/src/openssl/crypto/evp/bio_b64.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* crypto/evp/bio_b64.c */ |
2 | | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
3 | | * All rights reserved. |
4 | | * |
5 | | * This package is an SSL implementation written |
6 | | * by Eric Young (eay@cryptsoft.com). |
7 | | * The implementation was written so as to conform with Netscapes SSL. |
8 | | * |
9 | | * This library is free for commercial and non-commercial use as long as |
10 | | * the following conditions are aheared to. The following conditions |
11 | | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | | * included with this distribution is covered by the same copyright terms |
14 | | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | | * |
16 | | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | | * the code are not to be removed. |
18 | | * If this package is used in a product, Eric Young should be given attribution |
19 | | * as the author of the parts of the library used. |
20 | | * This can be in the form of a textual message at program startup or |
21 | | * in documentation (online or textual) provided with the package. |
22 | | * |
23 | | * Redistribution and use in source and binary forms, with or without |
24 | | * modification, are permitted provided that the following conditions |
25 | | * are met: |
26 | | * 1. Redistributions of source code must retain the copyright |
27 | | * notice, this list of conditions and the following disclaimer. |
28 | | * 2. Redistributions in binary form must reproduce the above copyright |
29 | | * notice, this list of conditions and the following disclaimer in the |
30 | | * documentation and/or other materials provided with the distribution. |
31 | | * 3. All advertising materials mentioning features or use of this software |
32 | | * must display the following acknowledgement: |
33 | | * "This product includes cryptographic software written by |
34 | | * Eric Young (eay@cryptsoft.com)" |
35 | | * The word 'cryptographic' can be left out if the rouines from the library |
36 | | * being used are not cryptographic related :-). |
37 | | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | | * the apps directory (application code) you must include an acknowledgement: |
39 | | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | | * |
41 | | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
44 | | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
45 | | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
46 | | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
47 | | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
48 | | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
49 | | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | | * SUCH DAMAGE. |
