/src/openssl/crypto/pem/pem_lib.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* crypto/pem/pem_lib.c */ |
2 | | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
3 | | * All rights reserved. |
4 | | * |
5 | | * This package is an SSL implementation written |
6 | | * by Eric Young (eay@cryptsoft.com). |
7 | | * The implementation was written so as to conform with Netscapes SSL. |
8 | | * |
9 | | * This library is free for commercial and non-commercial use as long as |
10 | | * the following conditions are aheared to. The following conditions |
11 | | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | | * included with this distribution is covered by the same copyright terms |
14 | | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | | * |
16 | | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | | * the code are not to be removed. |
18 | | * If this package is used in a product, Eric Young should be given attribution |
19 | | * as the author of the parts of the library used. |
20 | | * This can be in the form of a textual message at program startup or |
21 | | * in documentation (online or textual) provided with the package. |
22 | | * |
23 | | * Redistribution and use in source and binary forms, with or without |
24 | | * modification, are permitted provided that the following conditions |
25 | | * are met: |
26 | | * 1. Redistributions of source code must retain the copyright |
27 | | * notice, this list of conditions and the following disclaimer. |
28 | | * 2. Redistributions in binary form must reproduce the above copyright |
29 | | * notice, this list of conditions and the following disclaimer in the |
30 | | * documentation and/or other materials provided with the distribution. |
31 | | * 3. All advertising materials mentioning features or use of this software |
32 | | * must display the following acknowledgement: |
33 | | * "This product includes cryptographic software written by |
34 | | * Eric Young (eay@cryptsoft.com)" |
35 | | * The word 'cryptographic' can be left out if the rouines from the library |
36 | | * being used are not cryptographic related :-). |
37 | | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | | * the apps directory (application code) you must include an acknowledgement: |
39 | | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | | * |
41 | | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
44 | | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
45 | | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
46 | | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
47 | | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
48 | | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
49 | | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | | * SUCH DAMAGE. |
52 | | * |
53 | | * The licence and distribution terms for any publically available version or |
54 | | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | | * copied and put under another distribution licence |
56 | | * [including the GNU Public Licence.] |
57 | | */ |
58 | | |
59 | | #include <stdio.h> |
60 | | #include <ctype.h> |
61 | | #include "cryptlib.h" |
62 | | #include <openssl/buffer.h> |
63 | | #include <openssl/objects.h> |
64 | | #include <openssl/evp.h> |
65 | | #include <openssl/rand.h> |
66 | | #include <openssl/x509.h> |
67 | | #include <openssl/pem.h> |
68 | | #include <openssl/pkcs12.h> |
69 | | #include "asn1_locl.h" |
70 | | #ifndef OPENSSL_NO_DES |
71 | | # include <openssl/des.h> |
72 | | #endif |
73 | | #ifndef OPENSSL_NO_ENGINE |
74 | | # include <openssl/engine.h> |
75 | | #endif |
76 | | |
77 | | const char PEM_version[] = "PEM" OPENSSL_VERSION_PTEXT; |
78 | | |
79 | 0 | #define MIN_LENGTH 4 |
80 | | |
81 | | static int load_iv(char **fromp, unsigned char *to, int num); |
