/src/openssl/crypto/evp/p5_crpt2.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* p5_crpt2.c */ |
2 | | /* |
3 | | * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL project |
4 | | * 1999. |
5 | | */ |
6 | | /* ==================================================================== |
7 | | * Copyright (c) 1999-2006 The OpenSSL Project. All rights reserved. |
8 | | * |
9 | | * Redistribution and use in source and binary forms, with or without |
10 | | * modification, are permitted provided that the following conditions |
11 | | * are met: |
12 | | * |
13 | | * 1. Redistributions of source code must retain the above copyright |
14 | | * notice, this list of conditions and the following disclaimer. |
15 | | * |
16 | | * 2. Redistributions in binary form must reproduce the above copyright |
17 | | * notice, this list of conditions and the following disclaimer in |
18 | | * the documentation and/or other materials provided with the |
19 | | * distribution. |
20 | | * |
21 | | * 3. All advertising materials mentioning features or use of this |
22 | | * software must display the following acknowledgment: |
23 | | * "This product includes software developed by the OpenSSL Project |
24 | | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
25 | | * |
26 | | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
27 | | * endorse or promote products derived from this software without |
28 | | * prior written permission. For written permission, please contact |
29 | | * licensing@OpenSSL.org. |
30 | | * |
31 | | * 5. Products derived from this software may not be called "OpenSSL" |
32 | | * nor may "OpenSSL" appear in their names without prior written |
33 | | * permission of the OpenSSL Project. |
34 | | * |
35 | | * 6. Redistributions of any form whatsoever must retain the following |
36 | | * acknowledgment: |
37 | | * "This product includes software developed by the OpenSSL Project |
38 | | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
39 | | * |
40 | | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
41 | | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
43 | | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
44 | | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
45 | | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
46 | | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
47 | | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
48 | | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
49 | | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
50 | | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
51 | | * OF THE POSSIBILITY OF SUCH DAMAGE. |
52 | | * ==================================================================== |
53 | | * |
54 | | * This product includes cryptographic software written by Eric Young |
55 | | * (eay@cryptsoft.com). This product includes software written by Tim |
56 | | * Hudson (tjh@cryptsoft.com). |
57 | | * |
58 | | */ |
59 | | #include <stdio.h> |
60 | | #include <stdlib.h> |
61 | | #include "cryptlib.h" |
62 | | #if !defined(OPENSSL_NO_HMAC) && !defined(OPENSSL_NO_SHA) |
63 | | # include <openssl/x509.h> |
64 | | # include <openssl/evp.h> |
65 | | # include <openssl/hmac.h> |
66 | | # include "evp_locl.h" |
