/src/openssl/crypto/bn/bn_gf2m.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* crypto/bn/bn_gf2m.c */ |
2 | | /* ==================================================================== |
3 | | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
4 | | * |
5 | | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included |
6 | | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed |
7 | | * to the OpenSSL project. |
8 | | * |
9 | | * The ECC Code is licensed pursuant to the OpenSSL open source |
10 | | * license provided below. |
11 | | * |
12 | | * In addition, Sun covenants to all licensees who provide a reciprocal |
13 | | * covenant with respect to their own patents if any, not to sue under |
14 | | * current and future patent claims necessarily infringed by the making, |
15 | | * using, practicing, selling, offering for sale and/or otherwise |
16 | | * disposing of the ECC Code as delivered hereunder (or portions thereof), |
17 | | * provided that such covenant shall not apply: |
18 | | * 1) for code that a licensee deletes from the ECC Code; |
19 | | * 2) separates from the ECC Code; or |
20 | | * 3) for infringements caused by: |
21 | | * i) the modification of the ECC Code or |
22 | | * ii) the combination of the ECC Code with other software or |
23 | | * devices where such combination causes the infringement. |
24 | | * |
25 | | * The software is originally written by Sheueling Chang Shantz and |
26 | | * Douglas Stebila of Sun Microsystems Laboratories. |
27 | | * |
28 | | */ |
29 | | |
30 | | /* |
31 | | * NOTE: This file is licensed pursuant to the OpenSSL license below and may |
32 | | * be modified; but after modifications, the above covenant may no longer |
33 | | * apply! In such cases, the corresponding paragraph ["In addition, Sun |
34 | | * covenants ... causes the infringement."] and this note can be edited out; |
35 | | * but please keep the Sun copyright notice and attribution. |
36 | | */ |
37 | | |
38 | | /* ==================================================================== |
39 | | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. |
40 | | * |
41 | | * Redistribution and use in source and binary forms, with or without |
42 | | * modification, are permitted provided that the following conditions |
43 | | * are met: |
44 | | * |
45 | | * 1. Redistributions of source code must retain the above copyright |
46 | | * notice, this list of conditions and the following disclaimer. |
47 | | * |
48 | | * 2. Redistributions in binary form must reproduce the above copyright |
49 | | * notice, this list of conditions and the following disclaimer in |
50 | | * the documentation and/or other materials provided with the |
51 | | * distribution. |
52 | | * |
53 | | * 3. All advertising materials mentioning features or use of this |
54 | | * software must display the following acknowledgment: |
55 | | * "This product includes software developed by the OpenSSL Project |
56 | | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
57 | | * |
58 | | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
59 | | * endorse or promote products derived from this software without |
60 | | * prior written permission. For written permission, please contact |
61 | | * openssl-core@openssl.org. |
62 | | * |
63 | | * 5. Products derived from this software may not be called "OpenSSL" |
64 | | * nor may "OpenSSL" appear in their names without prior written |
65 | | * permission of the OpenSSL Project. |
66 | | * |
67 | | * 6. Redistributions of any form whatsoever must retain the following |
68 | | * acknowledgment: |
69 | | * "This product includes software developed by the OpenSSL Project |
70 | | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
71 | | * |
72 | | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
73 | | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
74 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
75 | | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
76 | | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
77 | | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
78 | | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
79 | | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
80 | | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
81 | | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
82 | | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
83 | | * OF THE POSSIBILITY OF SUCH DAMAGE. |
84 | | * ==================================================================== |
85 | | * |
86 | | * This product includes cryptographic software written by Eric Young |
87 | | * (eay@cryptsoft.com). This product includes software written by Tim |
88 | | * Hudson (tjh@cryptsoft.com). |
89 | | * |
90 | | */ |
91 | | |
92 | | #include <assert.h> |
93 | | #include <limits.h> |
94 | | #include <stdio.h> |
95 | | #include "cryptlib.h" |
96 | | #include "bn_lcl.h" |
97 | | |
98 | | #ifndef OPENSSL_NO_EC2M |
99 | | |
100 | | /* |
101 | | * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should |
102 | | * fail. |
103 | | */ |
104 | 0 | # define MAX_ITERATIONS 50 |
105 | | |
106 | | static const BN_ULONG SQR_tb[16] = { 0, 1, 4, 5, 16, 17, 20, 21, |
107 | | 64, 65, 68, 69, 80, 81, 84, 85 |
108 | | }; |
