/src/openssl/crypto/bn/bn_lib.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* crypto/bn/bn_lib.c */ |
2 | | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
3 | | * All rights reserved. |
4 | | * |
5 | | * This package is an SSL implementation written |
6 | | * by Eric Young (eay@cryptsoft.com). |
7 | | * The implementation was written so as to conform with Netscapes SSL. |
8 | | * |
9 | | * This library is free for commercial and non-commercial use as long as |
10 | | * the following conditions are aheared to. The following conditions |
11 | | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | | * included with this distribution is covered by the same copyright terms |
14 | | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | | * |
16 | | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | | * the code are not to be removed. |
18 | | * If this package is used in a product, Eric Young should be given attribution |
19 | | * as the author of the parts of the library used. |
20 | | * This can be in the form of a textual message at program startup or |
21 | | * in documentation (online or textual) provided with the package. |
22 | | * |
23 | | * Redistribution and use in source and binary forms, with or without |
24 | | * modification, are permitted provided that the following conditions |
25 | | * are met: |
26 | | * 1. Redistributions of source code must retain the copyright |
27 | | * notice, this list of conditions and the following disclaimer. |
28 | | * 2. Redistributions in binary form must reproduce the above copyright |
29 | | * notice, this list of conditions and the following disclaimer in the |
30 | | * documentation and/or other materials provided with the distribution. |
31 | | * 3. All advertising materials mentioning features or use of this software |
32 | | * must display the following acknowledgement: |
33 | | * "This product includes cryptographic software written by |
34 | | * Eric Young (eay@cryptsoft.com)" |
35 | | * The word 'cryptographic' can be left out if the rouines from the library |
36 | | * being used are not cryptographic related :-). |
37 | | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | | * the apps directory (application code) you must include an acknowledgement: |
39 | | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | | * |
41 | | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
44 | | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
45 | | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
46 | | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
47 | | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
48 | | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
49 | | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | | * SUCH DAMAGE. |
52 | | * |
53 | | * The licence and distribution terms for any publically available version or |
54 | | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | | * copied and put under another distribution licence |
56 | | * [including the GNU Public Licence.] |
57 | | */ |
58 | | |
59 | | #ifndef BN_DEBUG |
60 | | # undef NDEBUG /* avoid conflicting definitions */ |
61 | | # define NDEBUG |
62 | | #endif |
63 | | |
64 | | #include <assert.h> |
65 | | #include <limits.h> |
66 | | #include <stdio.h> |
67 | | #include "cryptlib.h" |
68 | | #include "bn_lcl.h" |
69 | | |
70 | | const char BN_version[] = "Big Number" OPENSSL_VERSION_PTEXT; |
71 | | |
72 | | /* This stuff appears to be completely unused, so is deprecated */ |
73 | | #ifndef OPENSSL_NO_DEPRECATED |
74 | | /*- |
75 | | * For a 32 bit machine |
76 | | * 2 - 4 == 128 |
77 | | * 3 - 8 == 256 |
78 | | * 4 - 16 == 512 |
