Coverage Report

Created: 2022-11-30 06:20

/src/openssl/crypto/ec/ecp_nistp521.c
Line
Count
Source (jump to first uncovered line)
1
/* crypto/ec/ecp_nistp521.c */
2
/*
3
 * Written by Adam Langley (Google) for the OpenSSL project
4
 */
5
/* Copyright 2011 Google Inc.
6
 *
7
 * Licensed under the Apache License, Version 2.0 (the "License");
8
 *
9
 * you may not use this file except in compliance with the License.
10
 * You may obtain a copy of the License at
11
 *
12
 *     http://www.apache.org/licenses/LICENSE-2.0
13
 *
14
 *  Unless required by applicable law or agreed to in writing, software
15
 *  distributed under the License is distributed on an "AS IS" BASIS,
16
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17
 *  See the License for the specific language governing permissions and
18
 *  limitations under the License.
19
 */
20
21
/*
22
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
23
 *
24
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
25
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
26
 * work which got its smarts from Daniel J. Bernstein's work on the same.
27
 */
28
29
#include <openssl/opensslconf.h>
30
#ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
31
32
# ifndef OPENSSL_SYS_VMS
33
#  include <stdint.h>
34
# else
35
#  include <inttypes.h>
36
# endif
37
38
# include <string.h>
39
# include <openssl/err.h>
40
# include "ec_lcl.h"
41
42
# if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
43
  /* even with gcc, the typedef won't work for 32-bit platforms */
44
typedef __uint128_t uint128_t;  /* nonstandard; implemented by gcc on 64-bit
45
                                 * platforms */
46
# else
47
#  error "Need GCC 3.1 or later to define type uint128_t"
48
# endif
49
50
typedef uint8_t u8;
51
typedef uint64_t u64;
52
typedef int64_t s64;
53
54
/*
55
 * The underlying field. P521 operates over GF(2^521-1). We can serialise an
56
 * element of this field into 66 bytes where the most significant byte
57
 * contains only a single bit. We call this an felem_bytearray.
58
 */
59
60
typedef u8 felem_bytearray[66];
61
62
/*
63
 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
64
 * These values are big-endian.
65
 */
66
static const felem_bytearray nistp521_curve_params[5] = {
67
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
68
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
69
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75
     0xff, 0xff},
76
    {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
77
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
78
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83
     0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84
     0xff, 0xfc},
85
    {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
86
     0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
87
     0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
88
     0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
89
     0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
90
     0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
91
     0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
92
     0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
93
     0x3f, 0x00},
94
    {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
95
     0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
96
     0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
97
     0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
98
     0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
99
     0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
100
     0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
101
     0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
102
     0xbd, 0x66},
103
    {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
104
     0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
105
     0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
106
     0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
107
     0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
108
     0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
109
     0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
110
     0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
111
     0x66, 0x50}
112
};
113
114
/*-
115
 * The representation of field elements.
116
 * ------------------------------------
117
 *
118
 * We represent field elements with nine values. These values are either 64 or
119
 * 128 bits and the field element represented is:
120
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
121
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
122
 * 58 bits apart, but are greater than 58 bits in length, the most significant
123
 * bits of each limb overlap with the least significant bits of the next.
124
 *
125
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
126
 * 'largefelem' */
127
128
0
# define NLIMBS 9
129
130
typedef uint64_t limb;
131
typedef limb felem[NLIMBS];
132
typedef uint128_t largefelem[NLIMBS];
133
134
static const limb bottom57bits = 0x1ffffffffffffff;
135
static const limb bottom58bits = 0x3ffffffffffffff;
136
137
/*
138
 * bin66_to_felem takes a little-endian byte array and converts it into felem
139
 * form. This assumes that the CPU is little-endian.
140
 */
141
static void bin66_to_felem(felem out, const u8 in[66])
142
0
{
143
0
    out[0] = (*((limb *) & in[0])) & bottom58bits;
144
0
    out[1] = (*((limb *) & in[7]) >> 2) & bottom58bits;
145
0
    out[2] = (*((limb *) & in[14]) >> 4) & bottom58bits;
146
0
    out[3] = (*((limb *) & in[21]) >> 6) & bottom58bits;
147
0
    out[4] = (*((limb *) & in[29])) & bottom58bits;
148
0
    out[5] = (*((limb *) & in[36]) >> 2) & bottom58bits;
149
0
    out[6] = (*((limb *) & in[43]) >> 4) & bottom58bits;
150
0
    out[7] = (*((limb *) & in[50]) >> 6) & bottom58bits;
151
0
    out[8] = (*((limb *) & in[58])) & bottom57bits;
152
0
}
153
154
/*
155
 * felem_to_bin66 takes an felem and serialises into a little endian, 66 byte
156
 * array. This assumes that the CPU is little-endian.
157
 */
158
static void felem_to_bin66(u8 out[66], const felem in)
159
0
{
160
0
    memset(out, 0, 66);
161
0
    (*((limb *) & out[0])) = in[0];
162
0
    (*((limb *) & out[7])) |= in[1] << 2;
163
0
    (*((limb *) & out[14])) |= in[2] << 4;
164
0
    (*((limb *) & out[21])) |= in[3] << 6;
165
0
    (*((limb *) & out[29])) = in[4];
166
0
    (*((limb *) & out[36])) |= in[5] << 2;
167
0
    (*((limb *) & out[43])) |= in[6] << 4;
168
0
    (*((limb *) & out[50])) |= in[7] << 6;
169
0
    (*((limb *) & out[58])) = in[8];
170
0
}
171
172
/* To preserve endianness when using BN_bn2bin and BN_bin2bn */
173
static void flip_endian(u8 *out, const u8 *in, unsigned len)
174
0
{
175
0
    unsigned i;
176
0
    for (i = 0; i < len; ++i)
177
0
        out[i] = in[len - 1 - i];
178
0
}
179
180
/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
181
static int BN_to_felem(felem out, const BIGNUM *bn)
182
0
{
183
0
    felem_bytearray b_in;
184
0
    felem_bytearray b_out;
185
0
    unsigned num_bytes;
186
187
    /* BN_bn2bin eats leading zeroes */
188
0
    memset(b_out, 0, sizeof b_out);
189
0
    num_bytes = BN_num_bytes(bn);
190
0
    if (num_bytes > sizeof b_out) {
191
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
192
0
        return 0;
193
0
    }
194
0
    if (BN_is_negative(bn)) {
195
0
        ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
196
0
        return 0;
197
0
    }
198
0
    num_bytes = BN_bn2bin(bn, b_in);
199
0
    flip_endian(b_out, b_in, num_bytes);
200
0
    bin66_to_felem(out, b_out);
201
0
    return 1;
202
0
}
203
204
/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
205
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
206
0
{
207
0
    felem_bytearray b_in, b_out;
208
0
    felem_to_bin66(b_in, in);
209
0
    flip_endian(b_out, b_in, sizeof b_out);
210
0
    return BN_bin2bn(b_out, sizeof b_out, out);
211
0
}
212
213
/*-
214
 * Field operations
215
 * ----------------
216
 */
217
218
static void felem_one(felem out)
219
0
{
220
0
    out[0] = 1;
221
0
    out[1] = 0;
222
0
    out[2] = 0;
223
0
    out[3] = 0;
224
0
    out[4] = 0;
225
0
    out[5] = 0;
226
0
    out[6] = 0;
227
0
    out[7] = 0;
228
0
    out[8] = 0;
229
0
}
230
231
static void felem_assign(felem out, const felem in)
232
0
{
233
0
    out[0] = in[0];
234
0
    out[1] = in[1];
235
0
    out[2] = in[2];
236
0
    out[3] = in[3];
237
0
    out[4] = in[4];
238
0
    out[5] = in[5];
239
0
    out[6] = in[6];
240
0
    out[7] = in[7];
241
0
    out[8] = in[8];
242
0
}
243
244
/* felem_sum64 sets out = out + in. */
245
static void felem_sum64(felem out, const felem in)
246
0
{
247
0
    out[0] += in[0];
248
0
    out[1] += in[1];
249
0
    out[2] += in[2];
250
0
    out[3] += in[3];
251
0
    out[4] += in[4];
252
0
    out[5] += in[5];
253
0
    out[6] += in[6];
254
0
    out[7] += in[7];
255
0
    out[8] += in[8];
256
0
}
257
258
/* felem_scalar sets out = in * scalar */
259
static void felem_scalar(felem out, const felem in, limb scalar)
260
0
{
261
0
    out[0] = in[0] * scalar;
262
0
    out[1] = in[1] * scalar;
263
0
    out[2] = in[2] * scalar;
264
0
    out[3] = in[3] * scalar;
265
0
    out[4] = in[4] * scalar;
266
0
    out[5] = in[5] * scalar;
267
0
    out[6] = in[6] * scalar;
268
0
    out[7] = in[7] * scalar;
269
0
    out[8] = in[8] * scalar;
270
0
}
271
272
/* felem_scalar64 sets out = out * scalar */
273
static void felem_scalar64(felem out, limb scalar)
274
0
{
275
0
    out[0] *= scalar;
276
0
    out[1] *= scalar;
277
0
    out[2] *= scalar;
278
0
    out[3] *= scalar;
279
0
    out[4] *= scalar;
280
0
    out[5] *= scalar;
281
0
    out[6] *= scalar;
282
0
    out[7] *= scalar;
283
0
    out[8] *= scalar;
284
0
}
285
286
/* felem_scalar128 sets out = out * scalar */
287
static void felem_scalar128(largefelem out, limb scalar)
288
0
{
289
0
    out[0] *= scalar;
290
0
    out[1] *= scalar;
291
0
    out[2] *= scalar;
292
0
    out[3] *= scalar;
293
0
    out[4] *= scalar;
294
0
    out[5] *= scalar;
295
0
    out[6] *= scalar;
296
0
    out[7] *= scalar;
297
0
    out[8] *= scalar;
298
0
}
299
300
/*-
301
 * felem_neg sets |out| to |-in|
302
 * On entry:
303
 *   in[i] < 2^59 + 2^14
304
 * On exit:
305
 *   out[i] < 2^62
306
 */
307
static void felem_neg(felem out, const felem in)
308
0
{
309
    /* In order to prevent underflow, we subtract from 0 mod p. */
310
0
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
311
0
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
312
313
0
    out[0] = two62m3 - in[0];
314
0
    out[1] = two62m2 - in[1];
315
0
    out[2] = two62m2 - in[2];
316
0
    out[3] = two62m2 - in[3];
317
0
    out[4] = two62m2 - in[4];
318
0
    out[5] = two62m2 - in[5];
319
0
    out[6] = two62m2 - in[6];
320
0
    out[7] = two62m2 - in[7];
321
0
    out[8] = two62m2 - in[8];
322
0
}
323
324
/*-
325
 * felem_diff64 subtracts |in| from |out|
326
 * On entry:
327
 *   in[i] < 2^59 + 2^14
328
 * On exit:
329
 *   out[i] < out[i] + 2^62
330
 */
331
static void felem_diff64(felem out, const felem in)
332
0
{
333
    /*
334
     * In order to prevent underflow, we add 0 mod p before subtracting.