109 | | |
110 | | /* Platform-specific macros to accelerate squaring. */ |
111 | | # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) |
112 | | # define SQR1(w) \ |
113 | 0 | SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \ |
114 | 0 | SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \ |
115 | 0 | SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \ |
116 | 0 | SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF] |
117 | | # define SQR0(w) \ |
118 | 0 | SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \ |
119 | 0 | SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \ |
120 | 0 | SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ |
121 | 0 | SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] |
122 | | # endif |
123 | | # ifdef THIRTY_TWO_BIT |
124 | | # define SQR1(w) \ |
125 | | SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \ |
126 | | SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF] |
127 | | # define SQR0(w) \ |
128 | | SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ |
129 | | SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] |
130 | | # endif |
131 | | |
132 | | # if !defined(OPENSSL_BN_ASM_GF2m) |
133 | | /* |
134 | | * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is |
135 | | * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that |
136 | | * the variables have the right amount of space allocated. |
137 | | */ |
138 | | # ifdef THIRTY_TWO_BIT |
139 | | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, |
140 | | const BN_ULONG b) |
141 | | { |
142 | | register BN_ULONG h, l, s; |
143 | | BN_ULONG tab[8], top2b = a >> 30; |
144 | | register BN_ULONG a1, a2, a4; |
145 | | |
146 | | a1 = a & (0x3FFFFFFF); |
147 | | a2 = a1 << 1; |
148 | | a4 = a2 << 1; |
149 | | |
150 | | tab[0] = 0; |
151 | | tab[1] = a1; |
152 | | tab[2] = a2; |
153 | | tab[3] = a1 ^ a2; |
154 | | tab[4] = a4; |
155 | | tab[5] = a1 ^ a4; |
156 | | tab[6] = a2 ^ a4; |
157 | | tab[7] = a1 ^ a2 ^ a4; |
158 | | |
159 | | s = tab[b & 0x7]; |
160 | | l = s; |
161 | | s = tab[b >> 3 & 0x7]; |
162 | | l ^= s << 3; |
163 | | h = s >> 29; |
164 | | s = tab[b >> 6 & 0x7]; |
165 | | l ^= s << 6; |
166 | | h ^= s >> 26; |
167 | | s = tab[b >> 9 & 0x7]; |
168 | | l ^= s << 9; |
169 | | h ^= s >> 23; |
170 | | s = tab[b >> 12 & 0x7]; |
171 | | l ^= s << 12; |
172 | | h ^= s >> 20; |
173 | | s = tab[b >> 15 & 0x7]; |
174 | | l ^= s << 15; |
175 | | h ^= s >> 17; |
176 | | s = tab[b >> 18 & 0x7]; |
177 | | l ^= s << 18; |
178 | | h ^= s >> 14; |
179 | | s = tab[b >> 21 & 0x7]; |
180 | | l ^= s << 21; |
181 | | h ^= s >> 11; |
182 | | s = tab[b >> 24 & 0x7]; |
183 | | l ^= s << 24; |
184 | | h ^= s >> 8; |
185 | | s = tab[b >> 27 & 0x7]; |
186 | | l ^= s << 27; |
187 | | h ^= s >> 5; |
188 | | s = tab[b >> 30]; |
189 | | l ^= s << 30; |
190 | | h ^= s >> 2; |
191 | | |
192 | | /* compensate for the top two bits of a */ |
193 | | |
194 | | if (top2b & 01) { |
195 | | l ^= b << 30; |
196 | | h ^= b >> 2; |
197 | | } |
198 | | if (top2b & 02) { |
199 | | l ^= b << 31; |
200 | | h ^= b >> 1; |
201 | | } |
202 | | |
203 | | *r1 = h; |
204 | | *r0 = l; |
205 | | } |
206 | | # endif |
207 | | # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) |
208 | | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, |
209 | | const BN_ULONG b) |
210 | | { |
211 | | register BN_ULONG h, l, s; |
212 | | BN_ULONG tab[16], top3b = a >> 61; |
213 | | register BN_ULONG a1, a2, a4, a8; |
214 | | |
215 | | a1 = a & (0x1FFFFFFFFFFFFFFFULL); |
216 | | a2 = a1 << 1; |
217 | | a4 = a2 << 1; |
218 | | a8 = a4 << 1; |
219 | | |
220 | | tab[0] = 0; |
221 | | tab[1] = a1; |
222 | | tab[2] = a2; |
223 | | tab[3] = a1 ^ a2; |
224 | | tab[4] = a4; |
225 | | tab[5] = a1 ^ a4; |
226 | | tab[6] = a2 ^ a4; |
227 | | tab[7] = a1 ^ a2 ^ a4; |
228 | | tab[8] = a8; |
229 | | tab[9] = a1 ^ a8; |
230 | | tab[10] = a2 ^ a8; |
231 | | tab[11] = a1 ^ a2 ^ a8; |
232 | | tab[12] = a4 ^ a8; |
233 | | tab[13] = a1 ^ a4 ^ a8; |
234 | | tab[14] = a2 ^ a4 ^ a8; |
235 | | tab[15] = a1 ^ a2 ^ a4 ^ a8; |
236 | | |
237 | | s = tab[b & 0xF]; |
238 | | l = s; |
239 | | s = tab[b >> 4 & 0xF]; |
240 | | l ^= s << 4; |
241 | | h = s >> 60; |
242 | | s = tab[b >> 8 & 0xF]; |
243 | | l ^= s << 8; |
244 | | h ^= s >> 56; |
245 | | s = tab[b >> 12 & 0xF]; |
246 | | l ^= s << 12; |
247 | | h ^= s >> 52; |
248 | | s = tab[b >> 16 & 0xF]; |
249 | | l ^= s << 16; |
250 | | h ^= s >> 48; |
251 | | s = tab[b >> 20 & 0xF]; |
252 | | l ^= s << 20; |
253 | | h ^= s >> 44; |
254 | | s = tab[b >> 24 & 0xF]; |
255 | | l ^= s << 24; |
256 | | h ^= s >> 40; |
257 | | s = tab[b >> 28 & 0xF]; |
258 | | l ^= s << 28; |
259 | | h ^= s >> 36; |
260 | | s = tab[b >> 32 & 0xF]; |
261 | | l ^= s << 32; |
262 | | h ^= s >> 32; |
263 | | s = tab[b >> 36 & 0xF]; |
264 | | l ^= s << 36; |
265 | | h ^= s >> 28; |
266 | | s = tab[b >> 40 & 0xF]; |
267 | | l ^= s << 40; |
268 | | h ^= s >> 24; |
269 | | s = tab[b >> 44 & 0xF]; |
270 | | l ^= s << 44; |
271 | | h ^= s >> 20; |
272 | | s = tab[b >> 48 & 0xF]; |
273 | | l ^= s << 48; |
274 | | h ^= s >> 16; |
275 | | s = tab[b >> 52 & 0xF]; |
276 | | l ^= s << 52; |
277 | | h ^= s >> 12; |
278 | | s = tab[b >> 56 & 0xF]; |
279 | | l ^= s << 56; |
280 | | h ^= s >> 8; |
