Coverage Report

Created: 2022-11-30 06:20

/src/openssl/crypto/ec/ecp_smpl.c
Line
Count
Source (jump to first uncovered line)
1
/* crypto/ec/ecp_smpl.c */
2
/*
3
 * Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
4
 * for the OpenSSL project. Includes code written by Bodo Moeller for the
5
 * OpenSSL project.
6
 */
7
/* ====================================================================
8
 * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
9
 *
10
 * Redistribution and use in source and binary forms, with or without
11
 * modification, are permitted provided that the following conditions
12
 * are met:
13
 *
14
 * 1. Redistributions of source code must retain the above copyright
15
 *    notice, this list of conditions and the following disclaimer.
16
 *
17
 * 2. Redistributions in binary form must reproduce the above copyright
18
 *    notice, this list of conditions and the following disclaimer in
19
 *    the documentation and/or other materials provided with the
20
 *    distribution.
21
 *
22
 * 3. All advertising materials mentioning features or use of this
23
 *    software must display the following acknowledgment:
24
 *    "This product includes software developed by the OpenSSL Project
25
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
26
 *
27
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
28
 *    endorse or promote products derived from this software without
29
 *    prior written permission. For written permission, please contact
30
 *    openssl-core@openssl.org.
31
 *
32
 * 5. Products derived from this software may not be called "OpenSSL"
33
 *    nor may "OpenSSL" appear in their names without prior written
34
 *    permission of the OpenSSL Project.
35
 *
36
 * 6. Redistributions of any form whatsoever must retain the following
37
 *    acknowledgment:
38
 *    "This product includes software developed by the OpenSSL Project
39
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
40
 *
41
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
42
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
44
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
45
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
46
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
47
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
48
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
50
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
51
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
52
 * OF THE POSSIBILITY OF SUCH DAMAGE.
53
 * ====================================================================
54
 *
55
 * This product includes cryptographic software written by Eric Young
56
 * (eay@cryptsoft.com).  This product includes software written by Tim
57
 * Hudson (tjh@cryptsoft.com).
58
 *
59
 */
60
/* ====================================================================
61
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
62
 * Portions of this software developed by SUN MICROSYSTEMS, INC.,
63
 * and contributed to the OpenSSL project.
64
 */
65
66
#include <openssl/err.h>
67
#include <openssl/symhacks.h>
68
69
#ifdef OPENSSL_FIPS
70
# include <openssl/fips.h>
71
#endif
72
73
#include "ec_lcl.h"
74
75
const EC_METHOD *EC_GFp_simple_method(void)
76
0
{
77
0
    static const EC_METHOD ret = {
78
0
        EC_FLAGS_DEFAULT_OCT,
79
0
        NID_X9_62_prime_field,
80
0
        ec_GFp_simple_group_init,
81
0
        ec_GFp_simple_group_finish,
82
0
        ec_GFp_simple_group_clear_finish,
83
0
        ec_GFp_simple_group_copy,
84
0
        ec_GFp_simple_group_set_curve,
85
0
        ec_GFp_simple_group_get_curve,
86
0
        ec_GFp_simple_group_get_degree,
87
0
        ec_GFp_simple_group_check_discriminant,
88
0
        ec_GFp_simple_point_init,
89
0
        ec_GFp_simple_point_finish,
90
0
        ec_GFp_simple_point_clear_finish,
91
0
        ec_GFp_simple_point_copy,
92
0
        ec_GFp_simple_point_set_to_infinity,
93
0
        ec_GFp_simple_set_Jprojective_coordinates_GFp,
94
0
        ec_GFp_simple_get_Jprojective_coordinates_GFp,
95
0
        ec_GFp_simple_point_set_affine_coordinates,
96
0
        ec_GFp_simple_point_get_affine_coordinates,
97
0
        0, 0, 0,
98
0
        ec_GFp_simple_add,
99
0
        ec_GFp_simple_dbl,
100
0
        ec_GFp_simple_invert,
101
0
        ec_GFp_simple_is_at_infinity,
102
0
        ec_GFp_simple_is_on_curve,
103
0
        ec_GFp_simple_cmp,
104
0
        ec_GFp_simple_make_affine,
105
0
        ec_GFp_simple_points_make_affine,
106
0
        0 /* mul */ ,
107
0
        0 /* precompute_mult */ ,
108
0
        0 /* have_precompute_mult */ ,
109
0
        ec_GFp_simple_field_mul,
110
0
        ec_GFp_simple_field_sqr,
111
0
        0 /* field_div */ ,
112
0
        0 /* field_encode */ ,
113
0
        0 /* field_decode */ ,
114
0
        0                       /* field_set_to_one */
115
0
    };
116
117
#ifdef OPENSSL_FIPS
118
    if (FIPS_mode())
119
        return fips_ec_gfp_simple_method();
120
#endif
121
122
0
    return &ret;
123
0
}
124
125
/*
126
 * Most method functions in this file are designed to work with
127
 * non-trivial representations of field elements if necessary
128
 * (see ecp_mont.c): while standard modular addition and subtraction
129
 * are used, the field_mul and field_sqr methods will be used for
130
 * multiplication, and field_encode and field_decode (if defined)
131
 * will be used for converting between representations.
132
 *
133
 * Functions ec_GFp_simple_points_make_affine() and
134
 * ec_GFp_simple_point_get_affine_coordinates() specifically assume
135
 * that if a non-trivial representation is used, it is a Montgomery
136
 * representation (i.e. 'encoding' means multiplying by some factor R).
