tmp.d[i] = (~m->d[i]) & BN_MASK2;
848
0
        tmp.top = top;
849
0
    } else
850
0
#endif
851
0
    if (!BN_to_montgomery(&tmp, BN_value_one(), mont, ctx))
852
0
        goto err;
853
854
    /* prepare a^1 in Montgomery domain */
855
0
    if (a->neg || BN_ucmp(a, m) >= 0) {
856
0
        if (!BN_mod(&am, a, m, ctx))
857
0
            goto err;
858
0
        if (!BN_to_montgomery(&am, &am, mont, ctx))
859
0
            goto err;
860
0
    } else if (!BN_to_montgomery(&am, a, mont, ctx))
861
0
        goto err;
862
863
#if defined(SPARC_T4_MONT)
864
    if (t4) {
865
        typedef int (*bn_pwr5_mont_f) (BN_ULONG *tp, const BN_ULONG *np,
866
                                       const BN_ULONG *n0, const void *table,
867
                                       int power, int bits);
868
        int bn_pwr5_mont_t4_8(BN_ULONG *tp, const BN_ULONG *np,
869
                              const BN_ULONG *n0, const void *table,
870
                              int power, int bits);
871
        int bn_pwr5_mont_t4_16(BN_ULONG *tp, const BN_ULONG *np,
872
                               const BN_ULONG *n0, const void *table,
873
                               int power, int bits);
874
        int bn_pwr5_mont_t4_24(BN_ULONG *tp, const BN_ULONG *np,
875
                               const BN_ULONG *n0, const void *table,
876
                               int power, int bits);
877
        int bn_pwr5_mont_t4_32(BN_ULONG *tp, const BN_ULONG *np,
878
                               const BN_ULONG *n0, const void *table,
879
                               int power, int bits);
880
        static const bn_pwr5_mont_f pwr5_funcs[4] = {
881
            bn_pwr5_mont_t4_8, bn_pwr5_mont_t4_16,
882
            bn_pwr5_mont_t4_24, bn_pwr5_mont_t4_32
883
        };
884
        bn_pwr5_mont_f pwr5_worker = pwr5_funcs[top / 16 - 1];
885
886
        typedef int (*bn_mul_mont_f) (BN_ULONG *rp, const BN_ULONG *ap,
887
                                      const void *bp, const BN_ULONG *np,
888
                                      const BN_ULONG *n0);
889
        int bn_mul_mont_t4_8(BN_ULONG *rp, const BN_ULONG *ap, const void *bp,
890
                             const BN_ULONG *np, const BN_ULONG *n0);
891
        int bn_mul_mont_t4_16(BN_ULONG *rp, const BN_ULONG *ap,
892
                              const void *bp, const BN_ULONG *np,
893
                              const BN_ULONG *n0);
894
        int bn_mul_mont_t4_24(BN_ULONG *rp, const BN_ULONG *ap,
895
                              const void *bp, const BN_ULONG *np,
896
                              const BN_ULONG *n0);
897
        int bn_mul_mont_t4_32(BN_ULONG *rp, const BN_ULONG *ap,
898
                              const void *bp, const BN_ULONG *np,
899
                              const BN_ULONG *n0);
900
        static const bn_mul_mont_f mul_funcs[4] = {
901
            bn_mul_mont_t4_8, bn_mul_mont_t4_16,
902
            bn_mul_mont_t4_24, bn_mul_mont_t4_32
903
        };
904
        bn_mul_mont_f mul_worker = mul_funcs[top / 16 - 1];
905
906
        void bn_mul_mont_vis3(BN_ULONG *rp, const BN_ULONG *ap,
907
                              const void *bp, const BN_ULONG *np,
908
                              const BN_ULONG *n0, int num);
909
        void bn_mul_mont_t4(BN_ULONG *rp, const BN_ULONG *ap,
910
                            const void *bp, const BN_ULONG *np,
911
                            const BN_ULONG *n0, int num);
912
        void bn_mul_mont_gather5_t4(BN_ULONG *rp, const BN_ULONG *ap,
913
                                    const void *table, const BN_ULONG *np,
914
                                    const BN_ULONG *n0, int num, int power);
915
        void bn_flip_n_scatter5_t4(const BN_ULONG *inp, size_t num,
916
                                   void *table, size_t power);
917
        void bn_gather5_t4(BN_ULONG *out, size_t num,
918
                           void *table, size_t power);
919
        void bn_flip_t4(BN_ULONG *dst, BN_ULONG *src, size_t num);
920
921
        BN_ULONG *np = mont->N.d, *n0 = mont->n0;
922
        int stride = 5 * (6 - (top / 16 - 1)); /* multiple of 5, but less
923
                                                * than 32 */
924
925
        /*
926
         * BN_to_montgomery can contaminate words above .top [in
927
         * BN_DEBUG[_DEBUG] build]...
