/src/openssl/crypto/ec/ec2_smpl.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* crypto/ec/ec2_smpl.c */ |
2 | | /* ==================================================================== |
3 | | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
4 | | * |
5 | | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included |
6 | | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed |
7 | | * to the OpenSSL project. |
8 | | * |
9 | | * The ECC Code is licensed pursuant to the OpenSSL open source |
10 | | * license provided below. |
11 | | * |
12 | | * The software is originally written by Sheueling Chang Shantz and |
13 | | * Douglas Stebila of Sun Microsystems Laboratories. |
14 | | * |
15 | | */ |
16 | | /* ==================================================================== |
17 | | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
18 | | * |
19 | | * Redistribution and use in source and binary forms, with or without |
20 | | * modification, are permitted provided that the following conditions |
21 | | * are met: |
22 | | * |
23 | | * 1. Redistributions of source code must retain the above copyright |
24 | | * notice, this list of conditions and the following disclaimer. |
25 | | * |
26 | | * 2. Redistributions in binary form must reproduce the above copyright |
27 | | * notice, this list of conditions and the following disclaimer in |
28 | | * the documentation and/or other materials provided with the |
29 | | * distribution. |
30 | | * |
31 | | * 3. All advertising materials mentioning features or use of this |
32 | | * software must display the following acknowledgment: |
33 | | * "This product includes software developed by the OpenSSL Project |
34 | | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
35 | | * |
36 | | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
37 | | * endorse or promote products derived from this software without |
38 | | * prior written permission. For written permission, please contact |
39 | | * openssl-core@openssl.org. |
40 | | * |
41 | | * 5. Products derived from this software may not be called "OpenSSL" |
42 | | * nor may "OpenSSL" appear in their names without prior written |
43 | | * permission of the OpenSSL Project. |
44 | | * |
45 | | * 6. Redistributions of any form whatsoever must retain the following |
46 | | * acknowledgment: |
47 | | * "This product includes software developed by the OpenSSL Project |
48 | | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
49 | | * |
50 | | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
51 | | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
52 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
53 | | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
54 | | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
55 | | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
56 | | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
57 | | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
58 | | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
59 | | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
60 | | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
61 | | * OF THE POSSIBILITY OF SUCH DAMAGE. |
62 | | * ==================================================================== |
63 | | * |
64 | | * This product includes cryptographic software written by Eric Young |