137
 */
138
139
int ec_GFp_simple_group_init(EC_GROUP *group)
140
0
{
141
0
    BN_init(&group->field);
142
0
    BN_init(&group->a);
143
0
    BN_init(&group->b);
144
0
    group->a_is_minus3 = 0;
145
0
    return 1;
146
0
}
147
148
void ec_GFp_simple_group_finish(EC_GROUP *group)
149
0
{
150
0
    BN_free(&group->field);
151
0
    BN_free(&group->a);
152
0
    BN_free(&group->b);
153
0
}
154
155
void ec_GFp_simple_group_clear_finish(EC_GROUP *group)
156
0
{
157
0
    BN_clear_free(&group->field);
158
0
    BN_clear_free(&group->a);
159
0
    BN_clear_free(&group->b);
160
0
}
161
162
int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
163
0
{
164
0
    if (!BN_copy(&dest->field, &src->field))
165
0
        return 0;
166
0
    if (!BN_copy(&dest->a, &src->a))
167
0
        return 0;
168
0
    if (!BN_copy(&dest->b, &src->b))
169
0
        return 0;
170
171
0
    dest->a_is_minus3 = src->a_is_minus3;
172
173
0
    return 1;
174
0
}
175
176
int ec_GFp_simple_group_set_curve(EC_GROUP *group,
177
                                  const BIGNUM *p, const BIGNUM *a,
178
                                  const BIGNUM *b, BN_CTX *ctx)
179
0
{
180
0
    int ret = 0;
181
0
    BN_CTX *new_ctx = NULL;
182
0
    BIGNUM *tmp_a;
183
184
    /* p must be a prime > 3 */
185
0
    if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
186
0
        ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD);
187
0
        return 0;
188
0
    }
189
190
0
    if (ctx == NULL) {
191
0
        ctx = new_ctx = BN_CTX_new();
192
0
        if (ctx == NULL)
193
0
            return 0;
194
0
    }
195
196
0
    BN_CTX_start(ctx);
197
0
    tmp_a = BN_CTX_get(ctx);
198
0
    if (tmp_a == NULL)
199
0
        goto err;
200
201
    /* group->field */
202
0
    if (!BN_copy(&group->field, p))
203
0
        goto err;
204
0
    BN_set_negative(&group->field, 0);
205
206
    /* group->a */
207
0
    if (!BN_nnmod(tmp_a, a, p, ctx))
208
0
        goto err;
209
0
    if (group->meth->field_encode) {
210
0
        if (!group->meth->field_encode(group, &group->a, tmp_a, ctx))
211
0
            goto err;
212
0
    } else if (!BN_copy(&group->a, tmp_a))
213
0
        goto err;
214
215
    /* group->b */
216
0
    if (!BN_nnmod(&group->b, b, p, ctx))
217
0
        goto err;
218
0
    if (group->meth->field_encode)
219
0
        if (!group->meth->field_encode(group, &group->b, &group->b, ctx))
220
0
            goto err;
221
222
    /* group->a_is_minus3 */
223
0
    if (!BN_add_word(tmp_a, 3))
224
0
        goto err;
225
0
    group->a_is_minus3 = (0 == BN_cmp(tmp_a, &group->field));
226
227
0
    ret = 1;
228
229
0
 err:
230
0
    BN_CTX_end(ctx);
231
0
    if (new_ctx != NULL)
232
0
        BN_CTX_free(new_ctx);
233
0
    return ret;
234
0
}
235
236
int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
237
                                  BIGNUM *b, BN_CTX *ctx)
238
0
{
239
0
    int ret = 0;
240
0
    BN_CTX *new_ctx = NULL;
241
242
0
    if (p != NULL) {
243
0
        if (!BN_copy(p, &group->field))
244
0
            return 0;
245
0
    }
246
247
0
    if (a != NULL || b != NULL) {
248
0
        if (group->meth->field_decode) {
249
0
            if (ctx == NULL) {
250
0
                ctx = new_ctx = BN_CTX_new();
251
0
                if (ctx == NULL)
252
0
                    return 0;
253
0
            }
254
0
            if (a != NULL) {
255
0
                if (!group->meth->field_decode(group, a, &group->a, ctx))
256
0
                    goto err;
257
0
            }
258
0
            if (b != NULL) {
259
0
                if (!group->meth->field_decode(group, b, &group->b, ctx))
260
0
                    goto err;
261
0
            }
262
0
        } else {
263
0
            if (a != NULL) {
264
0
                if (!BN_copy(a, &group->a))
265
0
                    goto err;
266
0
            }
267
0
            if (b != NULL) {
268
0
                if (!BN_copy(b, &group->b))
269
0
                    goto err;
270
0
            }
271
0
        }
272
0
    }
273
274
0
    ret = 1;
275
276
0
 err:
277
0
    if (new_ctx)
278
0
        BN_CTX_free(new_ctx);
279
0
    return ret;
280
0
}
281
282
int ec_GFp_simple_group_get_degree(const EC_GROUP *group)
283
0
{
284
0
    return BN_num_bits(&group->field);
285
0
}
286
287
int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
288
0
{
289
0
    int ret = 0;
290
0
    BIGNUM *a, *b, *order, *tmp_1, *tmp_2;
291
0
    const BIGNUM *p = &group->field;
292
0
    BN_CTX *new_ctx = NULL;
293
294
0
    if (ctx == NULL) {
295
0
        ctx = new_ctx = BN_CTX_new();
296
0
        if (ctx == NULL) {
297
0
            ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT,
298
0
                  ERR_R_MALLOC_FAILURE);
299
0
            goto err;
300
0
        }
301
0
    }
302
0
    BN_CTX_start(ctx);
303
0
    a = BN_CTX_get(ctx);
304
0
    b = BN_CTX_get(ctx);
305
0
    tmp_1 = BN_CTX_get(ctx);
306
0
    tmp_2 = BN_CTX_get(ctx);
307
0
    order = BN_CTX_get(ctx);
308
0
    if (order == NULL)
309
0
        goto err;
310
311
0
    if (group->meth->field_decode) {
312
0
        if (!group->meth->field_decode(group, a, &group->a, ctx))
313
0
            goto err;
314
0
        if (!group->meth->field_decode(group, b, &group->b, ctx))
315
0
            goto err;
316
0
    } else {
317
0
        if (!BN_copy(a, &group->a))
318
0
            goto err;
319
0
        if (!BN_copy(b, &group->b))
320
0
            goto err;
321
0
    }
322
323
    /*-
324
     * check the discriminant:
325
     * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
326
     * 0 =< a, b < p
327
     */
328
0
    if (BN_is_zero(a)) {
329
0
        if (BN_is_zero(b))
330
0
            goto err;
331
0
    } else if (!BN_is_zero(b)) {
332
0
        if (!BN_mod_sqr(tmp_1, a, p, ctx))
333
0
            goto err;
334
0