928
         */
929
        for (i = am.top; i < top; i++)
930
            am.d[i] = 0;
931
        for (i = tmp.top; i < top; i++)
932
            tmp.d[i] = 0;
933
934
        bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 0);
935
        bn_flip_n_scatter5_t4(am.d, top, powerbuf, 1);
936
        if (!(*mul_worker) (tmp.d, am.d, am.d, np, n0) &&
937
            !(*mul_worker) (tmp.d, am.d, am.d, np, n0))
938
            bn_mul_mont_vis3(tmp.d, am.d, am.d, np, n0, top);
939
        bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 2);
940
941
        for (i = 3; i < 32; i++) {
942
            /* Calculate a^i = a^(i-1) * a */
943
            if (!(*mul_worker) (tmp.d, tmp.d, am.d, np, n0) &&
944
                !(*mul_worker) (tmp.d, tmp.d, am.d, np, n0))
945
                bn_mul_mont_vis3(tmp.d, tmp.d, am.d, np, n0, top);
946
            bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, i);
947
        }
948
949
        /* switch to 64-bit domain */
950
        np = alloca(top * sizeof(BN_ULONG));
951
        top /= 2;
952
        bn_flip_t4(np, mont->N.d, top);
953
954
        bits--;
955
        for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--)
956
            wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
957
        bn_gather5_t4(tmp.d, top, powerbuf, wvalue);
958
959
        /*
960
         * Scan the exponent one window at a time starting from the most
961
         * significant bits.
962
         */
963
        while (bits >= 0) {
964
            if (bits < stride)
965
                stride = bits + 1;
966
            bits -= stride;
967
            wvalue = bn_get_bits(p, bits + 1);
968
969
            if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride))
970
                continue;
971
            /* retry once and fall back */
972
            if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride))
973
                continue;
974
975
            bits += stride - 5;
976
            wvalue >>= stride - 5;
977
            wvalue &= 31;
978
            bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
979
            bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
980
            bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
981
            bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
982
            bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
983
            bn_mul_mont_gather5_t4(tmp.d, tmp.d, powerbuf, np, n0, top,
984
                                   wvalue);
985
        }
986
987
        bn_flip_t4(tmp.d, tmp.d, top);
988
        top *= 2;
989
        /* back to 32-bit domain */
990
        tmp.top = top;
991
        bn_correct_top(&tmp);
992
        OPENSSL_cleanse(np, top * sizeof(BN_ULONG));
993
    } else
994
#endif
995
0
#if defined(OPENSSL_BN_ASM_MONT5)
996
0
    if (window == 5 && top > 1) {
997
        /*
998
         * This optimization uses ideas from http://eprint.iacr.org/2011/239,
999
         * specifically optimization of cache-timing attack countermeasures
1000
         * and pre-computation optimization.
1001
         */
1002
1003
        /*
1004
         * Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
1005
         * 512-bit RSA is hardly relevant, we omit it to spare size...
1006
         */
1007
0
        void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap,
1008
0
                                 const void *table, const BN_ULONG *np,
1009
0
                                 const BN_ULONG *n0, int num, int power);
1010
0
        void bn_scatter5(const BN_ULONG *inp, size_t num,
1011
0
                         void *table, size_t power);
1012
0
        void bn_gather5(BN_ULONG *out, size_t num, void *table, size_t power);
1013
0
        void bn_power5(BN_ULONG *rp, const BN_ULONG *ap,
1014
0
                       const void *table, const BN_ULONG *np,
1015
0
                       const BN_ULONG *n0, int num, int power);
1016
0
        int bn_get_bits5(const BN_ULONG *ap, int off);
1017
0
        int bn_from_montgomery(BN_ULONG *rp, const BN_ULONG *ap,
1018
0
                               const BN_ULONG *not_used, const BN_ULONG *np,
1019
0
                               const BN_ULONG *n0, int num);
1020
1021
0
        BN_ULONG *n0 = mont->n0, *np;
1022
1023
        /*
1024
         * BN_to_montgomery can contaminate words above .top [in
1025
         * BN_DEBUG[_DEBUG] build]...