82 | | static int check_pem(const char *nm, const char *name); |
83 | | int pem_check_suffix(const char *pem_str, const char *suffix); |
84 | | |
85 | | int PEM_def_callback(char *buf, int num, int w, void *key) |
86 | 0 | { |
87 | | #ifdef OPENSSL_NO_FP_API |
88 | | /* |
89 | | * We should not ever call the default callback routine from windows. |
90 | | */ |
91 | | PEMerr(PEM_F_PEM_DEF_CALLBACK, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
92 | | return (-1); |
93 | | #else |
94 | 0 | int i, j; |
95 | 0 | const char *prompt; |
96 | 0 | if (key) { |
97 | 0 | i = strlen(key); |
98 | 0 | i = (i > num) ? num : i; |
99 | 0 | memcpy(buf, key, i); |
100 | 0 | return (i); |
101 | 0 | } |
102 | | |
103 | 0 | prompt = EVP_get_pw_prompt(); |
104 | 0 | if (prompt == NULL) |
105 | 0 | prompt = "Enter PEM pass phrase:"; |
106 | |
|
107 | 0 | for (;;) { |
108 | | /* |
109 | | * We assume that w == 0 means decryption, |
110 | | * while w == 1 means encryption |
111 | | */ |
112 | 0 | int min_len = w ? MIN_LENGTH : 0; |
113 | |
|
114 | 0 | i = EVP_read_pw_string_min(buf, min_len, num, prompt, w); |
115 | 0 | if (i != 0) { |
116 | 0 | PEMerr(PEM_F_PEM_DEF_CALLBACK, PEM_R_PROBLEMS_GETTING_PASSWORD); |
117 | 0 | memset(buf, 0, (unsigned int)num); |
118 | 0 | return (-1); |
119 | 0 | } |
120 | 0 | j = strlen(buf); |
121 | 0 | if (min_len && j < min_len) { |
122 | 0 | fprintf(stderr, |
123 | 0 | "phrase is too short, needs to be at least %d chars\n", |
124 | 0 | min_len); |
125 | 0 | } else |
126 | 0 | break; |
127 | 0 | } |
128 | 0 | return (j); |
129 | 0 | #endif |
130 | 0 | } |
131 | | |
132 | | void PEM_proc_type(char *buf, int type) |
133 | 0 | { |
134 | 0 | const char *str; |
135 | |
|
136 | 0 | if (type == PEM_TYPE_ENCRYPTED) |
137 | 0 | str = "ENCRYPTED"; |
138 | 0 | else if (type == PEM_TYPE_MIC_CLEAR) |
139 | 0 | str = "MIC-CLEAR"; |
140 | 0 | else if (type == PEM_TYPE_MIC_ONLY) |
141 | 0 | str = "MIC-ONLY"; |
142 | 0 | else |
143 | 0 | str = "BAD-TYPE"; |
144 | |
|
145 | 0 | BUF_strlcat(buf, "Proc-Type: 4,", PEM_BUFSIZE); |
146 | 0 | BUF_strlcat(buf, str, PEM_BUFSIZE); |
147 | 0 | BUF_strlcat(buf, "\n", PEM_BUFSIZE); |
148 | 0 | } |
149 | | |
150 | | void PEM_dek_info(char *buf, const char *type, int len, char *str) |
151 | 0 | { |
152 | 0 | static const unsigned char map[17] = "0123456789ABCDEF"; |
153 | 0 | long i; |
154 | 0 | int j; |
155 | |
|
156 | 0 | BUF_strlcat(buf, "DEK-Info: ", PEM_BUFSIZE); |
157 | 0 | BUF_strlcat(buf, type, PEM_BUFSIZE); |
158 | 0 | BUF_strlcat(buf, ",", PEM_BUFSIZE); |
159 | 0 | j = strlen(buf); |
160 | 0 | if (j + (len * 2) + 1 > PEM_BUFSIZE) |
161 | 0 | return; |
162 | 0 | for (i = 0; i < len; i++) { |
163 | 0 | buf[j + i * 2] = map[(str[i] >> 4) & 0x0f]; |
164 | 0 | buf[j + i * 2 + 1] = map[(str[i]) & 0x0f]; |
165 | 0 | } |
166 | 0 | buf[j + i * 2] = '\n'; |
167 | 0 | buf[j + i * 2 + 1] = '\0'; |
168 | 0 | } |
169 | | |
170 | | #ifndef OPENSSL_NO_FP_API |
171 | | void *PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x, |
172 | | pem_password_cb *cb, void *u) |
173 | 0 | { |
174 | 0 | BIO *b; |
175 | 0 | void *ret; |
176 | |
|
177 | 0 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
178 | 0 | PEMerr(PEM_F_PEM_ASN1_READ, ERR_R_BUF_LIB); |
179 | 0 | return (0); |
180 | 0 | } |
181 | 0 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
182 | 0 | ret = PEM_ASN1_read_bio(d2i, name, b, x, cb, u); |
183 | 0 | BIO_free(b); |
184 | 0 | return (ret); |
185 | 0 | } |
186 | | #endif |
187 | | |
188 | | static int check_pem(const char *nm, const char *name) |
189 | 0 | { |
190 | | /* Normal matching nm and name */ |
191 | 0 | if (!strcmp(nm, name)) |
192 | 0 | return 1; |
193 | | |
194 | | /* Make PEM_STRING_EVP_PKEY match any private key */ |
195 | | |
196 | 0 | if (!strcmp(name, PEM_STRING_EVP_PKEY)) { |