65 | | * (eay@cryptsoft.com). This product includes software written by Tim |
66 | | * Hudson (tjh@cryptsoft.com). |
67 | | * |
68 | | */ |
69 | | |
70 | | #include <openssl/err.h> |
71 | | |
72 | | #include "ec_lcl.h" |
73 | | |
74 | | #ifndef OPENSSL_NO_EC2M |
75 | | |
76 | | # ifdef OPENSSL_FIPS |
77 | | # include <openssl/fips.h> |
78 | | # endif |
79 | | |
80 | | const EC_METHOD *EC_GF2m_simple_method(void) |
81 | 0 | { |
82 | 0 | static const EC_METHOD ret = { |
83 | 0 | EC_FLAGS_DEFAULT_OCT, |
84 | 0 | NID_X9_62_characteristic_two_field, |
85 | 0 | ec_GF2m_simple_group_init, |
86 | 0 | ec_GF2m_simple_group_finish, |
87 | 0 | ec_GF2m_simple_group_clear_finish, |
88 | 0 | ec_GF2m_simple_group_copy, |
89 | 0 | ec_GF2m_simple_group_set_curve, |
90 | 0 | ec_GF2m_simple_group_get_curve, |
91 | 0 | ec_GF2m_simple_group_get_degree, |
92 | 0 | ec_GF2m_simple_group_check_discriminant, |
93 | 0 | ec_GF2m_simple_point_init, |
94 | 0 | ec_GF2m_simple_point_finish, |
95 | 0 | ec_GF2m_simple_point_clear_finish, |
96 | 0 | ec_GF2m_simple_point_copy, |
97 | 0 | ec_GF2m_simple_point_set_to_infinity, |
98 | 0 | 0 /* set_Jprojective_coordinates_GFp */ , |
99 | 0 | 0 /* get_Jprojective_coordinates_GFp */ , |
100 | 0 | ec_GF2m_simple_point_set_affine_coordinates, |
101 | 0 | ec_GF2m_simple_point_get_affine_coordinates, |
102 | 0 | 0, 0, 0, |
103 | 0 | ec_GF2m_simple_add, |
104 | 0 | ec_GF2m_simple_dbl, |
105 | 0 | ec_GF2m_simple_invert, |
106 | 0 | ec_GF2m_simple_is_at_infinity, |
107 | 0 | ec_GF2m_simple_is_on_curve, |
108 | 0 | ec_GF2m_simple_cmp, |
109 | 0 | ec_GF2m_simple_make_affine, |
110 | 0 | ec_GF2m_simple_points_make_affine, |
111 | | |
112 | | /* |
113 | | * the following three method functions are defined in ec2_mult.c |
114 | | */ |
115 | 0 | ec_GF2m_simple_mul, |
116 | 0 | ec_GF2m_precompute_mult, |
117 | 0 | ec_GF2m_have_precompute_mult, |
118 | |
|
119 | 0 | ec_GF2m_simple_field_mul, |
120 | 0 | ec_GF2m_simple_field_sqr, |
121 | 0 | ec_GF2m_simple_field_div, |
122 | 0 | 0 /* field_encode */ , |
123 | 0 | 0 /* field_decode */ , |
124 | 0 | 0 /* field_set_to_one */ |
125 | 0 | }; |
126 | |
|
127 | | # ifdef OPENSSL_FIPS |
128 | | if (FIPS_mode()) |
129 | | return fips_ec_gf2m_simple_method(); |
130 | | # endif |
131 | |
|
132 | 0 | return &ret; |
133 | 0 | } |
134 | | |
135 | | /* |
136 | | * Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members |
137 | | * are handled by EC_GROUP_new. |
138 | | */ |
139 | | int ec_GF2m_simple_group_init(EC_GROUP *group) |
140 | 0 | { |
141 | 0 | BN_init(&group->field); |
142 | 0 | BN_init(&group->a); |
143 | 0 | BN_init(&group->b); |
144 | 0 | return 1; |
145 | 0 | } |
146 | | |
147 | | /* |
148 | | * Free a GF(2^m)-based EC_GROUP structure. Note that all other members are |
149 | | * handled by EC_GROUP_free. |
150 | | */ |
151 | | void ec_GF2m_simple_group_finish(EC_GROUP *group) |
152 | 0 | { |
153 | 0 | BN_free(&group->field); |
154 | 0 | BN_free(&group->a); |
155 | 0 | BN_free(&group->b); |
156 | 0 | } |
157 | | |
158 | | /* |
159 | | * Clear and free a GF(2^m)-based EC_GROUP structure. Note that all other |
160 | | * members are handled by EC_GROUP_clear_free. |
161 | | */ |
162 | | void ec_GF2m_simple_group_clear_finish(EC_GROUP *group) |
163 | 0 | { |
164 | 0 | BN_clear_free(&group->field); |
165 | 0 | BN_clear_free(&group->a); |