52 | | * |
53 | | * The licence and distribution terms for any publically available version or |
54 | | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | | * copied and put under another distribution licence |
56 | | * [including the GNU Public Licence.] |
57 | | */ |
58 | | |
59 | | #include <stdio.h> |
60 | | #include <errno.h> |
61 | | #include "cryptlib.h" |
62 | | #include <openssl/buffer.h> |
63 | | #include <openssl/evp.h> |
64 | | |
65 | | static int b64_write(BIO *h, const char *buf, int num); |
66 | | static int b64_read(BIO *h, char *buf, int size); |
67 | | static int b64_puts(BIO *h, const char *str); |
68 | | /* |
69 | | * static int b64_gets(BIO *h, char *str, int size); |
70 | | */ |
71 | | static long b64_ctrl(BIO *h, int cmd, long arg1, void *arg2); |
72 | | static int b64_new(BIO *h); |
73 | | static int b64_free(BIO *data); |
74 | | static long b64_callback_ctrl(BIO *h, int cmd, bio_info_cb *fp); |
75 | 0 | #define B64_BLOCK_SIZE 1024 |
76 | | #define B64_BLOCK_SIZE2 768 |
77 | 0 | #define B64_NONE 0 |
78 | 0 | #define B64_ENCODE 1 |
79 | 0 | #define B64_DECODE 2 |
80 | | |
81 | | typedef struct b64_struct { |
82 | | /* |
83 | | * BIO *bio; moved to the BIO structure |
84 | | */ |
85 | | int buf_len; |
86 | | int buf_off; |
87 | | int tmp_len; /* used to find the start when decoding */ |
88 | | int tmp_nl; /* If true, scan until '\n' */ |
89 | | int encode; |
90 | | int start; /* have we started decoding yet? */ |
91 | | int cont; /* <= 0 when finished */ |
92 | | EVP_ENCODE_CTX base64; |
93 | | char buf[EVP_ENCODE_LENGTH(B64_BLOCK_SIZE) + 10]; |
94 | | char tmp[B64_BLOCK_SIZE]; |
95 | | } BIO_B64_CTX; |
96 | | |
97 | | static BIO_METHOD methods_b64 = { |
98 | | BIO_TYPE_BASE64, "base64 encoding", |
99 | | b64_write, |
100 | | b64_read, |
101 | | b64_puts, |
102 | | NULL, /* b64_gets, */ |
103 | | b64_ctrl, |
104 | | b64_new, |
105 | | b64_free, |
106 | | b64_callback_ctrl, |
107 | | }; |
108 | | |
109 | | BIO_METHOD *BIO_f_base64(void) |
110 | 0 | { |
111 | 0 | return (&methods_b64); |
112 | 0 | } |
113 | | |
114 | | static int b64_new(BIO *bi) |
115 | 0 | { |
116 | 0 | BIO_B64_CTX *ctx; |
117 | |
|
118 | 0 | ctx = (BIO_B64_CTX *)OPENSSL_malloc(sizeof(BIO_B64_CTX)); |
119 | 0 | if (ctx == NULL) |
120 | 0 | return (0); |
121 | | |
122 | 0 | ctx->buf_len = 0; |
123 | 0 | ctx->tmp_len = 0; |
124 | 0 | ctx->tmp_nl = 0; |
125 | 0 | ctx->buf_off = 0; |
126 | 0 | ctx->cont = 1; |
127 | 0 | ctx->start = 1; |
128 | 0 | ctx->encode = 0; |
129 | |
|
130 | 0 | bi->init = 1; |
131 | 0 | bi->ptr = (char *)ctx; |
132 | 0 | bi->flags = 0; |
133 | 0 | bi->num = 0; |
134 | 0 | return (1); |
135 | 0 | } |
136 | | |
137 | | static int b64_free(BIO *a) |
138 | 0 | { |