67 | | |
68 | | /* set this to print out info about the keygen algorithm */ |
69 | | /* #define DEBUG_PKCS5V2 */ |
70 | | |
71 | | # ifdef DEBUG_PKCS5V2 |
72 | | static void h__dump(const unsigned char *p, int len); |
73 | | # endif |
74 | | |
75 | | /* |
76 | | * This is an implementation of PKCS#5 v2.0 password based encryption key |
77 | | * derivation function PBKDF2. SHA1 version verified against test vectors |
78 | | * posted by Peter Gutmann <pgut001@cs.auckland.ac.nz> to the PKCS-TNG |
79 | | * <pkcs-tng@rsa.com> mailing list. |
80 | | */ |
81 | | |
82 | | int PKCS5_PBKDF2_HMAC(const char *pass, int passlen, |
83 | | const unsigned char *salt, int saltlen, int iter, |
84 | | const EVP_MD *digest, int keylen, unsigned char *out) |
85 | 0 | { |
86 | 0 | unsigned char digtmp[EVP_MAX_MD_SIZE], *p, itmp[4]; |
87 | 0 | int cplen, j, k, tkeylen, mdlen; |
88 | 0 | unsigned long i = 1; |
89 | 0 | HMAC_CTX hctx_tpl, hctx; |
90 | |
|
91 | 0 | mdlen = EVP_MD_size(digest); |
92 | 0 | if (mdlen < 0) |
93 | 0 | return 0; |
94 | | |
95 | 0 | HMAC_CTX_init(&hctx_tpl); |
96 | 0 | p = out; |
97 | 0 | tkeylen = keylen; |
98 | 0 | if (!pass) |
99 | 0 | passlen = 0; |
100 | 0 | else if (passlen == -1) |
101 | 0 | passlen = strlen(pass); |
102 | 0 | if (!HMAC_Init_ex(&hctx_tpl, pass, passlen, digest, NULL)) { |
103 | 0 | HMAC_CTX_cleanup(&hctx_tpl); |
104 | 0 | return 0; |
105 | 0 | } |
106 | 0 | while (tkeylen) { |
107 | 0 | if (tkeylen > mdlen) |
108 | 0 | cplen = mdlen; |
109 | 0 | else |
110 | 0 | cplen = tkeylen; |
111 | | /* |
112 | | * We are unlikely to ever use more than 256 blocks (5120 bits!) but |
113 | | * just in case... |
114 | | */ |
115 | 0 | itmp[0] = (unsigned char)((i >> 24) & 0xff); |
116 | 0 | itmp[1] = (unsigned char)((i >> 16) & 0xff); |
117 | 0 | itmp[2] = (unsigned char)((i >> 8) & 0xff); |
118 | 0 | itmp[3] = (unsigned char)(i & 0xff); |
119 | 0 | if (!HMAC_CTX_copy(&hctx, &hctx_tpl)) { |
120 | 0 | HMAC_CTX_cleanup(&hctx_tpl); |
121 | 0 | return 0; |
122 | 0 | } |
123 | 0 | if (!HMAC_Update(&hctx, salt, saltlen) |
124 | 0 | || !HMAC_Update(&hctx, itmp, 4) |
125 | 0 | || !HMAC_Final(&hctx, digtmp, NULL)) { |
126 | 0 | HMAC_CTX_cleanup(&hctx_tpl); |
127 | 0 | HMAC_CTX_cleanup(&hctx); |
128 | 0 | return 0; |
129 | 0 | } |
130 | 0 | HMAC_CTX_cleanup(&hctx); |
131 | 0 | memcpy(p, digtmp, cplen); |
132 | 0 | for (j = 1; j < iter; j++) { |
133 | 0 | if (!HMAC_CTX_copy(&hctx, &hctx_tpl)) { |
134 | 0 | HMAC_CTX_cleanup(&hctx_tpl); |
135 | 0 | return 0; |
136 | 0 | } |
137 | 0 | if (!HMAC_Update(&hctx, digtmp, mdlen) |
138 | 0 | || !HMAC_Final(&hctx, digtmp, NULL)) { |
139 | 0 | HMAC_CTX_cleanup(&hctx_tpl); |
140 | 0 | HMAC_CTX_cleanup(&hctx); |
141 | 0 | return 0; |
142 | 0 | } |
143 | 0 | HMAC_CTX_cleanup(&hctx); |
144 | 0 | for (k = 0; k < cplen; k++) |
145 | 0 | p[k] ^= digtmp[k]; |
146 | 0 | } |
147 | 0 | tkeylen -= cplen; |
148 | 0 | i++; |
149 | 0 | p += cplen; |
150 | 0 | } |
151 | 0 | HMAC_CTX_cleanup(&hctx_tpl); |
152 | | # ifdef DEBUG_PKCS5V2 |
153 | | fprintf(stderr, "Password:\n"); |
154 | | h__dump(pass, passlen); |
155 | | fprintf(stderr, "Salt:\n"); |
156 | | h__dump(salt, saltlen); |
157 | | fprintf(stderr, "Iteration count %d\n", iter); |