79 | | * 5 - 32 == 1024 |
80 | | * 6 - 64 == 2048 |
81 | | * 7 - 128 == 4096 |
82 | | * 8 - 256 == 8192 |
83 | | */ |
84 | | static int bn_limit_bits = 0; |
85 | | static int bn_limit_num = 8; /* (1<<bn_limit_bits) */ |
86 | | static int bn_limit_bits_low = 0; |
87 | | static int bn_limit_num_low = 8; /* (1<<bn_limit_bits_low) */ |
88 | | static int bn_limit_bits_high = 0; |
89 | | static int bn_limit_num_high = 8; /* (1<<bn_limit_bits_high) */ |
90 | | static int bn_limit_bits_mont = 0; |
91 | | static int bn_limit_num_mont = 8; /* (1<<bn_limit_bits_mont) */ |
92 | | |
93 | | void BN_set_params(int mult, int high, int low, int mont) |
94 | 0 | { |
95 | 0 | if (mult >= 0) { |
96 | 0 | if (mult > (int)(sizeof(int) * 8) - 1) |
97 | 0 | mult = sizeof(int) * 8 - 1; |
98 | 0 | bn_limit_bits = mult; |
99 | 0 | bn_limit_num = 1 << mult; |
100 | 0 | } |
101 | 0 | if (high >= 0) { |
102 | 0 | if (high > (int)(sizeof(int) * 8) - 1) |
103 | 0 | high = sizeof(int) * 8 - 1; |
104 | 0 | bn_limit_bits_high = high; |
105 | 0 | bn_limit_num_high = 1 << high; |
106 | 0 | } |
107 | 0 | if (low >= 0) { |
108 | 0 | if (low > (int)(sizeof(int) * 8) - 1) |
109 | 0 | low = sizeof(int) * 8 - 1; |
110 | 0 | bn_limit_bits_low = low; |
111 | 0 | bn_limit_num_low = 1 << low; |
112 | 0 | } |
113 | 0 | if (mont >= 0) { |
114 | 0 | if (mont > (int)(sizeof(int) * 8) - 1) |
115 | 0 | mont = sizeof(int) * 8 - 1; |
116 | 0 | bn_limit_bits_mont = mont; |
117 | 0 | bn_limit_num_mont = 1 << mont; |
118 | 0 | } |
119 | 0 | } |
120 | | |
121 | | int BN_get_params(int which) |
122 | 0 | { |
123 | 0 | if (which == 0) |
124 | 0 | return (bn_limit_bits); |
125 | 0 | else if (which == 1) |
126 | 0 | return (bn_limit_bits_high); |
127 | 0 | else if (which == 2) |
128 | 0 | return (bn_limit_bits_low); |
129 | 0 | else if (which == 3) |
130 | 0 | return (bn_limit_bits_mont); |
131 | 0 | else |
132 | 0 | return (0); |
133 | 0 | } |
134 | | #endif |
135 | | |
136 | | const BIGNUM *BN_value_one(void) |
137 | 0 | { |
138 | 0 | static const BN_ULONG data_one = 1L; |
139 | 0 | static const BIGNUM const_one = |
140 | 0 | { (BN_ULONG *)&data_one, 1, 1, 0, BN_FLG_STATIC_DATA }; |
141 | |
|
142 | 0 | return (&const_one); |
143 | 0 | } |
144 | | |
145 | | int BN_num_bits_word(BN_ULONG l) |
146 | 0 | { |
147 | 0 | static const unsigned char bits[256] = { |
148 | 0 | 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, |
149 | 0 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
150 | 0 | 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, |
151 | 0 | 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, |
152 | 0 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
153 | 0 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
154 | 0 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
155 | 0 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
156 | 0 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
157 | 0 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
158 | 0 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
159 | 0 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
160 | 0 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
161 | 0 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
162 | 0 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
163 | 0 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
164 | 0 | }; |
165 | |
|
166 | 0 | #if defined(SIXTY_FOUR_BIT_LONG) |
167 | 0 | if (l & 0xffffffff00000000L) { |
168 | 0 | if (l & 0xffff000000000000L) { |
169 | 0 | if (l & 0xff00000000000000L) { |
170 | 0 | return (bits[(int)(l >> 56)] + 56); |
171 | 0 | } else |
172 | 0 | return (bits[(int)(l >> 48)] + 48); |
