Coverage Report

Created: 2022-11-30 06:20

/src/openssl/crypto/bn/bn_sqrt.c
Line
Count
Source (jump to first uncovered line)
1
/* crypto/bn/bn_sqrt.c */
2
/*
3
 * Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> and Bodo
4
 * Moeller for the OpenSSL project.
5
 */
6
/* ====================================================================
7
 * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
8
 *
9
 * Redistribution and use in source and binary forms, with or without
10
 * modification, are permitted provided that the following conditions
11
 * are met:
12
 *
13
 * 1. Redistributions of source code must retain the above copyright
14
 *    notice, this list of conditions and the following disclaimer.
15
 *
16
 * 2. Redistributions in binary form must reproduce the above copyright
17
 *    notice, this list of conditions and the following disclaimer in
18
 *    the documentation and/or other materials provided with the
19
 *    distribution.
20
 *
21
 * 3. All advertising materials mentioning features or use of this
22
 *    software must display the following acknowledgment:
23
 *    "This product includes software developed by the OpenSSL Project
24
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
25
 *
26
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27
 *    endorse or promote products derived from this software without
28
 *    prior written permission. For written permission, please contact
29
 *    openssl-core@openssl.org.
30
 *
31
 * 5. Products derived from this software may not be called "OpenSSL"
32
 *    nor may "OpenSSL" appear in their names without prior written
33
 *    permission of the OpenSSL Project.
34
 *
35
 * 6. Redistributions of any form whatsoever must retain the following
36
 *    acknowledgment:
37
 *    "This product includes software developed by the OpenSSL Project
38
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
39
 *
40
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
41
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
44
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51
 * OF THE POSSIBILITY OF SUCH DAMAGE.
52
 * ====================================================================
53
 *
54
 * This product includes cryptographic software written by Eric Young
55
 * (eay@cryptsoft.com).  This product includes software written by Tim
56
 * Hudson (tjh@cryptsoft.com).
57
 *
58
 */
59
60
#include "cryptlib.h"
61
#include "bn_lcl.h"
62
63
BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
64
/*
65
 * Returns 'ret' such that ret^2 == a (mod p), using the Tonelli/Shanks
66
 * algorithm (cf. Henri Cohen, "A Course in Algebraic Computational Number
67
 * Theory", algorithm 1.5.1). 'p' must be prime!
68
 */
69
0
{
70
0
    BIGNUM *ret = in;
71
0
    int err = 1;
72
0
    int r;
73
0
    BIGNUM *A, *b, *q, *t, *x, *y;
74
0
    int e, i, j;
75
76
0
    if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) {
77
0
        if (BN_abs_is_word(p, 2)) {
78
0
            if (ret == NULL)
79
0
                ret = BN_new();
80
0
            if (ret == NULL)
81
0
                goto end;
82
0
            if (!BN_set_word(ret, BN_is_bit_set(a, 0))) {
83
0
                if (ret != in)
84
0
                    BN_free(ret);
85
0
                return NULL;
86
0
            }
87
0
            bn_check_top(ret);
88
0
            return ret;
89
0
        }
90
91
0
        BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
92
0
        return (NULL);
93
0
    }
94
95
0
    if (BN_is_zero(a) || BN_is_one(a)) {
96
0
        if (ret == NULL)
97
0
            ret = BN_new();
98
0
        if (ret == NULL)
99
0
            goto end;
100
0
        if (!BN_set_word(ret, BN_is_one(a))) {
101
0
            if (ret != in)
102
0
                BN_free(ret);
103
0
            return NULL;
104
0
        }
105
0
        bn_check_top(ret);
106
0
        return ret;
107
0
    }
108
109
0
    BN_CTX_start(ctx);
110
0
    A = BN_CTX_get(ctx);
111
0
    b = BN_CTX_get(ctx);
112
0
    q = BN_CTX_get(ctx);
113
0
    t = BN_CTX_get(ctx);
114
0
    x = BN_CTX_get(ctx);
115
0
    y = BN_CTX_get(ctx);
116
0
    if (y == NULL)
117
0
        goto end;
118
119
0
    if (ret == NULL)
120
0
        ret = BN_new();
121
0
    if (ret == NULL)
122
0
        goto end;
123
124
    /* A = a mod p */
125
0
    if (!BN_nnmod(A, a, p, ctx))
126
0
        goto end;
127
128
    /* now write  |p| - 1  as  2^e*q  where  q  is odd */
129
0
    e = 1;
130
0
    while (!BN_is_bit_set(p, e))
131
0
        e++;
132
    /* we'll set  q  later (if needed) */
133
134
0
    if (e == 1) {
135
        /*-
136
         * The easy case:  (|p|-1)/2  is odd, so 2 has an inverse
137
         * modulo  (|p|-1)/2,  and square roots can be computed
138
         * directly by modular exponentiation.