158 | | fprintf(stderr, "Key:\n"); |
159 | | h__dump(out, keylen); |
160 | | # endif |
161 | 0 | return 1; |
162 | 0 | } |
163 | | |
164 | | int PKCS5_PBKDF2_HMAC_SHA1(const char *pass, int passlen, |
165 | | const unsigned char *salt, int saltlen, int iter, |
166 | | int keylen, unsigned char *out) |
167 | 0 | { |
168 | 0 | return PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, iter, EVP_sha1(), |
169 | 0 | keylen, out); |
170 | 0 | } |
171 | | |
172 | | # ifdef DO_TEST |
173 | | main() |
174 | | { |
175 | | unsigned char out[4]; |
176 | | unsigned char salt[] = { 0x12, 0x34, 0x56, 0x78 }; |
177 | | PKCS5_PBKDF2_HMAC_SHA1("password", -1, salt, 4, 5, 4, out); |
178 | | fprintf(stderr, "Out %02X %02X %02X %02X\n", |
179 | | out[0], out[1], out[2], out[3]); |
180 | | } |
181 | | |
182 | | # endif |
183 | | |
184 | | /* |
185 | | * Now the key derivation function itself. This is a bit evil because it has |
186 | | * to check the ASN1 parameters are valid: and there are quite a few of |
187 | | * them... |
188 | | */ |
189 | | |
190 | | int PKCS5_v2_PBE_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen, |
191 | | ASN1_TYPE *param, const EVP_CIPHER *c, |
192 | | const EVP_MD *md, int en_de) |
193 | 0 | { |
194 | 0 | const unsigned char *pbuf; |
195 | 0 | int plen; |
196 | 0 | PBE2PARAM *pbe2 = NULL; |
197 | 0 | const EVP_CIPHER *cipher; |
198 | |
|
199 | 0 | int rv = 0; |
200 | |
|
201 | 0 | if (param == NULL || param->type != V_ASN1_SEQUENCE || |
202 | 0 | param->value.sequence == NULL) { |
203 | 0 | EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, EVP_R_DECODE_ERROR); |
204 | 0 | goto err; |
205 | 0 | } |
206 | | |
207 | 0 | pbuf = param->value.sequence->data; |
208 | 0 | plen = param->value.sequence->length; |
209 | 0 | if (!(pbe2 = d2i_PBE2PARAM(NULL, &pbuf, plen))) { |
210 | 0 | EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, EVP_R_DECODE_ERROR); |
211 | 0 | goto err; |
212 | 0 | } |
213 | | |
214 | | /* See if we recognise the key derivation function */ |
215 | | |
216 | 0 | if (OBJ_obj2nid(pbe2->keyfunc->algorithm) != NID_id_pbkdf2) { |
217 | 0 | EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, |
218 | 0 | EVP_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION); |
219 | 0 | goto err; |
220 | 0 | } |
221 | | |
222 | | /* |
223 | | * lets see if we recognise the encryption algorithm. |
224 | | */ |
225 | | |
226 | 0 | cipher = EVP_get_cipherbyobj(pbe2->encryption->algorithm); |
227 | |
|
228 | 0 | if (!cipher) { |
229 | 0 | EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, EVP_R_UNSUPPORTED_CIPHER); |
230 | 0 | goto err; |
231 | 0 | } |
232 | | |
233 | | /* Fixup cipher based on AlgorithmIdentifier */ |
234 | 0 | if (!EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, en_de)) |
235 | 0 | goto err; |
236 | 0 | if (EVP_CIPHER_asn1_to_param(ctx, pbe2->encryption->parameter) < 0) { |
237 | 0 | EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, EVP_R_CIPHER_PARAMETER_ERROR); |
238 | 0 | goto err; |
239 | 0 | } |
240 | 0 | rv = PKCS5_v2_PBKDF2_keyivgen(ctx, pass, passlen, |
241 | 0 | pbe2->keyfunc->parameter, c, md, en_de); |
242 | 0 | err: |
243 | 0 | PBE2PARAM_free(pbe2); |
244 | 0 | return rv; |
245 | 0 | } |
