Coverage Report

Created: 2022-11-30 06:20

/src/openssl/crypto/bn/bn_gcd.c
Line
Count
Source (jump to first uncovered line)
1
/* crypto/bn/bn_gcd.c */
2
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3
 * All rights reserved.
4
 *
5
 * This package is an SSL implementation written
6
 * by Eric Young (eay@cryptsoft.com).
7
 * The implementation was written so as to conform with Netscapes SSL.
8
 *
9
 * This library is free for commercial and non-commercial use as long as
10
 * the following conditions are aheared to.  The following conditions
11
 * apply to all code found in this distribution, be it the RC4, RSA,
12
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13
 * included with this distribution is covered by the same copyright terms
14
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15
 *
16
 * Copyright remains Eric Young's, and as such any Copyright notices in
17
 * the code are not to be removed.
18
 * If this package is used in a product, Eric Young should be given attribution
19
 * as the author of the parts of the library used.
20
 * This can be in the form of a textual message at program startup or
21
 * in documentation (online or textual) provided with the package.
22
 *
23
 * Redistribution and use in source and binary forms, with or without
24
 * modification, are permitted provided that the following conditions
25
 * are met:
26
 * 1. Redistributions of source code must retain the copyright
27
 *    notice, this list of conditions and the following disclaimer.
28
 * 2. Redistributions in binary form must reproduce the above copyright
29
 *    notice, this list of conditions and the following disclaimer in the
30
 *    documentation and/or other materials provided with the distribution.
31
 * 3. All advertising materials mentioning features or use of this software
32
 *    must display the following acknowledgement:
33
 *    "This product includes cryptographic software written by
34
 *     Eric Young (eay@cryptsoft.com)"
35
 *    The word 'cryptographic' can be left out if the rouines from the library
36
 *    being used are not cryptographic related :-).
37
 * 4. If you include any Windows specific code (or a derivative thereof) from
38
 *    the apps directory (application code) you must include an acknowledgement:
39
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40
 *
41
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51
 * SUCH DAMAGE.
52
 *
53
 * The licence and distribution terms for any publically available version or
54
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
55
 * copied and put under another distribution licence
56
 * [including the GNU Public Licence.]
57
 */
58
/* ====================================================================
59
 * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60
 *
61
 * Redistribution and use in source and binary forms, with or without
62
 * modification, are permitted provided that the following conditions
63
 * are met:
64
 *
65
 * 1. Redistributions of source code must retain the above copyright
66
 *    notice, this list of conditions and the following disclaimer.
67
 *
68
 * 2. Redistributions in binary form must reproduce the above copyright
69
 *    notice, this list of conditions and the following disclaimer in
70
 *    the documentation and/or other materials provided with the
71
 *    distribution.
72
 *
73
 * 3. All advertising materials mentioning features or use of this
74
 *    software must display the following acknowledgment:
75
 *    "This product includes software developed by the OpenSSL Project
76
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77
 *
78
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79
 *    endorse or promote products derived from this software without
80
 *    prior written permission. For written permission, please contact
81
 *    openssl-core@openssl.org.
82
 *
83
 * 5. Products derived from this software may not be called "OpenSSL"
84
 *    nor may "OpenSSL" appear in their names without prior written
85
 *    permission of the OpenSSL Project.
86
 *
87
 * 6. Redistributions of any form whatsoever must retain the following
88
 *    acknowledgment:
89
 *    "This product includes software developed by the OpenSSL Project
90
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91
 *
92
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103
 * OF THE POSSIBILITY OF SUCH DAMAGE.
104
 * ====================================================================
105
 *
106
 * This product includes cryptographic software written by Eric Young
107
 * (eay@cryptsoft.com).  This product includes software written by Tim
108
 * Hudson (tjh@cryptsoft.com).