166 | 0 | BN_clear_free(&group->b); |
167 | 0 | group->poly[0] = 0; |
168 | 0 | group->poly[1] = 0; |
169 | 0 | group->poly[2] = 0; |
170 | 0 | group->poly[3] = 0; |
171 | 0 | group->poly[4] = 0; |
172 | 0 | group->poly[5] = -1; |
173 | 0 | } |
174 | | |
175 | | /* |
176 | | * Copy a GF(2^m)-based EC_GROUP structure. Note that all other members are |
177 | | * handled by EC_GROUP_copy. |
178 | | */ |
179 | | int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) |
180 | 0 | { |
181 | 0 | int i; |
182 | 0 | if (!BN_copy(&dest->field, &src->field)) |
183 | 0 | return 0; |
184 | 0 | if (!BN_copy(&dest->a, &src->a)) |
185 | 0 | return 0; |
186 | 0 | if (!BN_copy(&dest->b, &src->b)) |
187 | 0 | return 0; |
188 | 0 | dest->poly[0] = src->poly[0]; |
189 | 0 | dest->poly[1] = src->poly[1]; |
190 | 0 | dest->poly[2] = src->poly[2]; |
191 | 0 | dest->poly[3] = src->poly[3]; |
192 | 0 | dest->poly[4] = src->poly[4]; |
193 | 0 | dest->poly[5] = src->poly[5]; |
194 | 0 | if (bn_wexpand(&dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) |
195 | 0 | == NULL) |
196 | 0 | return 0; |
197 | 0 | if (bn_wexpand(&dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) |
198 | 0 | == NULL) |
199 | 0 | return 0; |
200 | 0 | for (i = dest->a.top; i < dest->a.dmax; i++) |
201 | 0 | dest->a.d[i] = 0; |
202 | 0 | for (i = dest->b.top; i < dest->b.dmax; i++) |
203 | 0 | dest->b.d[i] = 0; |
204 | 0 | return 1; |
205 | 0 | } |
206 | | |
207 | | /* Set the curve parameters of an EC_GROUP structure. */ |
208 | | int ec_GF2m_simple_group_set_curve(EC_GROUP *group, |
209 | | const BIGNUM *p, const BIGNUM *a, |
210 | | const BIGNUM *b, BN_CTX *ctx) |
211 | 0 | { |
212 | 0 | int ret = 0, i; |
213 | | |
214 | | /* group->field */ |
215 | 0 | if (!BN_copy(&group->field, p)) |
216 | 0 | goto err; |
217 | 0 | i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1; |
218 | 0 | if ((i != 5) && (i != 3)) { |
219 | 0 | ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD); |
220 | 0 | goto err; |
221 | 0 | } |
222 | | |
223 | | /* group->a */ |
224 | 0 | if (!BN_GF2m_mod_arr(&group->a, a, group->poly)) |
225 | 0 | goto err; |
226 | 0 | if (bn_wexpand(&group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) |
227 | 0 | == NULL) |
228 | 0 | goto err; |
229 | 0 | for (i = group->a.top; i < group->a.dmax; i++) |
230 | 0 | group->a.d[i] = 0; |
231 | | |
232 | | /* group->b */ |
233 | 0 | if (!BN_GF2m_mod_arr(&group->b, b, group->poly)) |
234 | 0 | goto err; |
235 | 0 | if (bn_wexpand(&group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) |
236 | 0 | == NULL) |
237 | 0 | goto err; |
238 | 0 | for (i = group->b.top; i < group->b.dmax; i++) |
239 | 0 | group->b.d[i] = 0; |
240 | |
|
241 | 0 | ret = 1; |
242 | 0 | err: |
243 | 0 | return ret; |
244 | 0 | } |
245 | | |
246 | | /* |
247 | | * Get the curve parameters of an EC_GROUP structure. If p, a, or b are NULL |
248 | | * then there values will not be set but the method will return with success. |
249 | | */ |
250 | | int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, |
251 | | BIGNUM *a, BIGNUM *b, BN_CTX *ctx) |
252 | 0 | { |
253 | 0 | int ret = 0; |
254 | |
|
255 | 0 | if (p != NULL) { |
256 | 0 | if (!BN_copy(p, &group->field)) |
257 | 0 | return 0; |
258 | 0 | } |
259 | | |
260 | 0 | if (a != NULL) { |
261 | 0 | if (!BN_copy(a, &group->a)) |