173 | 0 | } else { |
174 | 0 | if (l & 0x0000ff0000000000L) { |
175 | 0 | return (bits[(int)(l >> 40)] + 40); |
176 | 0 | } else |
177 | 0 | return (bits[(int)(l >> 32)] + 32); |
178 | 0 | } |
179 | 0 | } else |
180 | | #else |
181 | | # ifdef SIXTY_FOUR_BIT |
182 | | if (l & 0xffffffff00000000LL) { |
183 | | if (l & 0xffff000000000000LL) { |
184 | | if (l & 0xff00000000000000LL) { |
185 | | return (bits[(int)(l >> 56)] + 56); |
186 | | } else |
187 | | return (bits[(int)(l >> 48)] + 48); |
188 | | } else { |
189 | | if (l & 0x0000ff0000000000LL) { |
190 | | return (bits[(int)(l >> 40)] + 40); |
191 | | } else |
192 | | return (bits[(int)(l >> 32)] + 32); |
193 | | } |
194 | | } else |
195 | | # endif |
196 | | #endif |
197 | 0 | { |
198 | 0 | #if defined(THIRTY_TWO_BIT) || defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) |
199 | 0 | if (l & 0xffff0000L) { |
200 | 0 | if (l & 0xff000000L) |
201 | 0 | return (bits[(int)(l >> 24L)] + 24); |
202 | 0 | else |
203 | 0 | return (bits[(int)(l >> 16L)] + 16); |
204 | 0 | } else |
205 | 0 | #endif |
206 | 0 | { |
207 | 0 | #if defined(THIRTY_TWO_BIT) || defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) |
208 | 0 | if (l & 0xff00L) |
209 | 0 | return (bits[(int)(l >> 8)] + 8); |
210 | 0 | else |
211 | 0 | #endif |
212 | 0 | return (bits[(int)(l)]); |
213 | 0 | } |
214 | 0 | } |
215 | 0 | } |
216 | | |
217 | | int BN_num_bits(const BIGNUM *a) |
218 | 0 | { |
219 | 0 | int i = a->top - 1; |
220 | 0 | bn_check_top(a); |
221 | |
|
222 | 0 | if (BN_is_zero(a)) |
223 | 0 | return 0; |
224 | 0 | return ((i * BN_BITS2) + BN_num_bits_word(a->d[i])); |
225 | 0 | } |
226 | | |
227 | | void BN_clear_free(BIGNUM *a) |
228 | 0 | { |
229 | 0 | int i; |
230 | |
|
231 | 0 | if (a == NULL) |
232 | 0 | return; |
233 | 0 | bn_check_top(a); |
234 | 0 | if (a->d != NULL) { |
235 | 0 | OPENSSL_cleanse(a->d, a->dmax * sizeof(a->d[0])); |
236 | 0 | if (!(BN_get_flags(a, BN_FLG_STATIC_DATA))) |
237 | 0 | OPENSSL_free(a->d); |
238 | 0 | } |
239 | 0 | i = BN_get_flags(a, BN_FLG_MALLOCED); |
240 | 0 | OPENSSL_cleanse(a, sizeof(BIGNUM)); |
241 | 0 | if (i) |
242 | 0 | OPENSSL_free(a); |
243 | 0 | } |
244 | | |
245 | | void BN_free(BIGNUM *a) |
246 | 9.94k | { |
247 | 9.94k | if (a == NULL) |
248 | 9.94k | return; |
249 | 0 | bn_check_top(a); |
250 | 0 | if ((a->d != NULL) && !(BN_get_flags(a, BN_FLG_STATIC_DATA))) |
251 | 0 | OPENSSL_free(a->d); |
252 | 0 | if (a->flags & BN_FLG_MALLOCED) |
253 | 0 | OPENSSL_free(a); |
254 | 0 | else { |
255 | 0 | #ifndef OPENSSL_NO_DEPRECATED |
256 | 0 | a->flags |= BN_FLG_FREE; |
257 | 0 | #endif |
258 | 0 | a->d = NULL; |
259 | 0 | } |
260 | 0 | } |
261 | | |
262 | | void BN_init(BIGNUM *a) |
263 | 0 | { |
264 | 0 | memset(a, 0, sizeof(BIGNUM)); |
265 | 0 | bn_check_top(a); |
266 | 0 | } |
267 | | |
268 | | BIGNUM *BN_new(void) |
269 | 0 | { |
270 | 0 | BIGNUM *ret; |
271 | |
|
272 | 0 | if ((ret = (BIGNUM *)OPENSSL_malloc(sizeof(BIGNUM))) == NULL) { |
273 | 0 | BNerr(BN_F_BN_NEW, ERR_R_MALLOC_FAILURE); |
274 | 0 | return (NULL); |
275 | 0 | } |
276 | 0 | ret->flags = BN_FLG_MALLOCED; |
277 | 0 | ret->top = 0; |
278 | 0 | ret->neg = 0; |
279 | 0 | ret->dmax = 0; |
280 | 0 | ret->d = NULL; |
281 | 0 | bn_check_top(ret); |
282 | 0 | return (ret); |
283 | 0 | } |
284 | | |
285 | | /* This is used both by bn_expand2() and bn_dup_expand() */ |
286 | | /* The caller MUST check that words > b->dmax before calling this */ |
287 | | static BN_ULONG *bn_expand_internal(const BIGNUM *b, int words) |
288 | 0 | { |
289 | 0 | BN_ULONG *A, *a = NULL; |
290 | 0 | const BN_ULONG *B; |
291 | 0 | int i; |
292 | |
|