335
     */
336
0
    static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
337
0
    static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
338
339
0
    out[0] += two62m3 - in[0];
340
0
    out[1] += two62m2 - in[1];
341
0
    out[2] += two62m2 - in[2];
342
0
    out[3] += two62m2 - in[3];
343
0
    out[4] += two62m2 - in[4];
344
0
    out[5] += two62m2 - in[5];
345
0
    out[6] += two62m2 - in[6];
346
0
    out[7] += two62m2 - in[7];
347
0
    out[8] += two62m2 - in[8];
348
0
}
349
350
/*-
351
 * felem_diff_128_64 subtracts |in| from |out|
352
 * On entry:
353
 *   in[i] < 2^62 + 2^17
354
 * On exit:
355
 *   out[i] < out[i] + 2^63
356
 */
357
static void felem_diff_128_64(largefelem out, const felem in)
358
0
{
359
    /*
360
     * In order to prevent underflow, we add 0 mod p before subtracting.
361
     */
362
0
    static const limb two63m6 = (((limb) 1) << 62) - (((limb) 1) << 5);
363
0
    static const limb two63m5 = (((limb) 1) << 62) - (((limb) 1) << 4);
364
365
0
    out[0] += two63m6 - in[0];
366
0
    out[1] += two63m5 - in[1];
367
0
    out[2] += two63m5 - in[2];
368
0
    out[3] += two63m5 - in[3];
369
0
    out[4] += two63m5 - in[4];
370
0
    out[5] += two63m5 - in[5];
371
0
    out[6] += two63m5 - in[6];
372
0
    out[7] += two63m5 - in[7];
373
0
    out[8] += two63m5 - in[8];
374
0
}
375
376
/*-
377
 * felem_diff_128_64 subtracts |in| from |out|
378
 * On entry:
379
 *   in[i] < 2^126
380
 * On exit:
381
 *   out[i] < out[i] + 2^127 - 2^69
382
 */
383
static void felem_diff128(largefelem out, const largefelem in)
384
0
{
385
    /*
386
     * In order to prevent underflow, we add 0 mod p before subtracting.
387
     */
388
0
    static const uint128_t two127m70 =
389
0
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
390
0
    static const uint128_t two127m69 =
391
0
        (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
392
393
0
    out[0] += (two127m70 - in[0]);
394
0
    out[1] += (two127m69 - in[1]);
395
0
    out[2] += (two127m69 - in[2]);
396
0
    out[3] += (two127m69 - in[3]);
397
0
    out[4] += (two127m69 - in[4]);
398
0
    out[5] += (two127m69 - in[5]);
399
0
    out[6] += (two127m69 - in[6]);
400
0
    out[7] += (two127m69 - in[7]);
401
0
    out[8] += (two127m69 - in[8]);
402
0
}
403
404
/*-
405
 * felem_square sets |out| = |in|^2
406
 * On entry:
407
 *   in[i] < 2^62
408
 * On exit:
409
 *   out[i] < 17 * max(in[i]) * max(in[i])
410
 */
411
static void felem_square(largefelem out, const felem in)
412
0
{
413
0
    felem inx2, inx4;
414
0
    felem_scalar(inx2, in, 2);
415
0
    felem_scalar(inx4, in, 4);
416
417
    /*-
418
     * We have many cases were we want to do
419
     *   in[x] * in[y] +
420
     *   in[y] * in[x]
421
     * This is obviously just
422
     *   2 * in[x] * in[y]
423
     * However, rather than do the doubling on the 128 bit result, we
424
     * double one of the inputs to the multiplication by reading from
425
     * |inx2|
426
     */
427
428
0
    out[0] = ((uint128_t) in[0]) * in[0];
429
0
    out[1] = ((uint128_t) in[0]) * inx2[1];
430
0
    out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
431
0
    out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
432
0
    out[4] = ((uint128_t) in[0]) * inx2[4] +
433
0
        ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
434
0
    out[5] = ((uint128_t) in[0]) * inx2[5] +
435
0
        ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
436
0
    out[6] = ((uint128_t) in[0]) * inx2[6] +
437
0
        ((uint128_t) in[1]) * inx2[5] +
438
0
        ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
439
0
    out[7] = ((uint128_t) in[0]) * inx2[7] +
440
0
        ((uint128_t) in[1]) * inx2[6] +
441
0
        ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
442
0
    out[8] = ((uint128_t) in[0]) * inx2[8] +
443
0
        ((uint128_t) in[1]) * inx2[7] +
444
0
        ((uint128_t) in[2]) * inx2[6] +
445
0
        ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
446
447
    /*
448
     * The remaining limbs fall above 2^521, with the first falling at 2^522.
449
     * They correspond to locations one bit up from the limbs produced above
450
     * so we would have to multiply by two to align them. Again, rather than
451
     * operate on the 128-bit result, we double one of the inputs to the
452
     * multiplication. If we want to double for both this reason, and the
453
     * reason above, then we end up multiplying by four.
454
     */
455
456
    /* 9 */
457
0
    out[0] += ((uint128_t) in[1]) * inx4[8] +
458
0
        ((uint128_t) in[2]) * inx4[7] +
459
0
        ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
460
461
    /* 10 */
462
0
    out[1] += ((uint128_t) in[2]) * inx4[8] +
463
0
        ((uint128_t) in[3]) * inx4[7] +
464
0
        ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
465
466
    /* 11 */
467
0
    out[2] += ((uint128_t) in[3]) * inx4[8] +
468
0
        ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
469
470
    /* 12 */
471
0
    out[3] += ((uint128_t) in[4]) * inx4[8] +
472
0
        ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
473
474
    /* 13 */
475
0
    out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
476
477
    /* 14 */
478
0
    out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
479
480
    /* 15 */
481
0
    out[6] += ((uint128_t) in[7]) * inx4[8];
482
483
    /* 16 */
484
0
    out[7] += ((uint128_t) in[8]) * inx2[8];
485
0
}
486
487
/*-
488
 * felem_mul sets |out| = |in1| * |in2|
489
 * On entry:
490
 *   in1[i] < 2^64
491
 *   in2[i] < 2^63
492
 * On exit:
493
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
494
 */
495
static void felem_mul(largefelem out, const felem in1, const felem in2)
496
0
{
497
0
    felem in2x2;
498
0
    felem_scalar(in2x2, in2, 2);
499
500
0
    out[0] = ((uint128_t) in1[0]) * in2[0];
501
502
0
    out[1] = ((uint128_t) in1[0]) * in2[1] + ((uint128_t) in1[1]) * in2[0];
503
504
0
    out[2] = ((uint128_t) in1[0]) * in2[2] +
505
0
        ((uint128_t) in1[1]) * in2[1] + ((uint128_t) in1[2]) * in2[0];
506
507
0
    out[3] = ((uint128_t) in1[0]) * in2[3] +
508
0
        ((uint128_t) in1[1]) * in2[2] +
509
0
        ((uint128_t) in1[2]) * in2[1] + ((uint128_t) in1[3]) * in2[0];
510
511
0
    out[4] = ((uint128_t) in1[0]) * in2[4] +
512
0
        ((uint128_t) in1[1]) * in2[3] +
513
0
        ((uint128_t) in1[2]) * in2[2] +
514
0
        ((uint128_t) in1[3]) * in2[1] + ((uint128_t) in1[4]) * in2[0];
515
516
0
    out[5] = ((uint128_t) in1[0]) * in2[5] +
517
0
        ((uint128_t) in1[1]) * in2[4] +
518
0
        ((uint128_t) in1[2]) * in2[3] +
519
0
        ((uint128_t) in1[3]) * in2[2] +
520
0
        ((uint128_t) in1[4]) * in2[1] + ((uint128_t) in1[5]) * in2[0];
521
522
0
    out[6] = ((uint128_t) in1[0]) * in2[6] +
523
0
        ((uint128_t) in1[1]) * in2[5] +
524
0
        ((uint128_t) in1[2]) * in2[4] +
525
0
        ((uint128_t) in1[3]) * in2[3] +
526
0
        ((uint128_t) in1[4]) * in2[2] +
527
0
        ((uint128_t) in1[5]) * in2[1] + ((uint128_t) in1[6]) * in2[0];
528
529
0
    out[7] = ((uint128_t) in1[0]) * in2[7] +
530
0
        ((uint128_t) in1[1]) * in2[6] +
531
0
        ((uint128_t) in1[2]) * in2[5] +
532
0
        ((uint128_t) in1[3]) * in2[4] +
533
0
        ((uint128_t) in1[4]) * in2[3] +
534
0
        ((uint128_t) in1[5]) * in2[2] +
535
0
        ((uint128_t) in1[6]) * in2[1] + ((uint128_t) in1[7]) * in2[0];
536
537
0
    out[8] = ((uint128_t) in1[0]) * in2[8] +
538
0
        ((uint128_t) in1[1]) * in2[7] +
539
0
        ((uint128_t) in1[2]) * in2[6] +
540
0
        ((uint128_t) in1[3]) * in2[5] +
541
0
        ((uint128_t) in1[4]) * in2[4] +
542
0
        ((uint128_t) in1[5]) * in2[3] +
543
0
        ((uint128_t) in1[6]) * in2[2] +
544
0
        ((uint128_t) in1[7]) * in2[1] + ((uint128_t) in1[8]) * in2[0];
545
546
    /* See comment in felem_square about the use of in2x2 here */
547
548
0
    out[0] += ((uint128_t) in1[1]) * in2x2[8] +
549
0
        ((uint128_t) in1[2]) * in2x2[7] +
550
0
        ((uint128_t) in1[3]) * in2x2[6] +
551
0
        ((uint128_t) in1[4]) * in2x2[5] +
552
0
        ((uint128_t) in1[5]) * in2x2[4] +
553
0
        ((uint128_t) in1[6]) * in2x2[3] +
554
0
        ((uint128_t) in1[7]) * in2x2[2] + ((uint128_t) in1[8]) * in2x2[1];
555
556
0
    out[1] += ((uint128_t) in1[2]) * in2x2[8] +
557
0
        ((uint128_t) in1[3]) * in2x2[7] +
558
0
        ((uint128_t) in1[4]) * in2x2[6] +
559
0
        ((uint128_t) in1[5]) * in2x2[5] +
560
0
        ((uint128_t) in1[6]) * in2x2[4] +
561
0
        ((uint128_t) in1[7]) * in2x2[3] + ((uint128_t) in1[8]) * in2x2[2];
562
563
0
    out[2] += ((uint128_t) in1[3]) * in2x2[8] +
564
0
        ((uint128_t) in1[4]) * in2x2[7] +
565
0
        ((uint128_t) in1[5]) * in2x2[6] +
566
0
        ((uint128_t) in1[6]) * in2x2[5] +
567
0
        ((uint128_t) in1[7]) * in2x2[4] + ((uint128_t) in1[8]) * in2x2[3];
568
569
0
    out[3] += ((uint128_t) in1[4]) * in2x2[8] +
570
0
        ((uint128_t) in1[5]) * in2x2[7] +
571
0
        ((uint128_t) in1[6]) * in2x2[6] +
572
0
        ((uint128_t) in1[7]) * in2x2[5] + ((uint128_t) in1[8]) * in2x2[4];
573
574
0
    out[4] += ((uint128_t) in1[5]) * in2x2[8] +
575
0
        ((uint128_t) in1[6]) * in2x2[7] +
576
0
        ((uint128_t) in1[7]) * in2x2[6] + ((uint128_t) in1[8]) * in2x2[5];
577
578
0
    out[5] += ((uint128_t) in1[6]) * in2x2[8] +
579
0
        ((uint128_t) in1[7]) * in2x2[7] + ((uint128_t) in1[8]) * in2x2[6];
580
581
0
    out[6] += ((uint128_t) in1[7]) * in2x2[8] +
582
0
        ((uint128_t) in1[8]) * in2x2[7];
583
584
0
    out[7] += ((uint128_t) in1[8]) * in2x2[8];
585
0
}
586
587
static const limb bottom52bits = 0xfffffffffffff;
588
589
/*-
590
 * felem_reduce converts a largefelem to an felem.