262 | 0 | goto err; |
263 | 0 | } |
264 | | |
265 | 0 | if (b != NULL) { |
266 | 0 | if (!BN_copy(b, &group->b)) |
267 | 0 | goto err; |
268 | 0 | } |
269 | | |
270 | 0 | ret = 1; |
271 | |
|
272 | 0 | err: |
273 | 0 | return ret; |
274 | 0 | } |
275 | | |
276 | | /* |
277 | | * Gets the degree of the field. For a curve over GF(2^m) this is the value |
278 | | * m. |
279 | | */ |
280 | | int ec_GF2m_simple_group_get_degree(const EC_GROUP *group) |
281 | 0 | { |
282 | 0 | return BN_num_bits(&group->field) - 1; |
283 | 0 | } |
284 | | |
285 | | /* |
286 | | * Checks the discriminant of the curve. y^2 + x*y = x^3 + a*x^2 + b is an |
287 | | * elliptic curve <=> b != 0 (mod p) |
288 | | */ |
289 | | int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, |
290 | | BN_CTX *ctx) |
291 | 0 | { |
292 | 0 | int ret = 0; |
293 | 0 | BIGNUM *b; |
294 | 0 | BN_CTX *new_ctx = NULL; |
295 | |
|
296 | 0 | if (ctx == NULL) { |
297 | 0 | ctx = new_ctx = BN_CTX_new(); |
298 | 0 | if (ctx == NULL) { |
299 | 0 | ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, |
300 | 0 | ERR_R_MALLOC_FAILURE); |
301 | 0 | goto err; |
302 | 0 | } |
303 | 0 | } |
304 | 0 | BN_CTX_start(ctx); |
305 | 0 | b = BN_CTX_get(ctx); |
306 | 0 | if (b == NULL) |
307 | 0 | goto err; |
308 | | |
309 | 0 | if (!BN_GF2m_mod_arr(b, &group->b, group->poly)) |
310 | 0 | goto err; |
311 | | |
312 | | /* |
313 | | * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic |
314 | | * curve <=> b != 0 (mod p) |
315 | | */ |
316 | 0 | if (BN_is_zero(b)) |
317 | 0 | goto err; |
318 | | |
319 | 0 | ret = 1; |
320 | |
|
321 | 0 | err: |
322 | 0 | if (ctx != NULL) |
323 | 0 | BN_CTX_end(ctx); |
324 | 0 | if (new_ctx != NULL) |
325 | 0 | BN_CTX_free(new_ctx); |
326 | 0 | return ret; |
327 | 0 | } |
328 | | |
329 | | /* Initializes an EC_POINT. */ |
330 | | int ec_GF2m_simple_point_init(EC_POINT *point) |
331 | 0 | { |
332 | 0 | BN_init(&point->X); |
333 | 0 | BN_init(&point->Y); |
334 | 0 | BN_init(&point->Z); |
335 | 0 | return 1; |
336 | 0 | } |
337 | | |
338 | | /* Frees an EC_POINT. */ |
339 | | void ec_GF2m_simple_point_finish(EC_POINT *point) |
340 | 0 | { |
341 | 0 | BN_free(&point->X); |
342 | 0 | BN_free(&point->Y); |
343 | 0 | BN_free(&point->Z); |
344 | 0 | } |
345 | | |
346 | | /* Clears and frees an EC_POINT. */ |
347 | | void ec_GF2m_simple_point_clear_finish(EC_POINT *point) |
348 | 0 | { |
349 | 0 | BN_clear_free(&point->X); |
350 | 0 | BN_clear_free(&point->Y); |
351 | 0 | BN_clear_free(&point->Z); |
352 | 0 | point->Z_is_one = 0; |
353 | 0 | } |
354 | | |
355 | | /* |
356 | | * Copy the contents of one EC_POINT into another. Assumes dest is |
357 | | * initialized. |
358 | | */ |
359 | | int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src) |
360 | 0 | { |
361 | 0 | if (!BN_copy(&dest->X, &src->X)) |
362 | 0 | return 0; |
363 | 0 | if (!BN_copy(&dest->Y, &src->Y)) |
364 | 0 | return 0; |
365 | 0 | if (!BN_copy(&dest->Z, &src->Z)) |
366 | 0 | return 0; |
367 | 0 | dest->Z_is_one = src->Z_is_one; |
368 | |
|
369 | 0 | return 1; |
370 | 0 | } |
371 | | |
372 | | /* |
373 | | * Set an EC_POINT to the point at infinity. A point at infinity is |
374 | | * represented by having Z=0. |
375 | | */ |
376 | | int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, |
377 | | EC_POINT *point) |
378 | 0 | { |