293 | 0 | bn_check_top(b); |
294 | |
|
295 | 0 | if (words > (INT_MAX / (4 * BN_BITS2))) { |
296 | 0 | BNerr(BN_F_BN_EXPAND_INTERNAL, BN_R_BIGNUM_TOO_LONG); |
297 | 0 | return NULL; |
298 | 0 | } |
299 | 0 | if (BN_get_flags(b, BN_FLG_STATIC_DATA)) { |
300 | 0 | BNerr(BN_F_BN_EXPAND_INTERNAL, BN_R_EXPAND_ON_STATIC_BIGNUM_DATA); |
301 | 0 | return (NULL); |
302 | 0 | } |
303 | 0 | a = A = (BN_ULONG *)OPENSSL_malloc(sizeof(BN_ULONG) * words); |
304 | 0 | if (A == NULL) { |
305 | 0 | BNerr(BN_F_BN_EXPAND_INTERNAL, ERR_R_MALLOC_FAILURE); |
306 | 0 | return (NULL); |
307 | 0 | } |
308 | | #ifdef PURIFY |
309 | | /* |
310 | | * Valgrind complains in BN_consttime_swap because we process the whole |
311 | | * array even if it's not initialised yet. This doesn't matter in that |
312 | | * function - what's important is constant time operation (we're not |
313 | | * actually going to use the data) |
314 | | */ |
315 | | memset(a, 0, sizeof(BN_ULONG) * words); |
316 | | #endif |
317 | | |
318 | 0 | #if 1 |
319 | 0 | B = b->d; |
320 | | /* Check if the previous number needs to be copied */ |
321 | 0 | if (B != NULL) { |
322 | 0 | for (i = b->top >> 2; i > 0; i--, A += 4, B += 4) { |
323 | | /* |
324 | | * The fact that the loop is unrolled |
325 | | * 4-wise is a tribute to Intel. It's |
326 | | * the one that doesn't have enough |
327 | | * registers to accomodate more data. |
328 | | * I'd unroll it 8-wise otherwise:-) |
329 | | * |
330 | | * <appro@fy.chalmers.se> |
331 | | */ |
332 | 0 | BN_ULONG a0, a1, a2, a3; |
333 | 0 | a0 = B[0]; |
334 | 0 | a1 = B[1]; |
335 | 0 | a2 = B[2]; |
336 | 0 | a3 = B[3]; |
337 | 0 | A[0] = a0; |
338 | 0 | A[1] = a1; |
339 | 0 | A[2] = a2; |
340 | 0 | A[3] = a3; |
341 | 0 | } |
342 | | /* |
343 | | * workaround for ultrix cc: without 'case 0', the optimizer does |
344 | | * the switch table by doing a=top&3; a--; goto jump_table[a]; |
345 | | * which fails for top== 0 |
346 | | */ |
347 | 0 | switch (b->top & 3) { |
348 | 0 | case 3: |
349 | 0 | A[2] = B[2]; |
350 | 0 | case 2: |
351 | 0 | A[1] = B[1]; |
352 | 0 | case 1: |
353 | 0 | A[0] = B[0]; |
354 | 0 | case 0: |
355 | 0 | ; |
356 | 0 | } |
357 | 0 | } |
358 | | #else |
359 | | memset(A, 0, sizeof(BN_ULONG) * words); |
360 | | memcpy(A, b->d, sizeof(b->d[0]) * b->top); |
361 | | #endif |
362 | |
|
363 | 0 | return (a); |
364 | 0 | } |
365 | | |
366 | | /* |
367 | | * This is an internal function that can be used instead of bn_expand2() when |
368 | | * there is a need to copy BIGNUMs instead of only expanding the data part, |
369 | | * while still expanding them. Especially useful when needing to expand |
370 | | * BIGNUMs that are declared 'const' and should therefore not be changed. The |
371 | | * reason to use this instead of a BN_dup() followed by a bn_expand2() is |
372 | | * memory allocation overhead. A BN_dup() followed by a bn_expand2() will |
373 | | * allocate new memory for the BIGNUM data twice, and free it once, while |
374 | | * bn_dup_expand() makes sure allocation is made only once. |
375 | | */ |
376 | | |
377 | | #ifndef OPENSSL_NO_DEPRECATED |
378 | | BIGNUM *bn_dup_expand(const BIGNUM *b, int words) |
379 | 0 | { |
380 | 0 | BIGNUM *r = NULL; |
381 | |
|
382 | 0 | bn_check_top(b); |
383 | | |
384 | | /* |
385 | | * This function does not work if words <= b->dmax && top < words because |
386 | | * BN_dup() does not preserve 'dmax'! (But bn_dup_expand() is not used |
387 | | * anywhere yet.) |
388 | | */ |
389 | |
|
390 | 0 | if (words > b->dmax) { |
391 | 0 | BN_ULONG *a = bn_expand_internal(b, words); |
392 | |
|
393 | 0 | if (a) { |
394 | 0 | r = BN_new(); |
395 | 0 | if (r) { |