591
 * On entry:
592
 *   in[i] < 2^128
593
 * On exit:
594
 *   out[i] < 2^59 + 2^14
595
 */
596
static void felem_reduce(felem out, const largefelem in)
597
0
{
598
0
    u64 overflow1, overflow2;
599
600
0
    out[0] = ((limb) in[0]) & bottom58bits;
601
0
    out[1] = ((limb) in[1]) & bottom58bits;
602
0
    out[2] = ((limb) in[2]) & bottom58bits;
603
0
    out[3] = ((limb) in[3]) & bottom58bits;
604
0
    out[4] = ((limb) in[4]) & bottom58bits;
605
0
    out[5] = ((limb) in[5]) & bottom58bits;
606
0
    out[6] = ((limb) in[6]) & bottom58bits;
607
0
    out[7] = ((limb) in[7]) & bottom58bits;
608
0
    out[8] = ((limb) in[8]) & bottom58bits;
609
610
    /* out[i] < 2^58 */
611
612
0
    out[1] += ((limb) in[0]) >> 58;
613
0
    out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
614
    /*-
615
     * out[1] < 2^58 + 2^6 + 2^58
616
     *        = 2^59 + 2^6
617
     */
618
0
    out[2] += ((limb) (in[0] >> 64)) >> 52;
619
620
0
    out[2] += ((limb) in[1]) >> 58;
621
0
    out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
622
0
    out[3] += ((limb) (in[1] >> 64)) >> 52;
623
624
0
    out[3] += ((limb) in[2]) >> 58;
625
0
    out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
626
0
    out[4] += ((limb) (in[2] >> 64)) >> 52;
627
628
0
    out[4] += ((limb) in[3]) >> 58;
629
0
    out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
630
0
    out[5] += ((limb) (in[3] >> 64)) >> 52;
631
632
0
    out[5] += ((limb) in[4]) >> 58;
633
0
    out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
634
0
    out[6] += ((limb) (in[4] >> 64)) >> 52;
635
636
0
    out[6] += ((limb) in[5]) >> 58;
637
0
    out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
638
0
    out[7] += ((limb) (in[5] >> 64)) >> 52;
639
640
0
    out[7] += ((limb) in[6]) >> 58;
641
0
    out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
642
0
    out[8] += ((limb) (in[6] >> 64)) >> 52;
643
644
0
    out[8] += ((limb) in[7]) >> 58;
645
0
    out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
646
    /*-
647
     * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
648
     *            < 2^59 + 2^13
649
     */
650
0
    overflow1 = ((limb) (in[7] >> 64)) >> 52;
651
652
0
    overflow1 += ((limb) in[8]) >> 58;
653
0
    overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
654
0
    overflow2 = ((limb) (in[8] >> 64)) >> 52;
655
656
0
    overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
657
0
    overflow2 <<= 1;            /* overflow2 < 2^13 */
658
659
0
    out[0] += overflow1;        /* out[0] < 2^60 */
660
0
    out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
661
662
0
    out[1] += out[0] >> 58;
663
0
    out[0] &= bottom58bits;
664
    /*-
665
     * out[0] < 2^58
666
     * out[1] < 2^59 + 2^6 + 2^13 + 2^2
667
     *        < 2^59 + 2^14
668
     */
669
0
}
670
671
static void felem_square_reduce(felem out, const felem in)
672
0
{
673
0
    largefelem tmp;
674
0
    felem_square(tmp, in);
675
0
    felem_reduce(out, tmp);
676
0
}
677
678
static void felem_mul_reduce(felem out, const felem in1, const felem in2)
679
0
{
680
0
    largefelem tmp;
681
0
    felem_mul(tmp, in1, in2);
682
0
    felem_reduce(out, tmp);
683
0
}
684
685
/*-
686
 * felem_inv calculates |out| = |in|^{-1}
687
 *
688
 * Based on Fermat's Little Theorem:
689
 *   a^p = a (mod p)
690
 *   a^{p-1} = 1 (mod p)
691
 *   a^{p-2} = a^{-1} (mod p)
692
 */
693
static void felem_inv(felem out, const felem in)
694
0
{
695
0
    felem ftmp, ftmp2, ftmp3, ftmp4;
696
0
    largefelem tmp;
697
0
    unsigned i;
698
699
0
    felem_square(tmp, in);
700
0
    felem_reduce(ftmp, tmp);    /* 2^1 */
701
0
    felem_mul(tmp, in, ftmp);
702
0
    felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
703
0
    felem_assign(ftmp2, ftmp);
704
0
    felem_square(tmp, ftmp);
705
0
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
706
0
    felem_mul(tmp, in, ftmp);
707
0
    felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
708
0
    felem_square(tmp, ftmp);
709
0
    felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
710
711
0
    felem_square(tmp, ftmp2);
712
0
    felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
713
0
    felem_square(tmp, ftmp3);
714
0
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
715
0
    felem_mul(tmp, ftmp3, ftmp2);
716
0
    felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
717
718
0
    felem_assign(ftmp2, ftmp3);
719
0
    felem_square(tmp, ftmp3);
720
0
    felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
721
0
    felem_square(tmp, ftmp3);
722
0
    felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
723
0
    felem_square(tmp, ftmp3);
724
0
    felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
725
0
    felem_square(tmp, ftmp3);
726
0
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
727
0
    felem_assign(ftmp4, ftmp3);
728
0
    felem_mul(tmp, ftmp3, ftmp);
729
0
    felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
730
0
    felem_square(tmp, ftmp4);
731
0
    felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
732
0
    felem_mul(tmp, ftmp3, ftmp2);
733
0
    felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
734
0
    felem_assign(ftmp2, ftmp3);
735
736
0
    for (i = 0; i < 8; i++) {
737
0
        felem_square(tmp, ftmp3);
738
0
        felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
739
0
    }
740
0
    felem_mul(tmp, ftmp3, ftmp2);
741
0
    felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
742
0
    felem_assign(ftmp2, ftmp3);
743
744
0
    for (i = 0; i < 16; i++) {
745
0
        felem_square(tmp, ftmp3);
746
0
        felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
747
0
    }
748
0
    felem_mul(tmp, ftmp3, ftmp2);
749
0
    felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
750
0
    felem_assign(ftmp2, ftmp3);
751
752
0
    for (i = 0; i < 32; i++) {
753
0
        felem_square(tmp, ftmp3);
754
0
        felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
755
0
    }
756
0
    felem_mul(tmp, ftmp3, ftmp2);
757
0
    felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
758
0
    felem_assign(ftmp2, ftmp3);
759
760
0
    for (i = 0; i < 64; i++) {
761
0
        felem_square(tmp, ftmp3);
762
0
        felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
763
0
    }
764
0
    felem_mul(tmp, ftmp3, ftmp2);
765
0
    felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
766
0
    felem_assign(ftmp2, ftmp3);
767
768
0
    for (i = 0; i < 128; i++) {
769
0
        felem_square(tmp, ftmp3);
770
0
        felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
771
0
    }
772
0
    felem_mul(tmp, ftmp3, ftmp2);
773
0
    felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
774
0
    felem_assign(ftmp2, ftmp3);
775
776
0
    for (i = 0; i < 256; i++) {
777
0
        felem_square(tmp, ftmp3);
778
0
        felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
779
0
    }
780
0
    felem_mul(tmp, ftmp3, ftmp2);
781
0
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
782
783
0
    for (i = 0; i < 9; i++) {
784
0
        felem_square(tmp, ftmp3);
785
0
        felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
786
0
    }
787
0
    felem_mul(tmp, ftmp3, ftmp4);
788
0
    felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
789
0
    felem_mul(tmp, ftmp3, in);
790
0
    felem_reduce(out, tmp);     /* 2^512 - 3 */
791
0
}
792
793
/* This is 2^521-1, expressed as an felem */
794
static const felem kPrime = {
795
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
796
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
797
    0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
798
};
799
800
/*-
801
 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
802
 * otherwise.