379 | 0 | point->Z_is_one = 0; |
380 | 0 | BN_zero(&point->Z); |
381 | 0 | return 1; |
382 | 0 | } |
383 | | |
384 | | /* |
385 | | * Set the coordinates of an EC_POINT using affine coordinates. Note that |
386 | | * the simple implementation only uses affine coordinates. |
387 | | */ |
388 | | int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, |
389 | | EC_POINT *point, |
390 | | const BIGNUM *x, |
391 | | const BIGNUM *y, BN_CTX *ctx) |
392 | 0 | { |
393 | 0 | int ret = 0; |
394 | 0 | if (x == NULL || y == NULL) { |
395 | 0 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, |
396 | 0 | ERR_R_PASSED_NULL_PARAMETER); |
397 | 0 | return 0; |
398 | 0 | } |
399 | | |
400 | 0 | if (!BN_copy(&point->X, x)) |
401 | 0 | goto err; |
402 | 0 | BN_set_negative(&point->X, 0); |
403 | 0 | if (!BN_copy(&point->Y, y)) |
404 | 0 | goto err; |
405 | 0 | BN_set_negative(&point->Y, 0); |
406 | 0 | if (!BN_copy(&point->Z, BN_value_one())) |
407 | 0 | goto err; |
408 | 0 | BN_set_negative(&point->Z, 0); |
409 | 0 | point->Z_is_one = 1; |
410 | 0 | ret = 1; |
411 | |
|
412 | 0 | err: |
413 | 0 | return ret; |
414 | 0 | } |
415 | | |
416 | | /* |
417 | | * Gets the affine coordinates of an EC_POINT. Note that the simple |
418 | | * implementation only uses affine coordinates. |
419 | | */ |
420 | | int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, |
421 | | const EC_POINT *point, |
422 | | BIGNUM *x, BIGNUM *y, |
423 | | BN_CTX *ctx) |
424 | 0 | { |
425 | 0 | int ret = 0; |
426 | |
|
427 | 0 | if (EC_POINT_is_at_infinity(group, point)) { |
428 | 0 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, |
429 | 0 | EC_R_POINT_AT_INFINITY); |
430 | 0 | return 0; |
431 | 0 | } |
432 | | |
433 | 0 | if (BN_cmp(&point->Z, BN_value_one())) { |
434 | 0 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, |
435 | 0 | ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
436 | 0 | return 0; |
437 | 0 | } |
438 | 0 | if (x != NULL) { |
439 | 0 | if (!BN_copy(x, &point->X)) |
440 | 0 | goto err; |
441 | 0 | BN_set_negative(x, 0); |
442 | 0 | } |
443 | 0 | if (y != NULL) { |
444 | 0 | if (!BN_copy(y, &point->Y)) |
445 | 0 | goto err; |
446 | 0 | BN_set_negative(y, 0); |
447 | 0 | } |
448 | 0 | ret = 1; |
449 | |
|
450 | 0 | err: |
451 | 0 | return ret; |
452 | 0 | } |
453 | | |
454 | | /* |
455 | | * Computes a + b and stores the result in r. r could be a or b, a could be |
456 | | * b. Uses algorithm A.10.2 of IEEE P1363. |
457 | | */ |
458 | | int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, |
459 | | const EC_POINT *b, BN_CTX *ctx) |
460 | 0 | { |
461 | 0 | BN_CTX *new_ctx = NULL; |
462 | 0 | BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t; |
463 | 0 | int ret = 0; |
464 | |
|
465 | 0 | if (EC_POINT_is_at_infinity(group, a)) { |
466 | 0 | if (!EC_POINT_copy(r, b)) |
467 | 0 | return 0; |
468 | 0 | return 1; |
469 | 0 | } |
470 | | |
471 | 0 | if (EC_POINT_is_at_infinity(group, b)) { |
472 | 0 | if (!EC_POINT_copy(r, a)) |
473 | 0 | return 0; |
474 | 0 | return 1; |
475 | 0 | } |
476 | | |
477 | 0 | if (ctx == NULL) { |
478 | 0 | ctx = new_ctx = BN_CTX_new(); |
479 | 0 | if (ctx == NULL) |
480 | 0 | return 0; |
481 | 0 | } |
482 | | |
483 | 0 | BN_CTX_start(ctx); |
484 | 0 | x0 = BN_CTX_get(ctx); |
485 | 0 | y0 = BN_CTX_get(ctx); |
486 | 0 | x1 = BN_CTX_get(ctx); |
487 | 0 | y1 = BN_CTX_get(ctx); |