139 | 0 | if (a == NULL) |
140 | 0 | return (0); |
141 | 0 | OPENSSL_free(a->ptr); |
142 | 0 | a->ptr = NULL; |
143 | 0 | a->init = 0; |
144 | 0 | a->flags = 0; |
145 | 0 | return (1); |
146 | 0 | } |
147 | | |
148 | | static int b64_read(BIO *b, char *out, int outl) |
149 | 0 | { |
150 | 0 | int ret = 0, i, ii, j, k, x, n, num, ret_code = 0; |
151 | 0 | BIO_B64_CTX *ctx; |
152 | 0 | unsigned char *p, *q; |
153 | |
|
154 | 0 | if (out == NULL) |
155 | 0 | return (0); |
156 | 0 | ctx = (BIO_B64_CTX *)b->ptr; |
157 | |
|
158 | 0 | if ((ctx == NULL) || (b->next_bio == NULL)) |
159 | 0 | return (0); |
160 | | |
161 | 0 | BIO_clear_retry_flags(b); |
162 | |
|
163 | 0 | if (ctx->encode != B64_DECODE) { |
164 | 0 | ctx->encode = B64_DECODE; |
165 | 0 | ctx->buf_len = 0; |
166 | 0 | ctx->buf_off = 0; |
167 | 0 | ctx->tmp_len = 0; |
168 | 0 | EVP_DecodeInit(&(ctx->base64)); |
169 | 0 | } |
170 | | |
171 | | /* First check if there are bytes decoded/encoded */ |
172 | 0 | if (ctx->buf_len > 0) { |
173 | 0 | OPENSSL_assert(ctx->buf_len >= ctx->buf_off); |
174 | 0 | i = ctx->buf_len - ctx->buf_off; |
175 | 0 | if (i > outl) |
176 | 0 | i = outl; |
177 | 0 | OPENSSL_assert(ctx->buf_off + i < (int)sizeof(ctx->buf)); |
178 | 0 | memcpy(out, &(ctx->buf[ctx->buf_off]), i); |
179 | 0 | ret = i; |
180 | 0 | out += i; |
181 | 0 | outl -= i; |
182 | 0 | ctx->buf_off += i; |
183 | 0 | if (ctx->buf_len == ctx->buf_off) { |
184 | 0 | ctx->buf_len = 0; |
185 | 0 | ctx->buf_off = 0; |
186 | 0 | } |
187 | 0 | } |
188 | | |
189 | | /* |
190 | | * At this point, we have room of outl bytes and an empty buffer, so we |
191 | | * should read in some more. |
192 | | */ |
193 | |
|
194 | 0 | ret_code = 0; |
195 | 0 | while (outl > 0) { |
196 | 0 | if (ctx->cont <= 0) |
197 | 0 | break; |
198 | | |
199 | 0 | i = BIO_read(b->next_bio, &(ctx->tmp[ctx->tmp_len]), |
200 | 0 | B64_BLOCK_SIZE - ctx->tmp_len); |
201 | |
|
202 | 0 | if (i <= 0) { |
203 | 0 | ret_code = i; |
204 | | |
205 | | /* Should we continue next time we are called? */ |
206 | 0 | if (!BIO_should_retry(b->next_bio)) { |
207 | 0 | ctx->cont = i; |
208 | | /* If buffer empty break */ |
209 | 0 | if (ctx->tmp_len == 0) |
210 | 0 | break; |
211 | | /* Fall through and process what we have */ |
212 | 0 | else |
213 | 0 | i = 0; |
214 | 0 | } |
215 | | /* else we retry and add more data to buffer */ |
216 | 0 | else |
217 | 0 | break; |
218 | 0 | } |
219 | 0 | i += ctx->tmp_len; |
220 | 0 | ctx->tmp_len = i; |
221 | | |
222 | | /* |
223 | | * We need to scan, a line at a time until we have a valid line if we |
224 | | * are starting. |
225 | | */ |
226 | 0 | if (ctx->start && (BIO_get_flags(b) & BIO_FLAGS_BASE64_NO_NL)) { |
227 | | /* ctx->start=1; */ |
228 | 0 | ctx->tmp_len = 0; |