197 | 0 | int slen; |
198 | 0 | const EVP_PKEY_ASN1_METHOD *ameth; |
199 | 0 | if (!strcmp(nm, PEM_STRING_PKCS8)) |
200 | 0 | return 1; |
201 | 0 | if (!strcmp(nm, PEM_STRING_PKCS8INF)) |
202 | 0 | return 1; |
203 | 0 | slen = pem_check_suffix(nm, "PRIVATE KEY"); |
204 | 0 | if (slen > 0) { |
205 | | /* |
206 | | * NB: ENGINE implementations wont contain a deprecated old |
207 | | * private key decode function so don't look for them. |
208 | | */ |
209 | 0 | ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen); |
210 | 0 | if (ameth && ameth->old_priv_decode) |
211 | 0 | return 1; |
212 | 0 | } |
213 | 0 | return 0; |
214 | 0 | } |
215 | | |
216 | 0 | if (!strcmp(name, PEM_STRING_PARAMETERS)) { |
217 | 0 | int slen; |
218 | 0 | const EVP_PKEY_ASN1_METHOD *ameth; |
219 | 0 | slen = pem_check_suffix(nm, "PARAMETERS"); |
220 | 0 | if (slen > 0) { |
221 | 0 | ENGINE *e; |
222 | 0 | ameth = EVP_PKEY_asn1_find_str(&e, nm, slen); |
223 | 0 | if (ameth) { |
224 | 0 | int r; |
225 | 0 | if (ameth->param_decode) |
226 | 0 | r = 1; |
227 | 0 | else |
228 | 0 | r = 0; |
229 | 0 | #ifndef OPENSSL_NO_ENGINE |
230 | 0 | if (e) |
231 | 0 | ENGINE_finish(e); |
232 | 0 | #endif |
233 | 0 | return r; |
234 | 0 | } |
235 | 0 | } |
236 | 0 | return 0; |
237 | 0 | } |
238 | | /* If reading DH parameters handle X9.42 DH format too */ |
239 | 0 | if (!strcmp(nm, PEM_STRING_DHXPARAMS) && |
240 | 0 | !strcmp(name, PEM_STRING_DHPARAMS)) |
241 | 0 | return 1; |
242 | | |
243 | | /* Permit older strings */ |
244 | | |
245 | 0 | if (!strcmp(nm, PEM_STRING_X509_OLD) && !strcmp(name, PEM_STRING_X509)) |
246 | 0 | return 1; |
247 | | |
248 | 0 | if (!strcmp(nm, PEM_STRING_X509_REQ_OLD) && |
249 | 0 | !strcmp(name, PEM_STRING_X509_REQ)) |
250 | 0 | return 1; |
251 | | |
252 | | /* Allow normal certs to be read as trusted certs */ |
253 | 0 | if (!strcmp(nm, PEM_STRING_X509) && |
254 | 0 | !strcmp(name, PEM_STRING_X509_TRUSTED)) |
255 | 0 | return 1; |
256 | | |
257 | 0 | if (!strcmp(nm, PEM_STRING_X509_OLD) && |
258 | 0 | !strcmp(name, PEM_STRING_X509_TRUSTED)) |
259 | 0 | return 1; |
260 | | |
261 | | /* Some CAs use PKCS#7 with CERTIFICATE headers */ |
262 | 0 | if (!strcmp(nm, PEM_STRING_X509) && !strcmp(name, PEM_STRING_PKCS7)) |
263 | 0 | return 1; |
264 | | |
265 | 0 | if (!strcmp(nm, PEM_STRING_PKCS7_SIGNED) && |
266 | 0 | !strcmp(name, PEM_STRING_PKCS7)) |
267 | 0 | return 1; |
268 | | |
269 | 0 | #ifndef OPENSSL_NO_CMS |
270 | 0 | if (!strcmp(nm, PEM_STRING_X509) && !strcmp(name, PEM_STRING_CMS)) |
271 | 0 | return 1; |
272 | | /* Allow CMS to be read from PKCS#7 headers */ |
273 | 0 | if (!strcmp(nm, PEM_STRING_PKCS7) && !strcmp(name, PEM_STRING_CMS)) |
274 | 0 | return 1; |
275 | 0 | #endif |
276 | | |
277 | 0 | return 0; |
278 | 0 | } |
279 | | |
280 | | int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, |
281 | | const char *name, BIO *bp, pem_password_cb *cb, |
282 | | void *u) |
283 | 1.24k | { |
284 | 1.24k | EVP_CIPHER_INFO cipher; |
285 | 1.24k | char *nm = NULL, *header = NULL; |
286 | 1.24k | unsigned char *data = NULL; |
287 | 1.24k | long len; |
288 | 1.24k | int ret = 0; |
289 | | |
290 | 1.24k | for (;;) { |
291 | 1.24k | if (!PEM_read_bio(bp, &nm, &header, &data, &len)) { |
292 | 1.24k | if (ERR_GET_REASON(ERR_peek_error()) == PEM_R_NO_START_LINE) |
293 | 1.24k | ERR_add_error_data(2, "Expecting: ", name); |
294 | 1.24k | return 0; |
295 | 1.24k | } |
296 | 0 | if (check_pem(nm, name)) |
297 | 0 | break; |
298 | 0 | OPENSSL_free(nm); |
299 | 0 | OPENSSL_free(header); |
300 | 0 | OPENSSL_free(data); |
301 | 0 | } |
302 | 0 | if (!PEM_get_EVP_CIPHER_INFO(header, &cipher)) |
303 | 0 | goto err; |
304 | 0 | if (!PEM_do_header(&cipher, data, &len, cb, u)) |
305 | 0 | goto err; |
306 | | |
307 | 0 | *pdata = data; |
