Coverage Report

Created: 2022-11-30 06:20

/src/openssl/crypto/ec/ec2_mult.c
Line
Count
Source (jump to first uncovered line)
1
/* crypto/ec/ec2_mult.c */
2
/* ====================================================================
3
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4
 *
5
 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6
 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7
 * to the OpenSSL project.
8
 *
9
 * The ECC Code is licensed pursuant to the OpenSSL open source
10
 * license provided below.
11
 *
12
 * The software is originally written by Sheueling Chang Shantz and
13
 * Douglas Stebila of Sun Microsystems Laboratories.
14
 *
15
 */
16
/* ====================================================================
17
 * Copyright (c) 1998-2003 The OpenSSL Project.  All rights reserved.
18
 *
19
 * Redistribution and use in source and binary forms, with or without
20
 * modification, are permitted provided that the following conditions
21
 * are met:
22
 *
23
 * 1. Redistributions of source code must retain the above copyright
24
 *    notice, this list of conditions and the following disclaimer.
25
 *
26
 * 2. Redistributions in binary form must reproduce the above copyright
27
 *    notice, this list of conditions and the following disclaimer in
28
 *    the documentation and/or other materials provided with the
29
 *    distribution.
30
 *
31
 * 3. All advertising materials mentioning features or use of this
32
 *    software must display the following acknowledgment:
33
 *    "This product includes software developed by the OpenSSL Project
34
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
35
 *
36
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
37
 *    endorse or promote products derived from this software without
38
 *    prior written permission. For written permission, please contact
39
 *    openssl-core@openssl.org.
40
 *
41
 * 5. Products derived from this software may not be called "OpenSSL"
42
 *    nor may "OpenSSL" appear in their names without prior written
43
 *    permission of the OpenSSL Project.
44
 *
45
 * 6. Redistributions of any form whatsoever must retain the following
46
 *    acknowledgment:
47
 *    "This product includes software developed by the OpenSSL Project
48
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
49
 *
50
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
51
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
54
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
57
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
61
 * OF THE POSSIBILITY OF SUCH DAMAGE.
62
 * ====================================================================
63
 *
64
 * This product includes cryptographic software written by Eric Young
65
 * (eay@cryptsoft.com).  This product includes software written by Tim
66
 * Hudson (tjh@cryptsoft.com).
67
 *
68
 */
69
70
#include <openssl/err.h>
71
72
#include "ec_lcl.h"
73
74
#ifndef OPENSSL_NO_EC2M
75
76
/*-
77
 * Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
78
 * coordinates.
79
 * Uses algorithm Mdouble in appendix of
80
 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
81
 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
82
 * modified to not require precomputation of c=b^{2^{m-1}}.
83
 */
84
static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z,
85
                        BN_CTX *ctx)
86
0
{
87
0
    BIGNUM *t1;
88
0
    int ret = 0;
89
90
    /* Since Mdouble is static we can guarantee that ctx != NULL. */
91
0
    BN_CTX_start(ctx);
92
0
    t1 = BN_CTX_get(ctx);
93
0
    if (t1 == NULL)
94
0
        goto err;
95
96
0
    if (!group->meth->field_sqr(group, x, x, ctx))
97
0
        goto err;
98
0
    if (!group->meth->field_sqr(group, t1, z, ctx))
99
0
        goto err;
100
0
    if (!group->meth->field_mul(group, z, x, t1, ctx))
101
0
        goto err;
102
0
    if (!group->meth->field_sqr(group, x, x, ctx))
103
0
        goto err;
104
0
    if (!group->meth->field_sqr(group, t1, t1, ctx))
105
0
        goto err;
106
0
    if (!group->meth->field_mul(group, t1, &group->b, t1, ctx))
107
0
        goto err;
108
0
    if (!BN_GF2m_add(x, x, t1))
109
0
        goto err;
110
111
0
    ret = 1;
112
113
0
 err:
114
0
    BN_CTX_end(ctx);
115
0
    return ret;
116
0
}
117
118
/*-
119
 * Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
120
 * projective coordinates.
