/src/openssl/crypto/ec/ec2_mult.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* crypto/ec/ec2_mult.c */ |
2 | | /* ==================================================================== |
3 | | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
4 | | * |
5 | | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included |
6 | | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed |
7 | | * to the OpenSSL project. |
8 | | * |
9 | | * The ECC Code is licensed pursuant to the OpenSSL open source |
10 | | * license provided below. |
11 | | * |
12 | | * The software is originally written by Sheueling Chang Shantz and |
13 | | * Douglas Stebila of Sun Microsystems Laboratories. |
14 | | * |
15 | | */ |
16 | | /* ==================================================================== |
17 | | * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. |
18 | | * |
19 | | * Redistribution and use in source and binary forms, with or without |
20 | | * modification, are permitted provided that the following conditions |
21 | | * are met: |
22 | | * |
23 | | * 1. Redistributions of source code must retain the above copyright |
24 | | * notice, this list of conditions and the following disclaimer. |
25 | | * |
26 | | * 2. Redistributions in binary form must reproduce the above copyright |
27 | | * notice, this list of conditions and the following disclaimer in |
28 | | * the documentation and/or other materials provided with the |
29 | | * distribution. |
30 | | * |
31 | | * 3. All advertising materials mentioning features or use of this |
32 | | * software must display the following acknowledgment: |
33 | | * "This product includes software developed by the OpenSSL Project |
34 | | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
35 | | * |
36 | | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
37 | | * endorse or promote products derived from this software without |
38 | | * prior written permission. For written permission, please contact |
39 | | * openssl-core@openssl.org. |
40 | | * |
41 | | * 5. Products derived from this software may not be called "OpenSSL" |
42 | | * nor may "OpenSSL" appear in their names without prior written |
43 | | * permission of the OpenSSL Project. |
44 | | * |
45 | | * 6. Redistributions of any form whatsoever must retain the following |
46 | | * acknowledgment: |
47 | | * "This product includes software developed by the OpenSSL Project |
48 | | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
49 | | * |
50 | | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
51 | | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
52 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
53 | | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
54 | | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
55 | | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
56 | | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
57 | | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
58 | | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
59 | | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
60 | | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
61 | | * OF THE POSSIBILITY OF SUCH DAMAGE. |
62 | | * ==================================================================== |
63 | | * |
64 | | * This product includes cryptographic software written by Eric Young |