1026
         */
1027
0
        for (i = am.top; i < top; i++)
1028
0
            am.d[i] = 0;
1029
0
        for (i = tmp.top; i < top; i++)
1030
0
            tmp.d[i] = 0;
1031
1032
        /*
1033
         * copy mont->N.d[] to improve cache locality
1034
         */
1035
0
        for (np = am.d + top, i = 0; i < top; i++)
1036
0
            np[i] = mont->N.d[i];
1037
1038
0
        bn_scatter5(tmp.d, top, powerbuf, 0);
1039
0
        bn_scatter5(am.d, am.top, powerbuf, 1);
1040
0
        bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
1041
0
        bn_scatter5(tmp.d, top, powerbuf, 2);
1042
1043
# if 0
1044
        for (i = 3; i < 32; i++) {
1045
            /* Calculate a^i = a^(i-1) * a */
1046
            bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
1047
            bn_scatter5(tmp.d, top, powerbuf, i);
1048
        }
1049
# else
1050
        /* same as above, but uses squaring for 1/2 of operations */
1051
0
        for (i = 4; i < 32; i *= 2) {
1052
0
            bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1053
0
            bn_scatter5(tmp.d, top, powerbuf, i);
1054
0
        }
1055
0
        for (i = 3; i < 8; i += 2) {
1056
0
            int j;
1057
0
            bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
1058
0
            bn_scatter5(tmp.d, top, powerbuf, i);
1059
0
            for (j = 2 * i; j < 32; j *= 2) {
1060
0
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1061
0
                bn_scatter5(tmp.d, top, powerbuf, j);
1062
0
            }
1063
0
        }
1064
0
        for (; i < 16; i += 2) {
1065
0
            bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
1066
0
            bn_scatter5(tmp.d, top, powerbuf, i);
1067
0
            bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1068
0
            bn_scatter5(tmp.d, top, powerbuf, 2 * i);
1069
0
        }
1070
0
        for (; i < 32; i += 2) {
1071
0
            bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
1072
0
            bn_scatter5(tmp.d, top, powerbuf, i);
1073
0
        }
1074
0
# endif
1075
0
        bits--;
1076
0
        for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--)
1077
0
            wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1078
0
        bn_gather5(tmp.d, top, powerbuf, wvalue);
1079
1080
        /*
1081
         * Scan the exponent one window at a time starting from the most
1082
         * significant bits.
1083
         */
1084
0
        if (top & 7)
1085
0
            while (bits >= 0) {
1086
0
                for (wvalue = 0, i = 0; i < 5; i++, bits--)
1087
0
                    wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1088
1089
0
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1090
0
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1091
0
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1092
0
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1093
0
                bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1094
0
                bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top,
1095
0
                                    wvalue);
1096
0
        } else {
1097
0
            while (bits >= 0) {
1098
0
                wvalue = bn_get_bits5(p->d, bits - 4);
1099
0
                bits -= 5;
1100
0
                bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
1101
0
            }
1102
0
        }
1103
1104
0
        ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np, n0, top);
1105
0
        tmp.top = top;
1106
0
        bn_correct_top(&tmp);
1107
0
        if (ret) {
1108
0
            if (!BN_copy(rr, &tmp))
1109
0
                ret = 0;
1110
0
            goto err;           /* non-zero ret means it's not error */
1111
0
        }
1112
0
    } else
1113
0
#endif
1114
0
    {
1115
0
        if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, window))
1116
0
            goto err;
1117
0
        if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, window))
1118
0
            goto err;
1119
1120
        /*
1121
         * If the window size is greater than 1, then calculate
1122
         * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) (even
1123
         * powers could instead be computed as (a^(i/2))^2 to use the slight
1124
         * performance advantage of sqr over mul).