109
 *
110
 */
111
112
#include "cryptlib.h"
113
#include "bn_lcl.h"
114
115
static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);
116
117
int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
118
0
{
119
0
    BIGNUM *a, *b, *t;
120
0
    int ret = 0;
121
122
0
    bn_check_top(in_a);
123
0
    bn_check_top(in_b);
124
125
0
    BN_CTX_start(ctx);
126
0
    a = BN_CTX_get(ctx);
127
0
    b = BN_CTX_get(ctx);
128
0
    if (a == NULL || b == NULL)
129
0
        goto err;
130
131
0
    if (BN_copy(a, in_a) == NULL)
132
0
        goto err;
133
0
    if (BN_copy(b, in_b) == NULL)
134
0
        goto err;
135
0
    a->neg = 0;
136
0
    b->neg = 0;
137
138
0
    if (BN_cmp(a, b) < 0) {
139
0
        t = a;
140
0
        a = b;
141
0
        b = t;
142
0
    }
143
0
    t = euclid(a, b);
144
0
    if (t == NULL)
145
0
        goto err;
146
147
0
    if (BN_copy(r, t) == NULL)
148
0
        goto err;
149
0
    ret = 1;
150
0
 err:
151
0
    BN_CTX_end(ctx);
152
0
    bn_check_top(r);
153
0
    return (ret);
154
0
}
155
156
static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
157
0
{
158
0
    BIGNUM *t;
159
0
    int shifts = 0;
160
161
0
    bn_check_top(a);
162
0
    bn_check_top(b);
163
164
    /* 0 <= b <= a */
165
0
    while (!BN_is_zero(b)) {
166
        /* 0 < b <= a */
167
168
0
        if (BN_is_odd(a)) {
169
0
            if (BN_is_odd(b)) {
170
0
                if (!BN_sub(a, a, b))
171
0
                    goto err;
172
0
                if (!BN_rshift1(a, a))
173
0
                    goto err;
174
0
                if (BN_cmp(a, b) < 0) {
175
0
                    t = a;
176
0
                    a = b;
177
0
                    b = t;
178
0
                }
179
0
            } else {            /* a odd - b even */
180
181
0
                if (!BN_rshift1(b, b))
182
0
                    goto err;
183
0
                if (BN_cmp(a, b) < 0) {
184
0
                    t = a;
185
0
                    a = b;
186
0
                    b = t;
187
0
                }
188
0
            }
189
0
        } else {                /* a is even */
190
191
0
            if (BN_is_odd(b)) {
192
0
                if (!BN_rshift1(a, a))
193
0
                    goto err;
194
0
                if (BN_cmp(a, b) < 0) {
195
0
                    t = a;
196
0
                    a = b;
197
0
                    b = t;
198
0
                }
199
0
            } else {            /* a even - b even */
200
201
0
                if (!BN_rshift1(a, a))
202
0
                    goto err;
203
0
                if (!BN_rshift1(b, b))
204
0
                    goto err;
205
0
                shifts++;
206
0
            }
207
0
        }
208
        /* 0 <= b <= a */
209
0
    }
210
211
0
    if (shifts) {
212
0
        if (!BN_lshift(a, a, shifts))
213
0
            goto err;
214
0
    }
215
0
    bn_check_top(a);
216
0
    return (a);
217
0
 err:
218
0
    return (NULL);
219
0
}
220
221
/* solves ax == 1 (mod n) */
222
static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
223
                                        const BIGNUM *a, const BIGNUM *n,
224
                                        BN_CTX *ctx);
225
226
BIGNUM *BN_mod_inverse(BIGNUM *in,
227
                       const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
228
0
{
229
0
    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
230
0
    BIGNUM *ret = NULL;
231
0
    int sign;
232
233
0
    if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
234
0
        || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
235
0
        return BN_mod_inverse_no_branch(in, a, n, ctx);
236
0
    }
237
238
0
    bn_check_top(a);
239
0
    bn_check_top(n);
240
241
0
    BN_CTX_start(ctx);
242
0
    A = BN_CTX_get(ctx);
243
0
    B = BN_CTX_get(ctx);
244
0
    X = BN_CTX_get(ctx);
245
0
    D = BN_CTX_get(ctx);
246
0
    M = BN_CTX_get(ctx);
247
0
    Y = BN_CTX_get(ctx);
248
0
    T = BN_CTX_get(ctx);
249
0
    if (T == NULL)
250
0
        goto err;
251
252
0
    if (in == NULL)
253
0
        R = BN_new();
254
0
    else
255
0
        R = in;
256
0
    if (R == NULL)
257
0
        goto err;
258
259
0
    BN_one(X);
260
0
    BN_zero(Y);
261
0
    if (BN_copy(B, a) == NULL)
262
0
        goto err;
263
0
    if (BN_copy(A, n) == NULL)
264
0
        goto err;
265
0
    A->neg = 0;
266
0
    if (B->neg || (BN_ucmp(B, A) >= 0)) {
267
0
        if (!BN_nnmod(B, B, A, ctx))
268
0
            goto err;
269
0
    }
270
0
    sign = -1;
271
    /*-
272
     * From  B = a mod |n|,  A = |n|  it follows that
273
     *
274
     *      0 <= B < A,
275
     *     -sign*X*a  ==  B   (mod |n|),
276
     *      sign*Y*a  ==  A   (mod |n|).