65 | | * (eay@cryptsoft.com). This product includes software written by Tim |
66 | | * Hudson (tjh@cryptsoft.com). |
67 | | * |
68 | | */ |
69 | | |
70 | | #include <openssl/err.h> |
71 | | |
72 | | #include "ec_lcl.h" |
73 | | |
74 | | #ifndef OPENSSL_NO_EC2M |
75 | | |
76 | | /*- |
77 | | * Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective |
78 | | * coordinates. |
79 | | * Uses algorithm Mdouble in appendix of |
80 | | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over |
81 | | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). |
82 | | * modified to not require precomputation of c=b^{2^{m-1}}. |
83 | | */ |
84 | | static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, |
85 | | BN_CTX *ctx) |
86 | 0 | { |
87 | 0 | BIGNUM *t1; |
88 | 0 | int ret = 0; |
89 | | |
90 | | /* Since Mdouble is static we can guarantee that ctx != NULL. */ |
91 | 0 | BN_CTX_start(ctx); |
92 | 0 | t1 = BN_CTX_get(ctx); |
93 | 0 | if (t1 == NULL) |
94 | 0 | goto err; |
95 | | |
96 | 0 | if (!group->meth->field_sqr(group, x, x, ctx)) |
97 | 0 | goto err; |
98 | 0 | if (!group->meth->field_sqr(group, t1, z, ctx)) |
99 | 0 | goto err; |
100 | 0 | if (!group->meth->field_mul(group, z, x, t1, ctx)) |
101 | 0 | goto err; |
102 | 0 | if (!group->meth->field_sqr(group, x, x, ctx)) |
103 | 0 | goto err; |
104 | 0 | if (!group->meth->field_sqr(group, t1, t1, ctx)) |
105 | 0 | goto err; |
106 | 0 | if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) |
107 | 0 | goto err; |
108 | 0 | if (!BN_GF2m_add(x, x, t1)) |
109 | 0 | goto err; |
110 | | |
111 | 0 | ret = 1; |
112 | |
|
113 | 0 | err: |
114 | 0 | BN_CTX_end(ctx); |
115 | 0 | return ret; |
116 | 0 | } |
117 | | |
118 | | /*- |
119 | | * Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery |
120 | | * projective coordinates. |
121 | | * Uses algorithm Madd in appendix of |
122 | | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over |
123 | | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). |
124 | | */ |
125 | | static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, |
126 | | BIGNUM *z1, const BIGNUM *x2, const BIGNUM *z2, |
127 | | BN_CTX *ctx) |
128 | 0 | { |
129 | 0 | BIGNUM *t1, *t2; |
130 | 0 | int ret = 0; |
131 | | |
132 | | /* Since Madd is static we can guarantee that ctx != NULL. */ |
133 | 0 | BN_CTX_start(ctx); |
134 | 0 | t1 = BN_CTX_get(ctx); |
135 | 0 | t2 = BN_CTX_get(ctx); |
136 | 0 | if (t2 == NULL) |
137 | 0 | goto err; |
138 | | |
139 | 0 | if (!BN_copy(t1, x)) |
140 | 0 | goto err; |
141 | 0 | if (!group->meth->field_mul(group, x1, x1, z2, ctx)) |
142 | 0 | goto err; |
143 | 0 | if (!group->meth->field_mul(group, z1, z1, x2, ctx)) |
144 | 0 | goto err; |
145 | 0 | if (!group->meth->field_mul(group, t2, x1, z1, ctx)) |
146 | 0 | goto err; |
147 | 0 | if (!BN_GF2m_add(z1, z1, x1)) |
148 | 0 | goto err; |
149 | 0 | if (!group->meth->field_sqr(group, z1, z1, ctx)) |
150 | 0 | goto err; |
151 | 0 | if (!group->meth->field_mul(group, x1, z1, t1, ctx)) |
152 | 0 | goto err; |
153 | 0 | if (!BN_GF2m_add(x1, x1, t2)) |
154 | 0 | goto err; |
155 | | |
156 | 0 | ret = 1; |
157 | |
|
158 | 0 | err: |
159 | 0 | BN_CTX_end(ctx); |
160 | 0 | return ret; |
161 | 0 | } |
162 | | |
163 | | /*- |
164 | | * Compute the x, y affine coordinates from the point (x1, z1) (x2, z2) |