803
 * On entry:
804
 *   in[i] < 2^59 + 2^14
805
 */
806
static limb felem_is_zero(const felem in)
807
0
{
808
0
    felem ftmp;
809
0
    limb is_zero, is_p;
810
0
    felem_assign(ftmp, in);
811
812
0
    ftmp[0] += ftmp[8] >> 57;
813
0
    ftmp[8] &= bottom57bits;
814
    /* ftmp[8] < 2^57 */
815
0
    ftmp[1] += ftmp[0] >> 58;
816
0
    ftmp[0] &= bottom58bits;
817
0
    ftmp[2] += ftmp[1] >> 58;
818
0
    ftmp[1] &= bottom58bits;
819
0
    ftmp[3] += ftmp[2] >> 58;
820
0
    ftmp[2] &= bottom58bits;
821
0
    ftmp[4] += ftmp[3] >> 58;
822
0
    ftmp[3] &= bottom58bits;
823
0
    ftmp[5] += ftmp[4] >> 58;
824
0
    ftmp[4] &= bottom58bits;
825
0
    ftmp[6] += ftmp[5] >> 58;
826
0
    ftmp[5] &= bottom58bits;
827
0
    ftmp[7] += ftmp[6] >> 58;
828
0
    ftmp[6] &= bottom58bits;
829
0
    ftmp[8] += ftmp[7] >> 58;
830
0
    ftmp[7] &= bottom58bits;
831
    /* ftmp[8] < 2^57 + 4 */
832
833
    /*
834
     * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
835
     * than our bound for ftmp[8]. Therefore we only have to check if the
836
     * zero is zero or 2^521-1.
837
     */
838
839
0
    is_zero = 0;
840
0
    is_zero |= ftmp[0];
841
0
    is_zero |= ftmp[1];
842
0
    is_zero |= ftmp[2];
843
0
    is_zero |= ftmp[3];
844
0
    is_zero |= ftmp[4];
845
0
    is_zero |= ftmp[5];
846
0
    is_zero |= ftmp[6];
847
0
    is_zero |= ftmp[7];
848
0
    is_zero |= ftmp[8];
849
850
0
    is_zero--;
851
    /*
852
     * We know that ftmp[i] < 2^63, therefore the only way that the top bit
853
     * can be set is if is_zero was 0 before the decrement.
854
     */
855
0
    is_zero = ((s64) is_zero) >> 63;
856
857
0
    is_p = ftmp[0] ^ kPrime[0];
858
0
    is_p |= ftmp[1] ^ kPrime[1];
859
0
    is_p |= ftmp[2] ^ kPrime[2];
860
0
    is_p |= ftmp[3] ^ kPrime[3];
861
0
    is_p |= ftmp[4] ^ kPrime[4];
862
0
    is_p |= ftmp[5] ^ kPrime[5];
863
0
    is_p |= ftmp[6] ^ kPrime[6];
864
0
    is_p |= ftmp[7] ^ kPrime[7];
865
0
    is_p |= ftmp[8] ^ kPrime[8];
866
867
0
    is_p--;
868
0
    is_p = ((s64) is_p) >> 63;
869
870
0
    is_zero |= is_p;
871
0
    return is_zero;
872
0
}
873
874
static int felem_is_zero_int(const void *in)
875
0
{
876
0
    return (int)(felem_is_zero(in) & ((limb) 1));
877
0
}
878
879
/*-
880
 * felem_contract converts |in| to its unique, minimal representation.
881
 * On entry:
882
 *   in[i] < 2^59 + 2^14
883
 */
884
static void felem_contract(felem out, const felem in)
885
0
{
886
0
    limb is_p, is_greater, sign;
887
0
    static const limb two58 = ((limb) 1) << 58;
888
889
0
    felem_assign(out, in);
890
891
0
    out[0] += out[8] >> 57;
892
0
    out[8] &= bottom57bits;
893
    /* out[8] < 2^57 */
894
0
    out[1] += out[0] >> 58;
895
0
    out[0] &= bottom58bits;
896
0
    out[2] += out[1] >> 58;
897
0
    out[1] &= bottom58bits;
898
0
    out[3] += out[2] >> 58;
899
0
    out[2] &= bottom58bits;
900
0
    out[4] += out[3] >> 58;
901
0
    out[3] &= bottom58bits;
902
0
    out[5] += out[4] >> 58;
903
0
    out[4] &= bottom58bits;
904
0
    out[6] += out[5] >> 58;
905
0
    out[5] &= bottom58bits;
906
0
    out[7] += out[6] >> 58;
907
0
    out[6] &= bottom58bits;
908
0
    out[8] += out[7] >> 58;
909
0
    out[7] &= bottom58bits;
910
    /* out[8] < 2^57 + 4 */
911
912
    /*
913
     * If the value is greater than 2^521-1 then we have to subtract 2^521-1
914
     * out. See the comments in felem_is_zero regarding why we don't test for
915
     * other multiples of the prime.
916
     */
917
918
    /*
919
     * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
920
     */
921
922
0
    is_p = out[0] ^ kPrime[0];
923
0
    is_p |= out[1] ^ kPrime[1];
924
0
    is_p |= out[2] ^ kPrime[2];
925
0
    is_p |= out[3] ^ kPrime[3];
926
0
    is_p |= out[4] ^ kPrime[4];
927
0
    is_p |= out[5] ^ kPrime[5];
928
0
    is_p |= out[6] ^ kPrime[6];
929
0
    is_p |= out[7] ^ kPrime[7];
930
0
    is_p |= out[8] ^ kPrime[8];
931
932
0
    is_p--;
933
0
    is_p &= is_p << 32;
934
0
    is_p &= is_p << 16;
935
0
    is_p &= is_p << 8;
936
0
    is_p &= is_p << 4;
937
0
    is_p &= is_p << 2;
938
0
    is_p &= is_p << 1;
939
0
    is_p = ((s64) is_p) >> 63;
940
0
    is_p = ~is_p;
941
942
    /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
943
944
0
    out[0] &= is_p;
945
0
    out[1] &= is_p;
946
0
    out[2] &= is_p;
947
0
    out[3] &= is_p;
948
0
    out[4] &= is_p;
949
0
    out[5] &= is_p;
950
0
    out[6] &= is_p;
951
0
    out[7] &= is_p;
952
0
    out[8] &= is_p;
953
954
    /*
955
     * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
956
     * 57 is greater than zero as (2^521-1) + x >= 2^522
957
     */
958
0
    is_greater = out[8] >> 57;
959
0
    is_greater |= is_greater << 32;
960
0
    is_greater |= is_greater << 16;
961
0
    is_greater |= is_greater << 8;
962
0
    is_greater |= is_greater << 4;
963
0
    is_greater |= is_greater << 2;
964
0
    is_greater |= is_greater << 1;
965
0
    is_greater = ((s64) is_greater) >> 63;
966
967
0
    out[0] -= kPrime[0] & is_greater;
968
0
    out[1] -= kPrime[1] & is_greater;
969
0
    out[2] -= kPrime[2] & is_greater;
970
0
    out[3] -= kPrime[3] & is_greater;
971
0
    out[4] -= kPrime[4] & is_greater;
972
0
    out[5] -= kPrime[5] & is_greater;
973
0
    out[6] -= kPrime[6] & is_greater;
974
0
    out[7] -= kPrime[7] & is_greater;
975
0
    out[8] -= kPrime[8] & is_greater;
976
977
    /* Eliminate negative coefficients */
978
0
    sign = -(out[0] >> 63);
979
0
    out[0] += (two58 & sign);
980
0
    out[1] -= (1 & sign);
981
0
    sign = -(out[1] >> 63);
982
0
    out[1] += (two58 & sign);
983
0
    out[2] -= (1 & sign);
984
0
    sign = -(out[2] >> 63);
985
0
    out[2] += (two58 & sign);
986
0
    out[3] -= (1 & sign);
987
0
    sign = -(out[3] >> 63);
988
0
    out[3] += (two58 & sign);
989
0
    out[4] -= (1 & sign);
990
0
    sign = -(out[4] >> 63);
991
0
    out[4] += (two58 & sign);
992
0
    out[5] -= (1 & sign);
993
0
    sign = -(out[0] >> 63);
994
0
    out[5] += (two58 & sign);
995
0
    out[6] -= (1 & sign);
996
0
    sign = -(out[6] >> 63);
997
0
    out[6] += (two58 & sign);
998
0
    out[7] -= (1 & sign);
999
0
    sign = -(out[7] >> 63);
1000
0
    out[7] += (two58 & sign);
1001
0
    out[8] -= (1 & sign);
1002
0
    sign = -(out[5] >> 63);
1003
0
    out[5] += (two58 & sign);
1004
0
    out[6] -= (1 & sign);
1005
0
    sign = -(out[6] >> 63);
1006
0
    out[6] += (two58 & sign);
1007
0
    out[7] -= (1 & sign);
1008
0
    sign = -(out[7] >> 63);
1009
0
    out[7] += (two58 & sign);
1010
0
    out[8] -= (1 & sign);
1011
0
}
1012
1013
/*-
1014
 * Group operations
1015
 * ----------------
1016
 *
1017
 * Building on top of the field operations we have the operations on the
1018
 * elliptic curve group itself. Points on the curve are represented in Jacobian
1019
 * coordinates */
1020
1021
/*-
1022
 * point_double calcuates 2*(x_in, y_in, z_in)
1023
 *
1024
 * The method is taken from:
1025
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1026
 *
1027
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1028
 * while x_out == y_in is not (maybe this works, but it's not tested). */
1029
static void
1030
point_double(felem x_out, felem y_out, felem z_out,
1031
             const felem x_in, const felem y_in, const felem z_in)
1032
0
{
1033
0
    largefelem tmp, tmp2;
1034
0
    felem delta, gamma, beta, alpha, ftmp, ftmp2;
1035
1036
0
    felem_assign(ftmp, x_in);
1037
0
    felem_assign(ftmp2, x_in);
1038
1039
    /* delta = z^2 */
1040
0
    felem_square(tmp, z_in);
1041
0
    felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1042
1043
    /* gamma = y^2 */
1044
0
    felem_square(tmp, y_in);
1045
0
    felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1046
1047
    /* beta = x*gamma */
1048
0
    felem_mul(tmp, x_in, gamma);
1049
0
    felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1050
1051
    /* alpha = 3*(x-delta)*(x+delta) */
1052
0
    felem_diff64(ftmp, delta);
1053
    /* ftmp[i] < 2^61 */
1054
0
    felem_sum64(ftmp2, delta);
1055
    /* ftmp2[i] < 2^60 + 2^15 */
1056
0
    felem_scalar64(ftmp2, 3);
1057
    /* ftmp2[i] < 3*2^60 + 3*2^15 */
1058
0
    felem_mul(tmp, ftmp, ftmp2);
1059
    /*-
1060
     * tmp[i] < 17(3*2^121 + 3*2^76)
1061
     *        = 61*2^121 + 61*2^76
1062