        if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx))
335
0
            goto err;
336
0
        if (!BN_lshift(tmp_1, tmp_2, 2))
337
0
            goto err;
338
        /* tmp_1 = 4*a^3 */
339
340
0
        if (!BN_mod_sqr(tmp_2, b, p, ctx))
341
0
            goto err;
342
0
        if (!BN_mul_word(tmp_2, 27))
343
0
            goto err;
344
        /* tmp_2 = 27*b^2 */
345
346
0
        if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx))
347
0
            goto err;
348
0
        if (BN_is_zero(a))
349
0
            goto err;
350
0
    }
351
0
    ret = 1;
352
353
0
 err:
354
0
    if (ctx != NULL)
355
0
        BN_CTX_end(ctx);
356
0
    if (new_ctx != NULL)
357
0
        BN_CTX_free(new_ctx);
358
0
    return ret;
359
0
}
360
361
int ec_GFp_simple_point_init(EC_POINT *point)
362
0
{
363
0
    BN_init(&point->X);
364
0
    BN_init(&point->Y);
365
0
    BN_init(&point->Z);
366
0
    point->Z_is_one = 0;
367
368
0
    return 1;
369
0
}
370
371
void ec_GFp_simple_point_finish(EC_POINT *point)
372
0
{
373
0
    BN_free(&point->X);
374
0
    BN_free(&point->Y);
375
0
    BN_free(&point->Z);
376
0
}
377
378
void ec_GFp_simple_point_clear_finish(EC_POINT *point)
379
0
{
380
0
    BN_clear_free(&point->X);
381
0
    BN_clear_free(&point->Y);
382
0
    BN_clear_free(&point->Z);
383
0
    point->Z_is_one = 0;
384
0
}
385
386
int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
387
0
{
388
0
    if (!BN_copy(&dest->X, &src->X))
389
0
        return 0;
390
0
    if (!BN_copy(&dest->Y, &src->Y))
391
0
        return 0;
392
0
    if (!BN_copy(&dest->Z, &src->Z))
393
0
        return 0;
394
0
    dest->Z_is_one = src->Z_is_one;
395
396
0
    return 1;
397
0
}
398
399
int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
400
                                        EC_POINT *point)
401
0
{
402
0
    point->Z_is_one = 0;
403
0
    BN_zero(&point->Z);
404
0
    return 1;
405
0
}
406
407
int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group,
408
                                                  EC_POINT *point,
409
                                                  const BIGNUM *x,
410
                                                  const BIGNUM *y,
411
                                                  const BIGNUM *z,
412
                                                  BN_CTX *ctx)
413
0
{
414
0
    BN_CTX *new_ctx = NULL;
415
0
    int ret = 0;
416
417
0
    if (ctx == NULL) {
418
0
        ctx = new_ctx = BN_CTX_new();
419
0
        if (ctx == NULL)
420
0
            return 0;
421
0
    }
422
423
0
    if (x != NULL) {
424
0
        if (!BN_nnmod(&point->X, x, &group->field, ctx))
425
0
            goto err;
426
0
        if (group->meth->field_encode) {
427
0
            if (!group->meth->field_encode(group, &point->X, &point->X, ctx))
428
0
                goto err;
429
0
        }
430
0
    }
431
432
0
    if (y != NULL) {
433
0
        if (!BN_nnmod(&point->Y, y, &group->field, ctx))
434
0
            goto err;
435
0
        if (group->meth->field_encode) {
436
0
            if (!group->meth->field_encode(group, &point->Y, &point->Y, ctx))
437
0
                goto err;
438
0
        }
439
0
    }
440
441
0
    if (z != NULL) {
442
0
        int Z_is_one;
443
444
0
        if (!BN_nnmod(&point->Z, z, &group->field, ctx))
445
0
            goto err;
446
0
        Z_is_one = BN_is_one(&point->Z);
447
0
        if (group->meth->field_encode) {
448
0
            if (Z_is_one && (group->meth->field_set_to_one != 0)) {
449
0
                if (!group->meth->field_set_to_one(group, &point->Z, ctx))
450
0
                    goto err;
451
0
            } else {
452
0
                if (!group->
453
0
                    meth->field_encode(group, &point->Z, &point->Z, ctx))
454
0
                    goto err;
455
0
            }
456
0
        }
457
0
        point->Z_is_one = Z_is_one;
458
0
    }
459
460
0
    ret = 1;
461
462
0
 err:
463
0
    if (new_ctx != NULL)
464
0
        BN_CTX_free(new_ctx);
465
0
    return ret;
466
0
}
467
468
int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
469
                                                  const EC_POINT *point,
470
                                                  BIGNUM *x, BIGNUM *y,
471
                                                  BIGNUM *z, BN_CTX *ctx)
472
0
{
473
0
    BN_CTX *new_ctx = NULL;
474
0
    int ret = 0;
475
476
0
    if (group->meth->field_decode != 0) {
477
0
        if (ctx == NULL) {
478
0
            ctx = new_ctx = BN_CTX_new();
479
0
            if (ctx == NULL)
480
0
                return 0;
481
0
        }
482
483
0
        if (x != NULL) {
484
0
            if (!group->meth->field_decode(group, x, &point->X, ctx))
485
0
                goto err;
486
0
        }
487
0
        if (y != NULL) {
488
0
            if (!group->meth->field_decode(group, y, &point->Y, ctx))
489
0
                goto err;
490
0
        }
491
0
        if (z != NULL) {
492
0
            if (!group->meth->field_decode(group, z, &point->Z, ctx))
493
0
                goto err;
494
0
        }
495
0
    } else {
496
0
        if (x != NULL) {
497
0
            if (!BN_copy(x, &point->X))
498
0
                goto err;
499
0
        }
500
0
        if (y != NULL) {
501
0
            if (!BN_copy(y, &point->Y))
502
0
                goto err;
503
0
        }
504
0
        if (z != NULL) {
505
0
            if (!BN_copy(z, &point->Z))
506
0
                goto err;
507
0
        }
508
0
    }
509
510
0
    ret = 1;
511
512
0
 err:
513
0
    if (new_ctx != NULL)
514
0
        BN_CTX_free(new_ctx);
515
0
    return ret;
516
0
}
517
518
int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,
519
                                               EC_POINT *point,
520
                                               const BIGNUM *x,