396 | 0 | r->top = b->top; |
397 | 0 | r->dmax = words; |
398 | 0 | r->neg = b->neg; |
399 | 0 | r->d = a; |
400 | 0 | } else { |
401 | | /* r == NULL, BN_new failure */ |
402 | 0 | OPENSSL_free(a); |
403 | 0 | } |
404 | 0 | } |
405 | | /* |
406 | | * If a == NULL, there was an error in allocation in |
407 | | * bn_expand_internal(), and NULL should be returned |
408 | | */ |
409 | 0 | } else { |
410 | 0 | r = BN_dup(b); |
411 | 0 | } |
412 | |
|
413 | 0 | bn_check_top(r); |
414 | 0 | return r; |
415 | 0 | } |
416 | | #endif |
417 | | |
418 | | /* |
419 | | * This is an internal function that should not be used in applications. It |
420 | | * ensures that 'b' has enough room for a 'words' word number and initialises |
421 | | * any unused part of b->d with leading zeros. It is mostly used by the |
422 | | * various BIGNUM routines. If there is an error, NULL is returned. If not, |
423 | | * 'b' is returned. |
424 | | */ |
425 | | |
426 | | BIGNUM *bn_expand2(BIGNUM *b, int words) |
427 | 0 | { |
428 | 0 | bn_check_top(b); |
429 | |
|
430 | 0 | if (words > b->dmax) { |
431 | 0 | BN_ULONG *a = bn_expand_internal(b, words); |
432 | 0 | if (!a) |
433 | 0 | return NULL; |
434 | 0 | if (b->d) |
435 | 0 | OPENSSL_free(b->d); |
436 | 0 | b->d = a; |
437 | 0 | b->dmax = words; |
438 | 0 | } |
439 | | |
440 | | /* None of this should be necessary because of what b->top means! */ |
441 | | #if 0 |
442 | | /* |
443 | | * NB: bn_wexpand() calls this only if the BIGNUM really has to grow |
444 | | */ |
445 | | if (b->top < b->dmax) { |
446 | | int i; |
447 | | BN_ULONG *A = &(b->d[b->top]); |
448 | | for (i = (b->dmax - b->top) >> 3; i > 0; i--, A += 8) { |
449 | | A[0] = 0; |
450 | | A[1] = 0; |
451 | | A[2] = 0; |
452 | | A[3] = 0; |
453 | | A[4] = 0; |
454 | | A[5] = 0; |
455 | | A[6] = 0; |
456 | | A[7] = 0; |
457 | | } |
458 | | for (i = (b->dmax - b->top) & 7; i > 0; i--, A++) |
459 | | A[0] = 0; |
460 | | assert(A == &(b->d[b->dmax])); |
461 | | } |
462 | | #endif |
463 | 0 | bn_check_top(b); |
464 | 0 | return b; |
465 | 0 | } |
466 | | |
467 | | BIGNUM *BN_dup(const BIGNUM *a) |
468 | 0 | { |
469 | 0 | BIGNUM *t; |
470 | |
|
471 | 0 | if (a == NULL) |
472 | 0 | return NULL; |
473 | 0 | bn_check_top(a); |
474 | |
|
475 | 0 | t = BN_new(); |
476 | 0 | if (t == NULL) |
477 | 0 | return NULL; |
478 | 0 | if (!BN_copy(t, a)) { |
479 | 0 | BN_free(t); |
480 | 0 | return NULL; |
481 | 0 | } |
482 | 0 | bn_check_top(t); |
483 | 0 | return t; |
484 | 0 | } |
485 | | |
486 | | BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b) |
487 | 0 | { |
488 | 0 | int i; |
489 | 0 | BN_ULONG *A; |
490 | 0 | const BN_ULONG *B; |
491 | |
|
492 | 0 | bn_check_top(b); |
493 | |
|
494 | 0 | if (a == b) |
495 | 0 | return (a); |
496 | 0 | if (bn_wexpand(a, b->top) == NULL) |
497 | 0 | return (NULL); |
498 | | |
499 | 0 | #if 1 |
500 | 0 | A = a->d; |
501 | 0 | B = b->d; |
502 | 0 | for (i = b->top >> 2; i > 0; i--, A += 4, B += 4) { |
503 | 0 | BN_ULONG a0, a1, a2, a3; |
504 | 0 | a0 = B[0]; |
505 | 0 | a1 = B[1]; |
506 | 0 | a2 = B[2]; |
507 | 0 | a3 = B[3]; |
508 | 0 | A[0] = a0; |
509 | 0 | A[1] = a1; |
510 | 0 | A[2] = a2; |
511 | 0 | A[3] = a3; |
512 | 0 | } |
513 | | /* ultrix cc workaround, see comments in bn_expand_internal */ |
514 | 0 | switch (b->top & 3) { |
515 | 0 | case 3: |
516 | 0 | A[2] = B[2]; |
517 | 0 | case 2: |
518 | 0 | A[1] = B[1]; |
519 | 0 | case 1: |
520 | 0 | A[0] = B[0]; |
521 | 0 | case 0:; |
522 | 0 | } |
523 | | #else |
524 | | memcpy(a->d, b->d, sizeof(b->d[0]) * b->top); |
525 | | #endif |
526 | |
|
527 | 0 | if (BN_get_flags(b, BN_FLG_CONSTTIME) != 0) |
528 | 0 | BN_set_flags(a, BN_FLG_CONSTTIME); |
