/src/openssl/crypto/bn/bn_sqrt.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* crypto/bn/bn_sqrt.c */ |
2 | | /* |
3 | | * Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> and Bodo |
4 | | * Moeller for the OpenSSL project. |
5 | | */ |
6 | | /* ==================================================================== |
7 | | * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. |
8 | | * |
9 | | * Redistribution and use in source and binary forms, with or without |
10 | | * modification, are permitted provided that the following conditions |
11 | | * are met: |
12 | | * |
13 | | * 1. Redistributions of source code must retain the above copyright |
14 | | * notice, this list of conditions and the following disclaimer. |
15 | | * |
16 | | * 2. Redistributions in binary form must reproduce the above copyright |
17 | | * notice, this list of conditions and the following disclaimer in |
18 | | * the documentation and/or other materials provided with the |
19 | | * distribution. |
20 | | * |
21 | | * 3. All advertising materials mentioning features or use of this |
22 | | * software must display the following acknowledgment: |
23 | | * "This product includes software developed by the OpenSSL Project |
24 | | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
25 | | * |
26 | | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
27 | | * endorse or promote products derived from this software without |
28 | | * prior written permission. For written permission, please contact |
29 | | * openssl-core@openssl.org. |
30 | | * |
31 | | * 5. Products derived from this software may not be called "OpenSSL" |
32 | | * nor may "OpenSSL" appear in their names without prior written |
33 | | * permission of the OpenSSL Project. |
34 | | * |
35 | | * 6. Redistributions of any form whatsoever must retain the following |
36 | | * acknowledgment: |
37 | | * "This product includes software developed by the OpenSSL Project |
38 | | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
39 | | * |
40 | | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
41 | | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
43 | | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
44 | | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
45 | | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
46 | | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
47 | | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
48 | | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
49 | | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
50 | | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
51 | | * OF THE POSSIBILITY OF SUCH DAMAGE. |
52 | | * ==================================================================== |
53 | | * |
54 | | * This product includes cryptographic software written by Eric Young |
55 | | * (eay@cryptsoft.com). This product includes software written by Tim |
56 | | * Hudson (tjh@cryptsoft.com). |
57 | | * |
58 | | */ |
59 | | |
60 | | #include "cryptlib.h" |
61 | | #include "bn_lcl.h" |
62 | | |
63 | | BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
64 | | /* |
65 | | * Returns 'ret' such that ret^2 == a (mod p), using the Tonelli/Shanks |
66 | | * algorithm (cf. Henri Cohen, "A Course in Algebraic Computational Number |
67 | | * Theory", algorithm 1.5.1). 'p' must be prime! |