     *        < 64*2^121 + 64*2^76
1063
     *        = 2^127 + 2^82
1064
     *        < 2^128
1065
     */
1066
0
    felem_reduce(alpha, tmp);
1067
1068
    /* x' = alpha^2 - 8*beta */
1069
0
    felem_square(tmp, alpha);
1070
    /*
1071
     * tmp[i] < 17*2^120 < 2^125
1072
     */
1073
0
    felem_assign(ftmp, beta);
1074
0
    felem_scalar64(ftmp, 8);
1075
    /* ftmp[i] < 2^62 + 2^17 */
1076
0
    felem_diff_128_64(tmp, ftmp);
1077
    /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1078
0
    felem_reduce(x_out, tmp);
1079
1080
    /* z' = (y + z)^2 - gamma - delta */
1081
0
    felem_sum64(delta, gamma);
1082
    /* delta[i] < 2^60 + 2^15 */
1083
0
    felem_assign(ftmp, y_in);
1084
0
    felem_sum64(ftmp, z_in);
1085
    /* ftmp[i] < 2^60 + 2^15 */
1086
0
    felem_square(tmp, ftmp);
1087
    /*
1088
     * tmp[i] < 17(2^122) < 2^127
1089
     */
1090
0
    felem_diff_128_64(tmp, delta);
1091
    /* tmp[i] < 2^127 + 2^63 */
1092
0
    felem_reduce(z_out, tmp);
1093
1094
    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1095
0
    felem_scalar64(beta, 4);
1096
    /* beta[i] < 2^61 + 2^16 */
1097
0
    felem_diff64(beta, x_out);
1098
    /* beta[i] < 2^61 + 2^60 + 2^16 */
1099
0
    felem_mul(tmp, alpha, beta);
1100
    /*-
1101
     * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1102
     *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1103
     *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1104
     *        < 2^128
1105
     */
1106
0
    felem_square(tmp2, gamma);
1107
    /*-
1108
     * tmp2[i] < 17*(2^59 + 2^14)^2
1109
     *         = 17*(2^118 + 2^74 + 2^28)
1110
     */
1111
0
    felem_scalar128(tmp2, 8);
1112
    /*-
1113
     * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1114
     *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1115
     *         < 2^126
1116
     */
1117
0
    felem_diff128(tmp, tmp2);
1118
    /*-
1119
     * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1120
     *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1121
     *          2^74 + 2^69 + 2^34 + 2^30
1122
     *        < 2^128
1123
     */
1124
0
    felem_reduce(y_out, tmp);
1125
0
}
1126
1127
/* copy_conditional copies in to out iff mask is all ones. */
1128
static void copy_conditional(felem out, const felem in, limb mask)
1129
0
{
1130
0
    unsigned i;
1131
0
    for (i = 0; i < NLIMBS; ++i) {
1132
0
        const limb tmp = mask & (in[i] ^ out[i]);
1133
0
        out[i] ^= tmp;
1134
0
    }
1135
0
}
1136
1137
/*-
1138
 * point_add calcuates (x1, y1, z1) + (x2, y2, z2)
1139
 *
1140
 * The method is taken from
1141
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1142
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1143
 *
1144
 * This function includes a branch for checking whether the two input points
1145
 * are equal (while not equal to the point at infinity). This case never
1146
 * happens during single point multiplication, so there is no timing leak for
1147
 * ECDH or ECDSA signing. */
1148
static void point_add(felem x3, felem y3, felem z3,
1149
                      const felem x1, const felem y1, const felem z1,
1150
                      const int mixed, const felem x2, const felem y2,
1151
                      const felem z2)
1152
0
{
1153
0
    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1154
0
    largefelem tmp, tmp2;
1155
0
    limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1156
1157
0
    z1_is_zero = felem_is_zero(z1);
1158
0
    z2_is_zero = felem_is_zero(z2);
1159
1160
    /* ftmp = z1z1 = z1**2 */
1161
0
    felem_square(tmp, z1);
1162
0
    felem_reduce(ftmp, tmp);
1163
1164
0
    if (!mixed) {
1165
        /* ftmp2 = z2z2 = z2**2 */
1166
0
        felem_square(tmp, z2);
1167
0
        felem_reduce(ftmp2, tmp);
1168
1169
        /* u1 = ftmp3 = x1*z2z2 */
1170
0
        felem_mul(tmp, x1, ftmp2);
1171
0
        felem_reduce(ftmp3, tmp);
1172
1173
        /* ftmp5 = z1 + z2 */
1174
0
        felem_assign(ftmp5, z1);
1175
0
        felem_sum64(ftmp5, z2);
1176
        /* ftmp5[i] < 2^61 */
1177
1178
        /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1179
0
        felem_square(tmp, ftmp5);
1180
        /* tmp[i] < 17*2^122 */
1181
0
        felem_diff_128_64(tmp, ftmp);
1182
        /* tmp[i] < 17*2^122 + 2^63 */
1183
0
        felem_diff_128_64(tmp, ftmp2);
1184
        /* tmp[i] < 17*2^122 + 2^64 */
1185
0
        felem_reduce(ftmp5, tmp);
1186
1187
        /* ftmp2 = z2 * z2z2 */
1188
0
        felem_mul(tmp, ftmp2, z2);
1189
0
        felem_reduce(ftmp2, tmp);
1190
1191
        /* s1 = ftmp6 = y1 * z2**3 */
1192
0
        felem_mul(tmp, y1, ftmp2);
1193
0
        felem_reduce(ftmp6, tmp);
1194
0
    } else {
1195
        /*
1196
         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1197
         */
1198
1199
        /* u1 = ftmp3 = x1*z2z2 */
1200
0
        felem_assign(ftmp3, x1);
1201
1202
        /* ftmp5 = 2*z1z2 */
1203
0
        felem_scalar(ftmp5, z1, 2);
1204
1205
        /* s1 = ftmp6 = y1 * z2**3 */
1206
0
        felem_assign(ftmp6, y1);
1207
0
    }
1208
1209
    /* u2 = x2*z1z1 */
1210
0
    felem_mul(tmp, x2, ftmp);
1211
    /* tmp[i] < 17*2^120 */
1212
1213
    /* h = ftmp4 = u2 - u1 */
1214
0
    felem_diff_128_64(tmp, ftmp3);
1215
    /* tmp[i] < 17*2^120 + 2^63 */
1216
0
    felem_reduce(ftmp4, tmp);
1217
1218
0
    x_equal = felem_is_zero(ftmp4);
1219
1220
    /* z_out = ftmp5 * h */
1221
0
    felem_mul(tmp, ftmp5, ftmp4);
1222
0
    felem_reduce(z_out, tmp);
1223
1224
    /* ftmp = z1 * z1z1 */
1225
0
    felem_mul(tmp, ftmp, z1);
1226
0
    felem_reduce(ftmp, tmp);
1227
1228
    /* s2 = tmp = y2 * z1**3 */
1229
0
    felem_mul(tmp, y2, ftmp);
1230
    /* tmp[i] < 17*2^120 */
1231
1232
    /* r = ftmp5 = (s2 - s1)*2 */
1233
0
    felem_diff_128_64(tmp, ftmp6);
1234
    /* tmp[i] < 17*2^120 + 2^63 */
1235
0
    felem_reduce(ftmp5, tmp);
1236
0
    y_equal = felem_is_zero(ftmp5);
1237
0
    felem_scalar64(ftmp5, 2);
1238
    /* ftmp5[i] < 2^61 */
1239
1240
0
    if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
1241
0
        point_double(x3, y3, z3, x1, y1, z1);
1242
0
        return;
1243
0
    }
1244
1245
    /* I = ftmp = (2h)**2 */
1246
0
    felem_assign(ftmp, ftmp4);
1247
0
    felem_scalar64(ftmp, 2);
1248
    /* ftmp[i] < 2^61 */
1249
0
    felem_square(tmp, ftmp);
1250
    /* tmp[i] < 17*2^122 */
1251
0
    felem_reduce(ftmp, tmp);
1252
1253
    /* J = ftmp2 = h * I */
1254
0
    felem_mul(tmp, ftmp4, ftmp);
1255
0
    felem_reduce(ftmp2, tmp);
1256
1257
    /* V = ftmp4 = U1 * I */
1258
0
    felem_mul(tmp, ftmp3, ftmp);
1259
0
    felem_reduce(ftmp4, tmp);
1260
1261
    /* x_out = r**2 - J - 2V */
1262
0
    felem_square(tmp, ftmp5);
1263
    /* tmp[i] < 17*2^122 */
1264
0
    felem_diff_128_64(tmp, ftmp2);
1265
    /* tmp[i] < 17*2^122 + 2^63 */
1266
0
    felem_assign(ftmp3, ftmp4);
1267
0
    felem_scalar64(ftmp4, 2);
1268
    /* ftmp4[i] < 2^61 */
1269
0
    felem_diff_128_64(tmp, ftmp4);
1270
    /* tmp[i] < 17*2^122 + 2^64 */
1271
0
    felem_reduce(x_out, tmp);
1272
1273
    /* y_out = r(V-x_out) - 2 * s1 * J */
1274
0
    felem_diff64(ftmp3, x_out);
1275
    /*
1276
     * ftmp3[i] < 2^60 + 2^60 = 2^61
1277
     */
1278
0
    felem_mul(tmp, ftmp5, ftmp3);
1279
    /* tmp[i] < 17*2^122 */
1280
0
    felem_mul(tmp2, ftmp6, ftmp2);
1281
    /* tmp2[i] < 17*2^120 */
1282
0
    felem_scalar128(tmp2, 2);
1283
    /* tmp2[i] < 17*2^121 */
1284
0
    felem_diff128(tmp, tmp2);
1285
        /*-
1286
         * tmp[i] < 2^127 - 2^69 + 17*2^122
1287
         *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1288
         *        < 2^127
1289
         */
1290
0
    felem_reduce(y_out, tmp);
1291
1292
0
    copy_conditional(x_out, x2, z1_is_zero);
1293
0
    copy_conditional(x_out, x1, z2_is_zero);
1294
0
    copy_conditional(y_out, y2, z1_is_zero);
1295
0
    copy_conditional(y_out, y1, z2_is_zero);
1296
0
    copy_conditional(z_out, z2, z1_is_zero);
1297
0
    copy_conditional(z_out, z1, z2_is_zero);
1298
0
    felem_assign(x3, x_out);
1299
0
    felem_assign(y3, y_out);
1300
0
    felem_assign(z3, z_out);
1301
0
}
1302
1303
/*-
1304
 * Base point pre computation
1305
 * --------------------------
1306
 *
1307
 * Two different sorts of precomputed tables are used in the following code.