165 | | * using Montgomery point multiplication algorithm Mxy() in appendix of |
166 | | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over |
167 | | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). |
168 | | * Returns: |
169 | | * 0 on error |
170 | | * 1 if return value should be the point at infinity |
171 | | * 2 otherwise |
172 | | */ |
173 | | static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, |
174 | | BIGNUM *x1, BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, |
175 | | BN_CTX *ctx) |
176 | 0 | { |
177 | 0 | BIGNUM *t3, *t4, *t5; |
178 | 0 | int ret = 0; |
179 | |
|
180 | 0 | if (BN_is_zero(z1)) { |
181 | 0 | BN_zero(x2); |
182 | 0 | BN_zero(z2); |
183 | 0 | return 1; |
184 | 0 | } |
185 | | |
186 | 0 | if (BN_is_zero(z2)) { |
187 | 0 | if (!BN_copy(x2, x)) |
188 | 0 | return 0; |
189 | 0 | if (!BN_GF2m_add(z2, x, y)) |
190 | 0 | return 0; |
191 | 0 | return 2; |
192 | 0 | } |
193 | | |
194 | | /* Since Mxy is static we can guarantee that ctx != NULL. */ |
195 | 0 | BN_CTX_start(ctx); |
196 | 0 | t3 = BN_CTX_get(ctx); |
197 | 0 | t4 = BN_CTX_get(ctx); |
198 | 0 | t5 = BN_CTX_get(ctx); |
199 | 0 | if (t5 == NULL) |
200 | 0 | goto err; |
201 | | |
202 | 0 | if (!BN_one(t5)) |
203 | 0 | goto err; |
204 | | |
205 | 0 | if (!group->meth->field_mul(group, t3, z1, z2, ctx)) |
206 | 0 | goto err; |
207 | | |
208 | 0 | if (!group->meth->field_mul(group, z1, z1, x, ctx)) |
209 | 0 | goto err; |
210 | 0 | if (!BN_GF2m_add(z1, z1, x1)) |
211 | 0 | goto err; |
212 | 0 | if (!group->meth->field_mul(group, z2, z2, x, ctx)) |
213 | 0 | goto err; |
214 | 0 | if (!group->meth->field_mul(group, x1, z2, x1, ctx)) |
215 | 0 | goto err; |
216 | 0 | if (!BN_GF2m_add(z2, z2, x2)) |
217 | 0 | goto err; |
218 | | |
219 | 0 | if (!group->meth->field_mul(group, z2, z2, z1, ctx)) |
220 | 0 | goto err; |
221 | 0 | if (!group->meth->field_sqr(group, t4, x, ctx)) |
222 | 0 | goto err; |
223 | 0 | if (!BN_GF2m_add(t4, t4, y)) |
224 | 0 | goto err; |
225 | 0 | if (!group->meth->field_mul(group, t4, t4, t3, ctx)) |
226 | 0 | goto err; |
227 | 0 | if (!BN_GF2m_add(t4, t4, z2)) |
228 | 0 | goto err; |
229 | | |
230 | 0 | if (!group->meth->field_mul(group, t3, t3, x, ctx)) |
231 | 0 | goto err; |
232 | 0 | if (!group->meth->field_div(group, t3, t5, t3, ctx)) |
233 | 0 | goto err; |
234 | 0 | if (!group->meth->field_mul(group, t4, t3, t4, ctx)) |
235 | 0 | goto err; |
236 | 0 | if (!group->meth->field_mul(group, x2, x1, t3, ctx)) |
237 | 0 | goto err; |
238 | 0 | if (!BN_GF2m_add(z2, x2, x)) |
239 | 0 | goto err; |
240 | | |
241 | 0 | if (!group->meth->field_mul(group, z2, z2, t4, ctx)) |
242 | 0 | goto err; |
243 | 0 | if (!BN_GF2m_add(z2, z2, y)) |
244 | 0 | goto err; |
245 | | |
246 | 0 | ret = 2; |
247 | |
|
248 | 0 | err: |
249 | 0 | BN_CTX_end(ctx); |
250 | 0 | return ret; |
251 | 0 | } |
252 | | |
253 | | /*- |
254 | | * Computes scalar*point and stores the result in r. |
255 | | * point can not equal r. |
256 | | * Uses a modified algorithm 2P of |
257 | | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over |
258 | | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). |
259 | | * |
260 | | * To protect against side-channel attack the function uses constant time swap, |
261 | | * avoiding conditional branches. |
262 | | */ |