139
         * We have
140
         *     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),
141
         * so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.
142
         */
143
0
        if (!BN_rshift(q, p, 2))
144
0
            goto end;
145
0
        q->neg = 0;
146
0
        if (!BN_add_word(q, 1))
147
0
            goto end;
148
0
        if (!BN_mod_exp(ret, A, q, p, ctx))
149
0
            goto end;
150
0
        err = 0;
151
0
        goto vrfy;
152
0
    }
153
154
0
    if (e == 2) {
155
        /*-
156
         * |p| == 5  (mod 8)
157
         *
158
         * In this case  2  is always a non-square since
159
         * Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.
160
         * So if  a  really is a square, then  2*a  is a non-square.
161
         * Thus for
162
         *      b := (2*a)^((|p|-5)/8),
163
         *      i := (2*a)*b^2
164
         * we have
165
         *     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
166
         *         = (2*a)^((p-1)/2)
167
         *         = -1;
168
         * so if we set
169
         *      x := a*b*(i-1),
170
         * then
171
         *     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
172
         *         = a^2 * b^2 * (-2*i)
173
         *         = a*(-i)*(2*a*b^2)
174
         *         = a*(-i)*i
175
         *         = a.
176
         *
177
         * (This is due to A.O.L. Atkin,
178
         * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
179
         * November 1992.)
180
         */
181
182
        /* t := 2*a */
183
0
        if (!BN_mod_lshift1_quick(t, A, p))
184
0
            goto end;
185
186
        /* b := (2*a)^((|p|-5)/8) */
187
0
        if (!BN_rshift(q, p, 3))
188
0
            goto end;
189
0
        q->neg = 0;
190
0
        if (!BN_mod_exp(b, t, q, p, ctx))
191
0
            goto end;
192
193
        /* y := b^2 */
194
0
        if (!BN_mod_sqr(y, b, p, ctx))
195
0
            goto end;
196
197
        /* t := (2*a)*b^2 - 1 */
198
0
        if (!BN_mod_mul(t, t, y, p, ctx))
199
0
            goto end;
200
0
        if (!BN_sub_word(t, 1))
201
0
            goto end;
202
203
        /* x = a*b*t */
204
0
        if (!BN_mod_mul(x, A, b, p, ctx))
205
0
            goto end;
206
0
        if (!BN_mod_mul(x, x, t, p, ctx))
207
0
            goto end;
208
209
0
        if (!BN_copy(ret, x))
210
0
            goto end;
211
0
        err = 0;
212
0
        goto vrfy;
213
0
    }
214
215
    /*
216
     * e > 2, so we really have to use the Tonelli/Shanks algorithm. First,
217
     * find some y that is not a square.
218
     */
219
0
    if (!BN_copy(q, p))
220
0
        goto end;               /* use 'q' as temp */
221
0
    q->neg = 0;
222
0
    i = 2;
223
0
    do {
224
        /*
225
         * For efficiency, try small numbers first; if this fails, try random
226
         * numbers.
227
         */
228
0
        if (i < 22) {
229
0
            if (!BN_set_word(y, i))
230
0
                goto end;
231
0
        } else {
232
0
            if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0))
233
0
                goto end;
234
0
            if (BN_ucmp(y, p) >= 0) {
235
0
                if (!(p->neg ? BN_add : BN_sub) (y, y, p))
236
0
                    goto end;
237
0
            }
238
            /* now 0 <= y < |p| */
239
0
            if (BN_is_zero(y))
240
0
                if (!BN_set_word(y, i))
241
0
                    goto end;
242
0
        }
243
244
0
        r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
245
0
        if (r < -1)
246
0
            goto end;
247
0
        if (r == 0) {
248
            /* m divides p */
249
0
            BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
250
0
            goto end;
251
0
        }
252
0
    }
253
0
    while (r == 1 && ++i < 82);
254
255
0
    if (r != -1) {
256
        /*
257
         * Many rounds and still no non-square -- this is more likely a bug
258
         * than just bad luck. Even if p is not prime, we should have found
259
         * some y such that r == -1.
260
         */
261
0
        BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
262
0
        goto end;
263
0
    }
264
265
    /* Here's our actual 'q': */
266
0
    if (!BN_rshift(q, q, e))
267
0
        goto end;
268
269
    /*
270
     * Now that we have some non-square, we can find an element of order 2^e
271
     * by computing its q'th power.