229 | 0 | } else if (ctx->start) { |
230 | 0 | q = p = (unsigned char *)ctx->tmp; |
231 | 0 | num = 0; |
232 | 0 | for (j = 0; j < i; j++) { |
233 | 0 | if (*(q++) != '\n') |
234 | 0 | continue; |
235 | | |
236 | | /* |
237 | | * due to a previous very long line, we need to keep on |
238 | | * scanning for a '\n' before we even start looking for |
239 | | * base64 encoded stuff. |
240 | | */ |
241 | 0 | if (ctx->tmp_nl) { |
242 | 0 | p = q; |
243 | 0 | ctx->tmp_nl = 0; |
244 | 0 | continue; |
245 | 0 | } |
246 | | |
247 | 0 | k = EVP_DecodeUpdate(&(ctx->base64), |
248 | 0 | (unsigned char *)ctx->buf, |
249 | 0 | &num, p, q - p); |
250 | 0 | if ((k <= 0) && (num == 0) && (ctx->start)) |
251 | 0 | EVP_DecodeInit(&ctx->base64); |
252 | 0 | else { |
253 | 0 | if (p != (unsigned char *) |
254 | 0 | &(ctx->tmp[0])) { |
255 | 0 | i -= (p - (unsigned char *) |
256 | 0 | &(ctx->tmp[0])); |
257 | 0 | for (x = 0; x < i; x++) |
258 | 0 | ctx->tmp[x] = p[x]; |
259 | 0 | } |
260 | 0 | EVP_DecodeInit(&ctx->base64); |
261 | 0 | ctx->start = 0; |
262 | 0 | break; |
263 | 0 | } |
264 | 0 | p = q; |
265 | 0 | } |
266 | | |
267 | | /* we fell off the end without starting */ |
268 | 0 | if ((j == i) && (num == 0)) { |
269 | | /* |
270 | | * Is this is one long chunk?, if so, keep on reading until a |
271 | | * new line. |
272 | | */ |
273 | 0 | if (p == (unsigned char *)&(ctx->tmp[0])) { |
274 | | /* Check buffer full */ |
275 | 0 | if (i == B64_BLOCK_SIZE) { |
276 | 0 | ctx->tmp_nl = 1; |
277 | 0 | ctx->tmp_len = 0; |
278 | 0 | } |
279 | 0 | } else if (p != q) { /* finished on a '\n' */ |
280 | 0 | n = q - p; |
281 | 0 | for (ii = 0; ii < n; ii++) |
282 | 0 | ctx->tmp[ii] = p[ii]; |
283 | 0 | ctx->tmp_len = n; |
284 | 0 | } |
285 | | /* else finished on a '\n' */ |
286 | 0 | continue; |
287 | 0 | } else { |
288 | 0 | ctx->tmp_len = 0; |
289 | 0 | } |
290 | 0 | } else if ((i < B64_BLOCK_SIZE) && (ctx->cont > 0)) { |
291 | | /* |
292 | | * If buffer isn't full and we can retry then restart to read in |
293 | | * more data. |
294 | | */ |
295 | 0 | continue; |
296 | 0 | } |
297 | | |
298 | 0 | if (BIO_get_flags(b) & BIO_FLAGS_BASE64_NO_NL) { |
299 | 0 | int z, jj; |
300 | |
|
301 | | #if 0 |
302 | | jj = (i >> 2) << 2; |
303 | | #else |
304 | 0 | jj = i & ~3; /* process per 4 */ |
305 | 0 | #endif |
306 | 0 | z = EVP_DecodeBlock((unsigned char *)ctx->buf, |
307 | 0 | (unsigned char *)ctx->tmp, jj); |
308 | 0 | if (jj > 2) { |
309 | 0 | if (ctx->tmp[jj - 1] == '=') { |
310 | 0 | z--; |
311 | 0 | if (ctx->tmp[jj - 2] == '=') |
312 | 0 | z--; |
313 | 0 | } |
314 | 0 | } |
315 | | /* |
316 | | * z is now number of output bytes and jj is the number consumed |
317 | | */ |
318 | 0 | if (jj != i) { |