263 | | static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, |
264 | | EC_POINT *r, |
265 | | const BIGNUM *scalar, |
266 | | const EC_POINT *point, |
267 | | BN_CTX *ctx) |
268 | 0 | { |
269 | 0 | BIGNUM *x1, *x2, *z1, *z2; |
270 | 0 | int ret = 0, i, group_top; |
271 | 0 | BN_ULONG mask, word; |
272 | |
|
273 | 0 | if (r == point) { |
274 | 0 | ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT); |
275 | 0 | return 0; |
276 | 0 | } |
277 | | |
278 | | /* if result should be point at infinity */ |
279 | 0 | if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) || |
280 | 0 | EC_POINT_is_at_infinity(group, point)) { |
281 | 0 | return EC_POINT_set_to_infinity(group, r); |
282 | 0 | } |
283 | | |
284 | | /* only support affine coordinates */ |
285 | 0 | if (!point->Z_is_one) |
286 | 0 | return 0; |
287 | | |
288 | | /* |
289 | | * Since point_multiply is static we can guarantee that ctx != NULL. |
290 | | */ |
291 | 0 | BN_CTX_start(ctx); |
292 | 0 | x1 = BN_CTX_get(ctx); |
293 | 0 | z1 = BN_CTX_get(ctx); |
294 | 0 | if (z1 == NULL) |
295 | 0 | goto err; |
296 | | |
297 | 0 | x2 = &r->X; |
298 | 0 | z2 = &r->Y; |
299 | |
|
300 | 0 | group_top = group->field.top; |
301 | 0 | if (bn_wexpand(x1, group_top) == NULL |
302 | 0 | || bn_wexpand(z1, group_top) == NULL |
303 | 0 | || bn_wexpand(x2, group_top) == NULL |
304 | 0 | || bn_wexpand(z2, group_top) == NULL) |
305 | 0 | goto err; |
306 | | |
307 | 0 | if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) |
308 | 0 | goto err; /* x1 = x */ |
309 | 0 | if (!BN_one(z1)) |
310 | 0 | goto err; /* z1 = 1 */ |
311 | 0 | if (!group->meth->field_sqr(group, z2, x1, ctx)) |
312 | 0 | goto err; /* z2 = x1^2 = x^2 */ |
313 | 0 | if (!group->meth->field_sqr(group, x2, z2, ctx)) |
314 | 0 | goto err; |
315 | 0 | if (!BN_GF2m_add(x2, x2, &group->b)) |
316 | 0 | goto err; /* x2 = x^4 + b */ |
317 | | |
318 | | /* find top most bit and go one past it */ |
319 | 0 | i = scalar->top - 1; |
320 | 0 | mask = BN_TBIT; |
321 | 0 | word = scalar->d[i]; |
322 | 0 | while (!(word & mask)) |
323 | 0 | mask >>= 1; |
324 | 0 | mask >>= 1; |
325 | | /* if top most bit was at word break, go to next word */ |
326 | 0 | if (!mask) { |
327 | 0 | i--; |
328 | 0 | mask = BN_TBIT; |
329 | 0 | } |
330 | |
|
331 | 0 | for (; i >= 0; i--) { |
332 | 0 | word = scalar->d[i]; |
333 | 0 | while (mask) { |
334 | 0 | BN_consttime_swap(word & mask, x1, x2, group_top); |
335 | 0 | BN_consttime_swap(word & mask, z1, z2, group_top); |
336 | 0 | if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) |
337 | 0 | goto err; |
338 | 0 | if (!gf2m_Mdouble(group, x1, z1, ctx)) |
339 | 0 | goto err; |
340 | 0 | BN_consttime_swap(word & mask, x1, x2, group_top); |
341 | 0 | BN_consttime_swap(word & mask, z1, z2, group_top); |
342 | 0 | mask >>= 1; |
343 | 0 | } |
344 | 0 | mask = BN_TBIT; |
345 | 0 | } |
346 | | |
347 | | /* convert out of "projective" coordinates */ |
348 | 0 | i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx); |
349 | 0 | if (i == 0) |
350 | 0 | goto err; |
351 | 0 | else if (i == 1) { |
352 | 0 | if (!EC_POINT_set_to_infinity(group, r)) |
353 | 0 | goto err; |
354 | 0 | } else { |
355 | 0 | if (!BN_one(&r->Z)) |
356 | 0 | goto err; |
357 | 0 | r->Z_is_one = 1; |
358 | 0 | } |
359 | | |
360 | | /* GF(2^m) field elements should always have BIGNUM::neg = 0 */ |