281 | | s = tab[b >> 60]; |
282 | | l ^= s << 60; |
283 | | h ^= s >> 4; |
284 | | |
285 | | /* compensate for the top three bits of a */ |
286 | | |
287 | | if (top3b & 01) { |
288 | | l ^= b << 61; |
289 | | h ^= b >> 3; |
290 | | } |
291 | | if (top3b & 02) { |
292 | | l ^= b << 62; |
293 | | h ^= b >> 2; |
294 | | } |
295 | | if (top3b & 04) { |
296 | | l ^= b << 63; |
297 | | h ^= b >> 1; |
298 | | } |
299 | | |
300 | | *r1 = h; |
301 | | *r0 = l; |
302 | | } |
303 | | # endif |
304 | | |
305 | | /* |
306 | | * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1, |
307 | | * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST |
308 | | * ensure that the variables have the right amount of space allocated. |
309 | | */ |
310 | | static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, |
311 | | const BN_ULONG b1, const BN_ULONG b0) |
312 | | { |
313 | | BN_ULONG m1, m0; |
314 | | /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ |
315 | | bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1); |
316 | | bn_GF2m_mul_1x1(r + 1, r, a0, b0); |
317 | | bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); |
318 | | /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ |
319 | | r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ |
320 | | r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ |
321 | | } |
322 | | # else |
323 | | void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, |
324 | | BN_ULONG b0); |
325 | | # endif |
326 | | |
327 | | /* |
328 | | * Add polynomials a and b and store result in r; r could be a or b, a and b |
329 | | * could be equal; r is the bitwise XOR of a and b. |
330 | | */ |
331 | | int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) |
332 | 0 | { |
333 | 0 | int i; |
334 | 0 | const BIGNUM *at, *bt; |
335 | |
|
336 | 0 | bn_check_top(a); |
337 | 0 | bn_check_top(b); |
338 | |
|
339 | 0 | if (a->top < b->top) { |
340 | 0 | at = b; |
341 | 0 | bt = a; |
342 | 0 | } else { |
343 | 0 | at = a; |
344 | 0 | bt = b; |
345 | 0 | } |
346 | |
|
347 | 0 | if (bn_wexpand(r, at->top) == NULL) |
348 | 0 | return 0; |
349 | | |
350 | 0 | for (i = 0; i < bt->top; i++) { |
351 | 0 | r->d[i] = at->d[i] ^ bt->d[i]; |
352 | 0 | } |
353 | 0 | for (; i < at->top; i++) { |
354 | 0 | r->d[i] = at->d[i]; |
355 | 0 | } |
356 | |
|
357 | 0 | r->top = at->top; |
358 | 0 | bn_correct_top(r); |
359 | |
|
360 | 0 | return 1; |
361 | 0 | } |
362 | | |
363 | | /*- |
364 | | * Some functions allow for representation of the irreducible polynomials |
365 | | * as an int[], say p. The irreducible f(t) is then of the form: |
366 | | * t^p[0] + t^p[1] + ... + t^p[k] |
367 | | * where m = p[0] > p[1] > ... > p[k] = 0. |
368 | | */ |
369 | | |
370 | | /* Performs modular reduction of a and store result in r. r could be a. */ |
371 | | int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]) |
372 | 0 | { |
373 | 0 | int j, k; |
374 | 0 | int n, dN, d0, d1; |
375 | 0 | BN_ULONG zz, *z; |
376 | |
|
377 | 0 | bn_check_top(a); |
378 | |
|
379 | 0 | if (!p[0]) { |
380 | | /* reduction mod 1 => return 0 */ |
381 | 0 | BN_zero(r); |
382 | 0 | return 1; |
383 | 0 | } |
384 | | |
385 | | /* |
386 | | * Since the algorithm does reduction in the r value, if a != r, copy the |
387 | | * contents of a into r so we can do reduction in r. |
388 | | */ |
389 | 0 | if (a != r) { |
390 | 0 | if (!bn_wexpand(r, a->top)) |
391 | 0 | return 0; |
392 | 0 | for (j = 0; j < a->top; j++) { |
393 | 0 | r->d[j] = a->d[j]; |
394 | 0 | } |
395 | 0 | r->top = a->top; |
396 | 0 | } |
397 | 0 | z = r->d; |
398 | | |
399 | | /* start reduction */ |
400 | 0 | dN = p[0] / BN_BITS2; |
401 | 0 | for (j = r->top - 1; j > dN;) { |
402 | 0 | zz = z[j]; |
403 | 0 | if (z[j] == 0) { |
404 | 0 | j--; |
405 | 0 | continue; |
406 | 0 | } |
407 | 0 | z[j] = 0; |
408 | |
|
409 | 0 | for (k = 1; p[k] != 0; k++) { |
410 | | /* reducing component t^p[k] */ |
411 | 0 | n = p[0] - p[k]; |
412 | 0 | d0 = n % BN_BITS2; |
413 | 0 | d1 = BN_BITS2 - d0; |
414 | 0 | n /= BN_BITS2; |
415 | 0 | z[j - n] ^= (zz >> d0); |
416 | 0 | if (d0) |
417 | 0 | z[j - n - 1] ^= (zz << d1); |
418 | 0 | } |
419 | | |
420 | | /* reducing component t^0 */ |
421 | 0 | n = dN; |
422 | 0 | d0 = p[0] % BN_BITS2; |
423 | 0 | d1 = BN_BITS2 - d0; |
424 | 0 | z[j - n] ^= (zz >> d0); |
425 | 0 | if (d0) |
426 | 0 | z[j - n - 1] ^= (zz << d1); |
427 | 0 | } |
428 | | |
429 | | /* final round of reduction */ |
430 | 0 | while (j == dN) { |
431 | |
|
432 | 0 | d0 = p[0] % BN_BITS2; |
433 | 0 | zz = z[dN] >> d0; |
434 | 0 | if (zz == 0) |
435 | 0 | break; |
436 | 0 | d1 = BN_BITS2 - d0; |
437 | | |
438 | | /* clear up the top d1 bits */ |
439 | 0 | if (d0) |
440 | 0 | z[dN] = (z[dN] << d1) >> d1; |
441 | 0 | else |
442 | 0 | z[dN] = 0; |
443 | 0 | z[0] ^= zz; /* reduction t^0 component */ |
444 | |
|
445 | 0 | for (k = 1; p[k] != 0; k++) { |
446 | 0 | BN_ULONG tmp_ulong; |
447 | | |
448 | | /* reducing component t^p[k] */ |
449 | 0 | n = p[k] / BN_BITS2; |
450 | 0 | d0 = p[k] % BN_BITS2; |
451 | 0 | d1 = BN_BITS2 - d0; |
452 | 0 | z[n] ^= (zz << d0); |
453 | 0 | if (d0 && (tmp_ulong = zz >> d1)) |
454 | 0 | z[n + 1] ^= tmp_ulong; |
455 | 0 | } |
456 | |
|
457 | 0 | } |
458 | |
|
459 | 0 | bn_correct_top(r); |