488 | 0 | x2 = BN_CTX_get(ctx); |
489 | 0 | y2 = BN_CTX_get(ctx); |
490 | 0 | s = BN_CTX_get(ctx); |
491 | 0 | t = BN_CTX_get(ctx); |
492 | 0 | if (t == NULL) |
493 | 0 | goto err; |
494 | | |
495 | 0 | if (a->Z_is_one) { |
496 | 0 | if (!BN_copy(x0, &a->X)) |
497 | 0 | goto err; |
498 | 0 | if (!BN_copy(y0, &a->Y)) |
499 | 0 | goto err; |
500 | 0 | } else { |
501 | 0 | if (!EC_POINT_get_affine_coordinates_GF2m(group, a, x0, y0, ctx)) |
502 | 0 | goto err; |
503 | 0 | } |
504 | 0 | if (b->Z_is_one) { |
505 | 0 | if (!BN_copy(x1, &b->X)) |
506 | 0 | goto err; |
507 | 0 | if (!BN_copy(y1, &b->Y)) |
508 | 0 | goto err; |
509 | 0 | } else { |
510 | 0 | if (!EC_POINT_get_affine_coordinates_GF2m(group, b, x1, y1, ctx)) |
511 | 0 | goto err; |
512 | 0 | } |
513 | | |
514 | 0 | if (BN_GF2m_cmp(x0, x1)) { |
515 | 0 | if (!BN_GF2m_add(t, x0, x1)) |
516 | 0 | goto err; |
517 | 0 | if (!BN_GF2m_add(s, y0, y1)) |
518 | 0 | goto err; |
519 | 0 | if (!group->meth->field_div(group, s, s, t, ctx)) |
520 | 0 | goto err; |
521 | 0 | if (!group->meth->field_sqr(group, x2, s, ctx)) |
522 | 0 | goto err; |
523 | 0 | if (!BN_GF2m_add(x2, x2, &group->a)) |
524 | 0 | goto err; |
525 | 0 | if (!BN_GF2m_add(x2, x2, s)) |
526 | 0 | goto err; |
527 | 0 | if (!BN_GF2m_add(x2, x2, t)) |
528 | 0 | goto err; |
529 | 0 | } else { |
530 | 0 | if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) { |
531 | 0 | if (!EC_POINT_set_to_infinity(group, r)) |
532 | 0 | goto err; |
533 | 0 | ret = 1; |
534 | 0 | goto err; |
535 | 0 | } |
536 | 0 | if (!group->meth->field_div(group, s, y1, x1, ctx)) |
537 | 0 | goto err; |
538 | 0 | if (!BN_GF2m_add(s, s, x1)) |
539 | 0 | goto err; |
540 | | |
541 | 0 | if (!group->meth->field_sqr(group, x2, s, ctx)) |
542 | 0 | goto err; |
543 | 0 | if (!BN_GF2m_add(x2, x2, s)) |
544 | 0 | goto err; |
545 | 0 | if (!BN_GF2m_add(x2, x2, &group->a)) |
546 | 0 | goto err; |
547 | 0 | } |
548 | | |
549 | 0 | if (!BN_GF2m_add(y2, x1, x2)) |
550 | 0 | goto err; |
551 | 0 | if (!group->meth->field_mul(group, y2, y2, s, ctx)) |
552 | 0 | goto err; |
553 | 0 | if (!BN_GF2m_add(y2, y2, x2)) |
554 | 0 | goto err; |
555 | 0 | if (!BN_GF2m_add(y2, y2, y1)) |
556 | 0 | goto err; |
557 | | |
558 | 0 | if (!EC_POINT_set_affine_coordinates_GF2m(group, r, x2, y2, ctx)) |
559 | 0 | goto err; |
560 | | |
561 | 0 | ret = 1; |
562 | |
|
563 | 0 | err: |
564 | 0 | BN_CTX_end(ctx); |
565 | 0 | if (new_ctx != NULL) |
566 | 0 | BN_CTX_free(new_ctx); |
567 | 0 | return ret; |
568 | 0 | } |
569 | | |
570 | | /* |
571 | | * Computes 2 * a and stores the result in r. r could be a. Uses algorithm |
572 | | * A.10.2 of IEEE P1363. |
573 | | */ |
574 | | int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, |
575 | | BN_CTX *ctx) |
576 | 0 | { |
577 | 0 | return ec_GF2m_simple_add(group, r, a, a, ctx); |
578 | 0 | } |
579 | | |
580 | | int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) |
581 | 0 | { |
582 | 0 | if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) |
583 | | /* point is its own inverse */ |
584 | 0 | return 1; |
585 | | |
586 | 0 | if (!EC_POINT_make_affine(group, point, ctx)) |
587 | 0 | return 0; |
588 | 0 | return BN_GF2m_add(&point->Y, &point->X, &point->Y); |
589 | 0 | } |
590 | | |
591 | | /* Indicates whether the given point is the point at infinity. */ |