308 | 0 | *plen = len; |
309 | |
|
310 | 0 | if (pnm) |
311 | 0 | *pnm = nm; |
312 | |
|
313 | 0 | ret = 1; |
314 | |
|
315 | 0 | err: |
316 | 0 | if (!ret || !pnm) |
317 | 0 | OPENSSL_free(nm); |
318 | 0 | OPENSSL_free(header); |
319 | 0 | if (!ret) |
320 | 0 | OPENSSL_free(data); |
321 | 0 | return ret; |
322 | 0 | } |
323 | | |
324 | | #ifndef OPENSSL_NO_FP_API |
325 | | int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp, |
326 | | void *x, const EVP_CIPHER *enc, unsigned char *kstr, |
327 | | int klen, pem_password_cb *callback, void *u) |
328 | 0 | { |
329 | 0 | BIO *b; |
330 | 0 | int ret; |
331 | |
|
332 | 0 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
333 | 0 | PEMerr(PEM_F_PEM_ASN1_WRITE, ERR_R_BUF_LIB); |
334 | 0 | return (0); |
335 | 0 | } |
336 | 0 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
337 | 0 | ret = PEM_ASN1_write_bio(i2d, name, b, x, enc, kstr, klen, callback, u); |
338 | 0 | BIO_free(b); |
339 | 0 | return (ret); |
340 | 0 | } |
341 | | #endif |
342 | | |
343 | | int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp, |
344 | | void *x, const EVP_CIPHER *enc, unsigned char *kstr, |
345 | | int klen, pem_password_cb *callback, void *u) |
346 | 0 | { |
347 | 0 | EVP_CIPHER_CTX ctx; |
348 | 0 | int dsize = 0, i, j, ret = 0; |
349 | 0 | unsigned char *p, *data = NULL; |
350 | 0 | const char *objstr = NULL; |
351 | 0 | char buf[PEM_BUFSIZE]; |
352 | 0 | unsigned char key[EVP_MAX_KEY_LENGTH]; |
353 | 0 | unsigned char iv[EVP_MAX_IV_LENGTH]; |
354 | |
|
355 | 0 | if (enc != NULL) { |
356 | 0 | objstr = OBJ_nid2sn(EVP_CIPHER_nid(enc)); |
357 | 0 | if (objstr == NULL || EVP_CIPHER_iv_length(enc) == 0) { |
358 | 0 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, PEM_R_UNSUPPORTED_CIPHER); |
359 | 0 | goto err; |
360 | 0 | } |
361 | 0 | } |
362 | | |
363 | 0 | if ((dsize = i2d(x, NULL)) < 0) { |
364 | 0 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, ERR_R_ASN1_LIB); |
365 | 0 | dsize = 0; |
366 | 0 | goto err; |
367 | 0 | } |
368 | | /* dzise + 8 bytes are needed */ |
369 | | /* actually it needs the cipher block size extra... */ |
370 | 0 | data = (unsigned char *)OPENSSL_malloc((unsigned int)dsize + 20); |
371 | 0 | if (data == NULL) { |
372 | 0 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, ERR_R_MALLOC_FAILURE); |
373 | 0 | goto err; |
374 | 0 | } |
375 | 0 | p = data; |
376 | 0 | i = i2d(x, &p); |
377 | |
|
378 | 0 | if (enc != NULL) { |
379 | 0 | if (kstr == NULL) { |
380 | 0 | if (callback == NULL) |
381 | 0 | klen = PEM_def_callback(buf, PEM_BUFSIZE, 1, u); |
382 | 0 | else |
383 | 0 | klen = (*callback) (buf, PEM_BUFSIZE, 1, u); |
384 | 0 | if (klen <= 0) { |
385 | 0 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, PEM_R_READ_KEY); |
386 | 0 | goto err; |
387 | 0 | } |
388 | | #ifdef CHARSET_EBCDIC |
389 | | /* Convert the pass phrase from EBCDIC */ |
390 | | ebcdic2ascii(buf, buf, klen); |
391 | | #endif |
392 | 0 | kstr = (unsigned char *)buf; |
393 | 0 | } |
394 | 0 | RAND_add(data, i, 0); /* put in the RSA key. */ |
395 | 0 | OPENSSL_assert(enc->iv_len <= (int)sizeof(iv)); |
396 | 0 | if (RAND_bytes(iv, enc->iv_len) <= 0) /* Generate a salt */ |
397 | 0 | goto err; |
398 | | /* |
399 | | * The 'iv' is used as the iv and as a salt. It is NOT taken from |
400 | | * the BytesToKey function |
401 | | */ |
402 | 0 | if (!EVP_BytesToKey(enc, EVP_md5(), iv, kstr, klen, 1, key, NULL)) |
403 | 0 | goto err; |
404 | | |
405 | 0 | if (kstr == (unsigned char *)buf) |
406 | 0 | OPENSSL_cleanse(buf, PEM_BUFSIZE); |
407 | |
|
408 | 0 | OPENSSL_assert(strlen(objstr) + 23 + 2 * enc->iv_len + 13 <= |
409 | 0 | sizeof buf); |
410 | |
|
411 | 0 | buf[0] = '\0'; |
412 | 0 | PEM_proc_type(buf, PEM_TYPE_ENCRYPTED); |
413 | 0 | PEM_dek_info(buf, objstr, enc->iv_len, (char *)iv); |