521
                                               const BIGNUM *y, BN_CTX *ctx)
522
0
{
523
0
    if (x == NULL || y == NULL) {
524
        /*
525
         * unlike for projective coordinates, we do not tolerate this
526
         */
527
0
        ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES,
528
0
              ERR_R_PASSED_NULL_PARAMETER);
529
0
        return 0;
530
0
    }
531
532
0
    return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y,
533
0
                                                    BN_value_one(), ctx);
534
0
}
535
536
int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,
537
                                               const EC_POINT *point,
538
                                               BIGNUM *x, BIGNUM *y,
539
                                               BN_CTX *ctx)
540
0
{
541
0
    BN_CTX *new_ctx = NULL;
542
0
    BIGNUM *Z, *Z_1, *Z_2, *Z_3;
543
0
    const BIGNUM *Z_;
544
0
    int ret = 0;
545
546
0
    if (EC_POINT_is_at_infinity(group, point)) {
547
0
        ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,
548
0
              EC_R_POINT_AT_INFINITY);
549
0
        return 0;
550
0
    }
551
552
0
    if (ctx == NULL) {
553
0
        ctx = new_ctx = BN_CTX_new();
554
0
        if (ctx == NULL)
555
0
            return 0;
556
0
    }
557
558
0
    BN_CTX_start(ctx);
559
0
    Z = BN_CTX_get(ctx);
560
0
    Z_1 = BN_CTX_get(ctx);
561
0
    Z_2 = BN_CTX_get(ctx);
562
0
    Z_3 = BN_CTX_get(ctx);
563
0
    if (Z_3 == NULL)
564
0
        goto err;
565
566
    /* transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3) */
567
568
0
    if (group->meth->field_decode) {
569
0
        if (!group->meth->field_decode(group, Z, &point->Z, ctx))
570
0
            goto err;
571
0
        Z_ = Z;
572
0
    } else {
573
0
        Z_ = &point->Z;
574
0
    }
575
576
0
    if (BN_is_one(Z_)) {
577
0
        if (group->meth->field_decode) {
578
0
            if (x != NULL) {
579
0
                if (!group->meth->field_decode(group, x, &point->X, ctx))
580
0
                    goto err;
581
0
            }
582
0
            if (y != NULL) {
583
0
                if (!group->meth->field_decode(group, y, &point->Y, ctx))
584
0
                    goto err;
585
0
            }
586
0
        } else {
587
0
            if (x != NULL) {
588
0
                if (!BN_copy(x, &point->X))
589
0
                    goto err;
590
0
            }
591
0
            if (y != NULL) {
592
0
                if (!BN_copy(y, &point->Y))
593
0
                    goto err;
594
0
            }
595
0
        }
596
0
    } else {
597
0
        if (!BN_mod_inverse(Z_1, Z_, &group->field, ctx)) {
598
0
            ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,
599
0
                  ERR_R_BN_LIB);
600
0
            goto err;
601
0
        }
602
603
0
        if (group->meth->field_encode == 0) {
604
            /* field_sqr works on standard representation */
605
0
            if (!group->meth->field_sqr(group, Z_2, Z_1, ctx))
606
0
                goto err;
607
0
        } else {
608
0
            if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx))
609
0
                goto err;
610
0
        }
611
612
0
        if (x != NULL) {
613
            /*
614
             * in the Montgomery case, field_mul will cancel out Montgomery
615
             * factor in X:
616
             */
617
0
            if (!group->meth->field_mul(group, x, &point->X, Z_2, ctx))
618
0
                goto err;
619
0
        }
620
621
0
        if (y != NULL) {
622
0
            if (group->meth->field_encode == 0) {
623
                /*
624
                 * field_mul works on standard representation
625
                 */
626
0
                if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx))
627
0
                    goto err;
628
0
            } else {
629
0
                if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx))
630
0
                    goto err;
631
0
            }
632
633
            /*
634
             * in the Montgomery case, field_mul will cancel out Montgomery
635
             * factor in Y:
636
             */
637
0
            if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx))
638
0
                goto err;
639
0
        }
640
0
    }
641
642
0
    ret = 1;
643
644
0
 err:
645
0
    BN_CTX_end(ctx);
646
0
    if (new_ctx != NULL)
647
0
        BN_CTX_free(new_ctx);
648
0
    return ret;
649
0
}
650
651
int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
652
                      const EC_POINT *b, BN_CTX *ctx)
653
0
{
654
0
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
655
0
                      const BIGNUM *, BN_CTX *);
656
0
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
657
0
    const BIGNUM *p;
658
0
    BN_CTX *new_ctx = NULL;
659
0
    BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
660
0
    int ret = 0;
661
662
0
    if (a == b)
663
0
        return EC_POINT_dbl(group, r, a, ctx);
664
0
    if (EC_POINT_is_at_infinity(group, a))
665
0
        return EC_POINT_copy(r, b);
666
0
    if (EC_POINT_is_at_infinity(group, b))
667
0
        return EC_POINT_copy(r, a);
668
669
0
    field_mul = group->meth->field_mul;
670
0
    field_sqr = group->meth->field_sqr;
671
0
    p = &group->field;
672
673
0
    if (ctx == NULL) {
674
0
        ctx = new_ctx = BN_CTX_new();
675
0
        if (ctx == NULL)
676
0
            return 0;
677
0
    }
678
679
0
    BN_CTX_start(ctx);
680
0
    n0 = BN_CTX_get(ctx);
681
0
    n1 = BN_CTX_get(ctx);
682
0
    n2 = BN_CTX_get(ctx);
683
0
    n3 = BN_CTX_get(ctx);
684
0
    n4 = BN_CTX_get(ctx);
685
0
    n5 = BN_CTX_get(ctx);
686
0
    n6 = BN_CTX_get(ctx);
687
0
    if (n6 == NULL)
688
0
        goto end;
689
690
    /*
691
     * Note that in this function we must not read components of 'a' or 'b'