121
 * Uses algorithm Madd in appendix of
122
 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
123
 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
124
 */
125
static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1,
126
                     BIGNUM *z1, const BIGNUM *x2, const BIGNUM *z2,
127
                     BN_CTX *ctx)
128
0
{
129
0
    BIGNUM *t1, *t2;
130
0
    int ret = 0;
131
132
    /* Since Madd is static we can guarantee that ctx != NULL. */
133
0
    BN_CTX_start(ctx);
134
0
    t1 = BN_CTX_get(ctx);
135
0
    t2 = BN_CTX_get(ctx);
136
0
    if (t2 == NULL)
137
0
        goto err;
138
139
0
    if (!BN_copy(t1, x))
140
0
        goto err;
141
0
    if (!group->meth->field_mul(group, x1, x1, z2, ctx))
142
0
        goto err;
143
0
    if (!group->meth->field_mul(group, z1, z1, x2, ctx))
144
0
        goto err;
145
0
    if (!group->meth->field_mul(group, t2, x1, z1, ctx))
146
0
        goto err;
147
0
    if (!BN_GF2m_add(z1, z1, x1))
148
0
        goto err;
149
0
    if (!group->meth->field_sqr(group, z1, z1, ctx))
150
0
        goto err;
151
0
    if (!group->meth->field_mul(group, x1, z1, t1, ctx))
152
0
        goto err;
153
0
    if (!BN_GF2m_add(x1, x1, t2))
154
0
        goto err;
155
156
0
    ret = 1;
157
158
0
 err:
159
0
    BN_CTX_end(ctx);
160
0
    return ret;
161
0
}
162
163
/*-
164
 * Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
165
 * using Montgomery point multiplication algorithm Mxy() in appendix of
166
 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
167
 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
168
 * Returns:
169
 *     0 on error
170
 *     1 if return value should be the point at infinity
171
 *     2 otherwise
172
 */
173
static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y,
174
                    BIGNUM *x1, BIGNUM *z1, BIGNUM *x2, BIGNUM *z2,
175
                    BN_CTX *ctx)
176
0
{
177
0
    BIGNUM *t3, *t4, *t5;
178
0
    int ret = 0;
179
180
0
    if (BN_is_zero(z1)) {
181
0
        BN_zero(x2);
182
0
        BN_zero(z2);
183
0
        return 1;
184
0
    }
185
186
0
    if (BN_is_zero(z2)) {
187
0
        if (!BN_copy(x2, x))
188
0
            return 0;
189
0
        if (!BN_GF2m_add(z2, x, y))
190
0
            return 0;
191
0
        return 2;
192
0
    }
193
194
    /* Since Mxy is static we can guarantee that ctx != NULL. */
195
0
    BN_CTX_start(ctx);
196
0
    t3 = BN_CTX_get(ctx);
197
0
    t4 = BN_CTX_get(ctx);
198
0
    t5 = BN_CTX_get(ctx);
199
0
    if (t5 == NULL)
200
0
        goto err;
201
202
0
    if (!BN_one(t5))
203
0
        goto err;
204
205
0
    if (!group->meth->field_mul(group, t3, z1, z2, ctx))
206
0
        goto err;
207
208
0
    if (!group->meth->field_mul(group, z1, z1, x, ctx))
209
0
        goto err;
210
0
    if (!BN_GF2m_add(z1, z1, x1))
211
0
        goto err;
212
0
    if (!group->meth->field_mul(group, z2, z2, x, ctx))
213
0
        goto err;
214
0
    if (!group->meth->field_mul(group, x1, z2, x1, ctx))
215
0
        goto err;
216
0
    if (!BN_GF2m_add(z2, z2, x2))
217
0
        goto err;
218
219
0
    if (!group->meth->field_mul(group, z2, z2, z1, ctx))
220
0
        goto err;
221
0
    if (!group->meth->field_sqr(group, t4, x, ctx))
222
0
        goto err;
223
0
    if (!BN_GF2m_add(t4, t4, y))
224
0
        goto err;
225
0
    if (!group->meth->field_mul(group, t4, t4, t3, ctx))
226
0
        goto err;
227
0
    if (!BN_GF2m_add(t4, t4, z2))
228
0
        goto err;
229
230
0
    if (!group->meth->field_mul(group, t3, t3, x, ctx))
231
0
        goto err;
232
0
    if (!group->meth->field_div(group, t3, t5, t3, ctx))
233
0
        goto err;
234
0
    if (!group->meth->field_mul(group, t4, t3, t4, ctx))
235
0
        goto err;
236
0
    if (!group->meth->field_mul(group, x2, x1, t3, ctx))
237
0
        goto err;
238
0
    if (!BN_GF2m_add(z2, x2, x))
239
0
        goto err;
240
241
0
    if (!group->meth->field_mul(group, z2, z2, t4, ctx))
242
0
        goto err;
243
0
    if (!BN_GF2m_add(z2, z2, y))
244
0
        goto err;
245
246
0
    ret = 2;
247
248
0
 err:
249
0
    BN_CTX_end(ctx);
250
0
    return ret;
251
0
}
252
253
/*-
254
 * Computes scalar*point and stores the result in r.