68 | | */ |
69 | 0 | { |
70 | 0 | BIGNUM *ret = in; |
71 | 0 | int err = 1; |
72 | 0 | int r; |
73 | 0 | BIGNUM *A, *b, *q, *t, *x, *y; |
74 | 0 | int e, i, j; |
75 | |
|
76 | 0 | if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) { |
77 | 0 | if (BN_abs_is_word(p, 2)) { |
78 | 0 | if (ret == NULL) |
79 | 0 | ret = BN_new(); |
80 | 0 | if (ret == NULL) |
81 | 0 | goto end; |
82 | 0 | if (!BN_set_word(ret, BN_is_bit_set(a, 0))) { |
83 | 0 | if (ret != in) |
84 | 0 | BN_free(ret); |
85 | 0 | return NULL; |
86 | 0 | } |
87 | 0 | bn_check_top(ret); |
88 | 0 | return ret; |
89 | 0 | } |
90 | | |
91 | 0 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); |
92 | 0 | return (NULL); |
93 | 0 | } |
94 | | |
95 | 0 | if (BN_is_zero(a) || BN_is_one(a)) { |
96 | 0 | if (ret == NULL) |
97 | 0 | ret = BN_new(); |
98 | 0 | if (ret == NULL) |
99 | 0 | goto end; |
100 | 0 | if (!BN_set_word(ret, BN_is_one(a))) { |
101 | 0 | if (ret != in) |
102 | 0 | BN_free(ret); |
103 | 0 | return NULL; |
104 | 0 | } |
105 | 0 | bn_check_top(ret); |
106 | 0 | return ret; |
107 | 0 | } |
108 | | |
109 | 0 | BN_CTX_start(ctx); |
110 | 0 | A = BN_CTX_get(ctx); |
111 | 0 | b = BN_CTX_get(ctx); |
112 | 0 | q = BN_CTX_get(ctx); |
113 | 0 | t = BN_CTX_get(ctx); |
114 | 0 | x = BN_CTX_get(ctx); |
115 | 0 | y = BN_CTX_get(ctx); |
116 | 0 | if (y == NULL) |
117 | 0 | goto end; |
118 | | |
119 | 0 | if (ret == NULL) |
120 | 0 | ret = BN_new(); |
121 | 0 | if (ret == NULL) |
122 | 0 | goto end; |
123 | | |
124 | | /* A = a mod p */ |
125 | 0 | if (!BN_nnmod(A, a, p, ctx)) |
126 | 0 | goto end; |
127 | | |
128 | | /* now write |p| - 1 as 2^e*q where q is odd */ |
129 | 0 | e = 1; |
130 | 0 | while (!BN_is_bit_set(p, e)) |
131 | 0 | e++; |
132 | | /* we'll set q later (if needed) */ |
133 | |
|
134 | 0 | if (e == 1) { |
135 | | /*- |
136 | | * The easy case: (|p|-1)/2 is odd, so 2 has an inverse |
137 | | * modulo (|p|-1)/2, and square roots can be computed |
138 | | * directly by modular exponentiation. |
139 | | * We have |
140 | | * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2), |
141 | | * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1. |
142 | | */ |
143 | 0 | if (!BN_rshift(q, p, 2)) |
144 | 0 | goto end; |
145 | 0 | q->neg = 0; |
146 | 0 | if (!BN_add_word(q, 1)) |
147 | 0 | goto end; |
148 | 0 | if (!BN_mod_exp(ret, A, q, p, ctx)) |
149 | 0 | goto end; |
150 | 0 | err = 0; |
151 | 0 | goto vrfy; |
152 | 0 | } |
153 | | |
154 | 0 | if (e == 2) { |
155 | | /*- |
156 | | * |p| == 5 (mod 8) |
157 | | * |
158 | | * In this case 2 is always a non-square since |
159 | | * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime. |
160 | | * So if a really is a square, then 2*a is a non-square. |
161 | | * Thus for |
162 | | * b := (2*a)^((|p|-5)/8), |
163 | | * i := (2*a)*b^2 |
164 | | * we have |
165 | | * i^2 = (2*a)^((1 + (|p|-5)/4)*2) |
166 | | * = (2*a)^((p-1)/2) |
167 | | * = -1; |
168 | | * so if we set |
169 | | * x := a*b*(i-1), |
170 | | * then |
171 | | * x^2 = a^2 * b^2 * (i^2 - 2*i + 1) |
172 | | * = a^2 * b^2 * (-2*i) |
173 | | * = a*(-i)*(2*a*b^2) |
174 | | * = a*(-i)*i |
175 | | * = a. |
176 | | * |
177 | | * (This is due to A.O.L. Atkin, |
178 | | * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>, |
179 | | * November 1992.) |