692
     * once we have written the corresponding components of 'r'. ('r' might
693
     * be one of 'a' or 'b'.)
694
     */
695
696
    /* n1, n2 */
697
0
    if (b->Z_is_one) {
698
0
        if (!BN_copy(n1, &a->X))
699
0
            goto end;
700
0
        if (!BN_copy(n2, &a->Y))
701
0
            goto end;
702
        /* n1 = X_a */
703
        /* n2 = Y_a */
704
0
    } else {
705
0
        if (!field_sqr(group, n0, &b->Z, ctx))
706
0
            goto end;
707
0
        if (!field_mul(group, n1, &a->X, n0, ctx))
708
0
            goto end;
709
        /* n1 = X_a * Z_b^2 */
710
711
0
        if (!field_mul(group, n0, n0, &b->Z, ctx))
712
0
            goto end;
713
0
        if (!field_mul(group, n2, &a->Y, n0, ctx))
714
0
            goto end;
715
        /* n2 = Y_a * Z_b^3 */
716
0
    }
717
718
    /* n3, n4 */
719
0
    if (a->Z_is_one) {
720
0
        if (!BN_copy(n3, &b->X))
721
0
            goto end;
722
0
        if (!BN_copy(n4, &b->Y))
723
0
            goto end;
724
        /* n3 = X_b */
725
        /* n4 = Y_b */
726
0
    } else {
727
0
        if (!field_sqr(group, n0, &a->Z, ctx))
728
0
            goto end;
729
0
        if (!field_mul(group, n3, &b->X, n0, ctx))
730
0
            goto end;
731
        /* n3 = X_b * Z_a^2 */
732
733
0
        if (!field_mul(group, n0, n0, &a->Z, ctx))
734
0
            goto end;
735
0
        if (!field_mul(group, n4, &b->Y, n0, ctx))
736
0
            goto end;
737
        /* n4 = Y_b * Z_a^3 */
738
0
    }
739
740
    /* n5, n6 */
741
0
    if (!BN_mod_sub_quick(n5, n1, n3, p))
742
0
        goto end;
743
0
    if (!BN_mod_sub_quick(n6, n2, n4, p))
744
0
        goto end;
745
    /* n5 = n1 - n3 */
746
    /* n6 = n2 - n4 */
747
748
0
    if (BN_is_zero(n5)) {
749
0
        if (BN_is_zero(n6)) {
750
            /* a is the same point as b */
751
0
            BN_CTX_end(ctx);
752
0
            ret = EC_POINT_dbl(group, r, a, ctx);
753
0
            ctx = NULL;
754
0
            goto end;
755
0
        } else {
756
            /* a is the inverse of b */
757
0
            BN_zero(&r->Z);
758
0
            r->Z_is_one = 0;
759
0
            ret = 1;
760
0
            goto end;
761
0
        }
762
0
    }
763
764
    /* 'n7', 'n8' */
765
0
    if (!BN_mod_add_quick(n1, n1, n3, p))
766
0
        goto end;
767
0
    if (!BN_mod_add_quick(n2, n2, n4, p))
768
0
        goto end;
769
    /* 'n7' = n1 + n3 */
770
    /* 'n8' = n2 + n4 */
771
772
    /* Z_r */
773
0
    if (a->Z_is_one && b->Z_is_one) {
774
0
        if (!BN_copy(&r->Z, n5))
775
0
            goto end;
776
0
    } else {
777
0
        if (a->Z_is_one) {
778
0
            if (!BN_copy(n0, &b->Z))
779
0
                goto end;
780
0
        } else if (b->Z_is_one) {
781
0
            if (!BN_copy(n0, &a->Z))
782
0
                goto end;
783
0
        } else {
784
0
            if (!field_mul(group, n0, &a->Z, &b->Z, ctx))
785
0
                goto end;
786
0
        }
787
0
        if (!field_mul(group, &r->Z, n0, n5, ctx))
788
0
            goto end;
789
0
    }
790
0
    r->Z_is_one = 0;
791
    /* Z_r = Z_a * Z_b * n5 */
792
793
    /* X_r */
794
0
    if (!field_sqr(group, n0, n6, ctx))
795
0
        goto end;
796
0
    if (!field_sqr(group, n4, n5, ctx))
797
0
        goto end;
798
0
    if (!field_mul(group, n3, n1, n4, ctx))
799
0
        goto end;
800
0
    if (!BN_mod_sub_quick(&r->X, n0, n3, p))
801
0
        goto end;
802
    /* X_r = n6^2 - n5^2 * 'n7' */
803
804
    /* 'n9' */
805
0
    if (!BN_mod_lshift1_quick(n0, &r->X, p))
806
0
        goto end;
807
0
    if (!BN_mod_sub_quick(n0, n3, n0, p))
808
0
        goto end;
809
    /* n9 = n5^2 * 'n7' - 2 * X_r */
810
811
    /* Y_r */
812
0
    if (!field_mul(group, n0, n0, n6, ctx))
813
0
        goto end;
814
0
    if (!field_mul(group, n5, n4, n5, ctx))
815
0
        goto end;               /* now n5 is n5^3 */
816
0
    if (!field_mul(group, n1, n2, n5, ctx))
817
0
        goto end;
818
0
    if (!BN_mod_sub_quick(n0, n0, n1, p))
819
0
        goto end;
820
0
    if (BN_is_odd(n0))
821
0
        if (!BN_add(n0, n0, p))
822
0
            goto end;
823
    /* now  0 <= n0 < 2*p,  and n0 is even */
824
0
    if (!BN_rshift1(&r->Y, n0))
825
0
        goto end;
826
    /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */
827
828
0
    ret = 1;
829
830
0
 end:
831
0
    if (ctx)                    /* otherwise we already called BN_CTX_end */
832
0
        BN_CTX_end(ctx);
833
0
    if (new_ctx != NULL)
834
0
        BN_CTX_free(new_ctx);
835
0
    return ret;
836
0
}
837
838
int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
839
                      BN_CTX *ctx)
840
0
{
841
0
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
842
0
                      const BIGNUM *, BN_CTX *);
843
0
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
844
0
    const BIGNUM *p;
845
0
    BN_CTX *new_ctx = NULL;
846
0
    BIGNUM *n0, *n1, *n2, *n3;
847
0
    int ret = 0;
848
849
0
    if (EC_POINT_is_at_infinity(group, a)) {
850
0
        BN_zero(&r->Z);
851
0
        r->Z_is_one = 0;
852
0
        return 1;
853
0
    }
854
855
0
    field_mul = group->meth->field_mul;
856
0
    field_sqr = group->meth->field_sqr;
857
0
    p = &group->field;
858
859
0
    if (ctx == NULL) {
860
0
        ctx = new_ctx = BN_CTX_new();
861
0
        if (ctx == NULL)
862
0
            return 0;
863
0
    }
864
865
0
    BN_CTX_start(ctx);
866
0
    n0 = BN_CTX_get(ctx);
867
0
    n1 = BN_CTX_get(ctx);
868
0
    n2 = BN_CTX_get(ctx);
869
0
    n3 = BN_CTX_get(ctx);
870
0
    if (n3 == NULL)
871
0
        goto err;
872
873
    /*
874
     * Note that in this function we must not read components of 'a' once we
875
     * have written the corresponding components of 'r'. ('r' might the same
876
     * as 'a'.)
