Coverage Report

Created: 2022-11-30 06:20

/src/openssl/crypto/ec/ec_mult.c
Line
Count
Source (jump to first uncovered line)
1
/* crypto/ec/ec_mult.c */
2
/*
3
 * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
4
 */
5
/* ====================================================================
6
 * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
7
 *
8
 * Redistribution and use in source and binary forms, with or without
9
 * modification, are permitted provided that the following conditions
10
 * are met:
11
 *
12
 * 1. Redistributions of source code must retain the above copyright
13
 *    notice, this list of conditions and the following disclaimer.
14
 *
15
 * 2. Redistributions in binary form must reproduce the above copyright
16
 *    notice, this list of conditions and the following disclaimer in
17
 *    the documentation and/or other materials provided with the
18
 *    distribution.
19
 *
20
 * 3. All advertising materials mentioning features or use of this
21
 *    software must display the following acknowledgment:
22
 *    "This product includes software developed by the OpenSSL Project
23
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24
 *
25
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26
 *    endorse or promote products derived from this software without
27
 *    prior written permission. For written permission, please contact
28
 *    openssl-core@openssl.org.
29
 *
30
 * 5. Products derived from this software may not be called "OpenSSL"
31
 *    nor may "OpenSSL" appear in their names without prior written
32
 *    permission of the OpenSSL Project.
33
 *
34
 * 6. Redistributions of any form whatsoever must retain the following
35
 *    acknowledgment:
36
 *    "This product includes software developed by the OpenSSL Project
37
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38
 *
39
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50
 * OF THE POSSIBILITY OF SUCH DAMAGE.
51
 * ====================================================================
52
 *
53
 * This product includes cryptographic software written by Eric Young
54
 * (eay@cryptsoft.com).  This product includes software written by Tim
55
 * Hudson (tjh@cryptsoft.com).
56
 *
57
 */
58
/* ====================================================================
59
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60
 * Portions of this software developed by SUN MICROSYSTEMS, INC.,
61
 * and contributed to the OpenSSL project.
62
 */
63
64
#include <string.h>
65
66
#include <openssl/err.h>
67
68
#include "ec_lcl.h"
69
70
/*
71
 * This file implements the wNAF-based interleaving multi-exponentiation method
72
 * Formerly at:
73
 *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp
74
 * You might now find it here:
75
 *   http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
76
 *   http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
77
 * For multiplication with precomputation, we use wNAF splitting, formerly at:
78
 *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp
79
 */
80
81
/* structure for precomputed multiples of the generator */
82
typedef struct ec_pre_comp_st {
83
    const EC_GROUP *group;      /* parent EC_GROUP object */
84
    size_t blocksize;           /* block size for wNAF splitting */
85
    size_t numblocks;           /* max. number of blocks for which we have
86
                                 * precomputation */
87
    size_t w;                   /* window size */
88
    EC_POINT **points;          /* array with pre-calculated multiples of
89
                                 * generator: 'num' pointers to EC_POINT
90
                                 * objects followed by a NULL */
91
    size_t num;                 /* numblocks * 2^(w-1) */
92
    int references;
93
} EC_PRE_COMP;
94
95
/* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */
96
static void *ec_pre_comp_dup(void *);
97
static void ec_pre_comp_free(void *);
98
static void ec_pre_comp_clear_free(void *);
99
100
static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
101
0
{
102
0
    EC_PRE_COMP *ret = NULL;
103
104
0
    if (!group)
105
0
        return NULL;
106
107
0
    ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP));