180 | | */ |
181 | | |
182 | | /* t := 2*a */ |
183 | 0 | if (!BN_mod_lshift1_quick(t, A, p)) |
184 | 0 | goto end; |
185 | | |
186 | | /* b := (2*a)^((|p|-5)/8) */ |
187 | 0 | if (!BN_rshift(q, p, 3)) |
188 | 0 | goto end; |
189 | 0 | q->neg = 0; |
190 | 0 | if (!BN_mod_exp(b, t, q, p, ctx)) |
191 | 0 | goto end; |
192 | | |
193 | | /* y := b^2 */ |
194 | 0 | if (!BN_mod_sqr(y, b, p, ctx)) |
195 | 0 | goto end; |
196 | | |
197 | | /* t := (2*a)*b^2 - 1 */ |
198 | 0 | if (!BN_mod_mul(t, t, y, p, ctx)) |
199 | 0 | goto end; |
200 | 0 | if (!BN_sub_word(t, 1)) |
201 | 0 | goto end; |
202 | | |
203 | | /* x = a*b*t */ |
204 | 0 | if (!BN_mod_mul(x, A, b, p, ctx)) |
205 | 0 | goto end; |
206 | 0 | if (!BN_mod_mul(x, x, t, p, ctx)) |
207 | 0 | goto end; |
208 | | |
209 | 0 | if (!BN_copy(ret, x)) |
210 | 0 | goto end; |
211 | 0 | err = 0; |
212 | 0 | goto vrfy; |
213 | 0 | } |
214 | | |
215 | | /* |
216 | | * e > 2, so we really have to use the Tonelli/Shanks algorithm. First, |
217 | | * find some y that is not a square. |
218 | | */ |
219 | 0 | if (!BN_copy(q, p)) |
220 | 0 | goto end; /* use 'q' as temp */ |
221 | 0 | q->neg = 0; |
222 | 0 | i = 2; |
223 | 0 | do { |
224 | | /* |
225 | | * For efficiency, try small numbers first; if this fails, try random |
226 | | * numbers. |
227 | | */ |
228 | 0 | if (i < 22) { |
229 | 0 | if (!BN_set_word(y, i)) |
230 | 0 | goto end; |
231 | 0 | } else { |
232 | 0 | if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) |
233 | 0 | goto end; |
234 | 0 | if (BN_ucmp(y, p) >= 0) { |
235 | 0 | if (!(p->neg ? BN_add : BN_sub) (y, y, p)) |
236 | 0 | goto end; |
237 | 0 | } |
238 | | /* now 0 <= y < |p| */ |
239 | 0 | if (BN_is_zero(y)) |
240 | 0 | if (!BN_set_word(y, i)) |
241 | 0 | goto end; |
242 | 0 | } |
243 | | |
244 | 0 | r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */ |
245 | 0 | if (r < -1) |
246 | 0 | goto end; |
247 | 0 | if (r == 0) { |
248 | | /* m divides p */ |
249 | 0 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); |
250 | 0 | goto end; |
251 | 0 | } |
252 | 0 | } |
253 | 0 | while (r == 1 && ++i < 82); |
254 | | |
255 | 0 | if (r != -1) { |
256 | | /* |
257 | | * Many rounds and still no non-square -- this is more likely a bug |
258 | | * than just bad luck. Even if p is not prime, we should have found |
259 | | * some y such that r == -1. |
260 | | */ |
261 | 0 | BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS); |
262 | 0 | goto end; |
263 | 0 | } |
264 | | |
265 | | /* Here's our actual 'q': */ |
266 | 0 | if (!BN_rshift(q, q, e)) |
267 | 0 | goto end; |
268 | | |
269 | | /* |
270 | | * Now that we have some non-square, we can find an element of order 2^e |
271 | | * by computing its q'th power. |
272 | | */ |
273 | 0 | if (!BN_mod_exp(y, y, q, p, ctx)) |
274 | 0 | goto end; |
275 | 0 | if (BN_is_one(y)) { |
276 | 0 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); |
277 | 0 | goto end; |
278 | 0 | } |
279 | | |
280 | | /*- |
281 | | * Now we know that (if p is indeed prime) there is an integer |
282 | | * k, 0 <= k < 2^e, such that |
283 | | * |
284 | | * a^q * y^k == 1 (mod p). |
285 | | * |
286 | | * As a^q is a square and y is not, k must be even. |
287 | | * q+1 is even, too, so there is an element |
288 | | * |
289 | | * X := a^((q+1)/2) * y^(k/2), |
290 | | * |