277
     */
278
279
0
    if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048))) {
280
        /*
281
         * Binary inversion algorithm; requires odd modulus. This is faster
282
         * than the general algorithm if the modulus is sufficiently small
283
         * (about 400 .. 500 bits on 32-bit sytems, but much more on 64-bit
284
         * systems)
285
         */
286
0
        int shift;
287
288
0
        while (!BN_is_zero(B)) {
289
            /*-
290
             *      0 < B < |n|,
291
             *      0 < A <= |n|,
292
             * (1) -sign*X*a  ==  B   (mod |n|),
293
             * (2)  sign*Y*a  ==  A   (mod |n|)
294
             */
295
296
            /*
297
             * Now divide B by the maximum possible power of two in the
298
             * integers, and divide X by the same value mod |n|. When we're
299
             * done, (1) still holds.
300
             */
301
0
            shift = 0;
302
0
            while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */
303
0
                shift++;
304
305
0
                if (BN_is_odd(X)) {
306
0
                    if (!BN_uadd(X, X, n))
307
0
                        goto err;
308
0
                }
309
                /*
310
                 * now X is even, so we can easily divide it by two
311
                 */
312
0
                if (!BN_rshift1(X, X))
313
0
                    goto err;
314
0
            }
315
0
            if (shift > 0) {
316
0
                if (!BN_rshift(B, B, shift))
317
0
                    goto err;
318
0
            }
319
320
            /*
321
             * Same for A and Y.  Afterwards, (2) still holds.
322
             */
323
0
            shift = 0;
324
0
            while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */
325
0
                shift++;
326
327
0
                if (BN_is_odd(Y)) {
328
0
                    if (!BN_uadd(Y, Y, n))
329
0
                        goto err;
330
0
                }
331
                /* now Y is even */
332
0
                if (!BN_rshift1(Y, Y))
333
0
                    goto err;
334
0
            }
335
0
            if (shift > 0) {
336
0
                if (!BN_rshift(A, A, shift))
337
0
                    goto err;
338
0
            }
339
340
            /*-
341
             * We still have (1) and (2).
342
             * Both  A  and  B  are odd.
343
             * The following computations ensure that
344
             *
345
             *     0 <= B < |n|,
346
             *      0 < A < |n|,
347
             * (1) -sign*X*a  ==  B   (mod |n|),
348
             * (2)  sign*Y*a  ==  A   (mod |n|),
349
             *
350
             * and that either  A  or  B  is even in the next iteration.