414 | | /* k=strlen(buf); */ |
415 | |
|
416 | 0 | EVP_CIPHER_CTX_init(&ctx); |
417 | 0 | ret = 1; |
418 | 0 | if (!EVP_EncryptInit_ex(&ctx, enc, NULL, key, iv) |
419 | 0 | || !EVP_EncryptUpdate(&ctx, data, &j, data, i) |
420 | 0 | || !EVP_EncryptFinal_ex(&ctx, &(data[j]), &i)) |
421 | 0 | ret = 0; |
422 | 0 | EVP_CIPHER_CTX_cleanup(&ctx); |
423 | 0 | if (ret == 0) |
424 | 0 | goto err; |
425 | 0 | i += j; |
426 | 0 | } else { |
427 | 0 | ret = 1; |
428 | 0 | buf[0] = '\0'; |
429 | 0 | } |
430 | 0 | i = PEM_write_bio(bp, name, buf, data, i); |
431 | 0 | if (i <= 0) |
432 | 0 | ret = 0; |
433 | 0 | err: |
434 | 0 | OPENSSL_cleanse(key, sizeof(key)); |
435 | 0 | OPENSSL_cleanse(iv, sizeof(iv)); |
436 | 0 | OPENSSL_cleanse((char *)&ctx, sizeof(ctx)); |
437 | 0 | OPENSSL_cleanse(buf, PEM_BUFSIZE); |
438 | 0 | if (data != NULL) { |
439 | 0 | OPENSSL_cleanse(data, (unsigned int)dsize); |
440 | 0 | OPENSSL_free(data); |
441 | 0 | } |
442 | 0 | return (ret); |
443 | 0 | } |
444 | | |
445 | | int PEM_do_header(EVP_CIPHER_INFO *cipher, unsigned char *data, long *plen, |
446 | | pem_password_cb *callback, void *u) |
447 | 157k | { |
448 | 157k | int i = 0, j, o, klen; |
449 | 157k | long len; |
450 | 157k | EVP_CIPHER_CTX ctx; |
451 | 157k | unsigned char key[EVP_MAX_KEY_LENGTH]; |
452 | 157k | char buf[PEM_BUFSIZE]; |
453 | | |
454 | 157k | len = *plen; |
455 | | |
456 | 157k | if (cipher->cipher == NULL) |
457 | 157k | return (1); |
458 | 0 | if (callback == NULL) |
459 | 0 | klen = PEM_def_callback(buf, PEM_BUFSIZE, 0, u); |
460 | 0 | else |
461 | 0 | klen = callback(buf, PEM_BUFSIZE, 0, u); |
462 | 0 | if (klen <= 0) { |
463 | 0 | PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_BAD_PASSWORD_READ); |
464 | 0 | return (0); |
465 | 0 | } |
466 | | #ifdef CHARSET_EBCDIC |
467 | | /* Convert the pass phrase from EBCDIC */ |
468 | | ebcdic2ascii(buf, buf, klen); |
469 | | #endif |
470 | | |
471 | 0 | if (!EVP_BytesToKey(cipher->cipher, EVP_md5(), &(cipher->iv[0]), |
472 | 0 | (unsigned char *)buf, klen, 1, key, NULL)) |
473 | 0 | return 0; |
474 | | |
475 | 0 | j = (int)len; |
476 | 0 | EVP_CIPHER_CTX_init(&ctx); |
477 | 0 | o = EVP_DecryptInit_ex(&ctx, cipher->cipher, NULL, key, &(cipher->iv[0])); |
478 | 0 | if (o) |
479 | 0 | o = EVP_DecryptUpdate(&ctx, data, &i, data, j); |
480 | 0 | if (o) |
481 | 0 | o = EVP_DecryptFinal_ex(&ctx, &(data[i]), &j); |
482 | 0 | EVP_CIPHER_CTX_cleanup(&ctx); |
483 | 0 | OPENSSL_cleanse((char *)buf, sizeof(buf)); |
484 | 0 | OPENSSL_cleanse((char *)key, sizeof(key)); |
485 | 0 | if (o) |
486 | 0 | j += i; |
487 | 0 | else { |
488 | 0 | PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_BAD_DECRYPT); |
489 | 0 | return (0); |
490 | 0 | } |
491 | 0 | *plen = j; |
492 | 0 | return (1); |
493 | 0 | } |
494 | | |
495 | | int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher) |
496 | 157k | { |
497 | 157k | const EVP_CIPHER *enc = NULL; |
498 | 157k | char *p, c; |
499 | 157k | char **header_pp = &header; |
500 | | |
501 | 157k | cipher->cipher = NULL; |
502 | 157k | if ((header == NULL) || (*header == '\0') || (*header == '\n')) |
503 | 157k | return (1); |
504 | 0 | if (strncmp(header, "Proc-Type: ", 11) != 0) { |
505 | 0 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_PROC_TYPE); |
506 | 0 | return (0); |
507 | 0 | } |
508 | 0 | header += 11; |
509 | 0 | if (*header != '4') |
510 | 0 | return (0); |
511 | 0 | header++; |
512 | 0 | if (*header != ',') |
513 | 0 | return (0); |
514 | 0 | header++; |
515 | 0 | if (strncmp(header, "ENCRYPTED", 9) != 0) { |
516 | 0 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_ENCRYPTED); |
517 | 0 | return (0); |
518 | 0 | } |
519 | 0 | for (; (*header != '\n') && (*header != '\0'); header++) ; |
520 | 0 | if (*header == '\0') { |