108
0
    if (!ret) {
109
0
        ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
110
0
        return ret;
111
0
    }
112
0
    ret->group = group;
113
0
    ret->blocksize = 8;         /* default */
114
0
    ret->numblocks = 0;
115
0
    ret->w = 4;                 /* default */
116
0
    ret->points = NULL;
117
0
    ret->num = 0;
118
0
    ret->references = 1;
119
0
    return ret;
120
0
}
121
122
static void *ec_pre_comp_dup(void *src_)
123
0
{
124
0
    EC_PRE_COMP *src = src_;
125
126
    /* no need to actually copy, these objects never change! */
127
128
0
    CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
129
130
0
    return src_;
131
0
}
132
133
static void ec_pre_comp_free(void *pre_)
134
0
{
135
0
    int i;
136
0
    EC_PRE_COMP *pre = pre_;
137
138
0
    if (!pre)
139
0
        return;
140
141
0
    i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
142
0
    if (i > 0)
143
0
        return;
144
145
0
    if (pre->points) {
146
0
        EC_POINT **p;
147
148
0
        for (p = pre->points; *p != NULL; p++)
149
0
            EC_POINT_free(*p);
150
0
        OPENSSL_free(pre->points);
151
0
    }
152
0
    OPENSSL_free(pre);
153
0
}
154
155
static void ec_pre_comp_clear_free(void *pre_)
156
0
{
157
0
    int i;
158
0
    EC_PRE_COMP *pre = pre_;
159
160
0
    if (!pre)
161
0
        return;
162
163
0
    i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
164
0
    if (i > 0)
165
0
        return;
166
167
0
    if (pre->points) {
168
0
        EC_POINT **p;
169
170
0
        for (p = pre->points; *p != NULL; p++) {
171
0
            EC_POINT_clear_free(*p);
172
0
            OPENSSL_cleanse(p, sizeof *p);
173
0
        }
174
0
        OPENSSL_free(pre->points);
175
0
    }
176
0
    OPENSSL_cleanse(pre, sizeof *pre);
177
0
    OPENSSL_free(pre);
178
0
}
179
180
/*-
181
 * Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
182
 * This is an array  r[]  of values that are either zero or odd with an
183
 * absolute value less than  2^w  satisfying
184
 *     scalar = \sum_j r[j]*2^j
185
 * where at most one of any  w+1  consecutive digits is non-zero
186
 * with the exception that the most significant digit may be only
187
 * w-1 zeros away from that next non-zero digit.
188
 */
189
static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len)
190
0
{
191
0
    int window_val;
192
0
    int ok = 0;
193
0
    signed char *r = NULL;
194
0
    int sign = 1;
195
0
    int bit, next_bit, mask;
196
0
    size_t len = 0, j;
197
198
0
    if (BN_is_zero(scalar)) {
199
0
        r = OPENSSL_malloc(1);
200
0
        if (!r) {
201
0
            ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
202
0
            goto err;
203
0
        }
204
0
        r[0] = 0;
205
0
        *ret_len = 1;
206
0
        return r;
207
0
    }
208
209
0
    if (w <= 0 || w > 7) {      /* 'signed char' can represent integers with
210
                                 * absolute values less than 2^7 */
211
0
        ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
212
0
        goto err;
213
0
    }
214
0
    bit = 1 << w;               /* at most 128 */
215
0
    next_bit = bit << 1;        /* at most 256 */
216
0
    mask = next_bit - 1;        /* at most 255 */
217
218
0
    if (BN_is_negative(scalar)) {
219
0
        sign = -1;
220
0
    }
221
222
0
    if (scalar->d == NULL || scalar->top == 0) {
223
0
        ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
224
0
        goto err;
225
0
    }
226
227
0
    len = BN_num_bits(scalar);
228
0
    r = OPENSSL_malloc(len + 1); /* modified wNAF may be one digit longer
229
                                  * than binary representation (*ret_len will
230
                                  * be set to the actual length, i.e. at most
231
                                  * BN_num_bits(scalar) + 1) */
232
0
    if (r == NULL) {
233
0
        ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
234
0
        goto err;
235
0
    }
236
0
    window_val = scalar->d[0] & mask;
237
0
    j = 0;
238
0
    while ((window_val != 0) || (j + w + 1 < len)) { /* if j+w+1 >= len,
239
                                                      * window_val will not
240