246 | | |
247 | | int PKCS5_v2_PBKDF2_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, |
248 | | int passlen, ASN1_TYPE *param, |
249 | | const EVP_CIPHER *c, const EVP_MD *md, int en_de) |
250 | 0 | { |
251 | 0 | unsigned char *salt, key[EVP_MAX_KEY_LENGTH]; |
252 | 0 | const unsigned char *pbuf; |
253 | 0 | int saltlen, iter, plen; |
254 | 0 | int rv = 0; |
255 | 0 | unsigned int keylen = 0; |
256 | 0 | int prf_nid, hmac_md_nid; |
257 | 0 | PBKDF2PARAM *kdf = NULL; |
258 | 0 | const EVP_MD *prfmd; |
259 | |
|
260 | 0 | if (EVP_CIPHER_CTX_cipher(ctx) == NULL) { |
261 | 0 | EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_NO_CIPHER_SET); |
262 | 0 | goto err; |
263 | 0 | } |
264 | 0 | keylen = EVP_CIPHER_CTX_key_length(ctx); |
265 | 0 | OPENSSL_assert(keylen <= sizeof key); |
266 | | |
267 | | /* Decode parameter */ |
268 | |
|
269 | 0 | if (!param || (param->type != V_ASN1_SEQUENCE)) { |
270 | 0 | EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_DECODE_ERROR); |
271 | 0 | goto err; |
272 | 0 | } |
273 | | |
274 | 0 | pbuf = param->value.sequence->data; |
275 | 0 | plen = param->value.sequence->length; |
276 | |
|
277 | 0 | if (!(kdf = d2i_PBKDF2PARAM(NULL, &pbuf, plen))) { |
278 | 0 | EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_DECODE_ERROR); |
279 | 0 | goto err; |
280 | 0 | } |
281 | | |
282 | 0 | keylen = EVP_CIPHER_CTX_key_length(ctx); |
283 | | |
284 | | /* Now check the parameters of the kdf */ |
285 | |
|
286 | 0 | if (kdf->keylength && (ASN1_INTEGER_get(kdf->keylength) != (int)keylen)) { |
287 | 0 | EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_KEYLENGTH); |
288 | 0 | goto err; |
289 | 0 | } |
290 | | |
291 | 0 | if (kdf->prf) |
292 | 0 | prf_nid = OBJ_obj2nid(kdf->prf->algorithm); |
293 | 0 | else |
294 | 0 | prf_nid = NID_hmacWithSHA1; |
295 | |
|
296 | 0 | if (!EVP_PBE_find(EVP_PBE_TYPE_PRF, prf_nid, NULL, &hmac_md_nid, 0)) { |
297 | 0 | EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_PRF); |
298 | 0 | goto err; |
299 | 0 | } |
300 | | |
301 | 0 | prfmd = EVP_get_digestbynid(hmac_md_nid); |
302 | 0 | if (prfmd == NULL) { |
303 | 0 | EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_PRF); |
304 | 0 | goto err; |
305 | 0 | } |
306 | | |
307 | 0 | if (kdf->salt->type != V_ASN1_OCTET_STRING) { |
308 | 0 | EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_SALT_TYPE); |
309 | 0 | goto err; |
310 | 0 | } |
311 | | |
312 | | /* it seems that its all OK */ |
313 | 0 | salt = kdf->salt->value.octet_string->data; |
314 | 0 | saltlen = kdf->salt->value.octet_string->length; |
315 | 0 | iter = ASN1_INTEGER_get(kdf->iter); |
316 | 0 | if (!PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, iter, prfmd, |
317 | 0 | keylen, key)) |
318 | 0 | goto err; |
319 | 0 | rv = EVP_CipherInit_ex(ctx, NULL, NULL, key, NULL, en_de); |
320 | 0 | err: |
321 | 0 | OPENSSL_cleanse(key, keylen); |
322 | 0 | PBKDF2PARAM_free(kdf); |
323 | 0 | return rv; |
324 | 0 | } |
325 | | |
326 | | # ifdef DEBUG_PKCS5V2 |
327 | | static void h__dump(const unsigned char *p, int len) |
328 | | { |
329 | | for (; len--; p++) |
330 | | fprintf(stderr, "%02X ", *p); |
331 | | fprintf(stderr, "\n"); |
332 | | } |
333 | | # endif |
334 | | #endif |