351
             */
352
0
            if (BN_ucmp(B, A) >= 0) {
353
                /* -sign*(X + Y)*a == B - A  (mod |n|) */
354
0
                if (!BN_uadd(X, X, Y))
355
0
                    goto err;
356
                /*
357
                 * NB: we could use BN_mod_add_quick(X, X, Y, n), but that
358
                 * actually makes the algorithm slower
359
                 */
360
0
                if (!BN_usub(B, B, A))
361
0
                    goto err;
362
0
            } else {
363
                /*  sign*(X + Y)*a == A - B  (mod |n|) */
364
0
                if (!BN_uadd(Y, Y, X))
365
0
                    goto err;
366
                /*
367
                 * as above, BN_mod_add_quick(Y, Y, X, n) would slow things
368
                 * down
369
                 */
370
0
                if (!BN_usub(A, A, B))
371
0
                    goto err;
372
0
            }
373
0
        }
374
0
    } else {
375
        /* general inversion algorithm */
376
377
0
        while (!BN_is_zero(B)) {
378
0
            BIGNUM *tmp;
379
380
            /*-
381
             *      0 < B < A,
382
             * (*) -sign*X*a  ==  B   (mod |n|),
383
             *      sign*Y*a  ==  A   (mod |n|)
384
             */
385
386
            /* (D, M) := (A/B, A%B) ... */
387
0
            if (BN_num_bits(A) == BN_num_bits(B)) {
388
0
                if (!BN_one(D))
389
0
                    goto err;
390
0
                if (!BN_sub(M, A, B))
391
0
                    goto err;
392
0
            } else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
393
                /* A/B is 1, 2, or 3 */
394
0
                if (!BN_lshift1(T, B))
395
0
                    goto err;
396
0
                if (BN_ucmp(A, T) < 0) {
397
                    /* A < 2*B, so D=1 */
398
0
                    if (!BN_one(D))
399
0
                        goto err;
400
0
                    if (!BN_sub(M, A, B))
401
0
                        goto err;
402
0
                } else {
403
                    /* A >= 2*B, so D=2 or D=3 */
404
0
                    if (!BN_sub(M, A, T))
405
0
                        goto err;
406
0
                    if (!BN_add(D, T, B))
407
0
                        goto err; /* use D (:= 3*B) as temp */
408
0
                    if (BN_ucmp(A, D) < 0) {
409
                        /* A < 3*B, so D=2 */
410
0
                        if (!BN_set_word(D, 2))
411
0
                            goto err;
412
                        /*
413
                         * M (= A - 2*B) already has the correct value
414
                         */
415
0
                    } else {
416
                        /* only D=3 remains */
417
0
                        if (!BN_set_word(D, 3))
418
0
                            goto err;
419
                        /*
420
                         * currently M = A - 2*B, but we need M = A - 3*B
421
                         */
422
0
                        if (!BN_sub(M, M, B))
423
0
                            goto err;
424
0
                    }
425
0
                }
426
0
            } else {
427
0
                if (!BN_div(D, M, A, B, ctx))
428
0
                    goto err;
429
0
            }
430
431
            /*-
432
             * Now
433
             *      A = D*B + M;
434
             * thus we have
435
             * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
436
             */
437
438
0
            tmp = A;            /* keep the BIGNUM object, the value does not
439
                                 * matter */
440
441
            /* (A, B) := (B, A mod B) ... */
442
0
            A = B;
443
0
            B = M;
444
            /* ... so we have  0 <= B < A  again */
445
446
            /*-
447
             * Since the former  M  is now  B  and the former  B  is now  A,
448
             * (**) translates into
449
             *       sign*Y*a  ==  D*A + B    (mod |n|),
450
             * i.e.
451
             *       sign*Y*a - D*A  ==  B    (mod |n|).
452
             * Similarly, (*) translates into
453
             *      -sign*X*a  ==  A          (mod |n|).
454
             *
455
             * Thus,
456
             *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
457
             * i.e.
458
             *        sign*(Y + D*X)*a  ==  B  (mod |n|).
459
             *
460
             * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
461
             *      -sign*X*a  ==  B   (mod |n|),
462
             *       sign*Y*a  ==  A   (mod |n|).
463
             * Note that  X  and  Y  stay non-negative all the time.