460 | 0 | return 1; |
461 | 0 | } |
462 | | |
463 | | /* |
464 | | * Performs modular reduction of a by p and store result in r. r could be a. |
465 | | * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper |
466 | | * function is only provided for convenience; for best performance, use the |
467 | | * BN_GF2m_mod_arr function. |
468 | | */ |
469 | | int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) |
470 | 0 | { |
471 | 0 | int ret = 0; |
472 | 0 | int arr[6]; |
473 | 0 | bn_check_top(a); |
474 | 0 | bn_check_top(p); |
475 | 0 | ret = BN_GF2m_poly2arr(p, arr, sizeof(arr) / sizeof(arr[0])); |
476 | 0 | if (!ret || ret > (int)(sizeof(arr) / sizeof(arr[0]))) { |
477 | 0 | BNerr(BN_F_BN_GF2M_MOD, BN_R_INVALID_LENGTH); |
478 | 0 | return 0; |
479 | 0 | } |
480 | 0 | ret = BN_GF2m_mod_arr(r, a, arr); |
481 | 0 | bn_check_top(r); |
482 | 0 | return ret; |
483 | 0 | } |
484 | | |
485 | | /* |
486 | | * Compute the product of two polynomials a and b, reduce modulo p, and store |
487 | | * the result in r. r could be a or b; a could be b. |
488 | | */ |
489 | | int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
490 | | const int p[], BN_CTX *ctx) |
491 | 0 | { |
492 | 0 | int zlen, i, j, k, ret = 0; |
493 | 0 | BIGNUM *s; |
494 | 0 | BN_ULONG x1, x0, y1, y0, zz[4]; |
495 | |
|
496 | 0 | bn_check_top(a); |
497 | 0 | bn_check_top(b); |
498 | |
|
499 | 0 | if (a == b) { |
500 | 0 | return BN_GF2m_mod_sqr_arr(r, a, p, ctx); |
501 | 0 | } |
502 | | |
503 | 0 | BN_CTX_start(ctx); |
504 | 0 | if ((s = BN_CTX_get(ctx)) == NULL) |
505 | 0 | goto err; |
506 | | |
507 | 0 | zlen = a->top + b->top + 4; |
508 | 0 | if (!bn_wexpand(s, zlen)) |
509 | 0 | goto err; |
510 | 0 | s->top = zlen; |
511 | |
|
512 | 0 | for (i = 0; i < zlen; i++) |
513 | 0 | s->d[i] = 0; |
514 | |
|
515 | 0 | for (j = 0; j < b->top; j += 2) { |
516 | 0 | y0 = b->d[j]; |
517 | 0 | y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1]; |
518 | 0 | for (i = 0; i < a->top; i += 2) { |
519 | 0 | x0 = a->d[i]; |
520 | 0 | x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1]; |
521 | 0 | bn_GF2m_mul_2x2(zz, x1, x0, y1, y0); |
522 | 0 | for (k = 0; k < 4; k++) |
523 | 0 | s->d[i + j + k] ^= zz[k]; |
524 | 0 | } |
525 | 0 | } |
526 | |
|
527 | 0 | bn_correct_top(s); |
528 | 0 | if (BN_GF2m_mod_arr(r, s, p)) |
529 | 0 | ret = 1; |
530 | 0 | bn_check_top(r); |
531 | |
|
532 | 0 | err: |
533 | 0 | BN_CTX_end(ctx); |
534 | 0 | return ret; |
535 | 0 | } |
536 | | |
537 | | /* |
538 | | * Compute the product of two polynomials a and b, reduce modulo p, and store |
539 | | * the result in r. r could be a or b; a could equal b. This function calls |
540 | | * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is |
541 | | * only provided for convenience; for best performance, use the |
542 | | * BN_GF2m_mod_mul_arr function. |
543 | | */ |
544 | | int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
545 | | const BIGNUM *p, BN_CTX *ctx) |
546 | 0 | { |
547 | 0 | int ret = 0; |
548 | 0 | const int max = BN_num_bits(p) + 1; |
549 | 0 | int *arr = NULL; |
550 | 0 | bn_check_top(a); |
551 | 0 | bn_check_top(b); |
552 | 0 | bn_check_top(p); |
553 | 0 | if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) |
554 | 0 | goto err; |
555 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
556 | 0 | if (!ret || ret > max) { |
557 | 0 | BNerr(BN_F_BN_GF2M_MOD_MUL, BN_R_INVALID_LENGTH); |
558 | 0 | goto err; |
559 | 0 | } |
560 | 0 | ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx); |
561 | 0 | bn_check_top(r); |
562 | 0 | err: |
563 | 0 | if (arr) |
564 | 0 | OPENSSL_free(arr); |
565 | 0 | return ret; |
566 | 0 | } |
567 | | |
568 | | /* Square a, reduce the result mod p, and store it in a. r could be a. */ |
569 | | int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], |
570 | | BN_CTX *ctx) |
571 | 0 | { |
572 | 0 | int i, ret = 0; |
573 | 0 | BIGNUM *s; |
574 | |
|
575 | 0 | bn_check_top(a); |
576 | 0 | BN_CTX_start(ctx); |
577 | 0 | if ((s = BN_CTX_get(ctx)) == NULL) |
578 | 0 | goto err; |
579 | 0 | if (!bn_wexpand(s, 2 * a->top)) |
580 | 0 | goto err; |
581 | | |
582 | 0 | for (i = a->top - 1; i >= 0; i--) { |
583 | 0 | s->d[2 * i + 1] = SQR1(a->d[i]); |
584 | 0 | s->d[2 * i] = SQR0(a->d[i]); |
585 | 0 | } |
586 | |
|
587 | 0 | s->top = 2 * a->top; |
588 | 0 | bn_correct_top(s); |
589 | 0 | if (!BN_GF2m_mod_arr(r, s, p)) |
590 | 0 | goto err; |
591 | 0 | bn_check_top(r); |
592 | 0 | ret = 1; |
593 | 0 | err: |
594 | 0 | BN_CTX_end(ctx); |
595 | 0 | return ret; |
596 | 0 | } |
597 | | |
598 | | /* |
599 | | * Square a, reduce the result mod p, and store it in a. r could be a. This |
600 | | * function calls down to the BN_GF2m_mod_sqr_arr implementation; this |
601 | | * wrapper function is only provided for convenience; for best performance, |
602 | | * use the BN_GF2m_mod_sqr_arr function. |
603 | | */ |
604 | | int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
605 | 0 | { |
606 | 0 | int ret = 0; |
607 | 0 | const int max = BN_num_bits(p) + 1; |
608 | 0 | int *arr = NULL; |
609 | |
|
610 | 0 | bn_check_top(a); |
611 | 0 | bn_check_top(p); |
612 | 0 | if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) |
613 | 0 | goto err; |
