Coverage Report

Created: 2022-11-30 06:20

/src/openssl/crypto/bn/bn_kron.c
Line
Count
Source (jump to first uncovered line)
1
/* crypto/bn/bn_kron.c */
2
/* ====================================================================
3
 * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * 1. Redistributions of source code must retain the above copyright
10
 *    notice, this list of conditions and the following disclaimer.
11
 *
12
 * 2. Redistributions in binary form must reproduce the above copyright
13
 *    notice, this list of conditions and the following disclaimer in
14
 *    the documentation and/or other materials provided with the
15
 *    distribution.
16
 *
17
 * 3. All advertising materials mentioning features or use of this
18
 *    software must display the following acknowledgment:
19
 *    "This product includes software developed by the OpenSSL Project
20
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21
 *
22
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23
 *    endorse or promote products derived from this software without
24
 *    prior written permission. For written permission, please contact
25
 *    openssl-core@openssl.org.
26
 *
27
 * 5. Products derived from this software may not be called "OpenSSL"
28
 *    nor may "OpenSSL" appear in their names without prior written
29
 *    permission of the OpenSSL Project.
30
 *
31
 * 6. Redistributions of any form whatsoever must retain the following
32
 *    acknowledgment:
33
 *    "This product includes software developed by the OpenSSL Project
34
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35
 *
36
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47
 * OF THE POSSIBILITY OF SUCH DAMAGE.
48
 * ====================================================================
49
 *
50
 * This product includes cryptographic software written by Eric Young
51
 * (eay@cryptsoft.com).  This product includes software written by Tim
52
 * Hudson (tjh@cryptsoft.com).
53
 *
54
 */
55
56
#include "cryptlib.h"
57
#include "bn_lcl.h"
58
59
/* least significant word */
60
0
#define BN_lsw(n) (((n)->top == 0) ? (BN_ULONG) 0 : (n)->d[0])
61
62
/* Returns -2 for errors because both -1 and 0 are valid results. */
63
int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
64
0
{
65
0
    int i;
66
0
    int ret = -2;               /* avoid 'uninitialized' warning */
67
0
    int err = 0;
68
0
    BIGNUM *A, *B, *tmp;
69
    /*-
70
     * In 'tab', only odd-indexed entries are relevant:
71
     * For any odd BIGNUM n,
72
     *     tab[BN_lsw(n) & 7]
73
     * is $(-1)^{(n^2-1)/8}$ (using TeX notation).
74
     * Note that the sign of n does not matter.
75
     */
76
0
    static const int tab[8] = { 0, 1, 0, -1, 0, -1, 0, 1 };
77
78
0
    bn_check_top(a);
79
0
    bn_check_top(b);
80
81
0
    BN_CTX_start(ctx);
82
0
    A = BN_CTX_get(ctx);
83
0
    B = BN_CTX_get(ctx);
84
0
    if (B == NULL)
85
0
        goto end;
86
87
0
    err = !BN_copy(A, a);
88
0
    if (err)
89
0
        goto end;
90
0
    err = !BN_copy(B, b);
91
0
    if (err)
92
0
        goto end;
93
94
    /*
95
     * Kronecker symbol, imlemented according to Henri Cohen,
96
     * "A Course in Computational Algebraic Number Theory"
97
     * (algorithm 1.4.10).
98
     */
99
100
    /* Cohen's step 1: */
101
102
0
    if (BN_is_zero(B)) {
103
0
        ret = BN_abs_is_word(A, 1);
104
0
        goto end;
105
0
    }
106
107
    /* Cohen's step 2: */
108
109
0
    if (!BN_is_odd(A) && !BN_is_odd(B)) {
110
0
        ret = 0;
111
0
        goto end;
112
0
    }
113
114
    /* now  B  is non-zero */
115
0
    i = 0;
116
0
    while (!BN_is_bit_set(B, i))
117
0
        i++;
118
0
    err = !BN_rshift(B, B, i);
119
0
    if (err)
120
0
        goto end;
121
0
    if (i & 1) {
122
        /* i is odd */
123
        /* (thus  B  was even, thus  A  must be odd!)  */
124
125
        /* set 'ret' to $(-1)^{(A^2-1)/8}$ */
126
0
        ret = tab[BN_lsw(A) & 7];
127
0
    } else {
128
        /* i is even */
129
0
        ret = 1;
130
0
    }
131
132
0
    if (B->neg) {
133
0
        B->neg = 0;
134
0
        if (A->neg)
135
0
            ret = -ret;
136
0
    }
137
138
    /*
139
     * now B is positive and odd, so what remains to be done is to compute
140
     * the Jacobi symbol (A/B) and multiply it by 'ret'
141
     */
142
143
0
    while (1) {
144
        /* Cohen's step 3: */
145
146
        /*  B  is positive and odd */
147
148
0
        if (BN_is_zero(A)) {
149
0
            ret = BN_is_one(B) ? ret : 0;
150
0
            goto end;
151
0
        }
152
153
        /* now  A  is non-zero */
154
0
        i = 0;
155
0
        while (!BN_is_bit_set(A, i))
156
0
            i++;
157
0
        err = !BN_rshift(A, A, i);
158
0
        if (err)
159
0
            goto end;
160
0
        if (i & 1) {
161
            /* i is odd */
162
            /* multiply 'ret' by  $(-1)^{(B^2-1)/8}$ */
163
0
            ret = ret * tab[BN_lsw(B) & 7];
164
0
        }
165
166
        /* Cohen's step 4: */
167
        /* multiply 'ret' by  $(-1)^{(A-1)(B-1)/4}$ */
168
0
        if ((A->neg ? ~BN_lsw(A) : BN_lsw(A)) & BN_lsw(B) & 2)
169
0
            ret = -ret;
170
171
        /* (A, B) := (B mod |A|, |A|) */
172
0
        err = !BN_nnmod(B, B, A, ctx);
173
0
        if (err)
174
0
            goto end;
175
0
        tmp = A;
176
0
        A = B;
177
0
        B = tmp;
178
0
        tmp->neg = 0;
179
0
    }
180
0
 end:
181
0
    BN_CTX_end(ctx);
182
0
    if (err)
183
0
        return -2;
184
0
    else
185
0
        return ret;
186
0
}