877
     */
878
879
    /* n1 */
880
0
    if (a->Z_is_one) {
881
0
        if (!field_sqr(group, n0, &a->X, ctx))
882
0
            goto err;
883
0
        if (!BN_mod_lshift1_quick(n1, n0, p))
884
0
            goto err;
885
0
        if (!BN_mod_add_quick(n0, n0, n1, p))
886
0
            goto err;
887
0
        if (!BN_mod_add_quick(n1, n0, &group->a, p))
888
0
            goto err;
889
        /* n1 = 3 * X_a^2 + a_curve */
890
0
    } else if (group->a_is_minus3) {
891
0
        if (!field_sqr(group, n1, &a->Z, ctx))
892
0
            goto err;
893
0
        if (!BN_mod_add_quick(n0, &a->X, n1, p))
894
0
            goto err;
895
0
        if (!BN_mod_sub_quick(n2, &a->X, n1, p))
896
0
            goto err;
897
0
        if (!field_mul(group, n1, n0, n2, ctx))
898
0
            goto err;
899
0
        if (!BN_mod_lshift1_quick(n0, n1, p))
900
0
            goto err;
901
0
        if (!BN_mod_add_quick(n1, n0, n1, p))
902
0
            goto err;
903
        /*-
904
         * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
905
         *    = 3 * X_a^2 - 3 * Z_a^4
906
         */
907
0
    } else {
908
0
        if (!field_sqr(group, n0, &a->X, ctx))
909
0
            goto err;
910
0
        if (!BN_mod_lshift1_quick(n1, n0, p))
911
0
            goto err;
912
0
        if (!BN_mod_add_quick(n0, n0, n1, p))
913
0
            goto err;
914
0
        if (!field_sqr(group, n1, &a->Z, ctx))
915
0
            goto err;
916
0
        if (!field_sqr(group, n1, n1, ctx))
917
0
            goto err;
918
0
        if (!field_mul(group, n1, n1, &group->a, ctx))
919
0
            goto err;
920
0
        if (!BN_mod_add_quick(n1, n1, n0, p))
921
0
            goto err;
922
        /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
923
0
    }
924
925
    /* Z_r */
926
0
    if (a->Z_is_one) {
927
0
        if (!BN_copy(n0, &a->Y))
928
0
            goto err;
929
0
    } else {
930
0
        if (!field_mul(group, n0, &a->Y, &a->Z, ctx))
931
0
            goto err;
932
0
    }
933
0
    if (!BN_mod_lshift1_quick(&r->Z, n0, p))
934
0
        goto err;
935
0
    r->Z_is_one = 0;
936
    /* Z_r = 2 * Y_a * Z_a */
937
938
    /* n2 */
939
0
    if (!field_sqr(group, n3, &a->Y, ctx))
940
0
        goto err;
941
0
    if (!field_mul(group, n2, &a->X, n3, ctx))
942
0
        goto err;
943
0
    if (!BN_mod_lshift_quick(n2, n2, 2, p))
944
0
        goto err;
945
    /* n2 = 4 * X_a * Y_a^2 */
946
947
    /* X_r */
948
0
    if (!BN_mod_lshift1_quick(n0, n2, p))
949
0
        goto err;
950
0
    if (!field_sqr(group, &r->X, n1, ctx))
951
0
        goto err;
952
0
    if (!BN_mod_sub_quick(&r->X, &r->X, n0, p))
953
0
        goto err;
954
    /* X_r = n1^2 - 2 * n2 */
955
956
    /* n3 */
957
0
    if (!field_sqr(group, n0, n3, ctx))
958
0
        goto err;
959
0
    if (!BN_mod_lshift_quick(n3, n0, 3, p))
960
0
        goto err;
961
    /* n3 = 8 * Y_a^4 */
962
963
    /* Y_r */
964
0
    if (!BN_mod_sub_quick(n0, n2, &r->X, p))
965
0
        goto err;
966
0
    if (!field_mul(group, n0, n1, n0, ctx))
967
0
        goto err;
968
0
    if (!BN_mod_sub_quick(&r->Y, n0, n3, p))
969
0
        goto err;
970
    /* Y_r = n1 * (n2 - X_r) - n3 */
971
972
0
    ret = 1;
973
974
0
 err:
975
0
    BN_CTX_end(ctx);
976
0
    if (new_ctx != NULL)
977
0
        BN_CTX_free(new_ctx);
978
0
    return ret;
979
0
}
980
981
int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
982
0
{
983
0
    if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y))
984
        /* point is its own inverse */
985
0
        return 1;
986
987
0
    return BN_usub(&point->Y, &group->field, &point->Y);
988
0
}
989
990
int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
991
0
{
992
0
    return BN_is_zero(&point->Z);
993
0
}
994
995
int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
996
                              BN_CTX *ctx)
997
0
{
998
0
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
999
0
                      const BIGNUM *, BN_CTX *);
1000
0
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
1001
0
    const BIGNUM *p;
1002
0
    BN_CTX *new_ctx = NULL;
1003
0
    BIGNUM *rh, *tmp, *Z4, *Z6;
1004
0
    int ret = -1;
1005
1006
0
    if (EC_POINT_is_at_infinity(group, point))
1007
0
        return 1;
1008
1009
0
    field_mul = group->meth->field_mul;
1010
0
    field_sqr = group->meth->field_sqr;
1011
0
    p = &group->field;
1012
1013
0
    if (ctx == NULL) {
1014
0
        ctx = new_ctx = BN_CTX_new();
1015
0
        if (ctx == NULL)
1016
0
            return -1;
1017
0
    }
1018
1019
0
    BN_CTX_start(ctx);
1020
0
    rh = BN_CTX_get(ctx);
1021
0
    tmp = BN_CTX_get(ctx);
1022
0
    Z4 = BN_CTX_get(ctx);
1023
0
    Z6 = BN_CTX_get(ctx);
1024
0
    if (Z6 == NULL)
1025
0
        goto err;
1026
1027
    /*-
1028
     * We have a curve defined by a Weierstrass equation
1029
     *      y^2 = x^3 + a*x + b.
1030
     * The point to consider is given in Jacobian projective coordinates
1031
     * where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3).
1032
     * Substituting this and multiplying by  Z^6  transforms the above equation into
1033
     *      Y^2 = X^3 + a*X*Z^4 + b*Z^6.
1034
     * To test this, we add up the right-hand side in 'rh'.