1308
 * Each contain various points on the curve, where each point is three field
1309
 * elements (x, y, z).
1310
 *
1311
 * For the base point table, z is usually 1 (0 for the point at infinity).
1312
 * This table has 16 elements:
1313
 * index | bits    | point
1314
 * ------+---------+------------------------------
1315
 *     0 | 0 0 0 0 | 0G
1316
 *     1 | 0 0 0 1 | 1G
1317
 *     2 | 0 0 1 0 | 2^130G
1318
 *     3 | 0 0 1 1 | (2^130 + 1)G
1319
 *     4 | 0 1 0 0 | 2^260G
1320
 *     5 | 0 1 0 1 | (2^260 + 1)G
1321
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
1322
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1323
 *     8 | 1 0 0 0 | 2^390G
1324
 *     9 | 1 0 0 1 | (2^390 + 1)G
1325
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
1326
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1327
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
1328
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1329
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1330
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1331
 *
1332
 * The reason for this is so that we can clock bits into four different
1333
 * locations when doing simple scalar multiplies against the base point.
1334
 *
1335
 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1336
1337
/* gmul is the table of precomputed base points */
1338
static const felem gmul[16][3] = { {{0, 0, 0, 0, 0, 0, 0, 0, 0},
1339
                                    {0, 0, 0, 0, 0, 0, 0, 0, 0},
1340
                                    {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1341
{{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1342
  0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1343
  0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1344
 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1345
  0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1346
  0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1347
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1348
{{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1349
  0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1350
  0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1351
 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1352
  0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1353
  0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1354
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1355
{{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1356
  0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1357
  0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1358
 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1359
  0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1360
  0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1361
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1362
{{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1363
  0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1364
  0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1365
 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1366
  0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1367
  0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1368
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1369
{{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1370
  0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1371
  0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1372
 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1373
  0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1374
  0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1375
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1376
{{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1377
  0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1378
  0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1379
 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1380
  0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1381
  0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1382
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1383
{{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1384
  0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1385
  0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1386
 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1387
  0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1388
  0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1389
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1390
{{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1391
  0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1392
  0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1393
 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1394
  0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1395
  0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1396
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1397
{{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1398
  0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1399
  0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1400
 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1401
  0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1402
  0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1403
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1404
{{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1405
  0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1406
  0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1407
 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1408
  0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1409
  0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1410
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1411
{{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1412
  0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1413
  0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1414
 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1415
  0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1416
  0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1417
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1418
{{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1419
  0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1420
  0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1421
 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1422
  0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1423
  0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1424
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1425
{{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1426
  0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1427
  0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1428
 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1429
  0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1430
  0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1431
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1432
{{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1433
  0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1434
  0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1435
 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1436
  0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1437
  0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1438
 {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1439
{{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1440
  0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1441
  0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1442
 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1443
  0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1444
  0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1445
 {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1446
};
1447
1448
/*
1449
 * select_point selects the |idx|th point from a precomputation table and
1450
 * copies it to out.
1451
 */
1452
 /* pre_comp below is of the size provided in |size| */
1453
static void select_point(const limb idx, unsigned int size,
1454
                         const felem pre_comp[][3], felem out[3])
1455
0
{
1456
0
    unsigned i, j;
1457
0
    limb *outlimbs = &out[0][0];
1458
0
    memset(outlimbs, 0, 3 * sizeof(felem));
1459
1460
0
    for (i = 0; i < size; i++) {
1461
0
        const limb *inlimbs = &pre_comp[i][0][0];
1462
0
        limb mask = i ^ idx;
1463
0
        mask |= mask >> 4;
1464
0
        mask |= mask >> 2;
1465
0
        mask |= mask >> 1;
1466
0
        mask &= 1;
1467
0
        mask--;
1468
0
        for (j = 0; j < NLIMBS * 3; j++)
1469
0
            outlimbs[j] |= inlimbs[j] & mask;
1470
0
    }
1471
0
}
1472
1473
/* get_bit returns the |i|th bit in |in| */
1474
static char get_bit(const felem_bytearray in, int i)
1475
0
{
1476
0
    if (i < 0)
1477
0
        return 0;
1478
0
    return (in[i >> 3] >> (i & 7)) & 1;
1479
0
}
1480
1481
/*
1482
 * Interleaved point multiplication using precomputed point multiples: The
1483
 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1484
 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1485
 * generator, using certain (large) precomputed multiples in g_pre_comp.
1486
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1487
 */
1488
static void batch_mul(felem x_out, felem y_out, felem z_out,
1489
                      const felem_bytearray scalars[],
1490
                      const unsigned num_points, const u8 *g_scalar,
1491
                      const int mixed, const felem pre_comp[][17][3],
1492
                      const felem g_pre_comp[16][3])
1493
0
{
1494
0
    int i, skip;
1495
0
    unsigned num, gen_mul = (g_scalar != NULL);
1496
0
    felem nq[3], tmp[4];
1497
0
    limb bits;
1498
0
    u8 sign, digit;
1499
1500
    /* set nq to the point at infinity */
1501
0
    memset(nq, 0, 3 * sizeof(felem));
1502
1503
    /*
1504
     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1505
     * of the generator (last quarter of rounds) and additions of other
1506
     * points multiples (every 5th round).
1507
     */
1508
0
    skip = 1;                   /* save two point operations in the first
1509
                                 * round */
1510
0
    for (i = (num_points ? 520 : 130); i >= 0; --i) {
1511
        /* double */
1512
0
        if (!skip)
1513
0
            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1514
1515
        /* add multiples of the generator */
1516
0
        if (gen_mul && (i <= 130)) {
1517
0
            bits = get_bit(g_scalar, i + 390) << 3;
1518
0
            if (i < 130) {
1519
0
                bits |= get_bit(g_scalar, i + 260) << 2;
1520
0
                bits |= get_bit(g_scalar, i + 130) << 1;
1521
0
                bits |= get_bit(g_scalar, i);
1522
0
            }
1523
            /* select the point to add, in constant time */
1524
0
            select_point(bits, 16, g_pre_comp, tmp);
1525
0
            if (!skip) {
1526
                /* The 1 argument below is for "mixed" */
1527
0
                point_add(nq[0], nq[1], nq[2],
1528
0
                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1529
0
            } else {
1530
0
                memcpy(nq, tmp, 3 * sizeof(felem));
1531
0
                skip = 0;
1532
0
            }
1533
0
        }
1534
1535
        /* do other additions every 5 doublings */
1536
0
        if (num_points && (i % 5 == 0)) {
1537
            /* loop over all scalars */
1538
0
            for (num = 0; num < num_points; ++num) {
1539
0
                bits = get_bit(scalars[num], i + 4) << 5;
1540
0
                bits |= get_bit(scalars[num], i + 3) << 4;
1541
0
                bits |= get_bit(scalars[num], i + 2) << 3;
1542
0
                bits |= get_bit(scalars[num], i + 1) << 2;
1543
0
                bits |= get_bit(scalars[num], i) << 1;
1544
0
                bits |= get_bit(scalars[num], i - 1);
1545
0
                ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1546
1547
                /*
1548
                 * select the point to add or subtract, in constant time
1549
                 */
1550
0
                select_point(digit, 17, pre_comp[num], tmp);
1551
0
                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1552
                                            * point */
1553
0
                copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1554
1555
0