614 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
615 | 0 | if (!ret || ret > max) { |
616 | 0 | BNerr(BN_F_BN_GF2M_MOD_SQR, BN_R_INVALID_LENGTH); |
617 | 0 | goto err; |
618 | 0 | } |
619 | 0 | ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx); |
620 | 0 | bn_check_top(r); |
621 | 0 | err: |
622 | 0 | if (arr) |
623 | 0 | OPENSSL_free(arr); |
624 | 0 | return ret; |
625 | 0 | } |
626 | | |
627 | | /* |
628 | | * Invert a, reduce modulo p, and store the result in r. r could be a. Uses |
629 | | * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D., |
630 | | * Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic |
631 | | * Curve Cryptography Over Binary Fields". |
632 | | */ |
633 | | int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
634 | 0 | { |
635 | 0 | BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp; |
636 | 0 | int ret = 0; |
637 | |
|
638 | 0 | bn_check_top(a); |
639 | 0 | bn_check_top(p); |
640 | |
|
641 | 0 | BN_CTX_start(ctx); |
642 | |
|
643 | 0 | if ((b = BN_CTX_get(ctx)) == NULL) |
644 | 0 | goto err; |
645 | 0 | if ((c = BN_CTX_get(ctx)) == NULL) |
646 | 0 | goto err; |
647 | 0 | if ((u = BN_CTX_get(ctx)) == NULL) |
648 | 0 | goto err; |
649 | 0 | if ((v = BN_CTX_get(ctx)) == NULL) |
650 | 0 | goto err; |
651 | | |
652 | 0 | if (!BN_GF2m_mod(u, a, p)) |
653 | 0 | goto err; |
654 | 0 | if (BN_is_zero(u)) |
655 | 0 | goto err; |
656 | | |
657 | 0 | if (!BN_copy(v, p)) |
658 | 0 | goto err; |
659 | | # if 0 |
660 | | if (!BN_one(b)) |
661 | | goto err; |
662 | | |
663 | | while (1) { |
664 | | while (!BN_is_odd(u)) { |
665 | | if (BN_is_zero(u)) |
666 | | goto err; |
667 | | if (!BN_rshift1(u, u)) |
668 | | goto err; |
669 | | if (BN_is_odd(b)) { |
670 | | if (!BN_GF2m_add(b, b, p)) |
671 | | goto err; |
672 | | } |
673 | | if (!BN_rshift1(b, b)) |
674 | | goto err; |
675 | | } |
676 | | |
677 | | if (BN_abs_is_word(u, 1)) |
678 | | break; |
679 | | |
680 | | if (BN_num_bits(u) < BN_num_bits(v)) { |
681 | | tmp = u; |
682 | | u = v; |
683 | | v = tmp; |
684 | | tmp = b; |
685 | | b = c; |
686 | | c = tmp; |
687 | | } |
688 | | |
689 | | if (!BN_GF2m_add(u, u, v)) |
690 | | goto err; |
691 | | if (!BN_GF2m_add(b, b, c)) |
692 | | goto err; |
693 | | } |
694 | | # else |
695 | 0 | { |
696 | 0 | int i; |
697 | 0 | int ubits = BN_num_bits(u); |
698 | 0 | int vbits = BN_num_bits(v); /* v is copy of p */ |
699 | 0 | int top = p->top; |
700 | 0 | BN_ULONG *udp, *bdp, *vdp, *cdp; |
701 | |
|
702 | 0 | if (!bn_wexpand(u, top)) |
703 | 0 | goto err; |
704 | 0 | udp = u->d; |
705 | 0 | for (i = u->top; i < top; i++) |
706 | 0 | udp[i] = 0; |
707 | 0 | u->top = top; |
708 | 0 | if (!bn_wexpand(b, top)) |
709 | 0 | goto err; |
710 | 0 | bdp = b->d; |
711 | 0 | bdp[0] = 1; |
712 | 0 | for (i = 1; i < top; i++) |
713 | 0 | bdp[i] = 0; |
714 | 0 | b->top = top; |
715 | 0 | if (!bn_wexpand(c, top)) |
716 | 0 | goto err; |
717 | 0 | cdp = c->d; |
718 | 0 | for (i = 0; i < top; i++) |
719 | 0 | cdp[i] = 0; |
720 | 0 | c->top = top; |
721 | 0 | vdp = v->d; /* It pays off to "cache" *->d pointers, |
722 | | * because it allows optimizer to be more |
723 | | * aggressive. But we don't have to "cache" |
724 | | * p->d, because *p is declared 'const'... */ |
725 | 0 | while (1) { |
726 | 0 | while (ubits && !(udp[0] & 1)) { |
727 | 0 | BN_ULONG u0, u1, b0, b1, mask; |
728 | |
|
729 | 0 | u0 = udp[0]; |
730 | 0 | b0 = bdp[0]; |
731 | 0 | mask = (BN_ULONG)0 - (b0 & 1); |
732 | 0 | b0 ^= p->d[0] & mask; |
733 | 0 | for (i = 0; i < top - 1; i++) { |
734 | 0 | u1 = udp[i + 1]; |
735 | 0 | udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2; |
736 | 0 | u0 = u1; |
737 | 0 | b1 = bdp[i + 1] ^ (p->d[i + 1] & mask); |
738 | 0 | bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2; |
739 | 0 | b0 = b1; |
740 | 0 | } |
741 | 0 | udp[i] = u0 >> 1; |
742 | 0 | bdp[i] = b0 >> 1; |
743 | 0 | ubits--; |
744 | 0 | } |
745 | |
|
746 | 0 | if (ubits <= BN_BITS2) { |
747 | 0 | if (udp[0] == 0) /* poly was reducible */ |
748 | 0 | goto err; |
749 | 0 | if (udp[0] == 1) |
750 | 0 | break; |
751 | 0 | } |
752 | | |
753 | 0 | if (ubits < vbits) { |
754 | 0 | i = ubits; |
755 | 0 | ubits = vbits; |
756 | 0 | vbits = i; |
757 | 0 | tmp = u; |
758 | 0 | u = v; |
759 | 0 | v = tmp; |
760 | 0 | tmp = b; |
761 | 0 | b = c; |
762 | 0 | c = tmp; |
763 | 0 | udp = vdp; |
764 | 0 | vdp = v->d; |
765 | 0 | bdp = cdp; |
766 | 0 | cdp = c->d; |
767 | 0 | } |
768 | 0 | for (i = 0; i < top; i++) { |
769 | 0 | udp[i] ^= vdp[i]; |
770 | 0 | bdp[i] ^= cdp[i]; |
771 | 0 | } |
772 | 0 | if (ubits == vbits) { |
773 | 0 | BN_ULONG ul; |
774 | 0 | int utop = (ubits - 1) / BN_BITS2; |
775 | |
|
776 | 0 | while ((ul = udp[utop]) == 0 && utop) |
777 | 0 | utop--; |
778 | 0 | ubits = utop * BN_BITS2 + BN_num_bits_word(ul); |
779 | 0 | } |
780 | 0 | } |
781 | 0 | bn_correct_top(b); |
782 | 0 | } |
783 | 0 | # endif |
784 | | |
785 | 0 | if (!BN_copy(r, b)) |
786 | 0 | goto err; |
787 | 0 | bn_check_top(r); |
788 | 0 | ret = 1; |
789 | |
|
790 | 0 | err: |
791 | | # ifdef BN_DEBUG /* BN_CTX_end would complain about the |
792 | | * expanded form */ |
793 | | bn_correct_top(c); |
794 | | bn_correct_top(u); |
795 | | bn_correct_top(v); |
796 | | # endif |
797 | 0 | BN_CTX_end(ctx); |
798 | 0 | return ret; |