291 | | * and it satisfies |
292 | | * |
293 | | * X^2 = a^q * a * y^k |
294 | | * = a, |
295 | | * |
296 | | * so it is the square root that we are looking for. |
297 | | */ |
298 | | |
299 | | /* t := (q-1)/2 (note that q is odd) */ |
300 | 0 | if (!BN_rshift1(t, q)) |
301 | 0 | goto end; |
302 | | |
303 | | /* x := a^((q-1)/2) */ |
304 | 0 | if (BN_is_zero(t)) { /* special case: p = 2^e + 1 */ |
305 | 0 | if (!BN_nnmod(t, A, p, ctx)) |
306 | 0 | goto end; |
307 | 0 | if (BN_is_zero(t)) { |
308 | | /* special case: a == 0 (mod p) */ |
309 | 0 | BN_zero(ret); |
310 | 0 | err = 0; |
311 | 0 | goto end; |
312 | 0 | } else if (!BN_one(x)) |
313 | 0 | goto end; |
314 | 0 | } else { |
315 | 0 | if (!BN_mod_exp(x, A, t, p, ctx)) |
316 | 0 | goto end; |
317 | 0 | if (BN_is_zero(x)) { |
318 | | /* special case: a == 0 (mod p) */ |
319 | 0 | BN_zero(ret); |
320 | 0 | err = 0; |
321 | 0 | goto end; |
322 | 0 | } |
323 | 0 | } |
324 | | |
325 | | /* b := a*x^2 (= a^q) */ |
326 | 0 | if (!BN_mod_sqr(b, x, p, ctx)) |
327 | 0 | goto end; |
328 | 0 | if (!BN_mod_mul(b, b, A, p, ctx)) |
329 | 0 | goto end; |
330 | | |
331 | | /* x := a*x (= a^((q+1)/2)) */ |
332 | 0 | if (!BN_mod_mul(x, x, A, p, ctx)) |
333 | 0 | goto end; |
334 | | |
335 | 0 | while (1) { |
336 | | /*- |
337 | | * Now b is a^q * y^k for some even k (0 <= k < 2^E |
338 | | * where E refers to the original value of e, which we |
339 | | * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2). |
340 | | * |
341 | | * We have a*b = x^2, |
342 | | * y^2^(e-1) = -1, |
343 | | * b^2^(e-1) = 1. |
344 | | */ |
345 | |
|
346 | 0 | if (BN_is_one(b)) { |
347 | 0 | if (!BN_copy(ret, x)) |
348 | 0 | goto end; |
349 | 0 | err = 0; |
350 | 0 | goto vrfy; |
351 | 0 | } |
352 | | |
353 | | /* find smallest i such that b^(2^i) = 1 */ |
354 | 0 | i = 1; |
355 | 0 | if (!BN_mod_sqr(t, b, p, ctx)) |
356 | 0 | goto end; |
357 | 0 | while (!BN_is_one(t)) { |
358 | 0 | i++; |
359 | 0 | if (i == e) { |
360 | 0 | BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); |
361 | 0 | goto end; |
362 | 0 | } |
363 | 0 | if (!BN_mod_mul(t, t, t, p, ctx)) |
364 | 0 | goto end; |
365 | 0 | } |
366 | | |
367 | | /* t := y^2^(e - i - 1) */ |
368 | 0 | if (!BN_copy(t, y)) |
369 | 0 | goto end; |
370 | 0 | for (j = e - i - 1; j > 0; j--) { |
371 | 0 | if (!BN_mod_sqr(t, t, p, ctx)) |
372 | 0 | goto end; |
373 | 0 | } |
374 | 0 | if (!BN_mod_mul(y, t, t, p, ctx)) |
375 | 0 | goto end; |
376 | 0 | if (!BN_mod_mul(x, x, t, p, ctx)) |
377 | 0 | goto end; |
378 | 0 | if (!BN_mod_mul(b, b, y, p, ctx)) |
379 | 0 | goto end; |
380 | 0 | e = i; |
381 | 0 | } |
382 | | |
383 | 0 | vrfy: |
384 | 0 | if (!err) { |
385 | | /* |
386 | | * verify the result -- the input might have been not a square (test |
387 | | * added in 0.9.8) |
388 | | */ |
389 | |
|
390 | 0 | if (!BN_mod_sqr(x, ret, p, ctx)) |
391 | 0 | err = 1; |
392 | |
|
393 | 0 | if (!err && 0 != BN_cmp(x, A)) { |
394 | 0 | BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); |
395 | 0 | err = 1; |
396 | 0 | } |
397 | 0 | } |
398 | |
|
399 | 0 | end: |
400 | 0 | if (err) { |
401 | 0 | if (ret != NULL && ret != in) { |
402 | 0 | BN_clear_free(ret); |
403 | 0 | } |
404 | 0 | ret = NULL; |
405 | 0 | } |
406 | 0 | BN_CTX_end(ctx); |
407 | 0 | bn_check_top(ret); |
408 | 0 | return ret; |
409 | 0 | } |