                if (!skip) {
1556
0
                    point_add(nq[0], nq[1], nq[2],
1557
0
                              nq[0], nq[1], nq[2],
1558
0
                              mixed, tmp[0], tmp[1], tmp[2]);
1559
0
                } else {
1560
0
                    memcpy(nq, tmp, 3 * sizeof(felem));
1561
0
                    skip = 0;
1562
0
                }
1563
0
            }
1564
0
        }
1565
0
    }
1566
0
    felem_assign(x_out, nq[0]);
1567
0
    felem_assign(y_out, nq[1]);
1568
0
    felem_assign(z_out, nq[2]);
1569
0
}
1570
1571
/* Precomputation for the group generator. */
1572
typedef struct {
1573
    felem g_pre_comp[16][3];
1574
    int references;
1575
} NISTP521_PRE_COMP;
1576
1577
const EC_METHOD *EC_GFp_nistp521_method(void)
1578
0
{
1579
0
    static const EC_METHOD ret = {
1580
0
        EC_FLAGS_DEFAULT_OCT,
1581
0
        NID_X9_62_prime_field,
1582
0
        ec_GFp_nistp521_group_init,
1583
0
        ec_GFp_simple_group_finish,
1584
0
        ec_GFp_simple_group_clear_finish,
1585
0
        ec_GFp_nist_group_copy,
1586
0
        ec_GFp_nistp521_group_set_curve,
1587
0
        ec_GFp_simple_group_get_curve,
1588
0
        ec_GFp_simple_group_get_degree,
1589
0
        ec_GFp_simple_group_check_discriminant,
1590
0
        ec_GFp_simple_point_init,
1591
0
        ec_GFp_simple_point_finish,
1592
0
        ec_GFp_simple_point_clear_finish,
1593
0
        ec_GFp_simple_point_copy,
1594
0
        ec_GFp_simple_point_set_to_infinity,
1595
0
        ec_GFp_simple_set_Jprojective_coordinates_GFp,
1596
0
        ec_GFp_simple_get_Jprojective_coordinates_GFp,
1597
0
        ec_GFp_simple_point_set_affine_coordinates,
1598
0
        ec_GFp_nistp521_point_get_affine_coordinates,
1599
0
        0 /* point_set_compressed_coordinates */ ,
1600
0
        0 /* point2oct */ ,
1601
0
        0 /* oct2point */ ,
1602
0
        ec_GFp_simple_add,
1603
0
        ec_GFp_simple_dbl,
1604
0
        ec_GFp_simple_invert,
1605
0
        ec_GFp_simple_is_at_infinity,
1606
0
        ec_GFp_simple_is_on_curve,
1607
0
        ec_GFp_simple_cmp,
1608
0
        ec_GFp_simple_make_affine,
1609
0
        ec_GFp_simple_points_make_affine,
1610
0
        ec_GFp_nistp521_points_mul,
1611
0
        ec_GFp_nistp521_precompute_mult,
1612
0
        ec_GFp_nistp521_have_precompute_mult,
1613
0
        ec_GFp_nist_field_mul,
1614
0
        ec_GFp_nist_field_sqr,
1615
0
        0 /* field_div */ ,
1616
0
        0 /* field_encode */ ,
1617
0
        0 /* field_decode */ ,
1618
0
        0                       /* field_set_to_one */
1619
0
    };
1620
1621
0
    return &ret;
1622
0
}
1623
1624
/******************************************************************************/
1625
/*
1626
 * FUNCTIONS TO MANAGE PRECOMPUTATION
1627
 */
1628
1629
static NISTP521_PRE_COMP *nistp521_pre_comp_new()
1630
0
{
1631
0
    NISTP521_PRE_COMP *ret = NULL;
1632
0
    ret = (NISTP521_PRE_COMP *) OPENSSL_malloc(sizeof(NISTP521_PRE_COMP));
1633
0
    if (!ret) {
1634
0
        ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1635
0
        return ret;
1636
0
    }
1637
0
    memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp));
1638
0
    ret->references = 1;
1639
0
    return ret;
1640
0
}
1641
1642
static void *nistp521_pre_comp_dup(void *src_)
1643
0
{
1644
0
    NISTP521_PRE_COMP *src = src_;
1645
1646
    /* no need to actually copy, these objects never change! */
1647
0
    CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
1648
1649
0
    return src_;
1650
0
}
1651
1652
static void nistp521_pre_comp_free(void *pre_)
1653
0
{
1654
0
    int i;
1655
0
    NISTP521_PRE_COMP *pre = pre_;
1656
1657
0
    if (!pre)
1658
0
        return;
1659
1660
0
    i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
1661
0
    if (i > 0)
1662
0
        return;
1663
1664
0
    OPENSSL_free(pre);
1665
0
}
1666
1667
static void nistp521_pre_comp_clear_free(void *pre_)
1668
0
{
1669
0
    int i;
1670
0
    NISTP521_PRE_COMP *pre = pre_;
1671
1672
0
    if (!pre)
1673
0
        return;
1674
1675
0
    i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
1676
0
    if (i > 0)
1677
0
        return;
1678
1679
0
    OPENSSL_cleanse(pre, sizeof(*pre));
1680
0
    OPENSSL_free(pre);
1681
0
}
1682
1683
/******************************************************************************/
1684
/*
1685
 * OPENSSL EC_METHOD FUNCTIONS
1686
 */
1687
1688
int ec_GFp_nistp521_group_init(EC_GROUP *group)
1689
0
{
1690
0
    int ret;
1691
0
    ret = ec_GFp_simple_group_init(group);
1692
0
    group->a_is_minus3 = 1;
1693
0
    return ret;
1694
0
}
1695
1696
int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1697
                                    const BIGNUM *a, const BIGNUM *b,
1698
                                    BN_CTX *ctx)
1699
0
{
1700
0
    int ret = 0;
1701
0
    BN_CTX *new_ctx = NULL;
1702
0
    BIGNUM *curve_p, *curve_a, *curve_b;
1703
1704
0
    if (ctx == NULL)
1705
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1706
0
            return 0;
1707
0
    BN_CTX_start(ctx);
1708
0
    if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
1709
0
        ((curve_a = BN_CTX_get(ctx)) == NULL) ||
1710
0
        ((curve_b = BN_CTX_get(ctx)) == NULL))
1711
0
        goto err;
1712
0
    BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1713
0
    BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1714
0
    BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1715
0
    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1716
0
        ECerr(EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE,
1717
0
              EC_R_WRONG_CURVE_PARAMETERS);
1718
0
        goto err;
1719
0
    }
1720
0
    group->field_mod_func = BN_nist_mod_521;
1721
0
    ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1722
0
 err:
1723
0
    BN_CTX_end(ctx);
1724
0
    if (new_ctx != NULL)
1725
0
        BN_CTX_free(new_ctx);
1726
0
    return ret;
1727
0
}
1728
1729
/*
1730
 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1731
 * (X/Z^2, Y/Z^3)
1732
 */
1733
int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1734
                                                 const EC_POINT *point,
1735
                                                 BIGNUM *x, BIGNUM *y,
1736
                                                 BN_CTX *ctx)
1737
0
{
1738
0
    felem z1, z2, x_in, y_in, x_out, y_out;
1739
0
    largefelem tmp;
1740
1741
0
    if (EC_POINT_is_at_infinity(group, point)) {
1742
0
        ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1743
0
              EC_R_POINT_AT_INFINITY);
1744
0
        return 0;
1745
0
    }
1746
0
    if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) ||
1747
0
        (!BN_to_felem(z1, &point->Z)))
1748
0
        return 0;
1749
0
    felem_inv(z2, z1);
1750
0
    felem_square(tmp, z2);
1751
0
    felem_reduce(z1, tmp);
1752
0
    felem_mul(tmp, x_in, z1);
1753
0
    felem_reduce(x_in, tmp);
1754
0
    felem_contract(x_out, x_in);
1755
0
    if (x != NULL) {
1756
0
        if (!felem_to_BN(x, x_out)) {
1757
0
            ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1758
0
                  ERR_R_BN_LIB);
1759
0
            return 0;
1760
0
        }
1761
0
    }
1762
0
    felem_mul(tmp, z1, z2);
1763
0
    felem_reduce(z1, tmp);
1764
0
    felem_mul(tmp, y_in, z1);
1765
0
    felem_reduce(y_in, tmp);
1766
0
    felem_contract(y_out, y_in);
1767
0
    if (y != NULL) {
1768
0
        if (!felem_to_BN(y, y_out)) {
1769
0
            ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1770
0
                  ERR_R_BN_LIB);
1771
0
            return 0;
1772
0
        }
1773
0
    }
1774
0
    return 1;
1775
0
}
1776
1777
/* points below is of size |num|, and tmp_felems is of size |num+1/ */
1778
static void make_points_affine(size_t num, felem points[][3],
1779
                               felem tmp_felems[])
1780
0
{
1781
    /*
1782
     * Runs in constant time, unless an input is the point at infinity (which
1783
     * normally shouldn't happen).
1784
     */
1785
0
    ec_GFp_nistp_points_make_affine_internal(num,
1786
0
                                             points,
1787
0
                                             sizeof(felem),
1788
0
                                             tmp_felems,
1789
0
                                             (void (*)(void *))felem_one,
1790
0
                                             felem_is_zero_int,
1791
0
                                             (void (*)(void *, const void *))
1792
0
                                             felem_assign,
1793
0
                                             (void (*)(void *, const void *))
1794
0
                                             felem_square_reduce, (void (*)
1795
0
                                                                   (void *,
1796
0
                                                                    const void
1797
0
                                                                    *,
1798
0
                                                                    const void
1799
0
                                                                    *))
1800
0
                                             felem_mul_reduce,
1801
0
                                             (void (*)(void *, const void *))
1802
0
                                             felem_inv,
1803
0
                                             (void (*)(void *, const void *))
1804
0
                                             felem_contract);
1805
0
}
1806
1807
/*
1808
 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1809
 * values Result is stored in r (r can equal one of the inputs).
1810
 */
1811
int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1812
                               const BIGNUM *scalar, size_t num,
1813
                               const EC_POINT *points[],
1814
                               const BIGNUM *scalars[], BN_CTX *ctx)
1815
0
{
1816
0
    int ret = 0;
1817
0
    int j;
1818
0
    int mixed = 0;
1819
0
    BN_CTX *new_ctx = NULL;
1820
0
    BIGNUM *x, *y, *z, *tmp_scalar;
1821
0
    felem_bytearray g_secret;
1822
0
    felem_bytearray *secrets = NULL;
1823
0
    felem(*pre_comp)[17][3] = NULL;
1824
0
    felem *tmp_felems = NULL;
1825
0
    felem_bytearray tmp;
1826
0
    unsigned i, num_bytes;
1827
0
    int have_pre_comp = 0;
1828
0
    size_t num_points = num;
1829
0
    felem x_in, y_in, z_in, x_out, y_out, z_out;
1830
0
    NISTP521_PRE_COMP *pre = NULL;
1831
0
    felem(*g_pre_comp)[3] = NULL;
1832
0
    EC_POINT *generator = NULL;
1833
0
    const EC_POINT *p = NULL;
1834
0
    const BIGNUM *p_scalar = NULL;
1835
1836
0
    if (ctx == NULL)
1837
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1838
0
            return 0;
1839
0
    BN_CTX_start(ctx);
1840
0
    if (((x = BN_CTX_get(ctx)) == NULL) ||
1841
0
        ((y = BN_CTX_get(ctx)) == NULL) ||
1842
0
        ((z = BN_CTX_get(ctx)) == NULL) ||
1843
0
        ((tmp_scalar = BN_CTX_get(ctx)) == NULL))
1844
0
        goto err;
1845
1846
0
    if (scalar != NULL) {
1847
0
        pre = EC_EX_DATA_get_data(group->extra_data,
1848
0
                                  nistp521_pre_comp_dup,
1849
0
                                  nistp521_pre_comp_free,
1850
0
                                  nistp521_pre_comp_clear_free);
1851
0
        if (pre)
1852
            /* we have precomputation, try to use it */
1853
0
            g_pre_comp = &pre->g_pre_comp[0];
1854
0
        else
1855
            /* try to use the standard precomputation */
1856
0
            g_pre_comp = (felem(*)[3]) gmul;
1857
0
        generator = EC_POINT_new(group);
1858
0
        if (generator == NULL)
1859
0
            goto err;
1860
        /* get the generator from precomputation */
1861
0
        if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1862
0
            !felem_to_BN(y, g_pre_comp[1][1]) ||
1863
0
            !felem_to_BN(z, g_pre_comp[1][2])) {
1864
0
            ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1865
0
            goto err;
1866
0
        }
1867
0
        if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1868
0
                                                      generator, x, y, z,
1869
0
                                                      ctx))
1870
0
            goto err;
1871
0
        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1872
            /* precomputation matches generator */
1873
0
            have_pre_comp = 1;
1874
0