799 | 0 | } |
800 | | |
801 | | /* |
802 | | * Invert xx, reduce modulo p, and store the result in r. r could be xx. |
803 | | * This function calls down to the BN_GF2m_mod_inv implementation; this |
804 | | * wrapper function is only provided for convenience; for best performance, |
805 | | * use the BN_GF2m_mod_inv function. |
806 | | */ |
807 | | int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], |
808 | | BN_CTX *ctx) |
809 | 0 | { |
810 | 0 | BIGNUM *field; |
811 | 0 | int ret = 0; |
812 | |
|
813 | 0 | bn_check_top(xx); |
814 | 0 | BN_CTX_start(ctx); |
815 | 0 | if ((field = BN_CTX_get(ctx)) == NULL) |
816 | 0 | goto err; |
817 | 0 | if (!BN_GF2m_arr2poly(p, field)) |
818 | 0 | goto err; |
819 | | |
820 | 0 | ret = BN_GF2m_mod_inv(r, xx, field, ctx); |
821 | 0 | bn_check_top(r); |
822 | |
|
823 | 0 | err: |
824 | 0 | BN_CTX_end(ctx); |
825 | 0 | return ret; |
826 | 0 | } |
827 | | |
828 | | # ifndef OPENSSL_SUN_GF2M_DIV |
829 | | /* |
830 | | * Divide y by x, reduce modulo p, and store the result in r. r could be x |
831 | | * or y, x could equal y. |
832 | | */ |
833 | | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, |
834 | | const BIGNUM *p, BN_CTX *ctx) |
835 | 0 | { |
836 | 0 | BIGNUM *xinv = NULL; |
837 | 0 | int ret = 0; |
838 | |
|
839 | 0 | bn_check_top(y); |
840 | 0 | bn_check_top(x); |
841 | 0 | bn_check_top(p); |
842 | |
|
843 | 0 | BN_CTX_start(ctx); |
844 | 0 | xinv = BN_CTX_get(ctx); |
845 | 0 | if (xinv == NULL) |
846 | 0 | goto err; |
847 | | |
848 | 0 | if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) |
849 | 0 | goto err; |
850 | 0 | if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) |
851 | 0 | goto err; |
852 | 0 | bn_check_top(r); |
853 | 0 | ret = 1; |
854 | |
|
855 | 0 | err: |
856 | 0 | BN_CTX_end(ctx); |
857 | 0 | return ret; |
858 | 0 | } |
859 | | # else |
860 | | /* |
861 | | * Divide y by x, reduce modulo p, and store the result in r. r could be x |
862 | | * or y, x could equal y. Uses algorithm Modular_Division_GF(2^m) from |
863 | | * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to the |
864 | | * Great Divide". |
865 | | */ |
866 | | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, |
867 | | const BIGNUM *p, BN_CTX *ctx) |
868 | | { |
869 | | BIGNUM *a, *b, *u, *v; |
870 | | int ret = 0; |
871 | | |
872 | | bn_check_top(y); |
873 | | bn_check_top(x); |
874 | | bn_check_top(p); |
875 | | |
876 | | BN_CTX_start(ctx); |
877 | | |
878 | | a = BN_CTX_get(ctx); |
879 | | b = BN_CTX_get(ctx); |
880 | | u = BN_CTX_get(ctx); |
881 | | v = BN_CTX_get(ctx); |
882 | | if (v == NULL) |
883 | | goto err; |
884 | | |
885 | | /* reduce x and y mod p */ |
886 | | if (!BN_GF2m_mod(u, y, p)) |
887 | | goto err; |
888 | | if (!BN_GF2m_mod(a, x, p)) |
889 | | goto err; |
890 | | if (!BN_copy(b, p)) |
891 | | goto err; |
892 | | |
893 | | while (!BN_is_odd(a)) { |
894 | | if (!BN_rshift1(a, a)) |
895 | | goto err; |
896 | | if (BN_is_odd(u)) |
897 | | if (!BN_GF2m_add(u, u, p)) |
898 | | goto err; |
899 | | if (!BN_rshift1(u, u)) |
900 | | goto err; |
901 | | } |
902 | | |
903 | | do { |
904 | | if (BN_GF2m_cmp(b, a) > 0) { |
905 | | if (!BN_GF2m_add(b, b, a)) |
906 | | goto err; |
907 | | if (!BN_GF2m_add(v, v, u)) |
908 | | goto err; |
909 | | do { |
910 | | if (!BN_rshift1(b, b)) |
911 | | goto err; |
912 | | if (BN_is_odd(v)) |
913 | | if (!BN_GF2m_add(v, v, p)) |
914 | | goto err; |
915 | | if (!BN_rshift1(v, v)) |
916 | | goto err; |
917 | | } while (!BN_is_odd(b)); |
918 | | } else if (BN_abs_is_word(a, 1)) |
919 | | break; |
920 | | else { |
921 | | if (!BN_GF2m_add(a, a, b)) |
922 | | goto err; |
923 | | if (!BN_GF2m_add(u, u, v)) |
924 | | goto err; |
925 | | do { |
926 | | if (!BN_rshift1(a, a)) |
927 | | goto err; |
928 | | if (BN_is_odd(u)) |
929 | | if (!BN_GF2m_add(u, u, p)) |
930 | | goto err; |
931 | | if (!BN_rshift1(u, u)) |
932 | | goto err; |
933 | | } while (!BN_is_odd(a)); |
934 | | } |
935 | | } while (1); |
936 | | |
937 | | if (!BN_copy(r, u)) |
938 | | goto err; |
939 | | bn_check_top(r); |
940 | | ret = 1; |
941 | | |
942 | | err: |
943 | | BN_CTX_end(ctx); |
944 | | return ret; |
945 | | } |
946 | | # endif |
947 | | |
948 | | /* |
949 | | * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx |
950 | | * * or yy, xx could equal yy. This function calls down to the |
951 | | * BN_GF2m_mod_div implementation; this wrapper function is only provided for |
952 | | * convenience; for best performance, use the BN_GF2m_mod_div function. |
953 | | */ |
954 | | int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, |
955 | | const int p[], BN_CTX *ctx) |
956 | 0 | { |
957 | 0 | BIGNUM *field; |
958 | 0 | int ret = 0; |
959 | |
|
960 | 0 | bn_check_top(yy); |
961 | 0 | bn_check_top(xx); |
962 | |
|
963 | 0 | BN_CTX_start(ctx); |
964 | 0 | if ((field = BN_CTX_get(ctx)) == NULL) |
965 | 0 | goto err; |
966 | 0 | if (!BN_GF2m_arr2poly(p, field)) |
967 | 0 | goto err; |
968 | | |
969 | 0 | ret = BN_GF2m_mod_div(r, yy, xx, field, ctx); |
970 | 0 | bn_check_top(r); |
971 | |
|
972 | 0 | err: |
973 | 0 | BN_CTX_end(ctx); |
974 | 0 | return ret; |
975 | 0 | } |
976 | | |
977 | | /* |
978 | | * Compute the bth power of a, reduce modulo p, and store the result in r. r |