529 | |
|
530 | 0 | a->top = b->top; |
531 | 0 | a->neg = b->neg; |
532 | 0 | bn_check_top(a); |
533 | 0 | return (a); |
534 | 0 | } |
535 | | |
536 | | void BN_swap(BIGNUM *a, BIGNUM *b) |
537 | 0 | { |
538 | 0 | int flags_old_a, flags_old_b; |
539 | 0 | BN_ULONG *tmp_d; |
540 | 0 | int tmp_top, tmp_dmax, tmp_neg; |
541 | |
|
542 | 0 | bn_check_top(a); |
543 | 0 | bn_check_top(b); |
544 | |
|
545 | 0 | flags_old_a = a->flags; |
546 | 0 | flags_old_b = b->flags; |
547 | |
|
548 | 0 | tmp_d = a->d; |
549 | 0 | tmp_top = a->top; |
550 | 0 | tmp_dmax = a->dmax; |
551 | 0 | tmp_neg = a->neg; |
552 | |
|
553 | 0 | a->d = b->d; |
554 | 0 | a->top = b->top; |
555 | 0 | a->dmax = b->dmax; |
556 | 0 | a->neg = b->neg; |
557 | |
|
558 | 0 | b->d = tmp_d; |
559 | 0 | b->top = tmp_top; |
560 | 0 | b->dmax = tmp_dmax; |
561 | 0 | b->neg = tmp_neg; |
562 | |
|
563 | 0 | a->flags = |
564 | 0 | (flags_old_a & BN_FLG_MALLOCED) | (flags_old_b & BN_FLG_STATIC_DATA); |
565 | 0 | b->flags = |
566 | 0 | (flags_old_b & BN_FLG_MALLOCED) | (flags_old_a & BN_FLG_STATIC_DATA); |
567 | 0 | bn_check_top(a); |
568 | 0 | bn_check_top(b); |
569 | 0 | } |
570 | | |
571 | | void BN_clear(BIGNUM *a) |
572 | 0 | { |
573 | 0 | bn_check_top(a); |
574 | 0 | if (a->d != NULL) |
575 | 0 | OPENSSL_cleanse(a->d, a->dmax * sizeof(a->d[0])); |
576 | 0 | a->top = 0; |
577 | 0 | a->neg = 0; |
578 | 0 | } |
579 | | |
580 | | BN_ULONG BN_get_word(const BIGNUM *a) |
581 | 0 | { |
582 | 0 | if (a->top > 1) |
583 | 0 | return BN_MASK2; |
584 | 0 | else if (a->top == 1) |
585 | 0 | return a->d[0]; |
586 | | /* a->top == 0 */ |
587 | 0 | return 0; |
588 | 0 | } |
589 | | |
590 | | int BN_set_word(BIGNUM *a, BN_ULONG w) |
591 | 0 | { |
592 | 0 | bn_check_top(a); |
593 | 0 | if (bn_expand(a, (int)sizeof(BN_ULONG) * 8) == NULL) |
594 | 0 | return (0); |
595 | 0 | a->neg = 0; |
596 | 0 | a->d[0] = w; |
597 | 0 | a->top = (w ? 1 : 0); |
598 | 0 | bn_check_top(a); |
599 | 0 | return (1); |
600 | 0 | } |
601 | | |
602 | | BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret) |
603 | 0 | { |
604 | 0 | unsigned int i, m; |
605 | 0 | unsigned int n; |
606 | 0 | BN_ULONG l; |
607 | 0 | BIGNUM *bn = NULL; |
608 | |
|
609 | 0 | if (ret == NULL) |
610 | 0 | ret = bn = BN_new(); |
611 | 0 | if (ret == NULL) |
612 | 0 | return (NULL); |
613 | 0 | bn_check_top(ret); |
614 | 0 | l = 0; |
615 | 0 | n = len; |
616 | 0 | if (n == 0) { |
617 | 0 | ret->top = 0; |
618 | 0 | return (ret); |
619 | 0 | } |
620 | 0 | i = ((n - 1) / BN_BYTES) + 1; |
621 | 0 | m = ((n - 1) % (BN_BYTES)); |
622 | 0 | if (bn_wexpand(ret, (int)i) == NULL) { |
623 | 0 | if (bn) |
624 | 0 | BN_free(bn); |
625 | 0 | return NULL; |
626 | 0 | } |
627 | 0 | ret->top = i; |
628 | 0 | ret->neg = 0; |
629 | 0 | while (n--) { |
630 | 0 | l = (l << 8L) | *(s++); |
631 | 0 | if (m-- == 0) { |
632 | 0 | ret->d[--i] = l; |
633 | 0 | l = 0; |
634 | 0 | m = BN_BYTES - 1; |
635 | 0 | } |
636 | 0 | } |
637 | | /* |
638 | | * need to call this due to clear byte at top if avoiding having the top |
639 | | * bit set (-ve number) |
640 | | */ |
641 | 0 | bn_correct_top(ret); |
642 | 0 | return (ret); |
643 | 0 | } |
644 | | |
645 | | /* ignore negative */ |
646 | | int BN_bn2bin(const BIGNUM *a, unsigned char *to) |
647 | 0 | { |
648 | 0 | int n, i; |
649 | 0 | BN_ULONG l; |
650 | |
|
651 | 0 | bn_check_top(a); |
652 | 0 | n = i = BN_num_bytes(a); |
653 | 0 | while (i--) { |
654 | 0 | l = a->d[i / BN_BYTES]; |
655 | 0 | *(to++) = (unsigned char)(l >> (8 * (i % BN_BYTES))) & 0xff; |
656 | 0 | } |
657 | 0 | return (n); |
658 | 0 | } |
659 | | |
660 | | int BN_ucmp(const BIGNUM *a, const BIGNUM *b) |