                                                      * increase */
241
0
        int digit = 0;
242
243
        /* 0 <= window_val <= 2^(w+1) */
244
245
0
        if (window_val & 1) {
246
            /* 0 < window_val < 2^(w+1) */
247
248
0
            if (window_val & bit) {
249
0
                digit = window_val - next_bit; /* -2^w < digit < 0 */
250
251
0
#if 1                           /* modified wNAF */
252
0
                if (j + w + 1 >= len) {
253
                    /*
254
                     * special case for generating modified wNAFs: no new
255
                     * bits will be added into window_val, so using a
256
                     * positive digit here will decrease the total length of
257
                     * the representation
258
                     */
259
260
0
                    digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
261
0
                }
262
0
#endif
263
0
            } else {
264
0
                digit = window_val; /* 0 < digit < 2^w */
265
0
            }
266
267
0
            if (digit <= -bit || digit >= bit || !(digit & 1)) {
268
0
                ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
269
0
                goto err;
270
0
            }
271
272
0
            window_val -= digit;
273
274
            /*
275
             * now window_val is 0 or 2^(w+1) in standard wNAF generation;
276
             * for modified window NAFs, it may also be 2^w
277
             */
278
0
            if (window_val != 0 && window_val != next_bit
279
0
                && window_val != bit) {
280
0
                ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
281
0
                goto err;
282
0
            }
283
0
        }
284
285
0
        r[j++] = sign * digit;
286
287
0
        window_val >>= 1;
288
0
        window_val += bit * BN_is_bit_set(scalar, j + w);
289
290
0
        if (window_val > next_bit) {
291
0
            ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
292
0
            goto err;
293
0
        }
294
0
    }
295
296
0
    if (j > len + 1) {
297
0
        ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
298
0
        goto err;
299
0
    }
300
0
    len = j;
301
0
    ok = 1;
302
303
0
 err:
304
0
    if (!ok) {
305
0
        OPENSSL_free(r);
306
0
        r = NULL;
307
0
    }
308
0
    if (ok)
309
0
        *ret_len = len;
310
0
    return r;
311
0
}
312
313
/*
314
 * TODO: table should be optimised for the wNAF-based implementation,
315
 * sometimes smaller windows will give better performance (thus the
316
 * boundaries should be increased)
317
 */
318
#define EC_window_bits_for_scalar_size(b) \
319
0
                ((size_t) \
320
0
                 ((b) >= 2000 ? 6 : \
321
0
                  (b) >=  800 ? 5 : \
322
0
                  (b) >=  300 ? 4 : \
323
0
                  (b) >=   70 ? 3 : \
324
0
                  (b) >=   20 ? 2 : \
325
0
                  1))
326
327
/*-
328
 * Compute
329
 *      \sum scalars[i]*points[i],
330
 * also including
331
 *      scalar*generator
332
 * in the addition if scalar != NULL
333
 */
334
int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
335
                size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
336
                BN_CTX *ctx)
337
0
{
338
0
    BN_CTX *new_ctx = NULL;
339
0
    const EC_POINT *generator = NULL;
340
0
    EC_POINT *tmp = NULL;
341
0
    size_t totalnum;
342
0
    size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
343
0
    size_t pre_points_per_block = 0;
344
0
    size_t i, j;
345
0
    int k;
346
0
    int r_is_inverted = 0;
347
0
    int r_is_at_infinity = 1;
348
0
    size_t *wsize = NULL;       /* individual window sizes */
349
0
    signed char **wNAF = NULL;  /* individual wNAFs */
350
0
    size_t *wNAF_len = NULL;
351
0
    size_t max_len = 0;
352
0
    size_t num_val;
353
0
    EC_POINT **val = NULL;      /* precomputation */
354
0
    EC_POINT **v;
355
0
    EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
356
                                 * 'pre_comp->points' */
357
0
    const EC_PRE_COMP *pre_comp = NULL;
358
0
    int num_scalar = 0;         /* flag: will be set to 1 if 'scalar' must be
359
                                 * treated like other scalars, i.e.