319 | 0 | memmove(ctx->tmp, &ctx->tmp[jj], i - jj); |
320 | 0 | ctx->tmp_len = i - jj; |
321 | 0 | } |
322 | 0 | ctx->buf_len = 0; |
323 | 0 | if (z > 0) { |
324 | 0 | ctx->buf_len = z; |
325 | 0 | } |
326 | 0 | i = z; |
327 | 0 | } else { |
328 | 0 | i = EVP_DecodeUpdate(&(ctx->base64), |
329 | 0 | (unsigned char *)ctx->buf, &ctx->buf_len, |
330 | 0 | (unsigned char *)ctx->tmp, i); |
331 | 0 | ctx->tmp_len = 0; |
332 | 0 | } |
333 | 0 | ctx->buf_off = 0; |
334 | 0 | if (i < 0) { |
335 | 0 | ret_code = 0; |
336 | 0 | ctx->buf_len = 0; |
337 | 0 | break; |
338 | 0 | } |
339 | | |
340 | 0 | if (ctx->buf_len <= outl) |
341 | 0 | i = ctx->buf_len; |
342 | 0 | else |
343 | 0 | i = outl; |
344 | |
|
345 | 0 | memcpy(out, ctx->buf, i); |
346 | 0 | ret += i; |
347 | 0 | ctx->buf_off = i; |
348 | 0 | if (ctx->buf_off == ctx->buf_len) { |
349 | 0 | ctx->buf_len = 0; |
350 | 0 | ctx->buf_off = 0; |
351 | 0 | } |
352 | 0 | outl -= i; |
353 | 0 | out += i; |
354 | 0 | } |
355 | | /* BIO_clear_retry_flags(b); */ |
356 | 0 | BIO_copy_next_retry(b); |
357 | 0 | return ((ret == 0) ? ret_code : ret); |
358 | 0 | } |
359 | | |
360 | | static int b64_write(BIO *b, const char *in, int inl) |
361 | 0 | { |
362 | 0 | int ret = 0; |
363 | 0 | int n; |
364 | 0 | int i; |
365 | 0 | BIO_B64_CTX *ctx; |
366 | |
|
367 | 0 | ctx = (BIO_B64_CTX *)b->ptr; |
368 | 0 | BIO_clear_retry_flags(b); |
369 | |
|
370 | 0 | if (ctx->encode != B64_ENCODE) { |
371 | 0 | ctx->encode = B64_ENCODE; |
372 | 0 | ctx->buf_len = 0; |
373 | 0 | ctx->buf_off = 0; |
374 | 0 | ctx->tmp_len = 0; |
375 | 0 | EVP_EncodeInit(&(ctx->base64)); |
376 | 0 | } |
377 | |
|
378 | 0 | OPENSSL_assert(ctx->buf_off < (int)sizeof(ctx->buf)); |
379 | 0 | OPENSSL_assert(ctx->buf_len <= (int)sizeof(ctx->buf)); |
380 | 0 | OPENSSL_assert(ctx->buf_len >= ctx->buf_off); |
381 | 0 | n = ctx->buf_len - ctx->buf_off; |
382 | 0 | while (n > 0) { |
383 | 0 | i = BIO_write(b->next_bio, &(ctx->buf[ctx->buf_off]), n); |
384 | 0 | if (i <= 0) { |
385 | 0 | BIO_copy_next_retry(b); |
386 | 0 | return (i); |
387 | 0 | } |
388 | 0 | OPENSSL_assert(i <= n); |
389 | 0 | ctx->buf_off += i; |
390 | 0 | OPENSSL_assert(ctx->buf_off <= (int)sizeof(ctx->buf)); |
391 | 0 | OPENSSL_assert(ctx->buf_len >= ctx->buf_off); |
392 | 0 | n -= i; |
393 | 0 | } |
394 | | /* at this point all pending data has been written */ |
395 | 0 | ctx->buf_off = 0; |
396 | 0 | ctx->buf_len = 0; |
397 | |
|
398 | 0 | if ((in == NULL) || (inl <= 0)) |
399 | 0 | return (0); |
400 | | |
401 | 0 | while (inl > 0) { |
402 | 0 | n = (inl > B64_BLOCK_SIZE) ? B64_BLOCK_SIZE : inl; |
403 | |
|
404 | 0 | if (BIO_get_flags(b) & BIO_FLAGS_BASE64_NO_NL) { |
405 | 0 | if (ctx->tmp_len > 0) { |
406 | 0 | OPENSSL_assert(ctx->tmp_len <= 3); |