464
             */
465
466
            /*
467
             * most of the time D is very small, so we can optimize tmp :=
468
             * D*X+Y
469
             */
470
0
            if (BN_is_one(D)) {
471
0
                if (!BN_add(tmp, X, Y))
472
0
                    goto err;
473
0
            } else {
474
0
                if (BN_is_word(D, 2)) {
475
0
                    if (!BN_lshift1(tmp, X))
476
0
                        goto err;
477
0
                } else if (BN_is_word(D, 4)) {
478
0
                    if (!BN_lshift(tmp, X, 2))
479
0
                        goto err;
480
0
                } else if (D->top == 1) {
481
0
                    if (!BN_copy(tmp, X))
482
0
                        goto err;
483
0
                    if (!BN_mul_word(tmp, D->d[0]))
484
0
                        goto err;
485
0
                } else {
486
0
                    if (!BN_mul(tmp, D, X, ctx))
487
0
                        goto err;
488
0
                }
489
0
                if (!BN_add(tmp, tmp, Y))
490
0
                    goto err;
491
0
            }
492
493
0
            M = Y;              /* keep the BIGNUM object, the value does not
494
                                 * matter */
495
0
            Y = X;
496
0
            X = tmp;
497
0
            sign = -sign;
498
0
        }
499
0
    }
500
501
    /*-
502
     * The while loop (Euclid's algorithm) ends when
503
     *      A == gcd(a,n);
504
     * we have
505
     *       sign*Y*a  ==  A  (mod |n|),
506
     * where  Y  is non-negative.
507
     */
508
509
0
    if (sign < 0) {
510
0
        if (!BN_sub(Y, n, Y))
511
0
            goto err;
512
0
    }
513
    /* Now  Y*a  ==  A  (mod |n|).  */
514
515
0
    if (BN_is_one(A)) {
516
        /* Y*a == 1  (mod |n|) */
517
0
        if (!Y->neg && BN_ucmp(Y, n) < 0) {
518
0
            if (!BN_copy(R, Y))
519
0
                goto err;
520
0
        } else {
521
0
            if (!BN_nnmod(R, Y, n, ctx))
522
0
                goto err;
523
0
        }
524
0
    } else {
525
0
        BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE);
526
0
        goto err;
527
0
    }
528
0
    ret = R;
529
0
 err:
530
0
    if ((ret == NULL) && (in == NULL))
531
0
        BN_free(R);
532
0
    BN_CTX_end(ctx);
533
0
    bn_check_top(ret);
534
0
    return (ret);
535
0
}
536
537
/*
538
 * BN_mod_inverse_no_branch is a special version of BN_mod_inverse. It does
539
 * not contain branches that may leak sensitive information.
540
 */
541
static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
542
                                        const BIGNUM *a, const BIGNUM *n,
543
                                        BN_CTX *ctx)
544
0
{
545
0
    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
546
0
    BIGNUM local_A, local_B;
547
0
    BIGNUM *pA, *pB;
548
0
    BIGNUM *ret = NULL;
549
0
    int sign;
550
551
0
    bn_check_top(a);
552
0
    bn_check_top(n);
553
554
0
    BN_CTX_start(ctx);
555
0
    A = BN_CTX_get(ctx);
556
0
    B = BN_CTX_get(ctx);
557
0
    X = BN_CTX_get(ctx);
558
0
    D = BN_CTX_get(ctx);
559
0
    M = BN_CTX_get(ctx);
560
0
    Y = BN_CTX_get(ctx);
561
0
    T = BN_CTX_get(ctx);
562
0
    if (T == NULL)
563
0
        goto err;
564
565
0
    if (in == NULL)
566
0
        R = BN_new();
567
0
    else
568
0
        R = in;
569
0
    if (R == NULL)
570
0
        goto err;
571
572
0
    BN_one(X);
573
0
    BN_zero(Y);
574
0
    if (BN_copy(B, a) == NULL)
575
0
        goto err;
576
0
    if (BN_copy(A, n) == NULL)
577
0
        goto err;
578
0
    A->neg = 0;
579
580
0
    if (B->neg || (BN_ucmp(B, A) >= 0)) {
581
        /*
582
         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
583
         * BN_div_no_branch will be called eventually.