521 | 0 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_SHORT_HEADER); |
522 | 0 | return (0); |
523 | 0 | } |
524 | 0 | header++; |
525 | 0 | if (strncmp(header, "DEK-Info: ", 10) != 0) { |
526 | 0 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_DEK_INFO); |
527 | 0 | return (0); |
528 | 0 | } |
529 | 0 | header += 10; |
530 | |
|
531 | 0 | p = header; |
532 | 0 | for (;;) { |
533 | 0 | c = *header; |
534 | 0 | #ifndef CHARSET_EBCDIC |
535 | 0 | if (!(((c >= 'A') && (c <= 'Z')) || (c == '-') || |
536 | 0 | ((c >= '0') && (c <= '9')))) |
537 | 0 | break; |
538 | | #else |
539 | | if (!(isupper((unsigned char)c) || (c == '-') |
540 | | || isdigit((unsigned char)c))) |
541 | | break; |
542 | | #endif |
543 | 0 | header++; |
544 | 0 | } |
545 | 0 | *header = '\0'; |
546 | 0 | cipher->cipher = enc = EVP_get_cipherbyname(p); |
547 | 0 | *header = c; |
548 | 0 | header++; |
549 | |
|
550 | 0 | if (enc == NULL) { |
551 | 0 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_UNSUPPORTED_ENCRYPTION); |
552 | 0 | return (0); |
553 | 0 | } |
554 | 0 | if (!load_iv(header_pp, &(cipher->iv[0]), enc->iv_len)) |
555 | 0 | return (0); |
556 | | |
557 | 0 | return (1); |
558 | 0 | } |
559 | | |
560 | | static int load_iv(char **fromp, unsigned char *to, int num) |
561 | 0 | { |
562 | 0 | int v, i; |
563 | 0 | char *from; |
564 | |
|
565 | 0 | from = *fromp; |
566 | 0 | for (i = 0; i < num; i++) |
567 | 0 | to[i] = 0; |
568 | 0 | num *= 2; |
569 | 0 | for (i = 0; i < num; i++) { |
570 | 0 | if ((*from >= '0') && (*from <= '9')) |
571 | 0 | v = *from - '0'; |
572 | 0 | else if ((*from >= 'A') && (*from <= 'F')) |
573 | 0 | v = *from - 'A' + 10; |
574 | 0 | else if ((*from >= 'a') && (*from <= 'f')) |
575 | 0 | v = *from - 'a' + 10; |
576 | 0 | else { |
577 | 0 | PEMerr(PEM_F_LOAD_IV, PEM_R_BAD_IV_CHARS); |
578 | 0 | return (0); |
579 | 0 | } |
580 | 0 | from++; |
581 | 0 | to[i / 2] |= v << (long)((!(i & 1)) * 4); |
582 | 0 | } |
583 | | |
584 | 0 | *fromp = from; |
585 | 0 | return (1); |
586 | 0 | } |
587 | | |
588 | | #ifndef OPENSSL_NO_FP_API |
589 | | int PEM_write(FILE *fp, const char *name, const char *header, |
590 | | const unsigned char *data, long len) |
591 | 0 | { |
592 | 0 | BIO *b; |
593 | 0 | int ret; |
594 | |
|
595 | 0 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
596 | 0 | PEMerr(PEM_F_PEM_WRITE, ERR_R_BUF_LIB); |
597 | 0 | return (0); |
598 | 0 | } |
599 | 0 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
600 | 0 | ret = PEM_write_bio(b, name, header, data, len); |
601 | 0 | BIO_free(b); |
602 | 0 | return (ret); |
603 | 0 | } |
604 | | #endif |
605 | | |
606 | | int PEM_write_bio(BIO *bp, const char *name, const char *header, |
607 | | const unsigned char *data, long len) |
608 | 0 | { |
609 | 0 | int nlen, n, i, j, outl; |
610 | 0 | unsigned char *buf = NULL; |
611 | 0 | EVP_ENCODE_CTX ctx; |
612 | 0 | int reason = ERR_R_BUF_LIB; |
613 | |
|
614 | 0 | EVP_EncodeInit(&ctx); |
615 | 0 | nlen = strlen(name); |
616 | |
|
617 | 0 | if ((BIO_write(bp, "-----BEGIN ", 11) != 11) || |
618 | 0 | (BIO_write(bp, name, nlen) != nlen) || |
619 | 0 | (BIO_write(bp, "-----\n", 6) != 6)) |
620 | 0 | goto err; |
621 | | |
622 | 0 | i = strlen(header); |
623 | 0 | if (i > 0) { |
624 | 0 | if ((BIO_write(bp, header, i) != i) || (BIO_write(bp, "\n", 1) != 1)) |
625 | 0 | goto err; |
626 | 0 | } |
627 | | |
628 | 0 | buf = OPENSSL_malloc(PEM_BUFSIZE * 8); |
629 | 0 | if (buf == NULL) { |
630 | 0 | reason = ERR_R_MALLOC_FAILURE; |
631 | 0 | goto err; |
632 | 0 | } |
633 | | |
634 | 0 | i = j = 0; |
635 | 0 | while (len > 0) { |
636 | 0 | n = (int)((len > (PEM_BUFSIZE * 5)) ? (PEM_BUFSIZE * 5) : len); |
637 | 0 | EVP_EncodeUpdate(&ctx, buf, &outl, &(data[j]), n); |
638 | 0 | if ((outl) && (BIO_write(bp, (char *)buf, outl) != outl)) |