361 | 0 | BN_set_negative(&r->X, 0); |
362 | 0 | BN_set_negative(&r->Y, 0); |
363 | |
|
364 | 0 | ret = 1; |
365 | |
|
366 | 0 | err: |
367 | 0 | BN_CTX_end(ctx); |
368 | 0 | return ret; |
369 | 0 | } |
370 | | |
371 | | /*- |
372 | | * Computes the sum |
373 | | * scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1] |
374 | | * gracefully ignoring NULL scalar values. |
375 | | */ |
376 | | int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, |
377 | | const BIGNUM *scalar, size_t num, |
378 | | const EC_POINT *points[], const BIGNUM *scalars[], |
379 | | BN_CTX *ctx) |
380 | 0 | { |
381 | 0 | BN_CTX *new_ctx = NULL; |
382 | 0 | int ret = 0; |
383 | 0 | size_t i; |
384 | 0 | EC_POINT *p = NULL; |
385 | 0 | EC_POINT *acc = NULL; |
386 | |
|
387 | 0 | if (ctx == NULL) { |
388 | 0 | ctx = new_ctx = BN_CTX_new(); |
389 | 0 | if (ctx == NULL) |
390 | 0 | return 0; |
391 | 0 | } |
392 | | |
393 | | /* |
394 | | * This implementation is more efficient than the wNAF implementation for |
395 | | * 2 or fewer points. Use the ec_wNAF_mul implementation for 3 or more |
396 | | * points, or if we can perform a fast multiplication based on |
397 | | * precomputation. |
398 | | */ |
399 | 0 | if ((scalar && (num > 1)) || (num > 2) |
400 | 0 | || (num == 0 && EC_GROUP_have_precompute_mult(group))) { |
401 | 0 | ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); |
402 | 0 | goto err; |
403 | 0 | } |
404 | | |
405 | 0 | if ((p = EC_POINT_new(group)) == NULL) |
406 | 0 | goto err; |
407 | 0 | if ((acc = EC_POINT_new(group)) == NULL) |
408 | 0 | goto err; |
409 | | |
410 | 0 | if (!EC_POINT_set_to_infinity(group, acc)) |
411 | 0 | goto err; |
412 | | |
413 | 0 | if (scalar) { |
414 | 0 | if (!ec_GF2m_montgomery_point_multiply |
415 | 0 | (group, p, scalar, group->generator, ctx)) |
416 | 0 | goto err; |
417 | 0 | if (BN_is_negative(scalar)) |
418 | 0 | if (!group->meth->invert(group, p, ctx)) |
419 | 0 | goto err; |
420 | 0 | if (!group->meth->add(group, acc, acc, p, ctx)) |
421 | 0 | goto err; |
422 | 0 | } |
423 | | |
424 | 0 | for (i = 0; i < num; i++) { |
425 | 0 | if (!ec_GF2m_montgomery_point_multiply |
426 | 0 | (group, p, scalars[i], points[i], ctx)) |
427 | 0 | goto err; |
428 | 0 | if (BN_is_negative(scalars[i])) |
429 | 0 | if (!group->meth->invert(group, p, ctx)) |
430 | 0 | goto err; |
431 | 0 | if (!group->meth->add(group, acc, acc, p, ctx)) |
432 | 0 | goto err; |
433 | 0 | } |
434 | | |
435 | 0 | if (!EC_POINT_copy(r, acc)) |
436 | 0 | goto err; |
437 | | |
438 | 0 | ret = 1; |
439 | |
|
440 | 0 | err: |
441 | 0 | if (p) |
442 | 0 | EC_POINT_free(p); |
443 | 0 | if (acc) |
444 | 0 | EC_POINT_free(acc); |
445 | 0 | if (new_ctx != NULL) |
446 | 0 | BN_CTX_free(new_ctx); |
447 | 0 | return ret; |
448 | 0 | } |
449 | | |
450 | | /* |
451 | | * Precomputation for point multiplication: fall back to wNAF methods because |
452 | | * ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate |
453 | | */ |
454 | | |
455 | | int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx) |
456 | 0 | { |
457 | 0 | return ec_wNAF_precompute_mult(group, ctx); |
458 | 0 | } |
459 | | |
460 | | int ec_GF2m_have_precompute_mult(const EC_GROUP *group) |
461 | 0 | { |
462 | 0 | return ec_wNAF_have_precompute_mult(group); |
463 | 0 | } |
464 | | |
465 | | #endif |