592 | | int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, |
593 | | const EC_POINT *point) |
594 | 0 | { |
595 | 0 | return BN_is_zero(&point->Z); |
596 | 0 | } |
597 | | |
598 | | /*- |
599 | | * Determines whether the given EC_POINT is an actual point on the curve defined |
600 | | * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation: |
601 | | * y^2 + x*y = x^3 + a*x^2 + b. |
602 | | */ |
603 | | int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, |
604 | | BN_CTX *ctx) |
605 | 0 | { |
606 | 0 | int ret = -1; |
607 | 0 | BN_CTX *new_ctx = NULL; |
608 | 0 | BIGNUM *lh, *y2; |
609 | 0 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, |
610 | 0 | const BIGNUM *, BN_CTX *); |
611 | 0 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
612 | |
|
613 | 0 | if (EC_POINT_is_at_infinity(group, point)) |
614 | 0 | return 1; |
615 | | |
616 | 0 | field_mul = group->meth->field_mul; |
617 | 0 | field_sqr = group->meth->field_sqr; |
618 | | |
619 | | /* only support affine coordinates */ |
620 | 0 | if (!point->Z_is_one) |
621 | 0 | return -1; |
622 | | |
623 | 0 | if (ctx == NULL) { |
624 | 0 | ctx = new_ctx = BN_CTX_new(); |
625 | 0 | if (ctx == NULL) |
626 | 0 | return -1; |
627 | 0 | } |
628 | | |
629 | 0 | BN_CTX_start(ctx); |
630 | 0 | y2 = BN_CTX_get(ctx); |
631 | 0 | lh = BN_CTX_get(ctx); |
632 | 0 | if (lh == NULL) |
633 | 0 | goto err; |
634 | | |
635 | | /*- |
636 | | * We have a curve defined by a Weierstrass equation |
637 | | * y^2 + x*y = x^3 + a*x^2 + b. |
638 | | * <=> x^3 + a*x^2 + x*y + b + y^2 = 0 |
639 | | * <=> ((x + a) * x + y ) * x + b + y^2 = 0 |
640 | | */ |
641 | 0 | if (!BN_GF2m_add(lh, &point->X, &group->a)) |
642 | 0 | goto err; |
643 | 0 | if (!field_mul(group, lh, lh, &point->X, ctx)) |
644 | 0 | goto err; |
645 | 0 | if (!BN_GF2m_add(lh, lh, &point->Y)) |
646 | 0 | goto err; |
647 | 0 | if (!field_mul(group, lh, lh, &point->X, ctx)) |
648 | 0 | goto err; |
649 | 0 | if (!BN_GF2m_add(lh, lh, &group->b)) |
650 | 0 | goto err; |
651 | 0 | if (!field_sqr(group, y2, &point->Y, ctx)) |
652 | 0 | goto err; |
653 | 0 | if (!BN_GF2m_add(lh, lh, y2)) |
654 | 0 | goto err; |
655 | 0 | ret = BN_is_zero(lh); |
656 | 0 | err: |
657 | 0 | if (ctx) |
658 | 0 | BN_CTX_end(ctx); |
659 | 0 | if (new_ctx) |
660 | 0 | BN_CTX_free(new_ctx); |
661 | 0 | return ret; |
662 | 0 | } |
663 | | |
664 | | /*- |
665 | | * Indicates whether two points are equal. |
666 | | * Return values: |
667 | | * -1 error |
668 | | * 0 equal (in affine coordinates) |
669 | | * 1 not equal |
670 | | */ |
671 | | int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, |
672 | | const EC_POINT *b, BN_CTX *ctx) |
673 | 0 | { |
674 | 0 | BIGNUM *aX, *aY, *bX, *bY; |
675 | 0 | BN_CTX *new_ctx = NULL; |
676 | 0 | int ret = -1; |
677 | |
|
678 | 0 | if (EC_POINT_is_at_infinity(group, a)) { |
679 | 0 | return EC_POINT_is_at_infinity(group, b) ? 0 : 1; |
680 | 0 | } |
681 | | |
682 | 0 | if (EC_POINT_is_at_infinity(group, b)) |
683 | 0 | return 1; |
684 | | |
685 | 0 | if (a->Z_is_one && b->Z_is_one) { |
686 | 0 | return ((BN_cmp(&a->X, &b->X) == 0) |
687 | 0 | && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; |
688 | 0 | } |
689 | | |
690 | 0 | if (ctx == NULL) { |
691 | 0 | ctx = new_ctx = BN_CTX_new(); |
692 | 0 | if (ctx == NULL) |
693 | 0 | return -1; |
694 | 0 | } |
695 | | |