639 | 0 | goto err; |
640 | 0 | i += outl; |
641 | 0 | len -= n; |
642 | 0 | j += n; |
643 | 0 | } |
644 | 0 | EVP_EncodeFinal(&ctx, buf, &outl); |
645 | 0 | if ((outl > 0) && (BIO_write(bp, (char *)buf, outl) != outl)) |
646 | 0 | goto err; |
647 | 0 | OPENSSL_cleanse(buf, PEM_BUFSIZE * 8); |
648 | 0 | OPENSSL_free(buf); |
649 | 0 | buf = NULL; |
650 | 0 | if ((BIO_write(bp, "-----END ", 9) != 9) || |
651 | 0 | (BIO_write(bp, name, nlen) != nlen) || |
652 | 0 | (BIO_write(bp, "-----\n", 6) != 6)) |
653 | 0 | goto err; |
654 | 0 | return (i + outl); |
655 | 0 | err: |
656 | 0 | if (buf) { |
657 | 0 | OPENSSL_cleanse(buf, PEM_BUFSIZE * 8); |
658 | 0 | OPENSSL_free(buf); |
659 | 0 | } |
660 | 0 | PEMerr(PEM_F_PEM_WRITE_BIO, reason); |
661 | 0 | return (0); |
662 | 0 | } |
663 | | |
664 | | #ifndef OPENSSL_NO_FP_API |
665 | | int PEM_read(FILE *fp, char **name, char **header, unsigned char **data, |
666 | | long *len) |
667 | 0 | { |
668 | 0 | BIO *b; |
669 | 0 | int ret; |
670 | |
|
671 | 0 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
672 | 0 | PEMerr(PEM_F_PEM_READ, ERR_R_BUF_LIB); |
673 | 0 | return (0); |
674 | 0 | } |
675 | 0 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
676 | 0 | ret = PEM_read_bio(b, name, header, data, len); |
677 | 0 | BIO_free(b); |
678 | 0 | return (ret); |
679 | 0 | } |
680 | | #endif |
681 | | |
682 | | int PEM_read_bio(BIO *bp, char **name, char **header, unsigned char **data, |
683 | | long *len) |
684 | 160k | { |
685 | 160k | EVP_ENCODE_CTX ctx; |
686 | 160k | int end = 0, i, k, bl = 0, hl = 0, nohead = 0; |
687 | 160k | char buf[256]; |
688 | 160k | BUF_MEM *nameB; |
689 | 160k | BUF_MEM *headerB; |
690 | 160k | BUF_MEM *dataB, *tmpB; |
691 | | |
692 | 160k | nameB = BUF_MEM_new(); |
693 | 160k | headerB = BUF_MEM_new(); |
694 | 160k | dataB = BUF_MEM_new(); |
695 | 160k | if ((nameB == NULL) || (headerB == NULL) || (dataB == NULL)) { |
696 | 0 | BUF_MEM_free(nameB); |
697 | 0 | BUF_MEM_free(headerB); |
698 | 0 | BUF_MEM_free(dataB); |
699 | 0 | PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE); |
700 | 0 | return (0); |
701 | 0 | } |
702 | | |
703 | 160k | buf[254] = '\0'; |
704 | 160k | for (;;) { |
705 | 160k | i = BIO_gets(bp, buf, 254); |
706 | | |
707 | 160k | if (i <= 0) { |
708 | 2.48k | PEMerr(PEM_F_PEM_READ_BIO, PEM_R_NO_START_LINE); |
709 | 2.48k | goto err; |
710 | 2.48k | } |
711 | | |
712 | 473k | while ((i >= 0) && (buf[i] <= ' ')) |
713 | 315k | i--; |
714 | 157k | buf[++i] = '\n'; |
715 | 157k | buf[++i] = '\0'; |
716 | | |
717 | 157k | if (strncmp(buf, "-----BEGIN ", 11) == 0) { |
718 | 157k | i = strlen(&(buf[11])); |
719 | | |
720 | 157k | if (strncmp(&(buf[11 + i - 6]), "-----\n", 6) != 0) |
721 | 0 | continue; |
722 | 157k | if (!BUF_MEM_grow(nameB, i + 9)) { |
723 | 0 | PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE); |
724 | 0 | goto err; |
725 | 0 | } |
726 | 157k | memcpy(nameB->data, &(buf[11]), i - 6); |
727 | 157k | nameB->data[i - 6] = '\0'; |
728 | 157k | break; |
729 | 157k | } |
730 | 157k | } |
731 | 157k | hl = 0; |
732 | 157k | if (!BUF_MEM_grow(headerB, 256)) { |
733 | 0 | PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE); |
734 | 0 | goto err; |
735 | 0 | } |
736 | 157k | headerB->data[0] = '\0'; |
737 | 3.83M | for (;;) { |
738 | 3.83M | i = BIO_gets(bp, buf, 254); |
739 | 3.83M | if (i <= 0) |
740 | 0 | break; |
741 | | |
742 | 11.5M | while ((i >= 0) && (buf[i] <= ' ')) |
743 | 7.67M | i--; |
744 | 3.83M | buf[++i] = '\n'; |
745 | 3.83M | buf[++i] = '\0'; |
746 | | |
747 | 3.83M | if (buf[0] == '\n') |
748 | 0 | break; |
749 | 3.83M | if (!BUF_MEM_grow(headerB, hl + i + 9)) { |
750 | 0 | PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE); |
751 | 0 | goto err; |
752 | 0 | } |