1125
         */
1126
0
        if (window > 1) {
1127
0
            if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx))
1128
0
                goto err;
1129
0
            if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 2,
1130
0
                                              window))
1131
0
                goto err;
1132
0
            for (i = 3; i < numPowers; i++) {
1133
                /* Calculate a^i = a^(i-1) * a */
1134
0
                if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx))
1135
0
                    goto err;
1136
0
                if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, i,
1137
0
                                                  window))
1138
0
                    goto err;
1139
0
            }
1140
0
        }
1141
1142
0
        bits--;
1143
0
        for (wvalue = 0, i = bits % window; i >= 0; i--, bits--)
1144
0
            wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1145
0
        if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp, top, powerbuf, wvalue,
1146
0
                                            window))
1147
0
            goto err;
1148
1149
        /*
1150
         * Scan the exponent one window at a time starting from the most
1151
         * significant bits.
1152
         */
1153
0
        while (bits >= 0) {
1154
0
            wvalue = 0;         /* The 'value' of the window */
1155
1156
            /* Scan the window, squaring the result as we go */
1157
0
            for (i = 0; i < window; i++, bits--) {
1158
0
                if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx))
1159
0
                    goto err;
1160
0
                wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1161
0
            }
1162
1163
            /*
1164
             * Fetch the appropriate pre-computed value from the pre-buf
1165
             */
1166
0
            if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, wvalue,
1167
0
                                                window))
1168
0
                goto err;
1169
1170
            /* Multiply the result into the intermediate result */
1171
0
            if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx))
1172
0
                goto err;
1173
0
        }
1174
0
    }
1175
1176
    /* Convert the final result from montgomery to standard format */
1177
#if defined(SPARC_T4_MONT)
1178
    if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) {
1179
        am.d[0] = 1;            /* borrow am */
1180
        for (i = 1; i < top; i++)
1181
            am.d[i] = 0;
1182
        if (!BN_mod_mul_montgomery(rr, &tmp, &am, mont, ctx))
1183
            goto err;
1184
    } else
1185
#endif
1186
0
    if (!BN_from_montgomery(rr, &tmp, mont, ctx))
1187
0
        goto err;
1188
0
    ret = 1;
1189
0
 err:
1190
0
    if ((in_mont == NULL) && (mont != NULL))
1191
0
        BN_MONT_CTX_free(mont);
1192
0
    if (powerbuf != NULL) {
1193
0
        OPENSSL_cleanse(powerbuf, powerbufLen);
1194
0
        if (powerbufFree)
1195
0
            OPENSSL_free(powerbufFree);
1196
0
    }
1197
0
    BN_CTX_end(ctx);
1198
0
    return (ret);
1199
0
}
1200
1201
int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
1202
                         const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
1203
0
{
1204
0
    BN_MONT_CTX *mont = NULL;
1205
0
    int b, bits, ret = 0;
1206
0
    int r_is_one;
1207
0
    BN_ULONG w, next_w;
1208
0
    BIGNUM *d, *r, *t;
1209
0
    BIGNUM *swap_tmp;
1210
0
#define BN_MOD_MUL_WORD(r, w, m) \
1211
0
                (BN_mul_word(r, (w)) && \
1212
0
                (/* BN_ucmp(r, (m)) < 0 ? 1 :*/  \
1213
0
                        (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
1214
    /*
1215
     * BN_MOD_MUL_WORD is only used with 'w' large, so the BN_ucmp test is
1216
     * probably more overhead than always using BN_mod (which uses BN_copy if
1217
     * a similar test returns true).
1218
     */
1219
    /*
1220
     * We can use BN_mod and do not need BN_nnmod because our accumulator is
1221
     * never negative (the result of BN_mod does not depend on the sign of
1222
     * the modulus).