360
                                 * precomputation is not available */
361
0
    int ret = 0;
362
363
0
    if (group->meth != r->meth) {
364
0
        ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
365
0
        return 0;
366
0
    }
367
368
0
    if ((scalar == NULL) && (num == 0)) {
369
0
        return EC_POINT_set_to_infinity(group, r);
370
0
    }
371
372
0
    for (i = 0; i < num; i++) {
373
0
        if (group->meth != points[i]->meth) {
374
0
            ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
375
0
            return 0;
376
0
        }
377
0
    }
378
379
0
    if (ctx == NULL) {
380
0
        ctx = new_ctx = BN_CTX_new();
381
0
        if (ctx == NULL)
382
0
            goto err;
383
0
    }
384
385
0
    if (scalar != NULL) {
386
0
        generator = EC_GROUP_get0_generator(group);
387
0
        if (generator == NULL) {
388
0
            ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
389
0
            goto err;
390
0
        }
391
392
        /* look if we can use precomputed multiples of generator */
393
394
0
        pre_comp =
395
0
            EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup,
396
0
                                ec_pre_comp_free, ec_pre_comp_clear_free);
397
398
0
        if (pre_comp && pre_comp->numblocks
399
0
            && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
400
0
                0)) {
401
0
            blocksize = pre_comp->blocksize;
402
403
            /*
404
             * determine maximum number of blocks that wNAF splitting may
405
             * yield (NB: maximum wNAF length is bit length plus one)
406
             */
407
0
            numblocks = (BN_num_bits(scalar) / blocksize) + 1;
408
409
            /*
410
             * we cannot use more blocks than we have precomputation for
411
             */
412
0
            if (numblocks > pre_comp->numblocks)
413
0
                numblocks = pre_comp->numblocks;
414
415
0
            pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
416
417
            /* check that pre_comp looks sane */
418
0
            if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
419
0
                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
420
0
                goto err;
421
0
            }
422
0
        } else {
423
            /* can't use precomputation */
424
0
            pre_comp = NULL;
425
0
            numblocks = 1;
426
0
            num_scalar = 1;     /* treat 'scalar' like 'num'-th element of
427
                                 * 'scalars' */
428
0
        }
429
0
    }
430
431
0
    totalnum = num + numblocks;
432
433
0
    wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]);
434
0
    wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
435
0
    wNAF = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space
436
                                                             * for pivot */
437
0
    val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
438
439
    /* Ensure wNAF is initialised in case we end up going to err */
440
0
    if (wNAF)
441
0
        wNAF[0] = NULL;         /* preliminary pivot */
442
443
0
    if (!wsize || !wNAF_len || !wNAF || !val_sub) {
444
0
        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
445
0
        goto err;
446
0
    }
447
448
    /*
449
     * num_val will be the total number of temporarily precomputed points
450
     */
451
0
    num_val = 0;
452
453
0
    for (i = 0; i < num + num_scalar; i++) {
454
0
        size_t bits;
455
456
0
        bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
457
0
        wsize[i] = EC_window_bits_for_scalar_size(bits);
458
0
        num_val += (size_t)1 << (wsize[i] - 1);
459
0
        wNAF[i + 1] = NULL;     /* make sure we always have a pivot */
460
0
        wNAF[i] =
461
0
            compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
462
0
                         &wNAF_len[i]);
463
0
        if (wNAF[i] == NULL)
464
0
            goto err;
465
0
        if (wNAF_len[i] > max_len)
466
0
            max_len = wNAF_len[i];
467
0
    }
468
469
0
    if (numblocks) {
470
        /* we go here iff scalar != NULL */
471
472
0
        if (pre_comp == NULL) {
473
0
            if (num_scalar != 1) {
474
0
                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
475
0
                goto err;
476
0
            }
477
            /* we have already generated a wNAF for 'scalar' */
478
0
        } else {
479
0
            signed char *tmp_wNAF = NULL;
480
0
            size_t tmp_len = 0;
481
482
0
            if (num_scalar != 0) {
483
0
                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
484
0
                goto err;
485
0
            }
486
487
            /*
488
             * use the window size for which we have precomputation
489
             */
490
0
            wsize[num] = pre_comp->w;
491
0
            tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len);
492
0
            if (!tmp_wNAF)
493
0
                goto err;
494
495
0
            if (tmp_len <= max_len) {
496
                /*
497
                 * One of the other wNAFs is at least as long as the wNAF
498
                 * belonging to the generator, so wNAF splitting will not buy
499
                 * us anything.
500
                 */
501
502
0
                numblocks = 1;
503
0
                totalnum = num + 1; /* don't use wNAF splitting */
504
0
                wNAF[num] = tmp_wNAF;
505
0
                wNAF[num + 1] = NULL;
506
0
                wNAF_len[num] = tmp_len;
507
0
                if (tmp_len > max_len)
508
0
                    max_len = tmp_len;
509
                /*
510
                 * pre_comp->points starts with the points that we need here:
511
                 */
512
0
                val_sub[num] = pre_comp->points;
513
0
            } else {
514
                /*
515
                 * don't include tmp_wNAF directly into wNAF array - use wNAF
516
                 * splitting and include the blocks
517
                 */
518
519
0
                signed char *pp;
520
0
                EC_POINT **tmp_points;
521
522
0
                if (tmp_len < numblocks * blocksize) {
523
                    /*
524
                     * possibly we can do with fewer blocks than estimated
525
                     */
526
0
                    numblocks = (tmp_len + blocksize - 1) / blocksize;
527
0
                    if (numblocks > pre_comp->numblocks) {
528
0
                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
529
0
                        goto err;
530
0
                    }
531
0
                    totalnum = num + numblocks;
532
0
                }
533
534
                /* split wNAF in 'numblocks' parts */
535
0
                pp = tmp_wNAF;
536
0
                tmp_points = pre_comp->points;
537
538
0
                for (i = num; i < totalnum; i++) {
539
0
                    if (i < totalnum - 1) {
540
0
                        wNAF_len[i] = blocksize;
541
0
                        if (tmp_len < blocksize) {
542
0
                            ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
543
0
                            goto err;
544
0
                        }
545
0
                        tmp_len -= blocksize;
546
0
                    } else
547
                        /*
548
                         * last block gets whatever is left (this could be
549
                         * more or less than 'blocksize'!)