661 | 0 | { |
662 | 0 | int i; |
663 | 0 | BN_ULONG t1, t2, *ap, *bp; |
664 | |
|
665 | 0 | bn_check_top(a); |
666 | 0 | bn_check_top(b); |
667 | |
|
668 | 0 | i = a->top - b->top; |
669 | 0 | if (i != 0) |
670 | 0 | return (i); |
671 | 0 | ap = a->d; |
672 | 0 | bp = b->d; |
673 | 0 | for (i = a->top - 1; i >= 0; i--) { |
674 | 0 | t1 = ap[i]; |
675 | 0 | t2 = bp[i]; |
676 | 0 | if (t1 != t2) |
677 | 0 | return ((t1 > t2) ? 1 : -1); |
678 | 0 | } |
679 | 0 | return (0); |
680 | 0 | } |
681 | | |
682 | | int BN_cmp(const BIGNUM *a, const BIGNUM *b) |
683 | 0 | { |
684 | 0 | int i; |
685 | 0 | int gt, lt; |
686 | 0 | BN_ULONG t1, t2; |
687 | |
|
688 | 0 | if ((a == NULL) || (b == NULL)) { |
689 | 0 | if (a != NULL) |
690 | 0 | return (-1); |
691 | 0 | else if (b != NULL) |
692 | 0 | return (1); |
693 | 0 | else |
694 | 0 | return (0); |
695 | 0 | } |
696 | | |
697 | 0 | bn_check_top(a); |
698 | 0 | bn_check_top(b); |
699 | |
|
700 | 0 | if (a->neg != b->neg) { |
701 | 0 | if (a->neg) |
702 | 0 | return (-1); |
703 | 0 | else |
704 | 0 | return (1); |
705 | 0 | } |
706 | 0 | if (a->neg == 0) { |
707 | 0 | gt = 1; |
708 | 0 | lt = -1; |
709 | 0 | } else { |
710 | 0 | gt = -1; |
711 | 0 | lt = 1; |
712 | 0 | } |
713 | |
|
714 | 0 | if (a->top > b->top) |
715 | 0 | return (gt); |
716 | 0 | if (a->top < b->top) |
717 | 0 | return (lt); |
718 | 0 | for (i = a->top - 1; i >= 0; i--) { |
719 | 0 | t1 = a->d[i]; |
720 | 0 | t2 = b->d[i]; |
721 | 0 | if (t1 > t2) |
722 | 0 | return (gt); |
723 | 0 | if (t1 < t2) |
724 | 0 | return (lt); |
725 | 0 | } |
726 | 0 | return (0); |
727 | 0 | } |
728 | | |
729 | | int BN_set_bit(BIGNUM *a, int n) |
730 | 0 | { |
731 | 0 | int i, j, k; |
732 | |
|
733 | 0 | if (n < 0) |
734 | 0 | return 0; |
735 | | |
736 | 0 | i = n / BN_BITS2; |
737 | 0 | j = n % BN_BITS2; |
738 | 0 | if (a->top <= i) { |
739 | 0 | if (bn_wexpand(a, i + 1) == NULL) |
740 | 0 | return (0); |
741 | 0 | for (k = a->top; k < i + 1; k++) |
742 | 0 | a->d[k] = 0; |
743 | 0 | a->top = i + 1; |
744 | 0 | } |
745 | | |
746 | 0 | a->d[i] |= (((BN_ULONG)1) << j); |
747 | 0 | bn_check_top(a); |
748 | 0 | return (1); |
749 | 0 | } |
750 | | |
751 | | int BN_clear_bit(BIGNUM *a, int n) |
752 | 0 | { |
753 | 0 | int i, j; |
754 | |
|
755 | 0 | bn_check_top(a); |
756 | 0 | if (n < 0) |
757 | 0 | return 0; |
758 | | |
759 | 0 | i = n / BN_BITS2; |
760 | 0 | j = n % BN_BITS2; |
761 | 0 | if (a->top <= i) |
762 | 0 | return (0); |
763 | | |
764 | 0 | a->d[i] &= (~(((BN_ULONG)1) << j)); |
765 | 0 | bn_correct_top(a); |
766 | 0 | return (1); |
767 | 0 | } |
768 | | |
769 | | int BN_is_bit_set(const BIGNUM *a, int n) |
770 | 0 | { |
771 | 0 | int i, j; |
772 | |
|
773 | 0 | bn_check_top(a); |
774 | 0 | if (n < 0) |
775 | 0 | return 0; |
776 | 0 | i = n / BN_BITS2; |
777 | 0 | j = n % BN_BITS2; |
778 | 0 | if (a->top <= i) |
779 | 0 | return 0; |
780 | 0 | return (int)(((a->d[i]) >> j) & ((BN_ULONG)1)); |
781 | 0 | } |
782 | | |
783 | | int BN_mask_bits(BIGNUM *a, int n) |
784 | 0 | { |
785 | 0 | int b, w; |
786 | |
|
787 | 0 | bn_check_top(a); |
788 | 0 | if (n < 0) |
789 | 0 | return 0; |
790 | | |
791 | 0 | w = n / BN_BITS2; |
792 | 0 | b = n % BN_BITS2; |
793 | 0 | if (w >= a->top) |
794 | 0 | return 0; |
795 | 0 | if (b == 0) |
796 | 0 | a->top = w; |
797 | 0 | else { |
798 | 0 | a->top = w + 1; |
799 | 0 | a->d[w] &= ~(BN_MASK2 << b); |
800 | 0 | } |
801 | 0 | bn_correct_top(a); |
802 | 0 | return (1); |
803 | 0 | } |
804 | | |
805 | | void BN_set_negative(BIGNUM *a, int b) |
806 | 0 | { |
807 | 0 | if (b && !BN_is_zero(a)) |
808 | 0 | a->neg = 1; |
809 | 0 | else |
810 | 0 | a->neg = 0; |