979 | | * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE |
980 | | * P1363. |
981 | | */ |
982 | | int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
983 | | const int p[], BN_CTX *ctx) |
984 | 0 | { |
985 | 0 | int ret = 0, i, n; |
986 | 0 | BIGNUM *u; |
987 | |
|
988 | 0 | bn_check_top(a); |
989 | 0 | bn_check_top(b); |
990 | |
|
991 | 0 | if (BN_is_zero(b)) |
992 | 0 | return (BN_one(r)); |
993 | | |
994 | 0 | if (BN_abs_is_word(b, 1)) |
995 | 0 | return (BN_copy(r, a) != NULL); |
996 | | |
997 | 0 | BN_CTX_start(ctx); |
998 | 0 | if ((u = BN_CTX_get(ctx)) == NULL) |
999 | 0 | goto err; |
1000 | | |
1001 | 0 | if (!BN_GF2m_mod_arr(u, a, p)) |
1002 | 0 | goto err; |
1003 | | |
1004 | 0 | n = BN_num_bits(b) - 1; |
1005 | 0 | for (i = n - 1; i >= 0; i--) { |
1006 | 0 | if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) |
1007 | 0 | goto err; |
1008 | 0 | if (BN_is_bit_set(b, i)) { |
1009 | 0 | if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) |
1010 | 0 | goto err; |
1011 | 0 | } |
1012 | 0 | } |
1013 | 0 | if (!BN_copy(r, u)) |
1014 | 0 | goto err; |
1015 | 0 | bn_check_top(r); |
1016 | 0 | ret = 1; |
1017 | 0 | err: |
1018 | 0 | BN_CTX_end(ctx); |
1019 | 0 | return ret; |
1020 | 0 | } |
1021 | | |
1022 | | /* |
1023 | | * Compute the bth power of a, reduce modulo p, and store the result in r. r |
1024 | | * could be a. This function calls down to the BN_GF2m_mod_exp_arr |
1025 | | * implementation; this wrapper function is only provided for convenience; |
1026 | | * for best performance, use the BN_GF2m_mod_exp_arr function. |
1027 | | */ |
1028 | | int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
1029 | | const BIGNUM *p, BN_CTX *ctx) |
1030 | 0 | { |
1031 | 0 | int ret = 0; |
1032 | 0 | const int max = BN_num_bits(p) + 1; |
1033 | 0 | int *arr = NULL; |
1034 | 0 | bn_check_top(a); |
1035 | 0 | bn_check_top(b); |
1036 | 0 | bn_check_top(p); |
1037 | 0 | if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) |
1038 | 0 | goto err; |
1039 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
1040 | 0 | if (!ret || ret > max) { |
1041 | 0 | BNerr(BN_F_BN_GF2M_MOD_EXP, BN_R_INVALID_LENGTH); |
1042 | 0 | goto err; |
1043 | 0 | } |
1044 | 0 | ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx); |
1045 | 0 | bn_check_top(r); |
1046 | 0 | err: |
1047 | 0 | if (arr) |
1048 | 0 | OPENSSL_free(arr); |
1049 | 0 | return ret; |
1050 | 0 | } |
1051 | | |
1052 | | /* |
1053 | | * Compute the square root of a, reduce modulo p, and store the result in r. |
1054 | | * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363. |
1055 | | */ |
1056 | | int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], |
1057 | | BN_CTX *ctx) |
1058 | 0 | { |
1059 | 0 | int ret = 0; |
1060 | 0 | BIGNUM *u; |
1061 | |
|
1062 | 0 | bn_check_top(a); |
1063 | |
|
1064 | 0 | if (!p[0]) { |
1065 | | /* reduction mod 1 => return 0 */ |
1066 | 0 | BN_zero(r); |
1067 | 0 | return 1; |
1068 | 0 | } |
1069 | | |
1070 | 0 | BN_CTX_start(ctx); |
1071 | 0 | if ((u = BN_CTX_get(ctx)) == NULL) |
1072 | 0 | goto err; |
1073 | | |
1074 | 0 | if (!BN_set_bit(u, p[0] - 1)) |
1075 | 0 | goto err; |
1076 | 0 | ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx); |
1077 | 0 | bn_check_top(r); |
1078 | |
|
1079 | 0 | err: |
1080 | 0 | BN_CTX_end(ctx); |
1081 | 0 | return ret; |
1082 | 0 | } |
1083 | | |
1084 | | /* |
1085 | | * Compute the square root of a, reduce modulo p, and store the result in r. |
1086 | | * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr |
1087 | | * implementation; this wrapper function is only provided for convenience; |
1088 | | * for best performance, use the BN_GF2m_mod_sqrt_arr function. |
1089 | | */ |
1090 | | int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
1091 | 0 | { |
1092 | 0 | int ret = 0; |
1093 | 0 | const int max = BN_num_bits(p) + 1; |
1094 | 0 | int *arr = NULL; |
1095 | 0 | bn_check_top(a); |
1096 | 0 | bn_check_top(p); |
1097 | 0 | if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) |
1098 | 0 | goto err; |
1099 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
1100 | 0 | if (!ret || ret > max) { |
1101 | 0 | BNerr(BN_F_BN_GF2M_MOD_SQRT, BN_R_INVALID_LENGTH); |
1102 | 0 | goto err; |
1103 | 0 | } |
1104 | 0 | ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx); |
1105 | 0 | bn_check_top(r); |
1106 | 0 | err: |
1107 | 0 | if (arr) |
1108 | 0 | OPENSSL_free(arr); |
1109 | 0 | return ret; |
1110 | 0 | } |
1111 | | |
1112 | | /* |
1113 | | * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns |
1114 | | * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363. |
1115 | | */ |
1116 | | int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], |
1117 | | BN_CTX *ctx) |
1118 | 0 | { |
1119 | 0 | int ret = 0, count = 0, j; |
1120 | 0 | BIGNUM *a, *z, *rho, *w, *w2, *tmp; |
1121 | |
|
1122 | 0 | bn_check_top(a_); |
1123 | |
|
1124 | 0 | if (!p[0]) { |
1125 | | /* reduction mod 1 => return 0 */ |
1126 | 0 | BN_zero(r); |
1127 | 0 | return 1; |
1128 | 0 | } |
1129 | | |
1130 | 0 | BN_CTX_start(ctx); |
1131 | 0 | a = BN_CTX_get(ctx); |
1132 | 0 | z = BN_CTX_get(ctx); |
1133 | 0 | w = BN_CTX_get(ctx); |
1134 | 0 | if (w == NULL) |
1135 | 0 | goto err; |
1136 | | |
1137 | 0 | if (!BN_GF2m_mod_arr(a, a_, p)) |