407 | 0 | n = 3 - ctx->tmp_len; |
408 | | /* |
409 | | * There's a theoretical possibility for this |
410 | | */ |
411 | 0 | if (n > inl) |
412 | 0 | n = inl; |
413 | 0 | memcpy(&(ctx->tmp[ctx->tmp_len]), in, n); |
414 | 0 | ctx->tmp_len += n; |
415 | 0 | ret += n; |
416 | 0 | if (ctx->tmp_len < 3) |
417 | 0 | break; |
418 | 0 | ctx->buf_len = |
419 | 0 | EVP_EncodeBlock((unsigned char *)ctx->buf, |
420 | 0 | (unsigned char *)ctx->tmp, ctx->tmp_len); |
421 | 0 | OPENSSL_assert(ctx->buf_len <= (int)sizeof(ctx->buf)); |
422 | 0 | OPENSSL_assert(ctx->buf_len >= ctx->buf_off); |
423 | | /* |
424 | | * Since we're now done using the temporary buffer, the |
425 | | * length should be 0'd |
426 | | */ |
427 | 0 | ctx->tmp_len = 0; |
428 | 0 | } else { |
429 | 0 | if (n < 3) { |
430 | 0 | memcpy(ctx->tmp, in, n); |
431 | 0 | ctx->tmp_len = n; |
432 | 0 | ret += n; |
433 | 0 | break; |
434 | 0 | } |
435 | 0 | n -= n % 3; |
436 | 0 | ctx->buf_len = |
437 | 0 | EVP_EncodeBlock((unsigned char *)ctx->buf, |
438 | 0 | (const unsigned char *)in, n); |
439 | 0 | OPENSSL_assert(ctx->buf_len <= (int)sizeof(ctx->buf)); |
440 | 0 | OPENSSL_assert(ctx->buf_len >= ctx->buf_off); |
441 | 0 | ret += n; |
442 | 0 | } |
443 | 0 | } else { |
444 | 0 | EVP_EncodeUpdate(&(ctx->base64), |
445 | 0 | (unsigned char *)ctx->buf, &ctx->buf_len, |
446 | 0 | (unsigned char *)in, n); |
447 | 0 | OPENSSL_assert(ctx->buf_len <= (int)sizeof(ctx->buf)); |
448 | 0 | OPENSSL_assert(ctx->buf_len >= ctx->buf_off); |
449 | 0 | ret += n; |
450 | 0 | } |
451 | 0 | inl -= n; |
452 | 0 | in += n; |
453 | |
|
454 | 0 | ctx->buf_off = 0; |
455 | 0 | n = ctx->buf_len; |
456 | 0 | while (n > 0) { |
457 | 0 | i = BIO_write(b->next_bio, &(ctx->buf[ctx->buf_off]), n); |
458 | 0 | if (i <= 0) { |
459 | 0 | BIO_copy_next_retry(b); |
460 | 0 | return ((ret == 0) ? i : ret); |
461 | 0 | } |
462 | 0 | OPENSSL_assert(i <= n); |
463 | 0 | n -= i; |
464 | 0 | ctx->buf_off += i; |
465 | 0 | OPENSSL_assert(ctx->buf_off <= (int)sizeof(ctx->buf)); |
466 | 0 | OPENSSL_assert(ctx->buf_len >= ctx->buf_off); |
467 | 0 | } |
468 | 0 | ctx->buf_len = 0; |
469 | 0 | ctx->buf_off = 0; |
470 | 0 | } |
471 | 0 | return (ret); |
472 | 0 | } |
473 | | |
474 | | static long b64_ctrl(BIO *b, int cmd, long num, void *ptr) |
475 | 0 | { |
476 | 0 | BIO_B64_CTX *ctx; |
477 | 0 | long ret = 1; |
478 | 0 | int i; |
479 | |
|
480 | 0 | ctx = (BIO_B64_CTX *)b->ptr; |
481 | |
|
482 | 0 | switch (cmd) { |
483 | 0 | case BIO_CTRL_RESET: |
484 | 0 | ctx->cont = 1; |
485 | 0 | ctx->start = 1; |
486 | 0 | ctx->encode = B64_NONE; |
487 | 0 | ret = BIO_ctrl(b->next_bio, cmd, num, ptr); |
488 | 0 | break; |
489 | 0 | case BIO_CTRL_EOF: /* More to read */ |
490 | 0 | if (ctx->cont <= 0) |
491 | 0 | ret = 1; |