1223
     */
1224
0
#define BN_TO_MONTGOMERY_WORD(r, w, mont) \
1225
0
                (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))
1226
1227
0
    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
1228
0
            || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
1229
        /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
1230
0
        BNerr(BN_F_BN_MOD_EXP_MONT_WORD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1231
0
        return -1;
1232
0
    }
1233
1234
0
    bn_check_top(p);
1235
0
    bn_check_top(m);
1236
1237
0
    if (!BN_is_odd(m)) {
1238
0
        BNerr(BN_F_BN_MOD_EXP_MONT_WORD, BN_R_CALLED_WITH_EVEN_MODULUS);
1239
0
        return (0);
1240
0
    }
1241
0
    if (m->top == 1)
1242
0
        a %= m->d[0];           /* make sure that 'a' is reduced */
1243
1244
0
    bits = BN_num_bits(p);
1245
0
    if (bits == 0) {
1246
        /* x**0 mod 1 is still zero. */
1247
0
        if (BN_is_one(m)) {
1248
0
            ret = 1;
1249
0
            BN_zero(rr);
1250
0
        } else {
1251
0
            ret = BN_one(rr);
1252
0
        }
1253
0
        return ret;
1254
0
    }
1255
0
    if (a == 0) {
1256
0
        BN_zero(rr);
1257
0
        ret = 1;
1258
0
        return ret;
1259
0
    }
1260
1261
0
    BN_CTX_start(ctx);
1262
0
    d = BN_CTX_get(ctx);
1263
0
    r = BN_CTX_get(ctx);
1264
0
    t = BN_CTX_get(ctx);
1265
0
    if (d == NULL || r == NULL || t == NULL)
1266
0
        goto err;
1267
1268
0
    if (in_mont != NULL)
1269
0
        mont = in_mont;
1270
0
    else {
1271
0
        if ((mont = BN_MONT_CTX_new()) == NULL)
1272
0
            goto err;
1273
0
        if (!BN_MONT_CTX_set(mont, m, ctx))
1274
0
            goto err;
1275
0
    }
1276
1277
0
    r_is_one = 1;               /* except for Montgomery factor */
1278
1279
    /* bits-1 >= 0 */
1280
1281
    /* The result is accumulated in the product r*w. */
1282
0
    w = a;                      /* bit 'bits-1' of 'p' is always set */
1283
0
    for (b = bits - 2; b >= 0; b--) {
1284
        /* First, square r*w. */
1285
0
        next_w = w * w;
1286
0
        if ((next_w / w) != w) { /* overflow */
1287
0
            if (r_is_one) {
1288
0
                if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
1289
0
                    goto err;
1290
0
                r_is_one = 0;
1291
0
            } else {
1292
0
                if (!BN_MOD_MUL_WORD(r, w, m))
1293
0
                    goto err;
1294
0
            }
1295
0
            next_w = 1;
1296
0
        }
1297
0
        w = next_w;
1298
0
        if (!r_is_one) {
1299
0
            if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
1300
0
                goto err;
1301
0
        }
1302
1303
        /* Second, multiply r*w by 'a' if exponent bit is set. */
1304
0
        if (BN_is_bit_set(p, b)) {
1305
0
            next_w = w * a;
1306
0
            if ((next_w / a) != w) { /* overflow */
1307
0
                if (r_is_one) {
1308
0
                    if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
1309
0
                        goto err;
1310
0
                    r_is_one = 0;
1311
0
                } else {
1312
0
                    if (!BN_MOD_MUL_WORD(r, w, m))
1313
0
                        goto err;
1314
0
                }
1315
0
                next_w = a;
1316
0
            }
1317
0
            w = next_w;
1318
0
        }
1319
0
    }
1320
1321
    /* Finally, set r:=r*w. */
1322
0
    if (w != 1) {
1323
0
        if (r_is_one) {
1324
0
            if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
1325
0
                goto err;
1326
0
            r_is_one = 0;
1327
0
        } else {
1328
0
            if (!BN_MOD_MUL_WORD(r, w, m))
1329
0
                goto err;
1330
0
        }
1331
0
    }
1332
1333
0
    if (r_is_one) {             /* can happen only if a == 1 */
1334
0
        if (!BN_one(rr))
1335
0
            goto err;
1336
0
    } else {
1337
0
        if (!BN_from_montgomery(rr, r, mont, ctx))
1338
0
            goto err;
1339
0
    }
1340
0
    ret = 1;
1341
0
 err:
1342
0
    if ((in_mont == NULL) && (mont != NULL))
1343
0
        BN_MONT_CTX_free(mont);
1344
0
    BN_CTX_end(ctx);
1345
0
    bn_check_top(rr);
1346
0
    return (ret);
1347
0
}
1348
1349