550
                         */
551
0
                        wNAF_len[i] = tmp_len;
552
553
0
                    wNAF[i + 1] = NULL;
554
0
                    wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
555
0
                    if (wNAF[i] == NULL) {
556
0
                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
557
0
                        OPENSSL_free(tmp_wNAF);
558
0
                        goto err;
559
0
                    }
560
0
                    memcpy(wNAF[i], pp, wNAF_len[i]);
561
0
                    if (wNAF_len[i] > max_len)
562
0
                        max_len = wNAF_len[i];
563
564
0
                    if (*tmp_points == NULL) {
565
0
                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
566
0
                        OPENSSL_free(tmp_wNAF);
567
0
                        goto err;
568
0
                    }
569
0
                    val_sub[i] = tmp_points;
570
0
                    tmp_points += pre_points_per_block;
571
0
                    pp += blocksize;
572
0
                }
573
0
                OPENSSL_free(tmp_wNAF);
574
0
            }
575
0
        }
576
0
    }
577
578
    /*
579
     * All points we precompute now go into a single array 'val'.
580
     * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
581
     * subarray of 'pre_comp->points' if we already have precomputation.
582
     */
583
0
    val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
584
0
    if (val == NULL) {
585
0
        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
586
0
        goto err;
587
0
    }
588
0
    val[num_val] = NULL;        /* pivot element */
589
590
    /* allocate points for precomputation */
591
0
    v = val;
592
0
    for (i = 0; i < num + num_scalar; i++) {
593
0
        val_sub[i] = v;
594
0
        for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
595
0
            *v = EC_POINT_new(group);
596
0
            if (*v == NULL)
597
0
                goto err;
598
0
            v++;
599
0
        }
600
0
    }
601
0
    if (!(v == val + num_val)) {
602
0
        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
603
0
        goto err;
604
0
    }
605
606
0
    if (!(tmp = EC_POINT_new(group)))
607
0
        goto err;
608
609
    /*-
610
     * prepare precomputed values:
611
     *    val_sub[i][0] :=     points[i]
612
     *    val_sub[i][1] := 3 * points[i]
613
     *    val_sub[i][2] := 5 * points[i]
614
     *    ...
615
     */
616
0
    for (i = 0; i < num + num_scalar; i++) {
617
0
        if (i < num) {
618
0
            if (!EC_POINT_copy(val_sub[i][0], points[i]))
619
0
                goto err;
620
0
        } else {
621
0
            if (!EC_POINT_copy(val_sub[i][0], generator))
622
0
                goto err;
623
0
        }
624
625
0
        if (wsize[i] > 1) {
626
0
            if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
627
0
                goto err;
628
0
            for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
629
0
                if (!EC_POINT_add
630
0
                    (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
631
0
                    goto err;
632
0
            }
633
0
        }
634
0
    }
635
636
0
#if 1                           /* optional; EC_window_bits_for_scalar_size
637
                                 * assumes we do this step */
638
0
    if (!EC_POINTs_make_affine(group, num_val, val, ctx))
639
0
        goto err;
640
0
#endif
641
642
0
    r_is_at_infinity = 1;
643
644
0
    for (k = max_len - 1; k >= 0; k--) {
645
0
        if (!r_is_at_infinity) {
646
0
            if (!EC_POINT_dbl(group, r, r, ctx))
647
0
                goto err;
648
0
        }
649
650
0
        for (i = 0; i < totalnum; i++) {
651
0
            if (wNAF_len[i] > (size_t)k) {
652
0
                int digit = wNAF[i][k];
653
0
                int is_neg;
654
655
0
                if (digit) {
656
0
                    is_neg = digit < 0;
657
658
0
                    if (is_neg)
659
0
                        digit = -digit;
660
661
0
                    if (is_neg != r_is_inverted) {
662
0
                        if (!r_is_at_infinity) {
663
0
                            if (!EC_POINT_invert(group, r, ctx))
664
0