255
 * point can not equal r.
256
 * Uses a modified algorithm 2P of
257
 *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
258
 *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
259
 *
260
 * To protect against side-channel attack the function uses constant time swap,
261
 * avoiding conditional branches.
262
 */
263
static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group,
264
                                             EC_POINT *r,
265
                                             const BIGNUM *scalar,
266
                                             const EC_POINT *point,
267
                                             BN_CTX *ctx)
268
0
{
269
0
    BIGNUM *x1, *x2, *z1, *z2;
270
0
    int ret = 0, i, group_top;
271
0
    BN_ULONG mask, word;
272
273
0
    if (r == point) {
274
0
        ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT);
275
0
        return 0;
276
0
    }
277
278
    /* if result should be point at infinity */
279
0
    if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) ||
280
0
        EC_POINT_is_at_infinity(group, point)) {
281
0
        return EC_POINT_set_to_infinity(group, r);
282
0
    }
283
284
    /* only support affine coordinates */
285
0
    if (!point->Z_is_one)
286
0
        return 0;
287
288
    /*
289
     * Since point_multiply is static we can guarantee that ctx != NULL.
290
     */
291
0
    BN_CTX_start(ctx);
292
0
    x1 = BN_CTX_get(ctx);
293
0
    z1 = BN_CTX_get(ctx);
294
0
    if (z1 == NULL)
295
0
        goto err;
296
297
0
    x2 = &r->X;
298
0
    z2 = &r->Y;
299
300
0
    group_top = group->field.top;
301
0
    if (bn_wexpand(x1, group_top) == NULL
302
0
        || bn_wexpand(z1, group_top) == NULL
303
0
        || bn_wexpand(x2, group_top) == NULL
304
0
        || bn_wexpand(z2, group_top) == NULL)
305
0
        goto err;
306
307
0
    if (!BN_GF2m_mod_arr(x1, &point->X, group->poly))
308
0
        goto err;               /* x1 = x */
309
0
    if (!BN_one(z1))
310
0
        goto err;               /* z1 = 1 */
311
0
    if (!group->meth->field_sqr(group, z2, x1, ctx))
312
0
        goto err;               /* z2 = x1^2 = x^2 */
313
0
    if (!group->meth->field_sqr(group, x2, z2, ctx))
314
0
        goto err;
315
0
    if (!BN_GF2m_add(x2, x2, &group->b))
316
0
        goto err;               /* x2 = x^4 + b */
317
318
    /* find top most bit and go one past it */
319
0
    i = scalar->top - 1;
320
0
    mask = BN_TBIT;
321
0
    word = scalar->d[i];
322
0
    while (!(word & mask))
323
0
        mask >>= 1;
324
0
    mask >>= 1;
325
    /* if top most bit was at word break, go to next word */
326
0
    if (!mask) {
327
0
        i--;
328
0
        mask = BN_TBIT;
329
0
    }
330
331
0
    for (; i >= 0; i--) {
332
0
        word = scalar->d[i];
333
0
        while (mask) {
334
0
            BN_consttime_swap(word & mask, x1, x2, group_top);
335
0
            BN_consttime_swap(word & mask, z1, z2, group_top);
336
0
            if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx))
337
0
                goto err;
338
0
            if (!gf2m_Mdouble(group, x1, z1, ctx))
339
0
                goto err;
340
0
            BN_consttime_swap(word & mask, x1, x2, group_top);
341
0
            BN_consttime_swap(word & mask, z1, z2, group_top);
342
0
            mask >>= 1;
343
0
        }
344
0
        mask = BN_TBIT;
345
0
    }
346
347
    /* convert out of "projective" coordinates */
348
0
    i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx);
349
0
    if (i == 0)
350
0
        goto err;
351
0
    else if (i == 1) {
352
0
        if (!EC_POINT_set_to_infinity(group, r))
353
0
            goto err;
354
0
    } else {
355
0
        if (!BN_one(&r->Z))
356
0
            goto err;
357
0
        r->Z_is_one = 1;
358
0
    }
359
360
    /* GF(2^m) field elements should always have BIGNUM::neg = 0 */
361
0
    BN_set_negative(&r->X, 0);
362
0
    BN_set_negative(&r->Y, 0);
363
364
0
    ret = 1;
365
366
0
 err:
367
0
    BN_CTX_end(ctx);
368
0
    return ret;
369
0
}
370
371
/*-
372
 * Computes the sum
373
 *     scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1]
374
 * gracefully ignoring NULL scalar values.