753 | 3.83M | if (strncmp(buf, "-----END ", 9) == 0) { |
754 | 157k | nohead = 1; |
755 | 157k | break; |
756 | 157k | } |
757 | 3.67M | memcpy(&(headerB->data[hl]), buf, i); |
758 | 3.67M | headerB->data[hl + i] = '\0'; |
759 | 3.67M | hl += i; |
760 | 3.67M | } |
761 | | |
762 | 157k | bl = 0; |
763 | 157k | if (!BUF_MEM_grow(dataB, 1024)) { |
764 | 0 | PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE); |
765 | 0 | goto err; |
766 | 0 | } |
767 | 157k | dataB->data[0] = '\0'; |
768 | 157k | if (!nohead) { |
769 | 0 | for (;;) { |
770 | 0 | i = BIO_gets(bp, buf, 254); |
771 | 0 | if (i <= 0) |
772 | 0 | break; |
773 | | |
774 | 0 | while ((i >= 0) && (buf[i] <= ' ')) |
775 | 0 | i--; |
776 | 0 | buf[++i] = '\n'; |
777 | 0 | buf[++i] = '\0'; |
778 | |
|
779 | 0 | if (i != 65) |
780 | 0 | end = 1; |
781 | 0 | if (strncmp(buf, "-----END ", 9) == 0) |
782 | 0 | break; |
783 | 0 | if (i > 65) |
784 | 0 | break; |
785 | 0 | if (!BUF_MEM_grow_clean(dataB, i + bl + 9)) { |
786 | 0 | PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE); |
787 | 0 | goto err; |
788 | 0 | } |
789 | 0 | memcpy(&(dataB->data[bl]), buf, i); |
790 | 0 | dataB->data[bl + i] = '\0'; |
791 | 0 | bl += i; |
792 | 0 | if (end) { |
793 | 0 | buf[0] = '\0'; |
794 | 0 | i = BIO_gets(bp, buf, 254); |
795 | 0 | if (i <= 0) |
796 | 0 | break; |
797 | | |
798 | 0 | while ((i >= 0) && (buf[i] <= ' ')) |
799 | 0 | i--; |
800 | 0 | buf[++i] = '\n'; |
801 | 0 | buf[++i] = '\0'; |
802 | |
|
803 | 0 | break; |
804 | 0 | } |
805 | 0 | } |
806 | 157k | } else { |
807 | 157k | tmpB = headerB; |
808 | 157k | headerB = dataB; |
809 | 157k | dataB = tmpB; |
810 | 157k | bl = hl; |
811 | 157k | } |
812 | 157k | i = strlen(nameB->data); |
813 | 157k | if ((strncmp(buf, "-----END ", 9) != 0) || |
814 | 157k | (strncmp(nameB->data, &(buf[9]), i) != 0) || |
815 | 157k | (strncmp(&(buf[9 + i]), "-----\n", 6) != 0)) { |
816 | 0 | PEMerr(PEM_F_PEM_READ_BIO, PEM_R_BAD_END_LINE); |
817 | 0 | goto err; |
818 | 0 | } |
819 | | |
820 | 157k | EVP_DecodeInit(&ctx); |
821 | 157k | i = EVP_DecodeUpdate(&ctx, |
822 | 157k | (unsigned char *)dataB->data, &bl, |
823 | 157k | (unsigned char *)dataB->data, bl); |
824 | 157k | if (i < 0) { |
825 | 0 | PEMerr(PEM_F_PEM_READ_BIO, PEM_R_BAD_BASE64_DECODE); |
826 | 0 | goto err; |
827 | 0 | } |
828 | 157k | i = EVP_DecodeFinal(&ctx, (unsigned char *)&(dataB->data[bl]), &k); |
829 | 157k | if (i < 0) { |
830 | 0 | PEMerr(PEM_F_PEM_READ_BIO, PEM_R_BAD_BASE64_DECODE); |
831 | 0 | goto err; |
832 | 0 | } |
833 | 157k | bl += k; |
834 | | |
835 | 157k | if (bl == 0) |
836 | 0 | goto err; |
837 | 157k | *name = nameB->data; |
838 | 157k | *header = headerB->data; |
839 | 157k | *data = (unsigned char *)dataB->data; |
840 | 157k | *len = bl; |
841 | 157k | OPENSSL_free(nameB); |
842 | 157k | OPENSSL_free(headerB); |
843 | 157k | OPENSSL_free(dataB); |
844 | 157k | return (1); |
845 | 2.48k | err: |
846 | 2.48k | BUF_MEM_free(nameB); |
847 | 2.48k | BUF_MEM_free(headerB); |
848 | 2.48k | BUF_MEM_free(dataB); |
849 | 2.48k | return (0); |
850 | 157k | } |
851 | | |
852 | | /* |
853 | | * Check pem string and return prefix length. If for example the pem_str == |
854 | | * "RSA PRIVATE KEY" and suffix = "PRIVATE KEY" the return value is 3 for the |
855 | | * string "RSA". |
856 | | */ |
857 | | |
858 | | int pem_check_suffix(const char *pem_str, const char *suffix) |
859 | 0 | { |
860 | 0 | int pem_len = strlen(pem_str); |
861 | 0 | int suffix_len = strlen(suffix); |
862 | 0 | const char *p; |
863 | 0 | if (suffix_len + 1 >= pem_len) |
864 | 0 | return 0; |
865 | 0 | p = pem_str + pem_len - suffix_len; |
866 | 0 | if (strcmp(p, suffix)) |
867 | 0 | return 0; |
868 | 0 | p--; |
869 | 0 | if (*p != ' ') |
870 | 0 | return 0; |
871 | 0 | return p - pem_str; |
872 | 0 | } |