                                goto err;
665
0
                        }
666
0
                        r_is_inverted = !r_is_inverted;
667
0
                    }
668
669
                    /* digit > 0 */
670
671
0
                    if (r_is_at_infinity) {
672
0
                        if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
673
0
                            goto err;
674
0
                        r_is_at_infinity = 0;
675
0
                    } else {
676
0
                        if (!EC_POINT_add
677
0
                            (group, r, r, val_sub[i][digit >> 1], ctx))
678
0
                            goto err;
679
0
                    }
680
0
                }
681
0
            }
682
0
        }
683
0
    }
684
685
0
    if (r_is_at_infinity) {
686
0
        if (!EC_POINT_set_to_infinity(group, r))
687
0
            goto err;
688
0
    } else {
689
0
        if (r_is_inverted)
690
0
            if (!EC_POINT_invert(group, r, ctx))
691
0
                goto err;
692
0
    }
693
694
0
    ret = 1;
695
696
0
 err:
697
0
    if (new_ctx != NULL)
698
0
        BN_CTX_free(new_ctx);
699
0
    if (tmp != NULL)
700
0
        EC_POINT_free(tmp);
701
0
    if (wsize != NULL)
702
0
        OPENSSL_free(wsize);
703
0
    if (wNAF_len != NULL)
704
0
        OPENSSL_free(wNAF_len);
705
0
    if (wNAF != NULL) {
706
0
        signed char **w;
707
708
0
        for (w = wNAF; *w != NULL; w++)
709
0
            OPENSSL_free(*w);
710
711
0
        OPENSSL_free(wNAF);
712
0
    }
713
0
    if (val != NULL) {
714
0
        for (v = val; *v != NULL; v++)
715
0
            EC_POINT_clear_free(*v);
716
717
0
        OPENSSL_free(val);
718
0
    }
719
0
    if (val_sub != NULL) {
720
0
        OPENSSL_free(val_sub);
721
0
    }
722
0
    return ret;
723
0
}
724
725
/*-
726
 * ec_wNAF_precompute_mult()
727
 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
728
 * for use with wNAF splitting as implemented in ec_wNAF_mul().
729
 *
730
 * 'pre_comp->points' is an array of multiples of the generator
731
 * of the following form:
732
 * points[0] =     generator;
733
 * points[1] = 3 * generator;
734
 * ...
735
 * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
736
 * points[2^(w-1)]   =     2^blocksize * generator;
737
 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
738
 * ...
739
 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
740
 * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
741
 * ...
742
 * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
743
 * points[2^(w-1)*numblocks]       = NULL
744
 */
745
int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
746
0
{
747
0
    const EC_POINT *generator;
748
0
    EC_POINT *tmp_point = NULL, *base = NULL, **var;
749
0
    BN_CTX *new_ctx = NULL;
750
0
    BIGNUM *order;
751
0
    size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
752
0
    EC_POINT **points = NULL;
753
0
    EC_PRE_COMP *pre_comp;
754
0
    int ret = 0;
755
756
    /* if there is an old EC_PRE_COMP object, throw it away */
757
0
    EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup,
758
0
                         ec_pre_comp_free, ec_pre_comp_clear_free);
759
760
0
    if ((pre_comp = ec_pre_comp_new(group)) == NULL)
761
0
        return 0;
762
763
0
    generator = EC_GROUP_get0_generator(group);
764
0
    if (generator == NULL) {
765
0
        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
766
0
        goto err;
767
0
    }
768
769
0
    if (ctx == NULL) {
770
0
        ctx = new_ctx = BN_CTX_new();
771
0
        if (ctx == NULL)
772
0
            goto err;
773
0
    }
774
775
0
    BN_CTX_start(ctx);
776
0
    order = BN_CTX_get(ctx);
777
0
    if (order == NULL)
778
0
        goto err;
779
780
0
    if (!EC_GROUP_get_order(group, order, ctx))
781
0
        goto err;
782
0
    if (BN_is_zero(order)) {
783
0
        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
784
0
        goto err;
785
0
    }
786
787
0
    bits = BN_num_bits(order);
788
    /*
789
     * The following parameters mean we precompute (approximately) one point
790
     * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
791
     * bit lengths, other parameter combinations might provide better
792
     * efficiency.