811 | 0 | } |
812 | | |
813 | | int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n) |
814 | 0 | { |
815 | 0 | int i; |
816 | 0 | BN_ULONG aa, bb; |
817 | |
|
818 | 0 | aa = a[n - 1]; |
819 | 0 | bb = b[n - 1]; |
820 | 0 | if (aa != bb) |
821 | 0 | return ((aa > bb) ? 1 : -1); |
822 | 0 | for (i = n - 2; i >= 0; i--) { |
823 | 0 | aa = a[i]; |
824 | 0 | bb = b[i]; |
825 | 0 | if (aa != bb) |
826 | 0 | return ((aa > bb) ? 1 : -1); |
827 | 0 | } |
828 | 0 | return (0); |
829 | 0 | } |
830 | | |
831 | | /* |
832 | | * Here follows a specialised variants of bn_cmp_words(). It has the |
833 | | * property of performing the operation on arrays of different sizes. The |
834 | | * sizes of those arrays is expressed through cl, which is the common length |
835 | | * ( basicall, min(len(a),len(b)) ), and dl, which is the delta between the |
836 | | * two lengths, calculated as len(a)-len(b). All lengths are the number of |
837 | | * BN_ULONGs... |
838 | | */ |
839 | | |
840 | | int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl) |
841 | 0 | { |
842 | 0 | int n, i; |
843 | 0 | n = cl - 1; |
844 | |
|
845 | 0 | if (dl < 0) { |
846 | 0 | for (i = dl; i < 0; i++) { |
847 | 0 | if (b[n - i] != 0) |
848 | 0 | return -1; /* a < b */ |
849 | 0 | } |
850 | 0 | } |
851 | 0 | if (dl > 0) { |
852 | 0 | for (i = dl; i > 0; i--) { |
853 | 0 | if (a[n + i] != 0) |
854 | 0 | return 1; /* a > b */ |
855 | 0 | } |
856 | 0 | } |
857 | 0 | return bn_cmp_words(a, b, cl); |
858 | 0 | } |
859 | | |
860 | | /* |
861 | | * Constant-time conditional swap of a and b. |
862 | | * a and b are swapped if condition is not 0. The code assumes that at most one bit of condition is set. |
863 | | * nwords is the number of words to swap. The code assumes that at least nwords are allocated in both a and b, |
864 | | * and that no more than nwords are used by either a or b. |
865 | | * a and b cannot be the same number |
866 | | */ |
867 | | void BN_consttime_swap(BN_ULONG condition, BIGNUM *a, BIGNUM *b, int nwords) |
868 | 0 | { |
869 | 0 | BN_ULONG t; |
870 | 0 | int i; |
871 | |
|
872 | 0 | bn_wcheck_size(a, nwords); |
873 | 0 | bn_wcheck_size(b, nwords); |
874 | |
|
875 | 0 | assert(a != b); |
876 | 0 | assert((condition & (condition - 1)) == 0); |
877 | 0 | assert(sizeof(BN_ULONG) >= sizeof(int)); |
878 | |
|
879 | 0 | condition = ((condition - 1) >> (BN_BITS2 - 1)) - 1; |
880 | |
|
881 | 0 | t = (a->top ^ b->top) & condition; |
882 | 0 | a->top ^= t; |
883 | 0 | b->top ^= t; |
884 | |
|
885 | 0 | #define BN_CONSTTIME_SWAP(ind) \ |
886 | 0 | do { \ |
887 | 0 | t = (a->d[ind] ^ b->d[ind]) & condition; \ |
888 | 0 | a->d[ind] ^= t; \ |
889 | 0 | b->d[ind] ^= t; \ |
890 | 0 | } while (0) |
891 | |
|
892 | 0 | switch (nwords) { |
893 | 0 | default: |
894 | 0 | for (i = 10; i < nwords; i++) |
895 | 0 | BN_CONSTTIME_SWAP(i); |
896 | | /* Fallthrough */ |
897 | 0 | case 10: |
898 | 0 | BN_CONSTTIME_SWAP(9); /* Fallthrough */ |
899 | 0 | case 9: |
900 | 0 | BN_CONSTTIME_SWAP(8); /* Fallthrough */ |
901 | 0 | case 8: |
902 | 0 | BN_CONSTTIME_SWAP(7); /* Fallthrough */ |
903 | 0 | case 7: |
904 | 0 | BN_CONSTTIME_SWAP(6); /* Fallthrough */ |
905 | 0 | case 6: |
906 | 0 | BN_CONSTTIME_SWAP(5); /* Fallthrough */ |
907 | 0 | case 5: |
908 | 0 | BN_CONSTTIME_SWAP(4); /* Fallthrough */ |
909 | 0 | case 4: |
910 | 0 | BN_CONSTTIME_SWAP(3); /* Fallthrough */ |
911 | 0 | case 3: |
912 | 0 | BN_CONSTTIME_SWAP(2); /* Fallthrough */ |
913 | 0 | case 2: |
914 | 0 | BN_CONSTTIME_SWAP(1); /* Fallthrough */ |
915 | 0 | case 1: |
916 | 0 | BN_CONSTTIME_SWAP(0); |
917 | 0 | } |
918 | 0 | #undef BN_CONSTTIME_SWAP |
919 | 0 | } |