272
     */
273
0
    if (!BN_mod_exp(y, y, q, p, ctx))
274
0
        goto end;
275
0
    if (BN_is_one(y)) {
276
0
        BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
277
0
        goto end;
278
0
    }
279
280
    /*-
281
     * Now we know that (if  p  is indeed prime) there is an integer
282
     * k,  0 <= k < 2^e,  such that
283
     *
284
     *      a^q * y^k == 1   (mod p).
285
     *
286
     * As  a^q  is a square and  y  is not,  k  must be even.
287
     * q+1  is even, too, so there is an element
288
     *
289
     *     X := a^((q+1)/2) * y^(k/2),
290
     *
291
     * and it satisfies
292
     *
293
     *     X^2 = a^q * a     * y^k
294
     *         = a,
295
     *
296
     * so it is the square root that we are looking for.
297
     */
298
299
    /* t := (q-1)/2  (note that  q  is odd) */
300
0
    if (!BN_rshift1(t, q))
301
0
        goto end;
302
303
    /* x := a^((q-1)/2) */
304
0
    if (BN_is_zero(t)) {        /* special case: p = 2^e + 1 */
305
0
        if (!BN_nnmod(t, A, p, ctx))
306
0
            goto end;
307
0
        if (BN_is_zero(t)) {
308
            /* special case: a == 0  (mod p) */
309
0
            BN_zero(ret);
310
0
            err = 0;
311
0
            goto end;
312
0
        } else if (!BN_one(x))
313
0
            goto end;
314
0
    } else {
315
0
        if (!BN_mod_exp(x, A, t, p, ctx))
316
0
            goto end;
317
0
        if (BN_is_zero(x)) {
318
            /* special case: a == 0  (mod p) */
319
0
            BN_zero(ret);
320
0
            err = 0;
321
0
            goto end;
322
0
        }
323
0
    }
324
325
    /* b := a*x^2  (= a^q) */
326
0
    if (!BN_mod_sqr(b, x, p, ctx))
327
0
        goto end;
328
0
    if (!BN_mod_mul(b, b, A, p, ctx))
329
0
        goto end;
330
331
    /* x := a*x    (= a^((q+1)/2)) */
332
0
    if (!BN_mod_mul(x, x, A, p, ctx))
333
0
        goto end;
334
335
0
    while (1) {
336
        /*-
337
         * Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E
338
         * where  E  refers to the original value of  e,  which we
339
         * don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).
340
         *
341
         * We have  a*b = x^2,
342
         *    y^2^(e-1) = -1,
343
         *    b^2^(e-1) = 1.
344
         */
345
346
0
        if (BN_is_one(b)) {
347
0
            if (!BN_copy(ret, x))
348
0
                goto end;
349
0
            err = 0;
350
0
            goto vrfy;
351
0
        }
352
353
        /* find smallest  i  such that  b^(2^i) = 1 */
354
0
        i = 1;
355
0
        if (!BN_mod_sqr(t, b, p, ctx))
356
0
            goto end;
357
0
        while (!BN_is_one(t)) {
358
0
            i++;
359
0
            if (i == e) {
360
0
                BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
361
0
                goto end;
362
0
            }
363
0
            if (!BN_mod_mul(t, t, t, p, ctx))
364
0
                goto end;
365
0
        }
366
367
        /* t := y^2^(e - i - 1) */
368
0
        if (!BN_copy(t, y))
369
0
            goto end;
370
0
        for (j = e - i - 1; j > 0; j--) {
371
0
            if (!BN_mod_sqr(t, t, p, ctx))
372
0
                goto end;
373
0
        }
374
0
        if (!BN_mod_mul(y, t, t, p, ctx))
375
0
            goto end;
376
0
        if (!BN_mod_mul(x, x, t, p, ctx))
377
0
            goto end;
378
0
        if (!BN_mod_mul(b, b, y, p, ctx))
379
0
            goto end;
380
0
        e = i;
381
0
    }
382
383
0
 vrfy:
384
0
    if (!err) {
385
        /*
386
         * verify the result -- the input might have been not a square (test
387
         * added in 0.9.8)
388
         */
389
390
0
        if (!BN_mod_sqr(x, ret, p, ctx))
391
0
            err = 1;
392
393
0
        if (!err && 0 != BN_cmp(x, A)) {
394
0
            BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
395
0
            err = 1;
396
0
        }
397
0
    }
398
399
0
 end:
400
0
    if (err) {
401
0
        if (ret != NULL && ret != in) {
402
0
            BN_clear_free(ret);
403
0
        }
404
0
        ret = NULL;
405
0
    }
406
0
    BN_CTX_end(ctx);
407
0
    bn_check_top(ret);
408
0
    return ret;
409
0
}