/* The old fallback, simple version :-) */
1350
int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
1351
                      const BIGNUM *m, BN_CTX *ctx)
1352
0
{
1353
0
    int i, j, bits, ret = 0, wstart, wend, window, wvalue;
1354
0
    int start = 1;
1355
0
    BIGNUM *d;
1356
    /* Table of variables obtained from 'ctx' */
1357
0
    BIGNUM *val[TABLE_SIZE];
1358
1359
0
    if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
1360
0
            || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
1361
0
            || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
1362
        /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
1363
0
        BNerr(BN_F_BN_MOD_EXP_SIMPLE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1364
0
        return -1;
1365
0
    }
1366
1367
0
    bits = BN_num_bits(p);
1368
0
   if (bits == 0) {
1369
        /* x**0 mod 1 is still zero. */
1370
0
        if (BN_is_one(m)) {
1371
0
            ret = 1;
1372
0
            BN_zero(r);
1373
0
        } else {
1374
0
            ret = BN_one(r);
1375
0
        }
1376
0
        return ret;
1377
0
    }
1378
1379
0
    BN_CTX_start(ctx);
1380
0
    d = BN_CTX_get(ctx);
1381
0
    val[0] = BN_CTX_get(ctx);
1382
0
    if (!d || !val[0])
1383
0
        goto err;
1384
1385
0
    if (!BN_nnmod(val[0], a, m, ctx))
1386
0
        goto err;               /* 1 */
1387
0
    if (BN_is_zero(val[0])) {
1388
0
        BN_zero(r);
1389
0
        ret = 1;
1390
0
        goto err;
1391
0
    }
1392
1393
0
    window = BN_window_bits_for_exponent_size(bits);
1394
0
    if (window > 1) {
1395
0
        if (!BN_mod_mul(d, val[0], val[0], m, ctx))
1396
0
            goto err;           /* 2 */
1397
0
        j = 1 << (window - 1);
1398
0
        for (i = 1; i < j; i++) {
1399
0
            if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
1400
0
                !BN_mod_mul(val[i], val[i - 1], d, m, ctx))
1401
0
                goto err;
1402
0
        }
1403
0
    }
1404
1405
0
    start = 1;                  /* This is used to avoid multiplication etc
1406
                                 * when there is only the value '1' in the
1407
                                 * buffer. */
1408
0
    wvalue = 0;                 /* The 'value' of the window */
1409
0
    wstart = bits - 1;          /* The top bit of the window */
1410
0
    wend = 0;                   /* The bottom bit of the window */
1411
1412
0
    if (!BN_one(r))
1413
0
        goto err;
1414
1415
0
    for (;;) {
1416
0
        if (BN_is_bit_set(p, wstart) == 0) {
1417
0
            if (!start)
1418
0
                if (!BN_mod_mul(r, r, r, m, ctx))
1419
0
                    goto err;
1420
0
            if (wstart == 0)
1421
0
                break;
1422
0
            wstart--;
1423
0
            continue;
1424
0
        }
1425
        /*
1426
         * We now have wstart on a 'set' bit, we now need to work out how bit
1427
         * a window to do.  To do this we need to scan forward until the last
1428
         * set bit before the end of the window
1429
         */
1430
0
        j = wstart;
1431
0
        wvalue = 1;
1432
0
        wend = 0;
1433
0
        for (i = 1; i < window; i++) {
1434
0
            if (wstart - i < 0)
1435
0
                break;
1436
0
            if (BN_is_bit_set(p, wstart - i)) {
1437
0
                wvalue <<= (i - wend);
1438
0
                wvalue |= 1;
1439
0
                wend = i;
1440
0
            }
1441
0
        }
1442
1443
        /* wend is the size of the current window */
1444
0
        j = wend + 1;
1445
        /* add the 'bytes above' */
1446
0
        if (!start)
1447
0
            for (i = 0; i < j; i++) {
1448
0
                if (!BN_mod_mul(r, r, r, m, ctx))
1449
0
                    goto err;
1450
0
            }
1451
1452
        /* wvalue will be an odd number < 2^window */
1453
0
        if (!BN_mod_mul(r, r, val[wvalue >> 1], m, ctx))
1454
0
            goto err;
1455
1456
        /* move the 'window' down further */
1457
0
        wstart -= wend + 1;
1458
0
        wvalue = 0;
1459
0
        start = 0;
1460
0
        if (wstart < 0)
1461
0
            break;
1462
0
    }
1463
0
    ret = 1;
1464
0
 err:
1465
0
    BN_CTX_end(ctx);
1466
0
    bn_check_top(r);
1467
0
    return (ret);
1468
0
}