1035
     */
1036
1037
    /* rh := X^2 */
1038
0
    if (!field_sqr(group, rh, &point->X, ctx))
1039
0
        goto err;
1040
1041
0
    if (!point->Z_is_one) {
1042
0
        if (!field_sqr(group, tmp, &point->Z, ctx))
1043
0
            goto err;
1044
0
        if (!field_sqr(group, Z4, tmp, ctx))
1045
0
            goto err;
1046
0
        if (!field_mul(group, Z6, Z4, tmp, ctx))
1047
0
            goto err;
1048
1049
        /* rh := (rh + a*Z^4)*X */
1050
0
        if (group->a_is_minus3) {
1051
0
            if (!BN_mod_lshift1_quick(tmp, Z4, p))
1052
0
                goto err;
1053
0
            if (!BN_mod_add_quick(tmp, tmp, Z4, p))
1054
0
                goto err;
1055
0
            if (!BN_mod_sub_quick(rh, rh, tmp, p))
1056
0
                goto err;
1057
0
            if (!field_mul(group, rh, rh, &point->X, ctx))
1058
0
                goto err;
1059
0
        } else {
1060
0
            if (!field_mul(group, tmp, Z4, &group->a, ctx))
1061
0
                goto err;
1062
0
            if (!BN_mod_add_quick(rh, rh, tmp, p))
1063
0
                goto err;
1064
0
            if (!field_mul(group, rh, rh, &point->X, ctx))
1065
0
                goto err;
1066
0
        }
1067
1068
        /* rh := rh + b*Z^6 */
1069
0
        if (!field_mul(group, tmp, &group->b, Z6, ctx))
1070
0
            goto err;
1071
0
        if (!BN_mod_add_quick(rh, rh, tmp, p))
1072
0
            goto err;
1073
0
    } else {
1074
        /* point->Z_is_one */
1075
1076
        /* rh := (rh + a)*X */
1077
0
        if (!BN_mod_add_quick(rh, rh, &group->a, p))
1078
0
            goto err;
1079
0
        if (!field_mul(group, rh, rh, &point->X, ctx))
1080
0
            goto err;
1081
        /* rh := rh + b */
1082
0
        if (!BN_mod_add_quick(rh, rh, &group->b, p))
1083
0
            goto err;
1084
0
    }
1085
1086
    /* 'lh' := Y^2 */
1087
0
    if (!field_sqr(group, tmp, &point->Y, ctx))
1088
0
        goto err;
1089
1090
0
    ret = (0 == BN_ucmp(tmp, rh));
1091
1092
0
 err:
1093
0
    BN_CTX_end(ctx);
1094
0
    if (new_ctx != NULL)
1095
0
        BN_CTX_free(new_ctx);
1096
0
    return ret;
1097
0
}
1098
1099
int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
1100
                      const EC_POINT *b, BN_CTX *ctx)
1101
0
{
1102
    /*-
1103
     * return values:
1104
     *  -1   error
1105
     *   0   equal (in affine coordinates)
1106
     *   1   not equal
1107
     */
1108
1109
0
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
1110
0
                      const BIGNUM *, BN_CTX *);
1111
0
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
1112
0
    BN_CTX *new_ctx = NULL;
1113
0
    BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
1114
0
    const BIGNUM *tmp1_, *tmp2_;
1115
0
    int ret = -1;
1116
1117
0
    if (EC_POINT_is_at_infinity(group, a)) {
1118
0
        return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
1119
0
    }
1120
1121
0
    if (EC_POINT_is_at_infinity(group, b))
1122
0
        return 1;
1123
1124
0
    if (a->Z_is_one && b->Z_is_one) {
1125
0
        return ((BN_cmp(&a->X, &b->X) == 0)
1126
0
                && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
1127
0
    }
1128
1129
0
    field_mul = group->meth->field_mul;
1130
0
    field_sqr = group->meth->field_sqr;
1131
1132
0
    if (ctx == NULL) {
1133
0
        ctx = new_ctx = BN_CTX_new();
1134
0
        if (ctx == NULL)
1135
0
            return -1;
1136
0
    }
1137
1138
0
    BN_CTX_start(ctx);
1139
0
    tmp1 = BN_CTX_get(ctx);
1140
0
    tmp2 = BN_CTX_get(ctx);
1141
0
    Za23 = BN_CTX_get(ctx);
1142
0
    Zb23 = BN_CTX_get(ctx);
1143
0
    if (Zb23 == NULL)
1144
0
        goto end;
1145
1146
    /*-
1147
     * We have to decide whether
1148
     *     (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
1149
     * or equivalently, whether
1150
     *     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
1151
     */
1152
1153
0
    if (!b->Z_is_one) {
1154
0
        if (!field_sqr(group, Zb23, &b->Z, ctx))
1155
0
            goto end;
1156
0
        if (!field_mul(group, tmp1, &a->X, Zb23, ctx))
1157
0
            goto end;
1158
0
        tmp1_ = tmp1;
1159
0
    } else
1160
0
        tmp1_ = &a->X;
1161
0
    if (!a->Z_is_one) {
1162
0
        if (!field_sqr(group, Za23, &a->Z, ctx))
1163
0
            goto end;
1164
0
        if (!field_mul(group, tmp2, &b->X, Za23, ctx))
1165
0
            goto end;
1166
0
        tmp2_ = tmp2;
1167
0
    } else
1168
0
        tmp2_ = &b->X;
1169
1170
    /* compare  X_a*Z_b^2  with  X_b*Z_a^2 */
1171
0
    if (BN_cmp(tmp1_, tmp2_) != 0) {
1172
0
        ret = 1;                /* points differ */
1173
0
        goto end;
1174
0
    }
1175
1176
0
    if (!b->Z_is_one) {
1177
0
        if (!field_mul(group, Zb23, Zb23, &b->Z, ctx))
1178
0
            goto end;
1179
0
        if (!field_mul(group, tmp1, &a->Y, Zb23, ctx))
1180
0
            goto end;
1181
        /* tmp1_ = tmp1 */
1182
0
    } else
1183
0
        tmp1_ = &a->Y;
1184
0
    if (!a->Z_is_one) {
1185
0
        if (!field_mul(group, Za23, Za23, &a->Z, ctx))
1186
0
            goto end;
1187
0
        if (!field_mul(group, tmp2, &b->Y, Za23, ctx))
1188
0
            goto end;
1189
        /* tmp2_ = tmp2 */
1190
0
    } else
1191
0
        tmp2_ = &b->Y;
1192
1193
    /* compare  Y_a*Z_b^3  with  Y_b*Z_a^3 */
1194
0
    if (BN_cmp(tmp1_, tmp2_) != 0) {
1195
0
        ret = 1;                /* points differ */
1196
0
        goto end;
1197
0
    }
1198
1199
    /* points are equal */
1200
0
    ret = 0;
1201
1202
0
 end:
1203
0
    BN_CTX_end(ctx);
1204
0
    if (new_ctx != NULL)
1205
0
        BN_CTX_free(new_ctx);
1206
0
    return ret;
1207
0
}
1208
1209
int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
1210
                              BN_CTX *ctx)
1211
0
{
1212
0
    BN_CTX *new_ctx = NULL;
1213
0
    BIGNUM *x, *y;
1214
0
    int ret = 0;
1215
1216
0
    if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
1217
0
        return 1;
1218
1219
0
    if (ctx == NULL) {
1220
0
        ctx = new_ctx = BN_CTX_new();
1221
0
        if (ctx == NULL)
1222
0
            return 0;
1223
0
    }
1224
1225
0
    BN_CTX_start(ctx);
1226
0
    x = BN_CTX_get(ctx);
1227
0
    y = BN_CTX_get(ctx);
1228
0
    if (y == NULL)
1229
0
        goto err;
1230
1231
0
    if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx))
1232
0
        goto err;
1233
0
    if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx))
1234
0
        goto err;
1235
0
    if (!point->Z_is_one) {
1236
0
        ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR);
1237
0
        goto err;
1238
0
    }
1239
1240
0
    ret = 1;
1241
1242
0
 err:
1243
0
    BN_CTX_end(ctx);
1244
0
    if (new_ctx != NULL)
1245
0
        BN_CTX_free(new_ctx);
1246
0
    return ret;
1247
0
}
1248
1249
int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
1250
                                     EC_POINT *points[], BN_CTX *ctx)
1251
0
{
1252
0
    BN_CTX *new_ctx = NULL;
1253
0
    BIGNUM *tmp, *tmp_Z;
1254
0
    BIGNUM **prod_Z = NULL;
1255
0
    size_t i;
1256
0
    int ret = 0;
1257
1258
0
    if (num == 0)
1259
0
        return 1;
1260
1261
0
    if (ctx == NULL) {
1262
0
        ctx = new_ctx = BN_CTX_new();
1263
0
        if (ctx == NULL)
1264
0
            return 0;
1265
0
    }
1266
1267
0
    BN_CTX_start(ctx);
1268
0
    tmp = BN_CTX_get(ctx);
1269
0
    tmp_Z = BN_CTX_get(ctx);
1270
0
    if (tmp == NULL || tmp_Z == NULL)
1271
0
        goto err;
1272
1273
0
    prod_Z = OPENSSL_malloc(num * sizeof prod_Z[0]);
1274
0
    if (prod_Z == NULL)
1275
0
        goto err;
1276
0
    for (i = 0; i < num; i++) {
1277
0
        prod_Z[i] = BN_new();
1278
0
        if (prod_Z[i] == NULL)
1279
0
            goto err;
1280
0
    }
1281
1282
    /*
1283
     * Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
1284
     * skipping any zero-valued inputs (pretend that they're 1).