        else
1875
            /*
1876
             * we don't have valid precomputation: treat the generator as a
1877
             * random point
1878
             */
1879
0
            num_points++;
1880
0
    }
1881
1882
0
    if (num_points > 0) {
1883
0
        if (num_points >= 2) {
1884
            /*
1885
             * unless we precompute multiples for just one point, converting
1886
             * those into affine form is time well spent
1887
             */
1888
0
            mixed = 1;
1889
0
        }
1890
0
        secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
1891
0
        pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(felem));
1892
0
        if (mixed)
1893
0
            tmp_felems =
1894
0
                OPENSSL_malloc((num_points * 17 + 1) * sizeof(felem));
1895
0
        if ((secrets == NULL) || (pre_comp == NULL)
1896
0
            || (mixed && (tmp_felems == NULL))) {
1897
0
            ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1898
0
            goto err;
1899
0
        }
1900
1901
        /*
1902
         * we treat NULL scalars as 0, and NULL points as points at infinity,
1903
         * i.e., they contribute nothing to the linear combination
1904
         */
1905
0
        memset(secrets, 0, num_points * sizeof(felem_bytearray));
1906
0
        memset(pre_comp, 0, num_points * 17 * 3 * sizeof(felem));
1907
0
        for (i = 0; i < num_points; ++i) {
1908
0
            if (i == num)
1909
                /*
1910
                 * we didn't have a valid precomputation, so we pick the
1911
                 * generator
1912
                 */
1913
0
            {
1914
0
                p = EC_GROUP_get0_generator(group);
1915
0
                p_scalar = scalar;
1916
0
            } else
1917
                /* the i^th point */
1918
0
            {
1919
0
                p = points[i];
1920
0
                p_scalar = scalars[i];
1921
0
            }
1922
0
            if ((p_scalar != NULL) && (p != NULL)) {
1923
                /* reduce scalar to 0 <= scalar < 2^521 */
1924
0
                if ((BN_num_bits(p_scalar) > 521)
1925
0
                    || (BN_is_negative(p_scalar))) {
1926
                    /*
1927
                     * this is an unusual input, and we don't guarantee
1928
                     * constant-timeness
1929
                     */
1930
0
                    if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) {
1931
0
                        ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1932
0
                        goto err;
1933
0
                    }
1934
0
                    num_bytes = BN_bn2bin(tmp_scalar, tmp);
1935
0
                } else
1936
0
                    num_bytes = BN_bn2bin(p_scalar, tmp);
1937
0
                flip_endian(secrets[i], tmp, num_bytes);
1938
                /* precompute multiples */
1939
0
                if ((!BN_to_felem(x_out, &p->X)) ||
1940
0
                    (!BN_to_felem(y_out, &p->Y)) ||
1941
0
                    (!BN_to_felem(z_out, &p->Z)))
1942
0
                    goto err;
1943
0
                memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
1944
0
                memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
1945
0
                memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
1946
0
                for (j = 2; j <= 16; ++j) {
1947
0
                    if (j & 1) {
1948
0
                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1949
0
                                  pre_comp[i][j][2], pre_comp[i][1][0],
1950
0
                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
1951
0
                                  pre_comp[i][j - 1][0],
1952
0
                                  pre_comp[i][j - 1][1],
1953
0
                                  pre_comp[i][j - 1][2]);
1954
0
                    } else {
1955
0
                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1956
0
                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
1957
0
                                     pre_comp[i][j / 2][1],
1958
0
                                     pre_comp[i][j / 2][2]);
1959
0
                    }
1960
0
                }
1961
0
            }
1962
0
        }
1963
0
        if (mixed)
1964
0
            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1965
0
    }
1966
1967
    /* the scalar for the generator */
1968
0
    if ((scalar != NULL) && (have_pre_comp)) {
1969
0
        memset(g_secret, 0, sizeof(g_secret));
1970
        /* reduce scalar to 0 <= scalar < 2^521 */
1971
0
        if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
1972
            /*
1973
             * this is an unusual input, and we don't guarantee
1974
             * constant-timeness
1975
             */
1976
0
            if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) {
1977
0
                ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1978
0
                goto err;
1979
0
            }
1980
0
            num_bytes = BN_bn2bin(tmp_scalar, tmp);
1981
0
        } else
1982
0
            num_bytes = BN_bn2bin(scalar, tmp);
1983
0
        flip_endian(g_secret, tmp, num_bytes);
1984
        /* do the multiplication with generator precomputation */
1985
0
        batch_mul(x_out, y_out, z_out,
1986
0
                  (const felem_bytearray(*))secrets, num_points,
1987
0
                  g_secret,
1988
0
                  mixed, (const felem(*)[17][3])pre_comp,
1989
0
                  (const felem(*)[3])g_pre_comp);
1990
0
    } else
1991
        /* do the multiplication without generator precomputation */
1992
0
        batch_mul(x_out, y_out, z_out,
1993
0
                  (const felem_bytearray(*))secrets, num_points,
1994
0
                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1995
    /* reduce the output to its unique minimal representation */
1996
0
    felem_contract(x_in, x_out);
1997
0
    felem_contract(y_in, y_out);
1998
0
    felem_contract(z_in, z_out);
1999
0
    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2000
0
        (!felem_to_BN(z, z_in))) {
2001
0
        ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
2002
0
        goto err;
2003
0
    }
2004
0
    ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
2005
2006
0
 err:
2007
0
    BN_CTX_end(ctx);
2008
0
    if (generator != NULL)
2009
0
        EC_POINT_free(generator);
2010
0
    if (new_ctx != NULL)
2011
0
        BN_CTX_free(new_ctx);
2012
0
    if (secrets != NULL)
2013
0
        OPENSSL_free(secrets);
2014
0
    if (pre_comp != NULL)
2015
0
        OPENSSL_free(pre_comp);
2016
0
    if (tmp_felems != NULL)
2017
0
        OPENSSL_free(tmp_felems);
2018
0
    return ret;
2019
0
}
2020
2021
int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2022
0
{
2023
0
    int ret = 0;
2024
0
    NISTP521_PRE_COMP *pre = NULL;
2025
0
    int i, j;
2026
0
    BN_CTX *new_ctx = NULL;
2027
0
    BIGNUM *x, *y;
2028
0
    EC_POINT *generator = NULL;
2029
0
    felem tmp_felems[16];
2030
2031
    /* throw away old precomputation */
2032
0
    EC_EX_DATA_free_data(&group->extra_data, nistp521_pre_comp_dup,
2033
0
                         nistp521_pre_comp_free,
2034
0
                         nistp521_pre_comp_clear_free);
2035
0
    if (ctx == NULL)
2036
0
        if ((ctx = new_ctx = BN_CTX_new()) == NULL)
2037
0
            return 0;
2038
0
    BN_CTX_start(ctx);
2039
0
    if (((x = BN_CTX_get(ctx)) == NULL) || ((y = BN_CTX_get(ctx)) == NULL))
2040
0
        goto err;
2041
    /* get the generator */
2042
0
    if (group->generator == NULL)
2043
0
        goto err;
2044
0
    generator = EC_POINT_new(group);
2045
0
    if (generator == NULL)
2046
0
        goto err;
2047
0
    BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2048
0
    BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2049
0
    if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx))
2050
0
        goto err;
2051
0
    if ((pre = nistp521_pre_comp_new()) == NULL)
2052
0
        goto err;
2053
    /*
2054
     * if the generator is the standard one, use built-in precomputation
2055
     */
2056
0
    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2057
0
        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2058
0
        goto done;
2059
0
    }
2060
0
    if ((!BN_to_felem(pre->g_pre_comp[1][0], &group->generator->X)) ||
2061
0
        (!BN_to_felem(pre->g_pre_comp[1][1], &group->generator->Y)) ||
2062
0
        (!BN_to_felem(pre->g_pre_comp[1][2], &group->generator->Z)))
2063
0
        goto err;
2064
    /* compute 2^130*G, 2^260*G, 2^390*G */
2065
0
    for (i = 1; i <= 4; i <<= 1) {
2066
0
        point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2067
0
                     pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2068
0
                     pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2069
0
        for (j = 0; j < 129; ++j) {
2070
0
            point_double(pre->g_pre_comp[2 * i][0],
2071
0
                         pre->g_pre_comp[2 * i][1],
2072
0
                         pre->g_pre_comp[2 * i][2],
2073
0
                         pre->g_pre_comp[2 * i][0],
2074
0
                         pre->g_pre_comp[2 * i][1],
2075
0
                         pre->g_pre_comp[2 * i][2]);
2076
0
        }
2077
0
    }
2078
    /* g_pre_comp[0] is the point at infinity */
2079
0
    memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2080
    /* the remaining multiples */
2081
    /* 2^130*G + 2^260*G */
2082
0
    point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2083
0
              pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2084
0
              pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2085
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2086
0
              pre->g_pre_comp[2][2]);
2087
    /* 2^130*G + 2^390*G */
2088
0
    point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2089
0
              pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2090
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2091
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2092
0
              pre->g_pre_comp[2][2]);
2093
    /* 2^260*G + 2^390*G */
2094
0
    point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2095
0
              pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2096
0
              pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2097
0
              0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2098
0
              pre->g_pre_comp[4][2]);
2099
    /* 2^130*G + 2^260*G + 2^390*G */
2100
0
    point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2101
0
              pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2102
0
              pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2103
0
              0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2104
0
              pre->g_pre_comp[2][2]);
2105
0
    for (i = 1; i < 8; ++i) {
2106
        /* odd multiples: add G */
2107
0
        point_add(pre->g_pre_comp[2 * i + 1][0],
2108
0
                  pre->g_pre_comp[2 * i + 1][1],
2109
0
                  pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2110
0
                  pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2111
0
                  pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2112
0
                  pre->g_pre_comp[1][2]);
2113
0
    }
2114
0
    make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2115
2116
0
 done:
2117
0
    if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp521_pre_comp_dup,
2118
0
                             nistp521_pre_comp_free,
2119
0
                             nistp521_pre_comp_clear_free))
2120
0
        goto err;
2121
0
    ret = 1;
2122
0
    pre = NULL;
2123
0
 err:
2124
0
    BN_CTX_end(ctx);
2125
0
    if (generator != NULL)
2126
0
        EC_POINT_free(generator);
2127
0
    if (new_ctx != NULL)
2128
0
        BN_CTX_free(new_ctx);
2129
0
    if (pre)
2130
0
        nistp521_pre_comp_free(pre);
2131
0
    return ret;
2132
0
}
2133
2134
int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2135
0
{
2136
0
    if (EC_EX_DATA_get_data(group->extra_data, nistp521_pre_comp_dup,
2137
0
                            nistp521_pre_comp_free,
2138
0
                            nistp521_pre_comp_clear_free)
2139
0
        != NULL)
2140
0
        return 1;
2141
0
    else
2142
0
        return 0;
2143
0
}
2144
2145
#else
2146
static void *dummy = &dummy;
2147
#endif