492 | 0 | else |
493 | 0 | ret = BIO_ctrl(b->next_bio, cmd, num, ptr); |
494 | 0 | break; |
495 | 0 | case BIO_CTRL_WPENDING: /* More to write in buffer */ |
496 | 0 | OPENSSL_assert(ctx->buf_len >= ctx->buf_off); |
497 | 0 | ret = ctx->buf_len - ctx->buf_off; |
498 | 0 | if ((ret == 0) && (ctx->encode != B64_NONE) |
499 | 0 | && (ctx->base64.num != 0)) |
500 | 0 | ret = 1; |
501 | 0 | else if (ret <= 0) |
502 | 0 | ret = BIO_ctrl(b->next_bio, cmd, num, ptr); |
503 | 0 | break; |
504 | 0 | case BIO_CTRL_PENDING: /* More to read in buffer */ |
505 | 0 | OPENSSL_assert(ctx->buf_len >= ctx->buf_off); |
506 | 0 | ret = ctx->buf_len - ctx->buf_off; |
507 | 0 | if (ret <= 0) |
508 | 0 | ret = BIO_ctrl(b->next_bio, cmd, num, ptr); |
509 | 0 | break; |
510 | 0 | case BIO_CTRL_FLUSH: |
511 | | /* do a final write */ |
512 | 0 | again: |
513 | 0 | while (ctx->buf_len != ctx->buf_off) { |
514 | 0 | i = b64_write(b, NULL, 0); |
515 | 0 | if (i < 0) |
516 | 0 | return i; |
517 | 0 | } |
518 | 0 | if (BIO_get_flags(b) & BIO_FLAGS_BASE64_NO_NL) { |
519 | 0 | if (ctx->tmp_len != 0) { |
520 | 0 | ctx->buf_len = EVP_EncodeBlock((unsigned char *)ctx->buf, |
521 | 0 | (unsigned char *)ctx->tmp, |
522 | 0 | ctx->tmp_len); |
523 | 0 | ctx->buf_off = 0; |
524 | 0 | ctx->tmp_len = 0; |
525 | 0 | goto again; |
526 | 0 | } |
527 | 0 | } else if (ctx->encode != B64_NONE && ctx->base64.num != 0) { |
528 | 0 | ctx->buf_off = 0; |
529 | 0 | EVP_EncodeFinal(&(ctx->base64), |
530 | 0 | (unsigned char *)ctx->buf, &(ctx->buf_len)); |
531 | | /* push out the bytes */ |
532 | 0 | goto again; |
533 | 0 | } |
534 | | /* Finally flush the underlying BIO */ |
535 | 0 | ret = BIO_ctrl(b->next_bio, cmd, num, ptr); |
536 | 0 | break; |
537 | | |
538 | 0 | case BIO_C_DO_STATE_MACHINE: |
539 | 0 | BIO_clear_retry_flags(b); |
540 | 0 | ret = BIO_ctrl(b->next_bio, cmd, num, ptr); |
541 | 0 | BIO_copy_next_retry(b); |
542 | 0 | break; |
543 | | |
544 | 0 | case BIO_CTRL_DUP: |
545 | 0 | break; |
546 | 0 | case BIO_CTRL_INFO: |
547 | 0 | case BIO_CTRL_GET: |
548 | 0 | case BIO_CTRL_SET: |
549 | 0 | default: |
550 | 0 | ret = BIO_ctrl(b->next_bio, cmd, num, ptr); |
551 | 0 | break; |
552 | 0 | } |
553 | 0 | return (ret); |
554 | 0 | } |
555 | | |
556 | | static long b64_callback_ctrl(BIO *b, int cmd, bio_info_cb *fp) |
557 | 0 | { |
558 | 0 | long ret = 1; |
559 | |
|
560 | 0 | if (b->next_bio == NULL) |
561 | 0 | return (0); |
562 | 0 | switch (cmd) { |
563 | 0 | default: |
564 | 0 | ret = BIO_callback_ctrl(b->next_bio, cmd, fp); |
565 | 0 | break; |
566 | 0 | } |
567 | 0 | return (ret); |
568 | 0 | } |
569 | | |
570 | | static int b64_puts(BIO *b, const char *str) |
571 | 0 | { |
572 | 0 | return b64_write(b, str, strlen(str)); |
573 | 0 | } |