696 | 0 | BN_CTX_start(ctx); |
697 | 0 | aX = BN_CTX_get(ctx); |
698 | 0 | aY = BN_CTX_get(ctx); |
699 | 0 | bX = BN_CTX_get(ctx); |
700 | 0 | bY = BN_CTX_get(ctx); |
701 | 0 | if (bY == NULL) |
702 | 0 | goto err; |
703 | | |
704 | 0 | if (!EC_POINT_get_affine_coordinates_GF2m(group, a, aX, aY, ctx)) |
705 | 0 | goto err; |
706 | 0 | if (!EC_POINT_get_affine_coordinates_GF2m(group, b, bX, bY, ctx)) |
707 | 0 | goto err; |
708 | 0 | ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1; |
709 | |
|
710 | 0 | err: |
711 | 0 | if (ctx) |
712 | 0 | BN_CTX_end(ctx); |
713 | 0 | if (new_ctx) |
714 | 0 | BN_CTX_free(new_ctx); |
715 | 0 | return ret; |
716 | 0 | } |
717 | | |
718 | | /* Forces the given EC_POINT to internally use affine coordinates. */ |
719 | | int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, |
720 | | BN_CTX *ctx) |
721 | 0 | { |
722 | 0 | BN_CTX *new_ctx = NULL; |
723 | 0 | BIGNUM *x, *y; |
724 | 0 | int ret = 0; |
725 | |
|
726 | 0 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) |
727 | 0 | return 1; |
728 | | |
729 | 0 | if (ctx == NULL) { |
730 | 0 | ctx = new_ctx = BN_CTX_new(); |
731 | 0 | if (ctx == NULL) |
732 | 0 | return 0; |
733 | 0 | } |
734 | | |
735 | 0 | BN_CTX_start(ctx); |
736 | 0 | x = BN_CTX_get(ctx); |
737 | 0 | y = BN_CTX_get(ctx); |
738 | 0 | if (y == NULL) |
739 | 0 | goto err; |
740 | | |
741 | 0 | if (!EC_POINT_get_affine_coordinates_GF2m(group, point, x, y, ctx)) |
742 | 0 | goto err; |
743 | 0 | if (!BN_copy(&point->X, x)) |
744 | 0 | goto err; |
745 | 0 | if (!BN_copy(&point->Y, y)) |
746 | 0 | goto err; |
747 | 0 | if (!BN_one(&point->Z)) |
748 | 0 | goto err; |
749 | 0 | point->Z_is_one = 1; |
750 | |
|
751 | 0 | ret = 1; |
752 | |
|
753 | 0 | err: |
754 | 0 | if (ctx) |
755 | 0 | BN_CTX_end(ctx); |
756 | 0 | if (new_ctx) |
757 | 0 | BN_CTX_free(new_ctx); |
758 | 0 | return ret; |
759 | 0 | } |
760 | | |
761 | | /* |
762 | | * Forces each of the EC_POINTs in the given array to use affine coordinates. |
763 | | */ |
764 | | int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, |
765 | | EC_POINT *points[], BN_CTX *ctx) |
766 | 0 | { |
767 | 0 | size_t i; |
768 | |
|
769 | 0 | for (i = 0; i < num; i++) { |
770 | 0 | if (!group->meth->make_affine(group, points[i], ctx)) |
771 | 0 | return 0; |
772 | 0 | } |
773 | | |
774 | 0 | return 1; |
775 | 0 | } |
776 | | |
777 | | /* Wrapper to simple binary polynomial field multiplication implementation. */ |
778 | | int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, |
779 | | const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) |
780 | 0 | { |
781 | 0 | return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx); |
782 | 0 | } |
783 | | |
784 | | /* Wrapper to simple binary polynomial field squaring implementation. */ |
785 | | int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, |
786 | | const BIGNUM *a, BN_CTX *ctx) |
787 | 0 | { |
788 | 0 | return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx); |
789 | 0 | } |
790 | | |
791 | | /* Wrapper to simple binary polynomial field division implementation. */ |
792 | | int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, |
793 | | const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) |
794 | 0 | { |
795 | 0 | return BN_GF2m_mod_div(r, a, b, &group->field, ctx); |
796 | 0 | } |
797 | | |
798 | | #endif |