1285
     */
1286
1287
0
    if (!BN_is_zero(&points[0]->Z)) {
1288
0
        if (!BN_copy(prod_Z[0], &points[0]->Z))
1289
0
            goto err;
1290
0
    } else {
1291
0
        if (group->meth->field_set_to_one != 0) {
1292
0
            if (!group->meth->field_set_to_one(group, prod_Z[0], ctx))
1293
0
                goto err;
1294
0
        } else {
1295
0
            if (!BN_one(prod_Z[0]))
1296
0
                goto err;
1297
0
        }
1298
0
    }
1299
1300
0
    for (i = 1; i < num; i++) {
1301
0
        if (!BN_is_zero(&points[i]->Z)) {
1302
0
            if (!group->meth->field_mul(group, prod_Z[i], prod_Z[i - 1],
1303
0
                                        &points[i]->Z, ctx))
1304
0
                goto err;
1305
0
        } else {
1306
0
            if (!BN_copy(prod_Z[i], prod_Z[i - 1]))
1307
0
                goto err;
1308
0
        }
1309
0
    }
1310
1311
    /*
1312
     * Now use a single explicit inversion to replace every non-zero
1313
     * points[i]->Z by its inverse.
1314
     */
1315
1316
0
    if (!BN_mod_inverse(tmp, prod_Z[num - 1], &group->field, ctx)) {
1317
0
        ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB);
1318
0
        goto err;
1319
0
    }
1320
0
    if (group->meth->field_encode != 0) {
1321
        /*
1322
         * In the Montgomery case, we just turned R*H (representing H) into
1323
         * 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to
1324
         * multiply by the Montgomery factor twice.
1325
         */
1326
0
        if (!group->meth->field_encode(group, tmp, tmp, ctx))
1327
0
            goto err;
1328
0
        if (!group->meth->field_encode(group, tmp, tmp, ctx))
1329
0
            goto err;
1330
0
    }
1331
1332
0
    for (i = num - 1; i > 0; --i) {
1333
        /*
1334
         * Loop invariant: tmp is the product of the inverses of points[0]->Z
1335
         * .. points[i]->Z (zero-valued inputs skipped).
1336
         */
1337
0
        if (!BN_is_zero(&points[i]->Z)) {
1338
            /*
1339
             * Set tmp_Z to the inverse of points[i]->Z (as product of Z
1340
             * inverses 0 .. i, Z values 0 .. i - 1).
1341
             */
1342
0
            if (!group->
1343
0
                meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx))
1344
0
                goto err;
1345
            /*
1346
             * Update tmp to satisfy the loop invariant for i - 1.
1347
             */
1348
0
            if (!group->meth->field_mul(group, tmp, tmp, &points[i]->Z, ctx))
1349
0
                goto err;
1350
            /* Replace points[i]->Z by its inverse. */
1351
0
            if (!BN_copy(&points[i]->Z, tmp_Z))
1352
0
                goto err;
1353
0
        }
1354
0
    }
1355
1356
0
    if (!BN_is_zero(&points[0]->Z)) {
1357
        /* Replace points[0]->Z by its inverse. */
1358
0
        if (!BN_copy(&points[0]->Z, tmp))
1359
0
            goto err;
1360
0
    }
1361
1362
    /* Finally, fix up the X and Y coordinates for all points. */
1363
1364
0
    for (i = 0; i < num; i++) {
1365
0
        EC_POINT *p = points[i];
1366
1367
0
        if (!BN_is_zero(&p->Z)) {
1368
            /* turn  (X, Y, 1/Z)  into  (X/Z^2, Y/Z^3, 1) */
1369
1370
0
            if (!group->meth->field_sqr(group, tmp, &p->Z, ctx))
1371
0
                goto err;
1372
0
            if (!group->meth->field_mul(group, &p->X, &p->X, tmp, ctx))
1373
0
                goto err;
1374
1375
0
            if (!group->meth->field_mul(group, tmp, tmp, &p->Z, ctx))
1376
0
                goto err;
1377
0
            if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp, ctx))
1378
0
                goto err;
1379
1380
0
            if (group->meth->field_set_to_one != 0) {
1381
0
                if (!group->meth->field_set_to_one(group, &p->Z, ctx))
1382
0
                    goto err;
1383
0
            } else {
1384
0
                if (!BN_one(&p->Z))
1385
0
                    goto err;
1386
0
            }
1387
0
            p->Z_is_one = 1;
1388
0
        }
1389
0
    }
1390
1391
0
    ret = 1;
1392
1393
0
 err:
1394
0
    BN_CTX_end(ctx);
1395
0
    if (new_ctx != NULL)
1396
0
        BN_CTX_free(new_ctx);
1397
0
    if (prod_Z != NULL) {
1398
0
        for (i = 0; i < num; i++) {
1399
0
            if (prod_Z[i] == NULL)
1400
0
                break;
1401
0
            BN_clear_free(prod_Z[i]);
1402
0
        }
1403
0
        OPENSSL_free(prod_Z);
1404
0
    }
1405
0
    return ret;
1406
0
}
1407
1408
int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
1409
                            const BIGNUM *b, BN_CTX *ctx)
1410
0
{
1411
0
    return BN_mod_mul(r, a, b, &group->field, ctx);
1412
0
}
1413
1414
int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
1415
                            BN_CTX *ctx)
1416
0
{
1417
0
    return BN_mod_sqr(r, a, &group->field, ctx);
1418
0
}