375
 */
376
int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r,
377
                       const BIGNUM *scalar, size_t num,
378
                       const EC_POINT *points[], const BIGNUM *scalars[],
379
                       BN_CTX *ctx)
380
0
{
381
0
    BN_CTX *new_ctx = NULL;
382
0
    int ret = 0;
383
0
    size_t i;
384
0
    EC_POINT *p = NULL;
385
0
    EC_POINT *acc = NULL;
386
387
0
    if (ctx == NULL) {
388
0
        ctx = new_ctx = BN_CTX_new();
389
0
        if (ctx == NULL)
390
0
            return 0;
391
0
    }
392
393
    /*
394
     * This implementation is more efficient than the wNAF implementation for
395
     * 2 or fewer points.  Use the ec_wNAF_mul implementation for 3 or more
396
     * points, or if we can perform a fast multiplication based on
397
     * precomputation.
398
     */
399
0
    if ((scalar && (num > 1)) || (num > 2)
400
0
        || (num == 0 && EC_GROUP_have_precompute_mult(group))) {
401
0
        ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
402
0
        goto err;
403
0
    }
404
405
0
    if ((p = EC_POINT_new(group)) == NULL)
406
0
        goto err;
407
0
    if ((acc = EC_POINT_new(group)) == NULL)
408
0
        goto err;
409
410
0
    if (!EC_POINT_set_to_infinity(group, acc))
411
0
        goto err;
412
413
0
    if (scalar) {
414
0
        if (!ec_GF2m_montgomery_point_multiply
415
0
            (group, p, scalar, group->generator, ctx))
416
0
            goto err;
417
0
        if (BN_is_negative(scalar))
418
0
            if (!group->meth->invert(group, p, ctx))
419
0
                goto err;
420
0
        if (!group->meth->add(group, acc, acc, p, ctx))
421
0
            goto err;
422
0
    }
423
424
0
    for (i = 0; i < num; i++) {
425
0
        if (!ec_GF2m_montgomery_point_multiply
426
0
            (group, p, scalars[i], points[i], ctx))
427
0
            goto err;
428
0
        if (BN_is_negative(scalars[i]))
429
0
            if (!group->meth->invert(group, p, ctx))
430
0
                goto err;
431
0
        if (!group->meth->add(group, acc, acc, p, ctx))
432
0
            goto err;
433
0
    }
434
435
0
    if (!EC_POINT_copy(r, acc))
436
0
        goto err;
437
438
0
    ret = 1;
439
440
0
 err:
441
0
    if (p)
442
0
        EC_POINT_free(p);
443
0
    if (acc)
444
0
        EC_POINT_free(acc);
445
0
    if (new_ctx != NULL)
446
0
        BN_CTX_free(new_ctx);
447
0
    return ret;
448
0
}
449
450
/*
451
 * Precomputation for point multiplication: fall back to wNAF methods because
452
 * ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate
453
 */
454
455
int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
456
0
{
457
0
    return ec_wNAF_precompute_mult(group, ctx);
458
0
}
459
460
int ec_GF2m_have_precompute_mult(const EC_GROUP *group)
461
0
{
462
0
    return ec_wNAF_have_precompute_mult(group);
463
0
}
464
465
#endif