793
     */
794
0
    blocksize = 8;
795
0
    w = 4;
796
0
    if (EC_window_bits_for_scalar_size(bits) > w) {
797
        /* let's not make the window too small ... */
798
0
        w = EC_window_bits_for_scalar_size(bits);
799
0
    }
800
801
0
    numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
802
                                                     * to use for wNAF
803
                                                     * splitting */
804
805
0
    pre_points_per_block = (size_t)1 << (w - 1);
806
0
    num = pre_points_per_block * numblocks; /* number of points to compute
807
                                             * and store */
808
809
0
    points = OPENSSL_malloc(sizeof(EC_POINT *) * (num + 1));
810
0
    if (!points) {
811
0
        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
812
0
        goto err;
813
0
    }
814
815
0
    var = points;
816
0
    var[num] = NULL;            /* pivot */
817
0
    for (i = 0; i < num; i++) {
818
0
        if ((var[i] = EC_POINT_new(group)) == NULL) {
819
0
            ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
820
0
            goto err;
821
0
        }
822
0
    }
823
824
0
    if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group))) {
825
0
        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
826
0
        goto err;
827
0
    }
828
829
0
    if (!EC_POINT_copy(base, generator))
830
0
        goto err;
831
832
    /* do the precomputation */
833
0
    for (i = 0; i < numblocks; i++) {
834
0
        size_t j;
835
836
0
        if (!EC_POINT_dbl(group, tmp_point, base, ctx))
837
0
            goto err;
838
839
0
        if (!EC_POINT_copy(*var++, base))
840
0
            goto err;
841
842
0
        for (j = 1; j < pre_points_per_block; j++, var++) {
843
            /*
844
             * calculate odd multiples of the current base point
845
             */
846
0
            if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
847
0
                goto err;
848
0
        }
849
850
0
        if (i < numblocks - 1) {
851
            /*
852
             * get the next base (multiply current one by 2^blocksize)
853
             */
854
0
            size_t k;
855
856
0
            if (blocksize <= 2) {
857
0
                ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
858
0
                goto err;
859
0
            }
860
861
0
            if (!EC_POINT_dbl(group, base, tmp_point, ctx))
862
0
                goto err;
863
0
            for (k = 2; k < blocksize; k++) {
864
0
                if (!EC_POINT_dbl(group, base, base, ctx))
865
0
                    goto err;
866
0
            }
867
0
        }
868
0
    }
869
870
0
    if (!EC_POINTs_make_affine(group, num, points, ctx))
871
0
        goto err;
872
873
0
    pre_comp->group = group;
874
0
    pre_comp->blocksize = blocksize;
875
0
    pre_comp->numblocks = numblocks;
876
0
    pre_comp->w = w;
877
0
    pre_comp->points = points;
878
0
    points = NULL;
879
0
    pre_comp->num = num;
880
881
0
    if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp,
882
0
                             ec_pre_comp_dup, ec_pre_comp_free,
883
0
                             ec_pre_comp_clear_free))
884
0
        goto err;
885
0
    pre_comp = NULL;
886
887
0
    ret = 1;
888
0
 err:
889
0
    if (ctx != NULL)
890
0
        BN_CTX_end(ctx);
891
0
    if (new_ctx != NULL)
892
0
        BN_CTX_free(new_ctx);
893
0
    if (pre_comp)
894
0
        ec_pre_comp_free(pre_comp);
895
0
    if (points) {
896
0
        EC_POINT **p;
897
898
0
        for (p = points; *p != NULL; p++)
899
0
            EC_POINT_free(*p);
900
0
        OPENSSL_free(points);
901
0
    }
902
0
    if (tmp_point)
903
0
        EC_POINT_free(tmp_point);
904
0
    if (base)
905
0
        EC_POINT_free(base);
906
0
    return ret;
907
0
}
908
909
int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
910
0
{
911
0
    if (EC_EX_DATA_get_data
912
0
        (group->extra_data, ec_pre_comp_dup, ec_pre_comp_free,
913
0
         ec_pre_comp_clear_free) != NULL)
914
0
        return 1;
915
0
    else
916
0
        return 0;
917
0
}