584
         */
585
0
        pB = &local_B;
586
0
        local_B.flags = 0;
587
0
        BN_with_flags(pB, B, BN_FLG_CONSTTIME);
588
0
        if (!BN_nnmod(B, pB, A, ctx))
589
0
            goto err;
590
0
    }
591
0
    sign = -1;
592
    /*-
593
     * From  B = a mod |n|,  A = |n|  it follows that
594
     *
595
     *      0 <= B < A,
596
     *     -sign*X*a  ==  B   (mod |n|),
597
     *      sign*Y*a  ==  A   (mod |n|).
598
     */
599
600
0
    while (!BN_is_zero(B)) {
601
0
        BIGNUM *tmp;
602
603
        /*-
604
         *      0 < B < A,
605
         * (*) -sign*X*a  ==  B   (mod |n|),
606
         *      sign*Y*a  ==  A   (mod |n|)
607
         */
608
609
        /*
610
         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
611
         * BN_div_no_branch will be called eventually.
612
         */
613
0
        pA = &local_A;
614
0
        local_A.flags = 0;
615
0
        BN_with_flags(pA, A, BN_FLG_CONSTTIME);
616
617
        /* (D, M) := (A/B, A%B) ... */
618
0
        if (!BN_div(D, M, pA, B, ctx))
619
0
            goto err;
620
621
        /*-
622
         * Now
623
         *      A = D*B + M;
624
         * thus we have
625
         * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
626
         */
627
628
0
        tmp = A;                /* keep the BIGNUM object, the value does not
629
                                 * matter */
630
631
        /* (A, B) := (B, A mod B) ... */
632
0
        A = B;
633
0
        B = M;
634
        /* ... so we have  0 <= B < A  again */
635
636
        /*-
637
         * Since the former  M  is now  B  and the former  B  is now  A,
638
         * (**) translates into
639
         *       sign*Y*a  ==  D*A + B    (mod |n|),
640
         * i.e.
641
         *       sign*Y*a - D*A  ==  B    (mod |n|).
642
         * Similarly, (*) translates into
643
         *      -sign*X*a  ==  A          (mod |n|).
644
         *
645
         * Thus,
646
         *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
647
         * i.e.
648
         *        sign*(Y + D*X)*a  ==  B  (mod |n|).
649
         *
650
         * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
651
         *      -sign*X*a  ==  B   (mod |n|),
652
         *       sign*Y*a  ==  A   (mod |n|).
653
         * Note that  X  and  Y  stay non-negative all the time.
654
         */
655
656
0
        if (!BN_mul(tmp, D, X, ctx))
657
0
            goto err;
658
0
        if (!BN_add(tmp, tmp, Y))
659
0
            goto err;
660
661
0
        M = Y;                  /* keep the BIGNUM object, the value does not
662
                                 * matter */
663
0
        Y = X;
664
0
        X = tmp;
665
0
        sign = -sign;
666
0
    }
667
668
    /*-
669
     * The while loop (Euclid's algorithm) ends when
670
     *      A == gcd(a,n);
671
     * we have
672
     *       sign*Y*a  ==  A  (mod |n|),
673
     * where  Y  is non-negative.
674
     */
675
676
0
    if (sign < 0) {
677
0
        if (!BN_sub(Y, n, Y))
678
0
            goto err;
679
0
    }
680
    /* Now  Y*a  ==  A  (mod |n|).  */
681
682
0
    if (BN_is_one(A)) {
683
        /* Y*a == 1  (mod |n|) */
684
0
        if (!Y->neg && BN_ucmp(Y, n) < 0) {
685
0
            if (!BN_copy(R, Y))
686
0
                goto err;
687
0
        } else {
688
0
            if (!BN_nnmod(R, Y, n, ctx))
689
0
                goto err;
690
0
        }
691
0
    } else {
692
0
        BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH, BN_R_NO_INVERSE);
693
0
        goto err;
694
0
    }
695
0
    ret = R;
696
0
 err:
697
0
    if ((ret == NULL) && (in == NULL))
698
0
        BN_free(R);
699
0
    BN_CTX_end(ctx);
700
0
    bn_check_top(ret);
701
0
    return (ret);
702
0
}