1138 | 0 | goto err; |
1139 | | |
1140 | 0 | if (BN_is_zero(a)) { |
1141 | 0 | BN_zero(r); |
1142 | 0 | ret = 1; |
1143 | 0 | goto err; |
1144 | 0 | } |
1145 | | |
1146 | 0 | if (p[0] & 0x1) { /* m is odd */ |
1147 | | /* compute half-trace of a */ |
1148 | 0 | if (!BN_copy(z, a)) |
1149 | 0 | goto err; |
1150 | 0 | for (j = 1; j <= (p[0] - 1) / 2; j++) { |
1151 | 0 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
1152 | 0 | goto err; |
1153 | 0 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
1154 | 0 | goto err; |
1155 | 0 | if (!BN_GF2m_add(z, z, a)) |
1156 | 0 | goto err; |
1157 | 0 | } |
1158 | |
|
1159 | 0 | } else { /* m is even */ |
1160 | |
|
1161 | 0 | rho = BN_CTX_get(ctx); |
1162 | 0 | w2 = BN_CTX_get(ctx); |
1163 | 0 | tmp = BN_CTX_get(ctx); |
1164 | 0 | if (tmp == NULL) |
1165 | 0 | goto err; |
1166 | 0 | do { |
1167 | 0 | if (!BN_rand(rho, p[0], 0, 0)) |
1168 | 0 | goto err; |
1169 | 0 | if (!BN_GF2m_mod_arr(rho, rho, p)) |
1170 | 0 | goto err; |
1171 | 0 | BN_zero(z); |
1172 | 0 | if (!BN_copy(w, rho)) |
1173 | 0 | goto err; |
1174 | 0 | for (j = 1; j <= p[0] - 1; j++) { |
1175 | 0 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
1176 | 0 | goto err; |
1177 | 0 | if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) |
1178 | 0 | goto err; |
1179 | 0 | if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) |
1180 | 0 | goto err; |
1181 | 0 | if (!BN_GF2m_add(z, z, tmp)) |
1182 | 0 | goto err; |
1183 | 0 | if (!BN_GF2m_add(w, w2, rho)) |
1184 | 0 | goto err; |
1185 | 0 | } |
1186 | 0 | count++; |
1187 | 0 | } while (BN_is_zero(w) && (count < MAX_ITERATIONS)); |
1188 | 0 | if (BN_is_zero(w)) { |
1189 | 0 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_TOO_MANY_ITERATIONS); |
1190 | 0 | goto err; |
1191 | 0 | } |
1192 | 0 | } |
1193 | | |
1194 | 0 | if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) |
1195 | 0 | goto err; |
1196 | 0 | if (!BN_GF2m_add(w, z, w)) |
1197 | 0 | goto err; |
1198 | 0 | if (BN_GF2m_cmp(w, a)) { |
1199 | 0 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION); |
1200 | 0 | goto err; |
1201 | 0 | } |
1202 | | |
1203 | 0 | if (!BN_copy(r, z)) |
1204 | 0 | goto err; |
1205 | 0 | bn_check_top(r); |
1206 | |
|
1207 | 0 | ret = 1; |
1208 | |
|
1209 | 0 | err: |
1210 | 0 | BN_CTX_end(ctx); |
1211 | 0 | return ret; |
1212 | 0 | } |
1213 | | |
1214 | | /* |
1215 | | * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns |
1216 | | * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr |
1217 | | * implementation; this wrapper function is only provided for convenience; |
1218 | | * for best performance, use the BN_GF2m_mod_solve_quad_arr function. |
1219 | | */ |
1220 | | int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
1221 | | BN_CTX *ctx) |
1222 | 0 | { |
1223 | 0 | int ret = 0; |
1224 | 0 | const int max = BN_num_bits(p) + 1; |
1225 | 0 | int *arr = NULL; |
1226 | 0 | bn_check_top(a); |
1227 | 0 | bn_check_top(p); |
1228 | 0 | if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) |
1229 | 0 | goto err; |
1230 | 0 | ret = BN_GF2m_poly2arr(p, arr, max); |
1231 | 0 | if (!ret || ret > max) { |
1232 | 0 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD, BN_R_INVALID_LENGTH); |
1233 | 0 | goto err; |
1234 | 0 | } |
1235 | 0 | ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx); |
1236 | 0 | bn_check_top(r); |
1237 | 0 | err: |
1238 | 0 | if (arr) |
1239 | 0 | OPENSSL_free(arr); |
1240 | 0 | return ret; |
1241 | 0 | } |
1242 | | |
1243 | | /* |
1244 | | * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i * |
1245 | | * x^i) into an array of integers corresponding to the bits with non-zero |
1246 | | * coefficient. Array is terminated with -1. Up to max elements of the array |
1247 | | * will be filled. Return value is total number of array elements that would |
1248 | | * be filled if array was large enough. |
1249 | | */ |
1250 | | int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max) |
1251 | 0 | { |
1252 | 0 | int i, j, k = 0; |
1253 | 0 | BN_ULONG mask; |
1254 | |
|
1255 | 0 | if (BN_is_zero(a)) |
1256 | 0 | return 0; |
1257 | | |
1258 | 0 | for (i = a->top - 1; i >= 0; i--) { |
1259 | 0 | if (!a->d[i]) |
1260 | | /* skip word if a->d[i] == 0 */ |
1261 | 0 | continue; |
1262 | 0 | mask = BN_TBIT; |
1263 | 0 | for (j = BN_BITS2 - 1; j >= 0; j--) { |
1264 | 0 | if (a->d[i] & mask) { |
1265 | 0 | if (k < max) |
1266 | 0 | p[k] = BN_BITS2 * i + j; |
1267 | 0 | k++; |
1268 | 0 | } |
1269 | 0 | mask >>= 1; |
1270 | 0 | } |
1271 | 0 | } |
1272 | |
|
1273 | 0 | if (k < max) { |
1274 | 0 | p[k] = -1; |
1275 | 0 | k++; |
1276 | 0 | } |
1277 | |
|
1278 | 0 | return k; |
1279 | 0 | } |
1280 | | |
1281 | | /* |
1282 | | * Convert the coefficient array representation of a polynomial to a |
1283 | | * bit-string. The array must be terminated by -1. |
1284 | | */ |
1285 | | int BN_GF2m_arr2poly(const int p[], BIGNUM *a) |
1286 | 0 | { |
1287 | 0 | int i; |
1288 | |
|
1289 | 0 | bn_check_top(a); |
1290 | 0 | BN_zero(a); |
1291 | 0 | for (i = 0; p[i] != -1; i++) { |
1292 | 0 | if (BN_set_bit(a, p[i]) == 0) |
1293 | 0 | return 0; |
1294 | 0 | } |
1295 | 0 | bn_check_top(a); |
1296 | |
|
1297 | 0 | return 1; |
1298 | 0 | } |
1299 | | |
1300 | | #endif |