/src/openssl/crypto/rsa/rsa_eay.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* crypto/rsa/rsa_eay.c */ |
2 | | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
3 | | * All rights reserved. |
4 | | * |
5 | | * This package is an SSL implementation written |
6 | | * by Eric Young (eay@cryptsoft.com). |
7 | | * The implementation was written so as to conform with Netscapes SSL. |
8 | | * |
9 | | * This library is free for commercial and non-commercial use as long as |
10 | | * the following conditions are aheared to. The following conditions |
11 | | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | | * included with this distribution is covered by the same copyright terms |
14 | | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | | * |
16 | | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | | * the code are not to be removed. |
18 | | * If this package is used in a product, Eric Young should be given attribution |
19 | | * as the author of the parts of the library used. |
20 | | * This can be in the form of a textual message at program startup or |
21 | | * in documentation (online or textual) provided with the package. |
22 | | * |
23 | | * Redistribution and use in source and binary forms, with or without |
24 | | * modification, are permitted provided that the following conditions |
25 | | * are met: |
26 | | * 1. Redistributions of source code must retain the copyright |
27 | | * notice, this list of conditions and the following disclaimer. |
28 | | * 2. Redistributions in binary form must reproduce the above copyright |
29 | | * notice, this list of conditions and the following disclaimer in the |
30 | | * documentation and/or other materials provided with the distribution. |
31 | | * 3. All advertising materials mentioning features or use of this software |
32 | | * must display the following acknowledgement: |
33 | | * "This product includes cryptographic software written by |
34 | | * Eric Young (eay@cryptsoft.com)" |
35 | | * The word 'cryptographic' can be left out if the rouines from the library |
36 | | * being used are not cryptographic related :-). |
37 | | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | | * the apps directory (application code) you must include an acknowledgement: |
39 | | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | | * |
41 | | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
44 | | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
45 | | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
46 | | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
47 | | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
48 | | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
49 | | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | | * SUCH DAMAGE. |
52 | | * |
53 | | * The licence and distribution terms for any publically available version or |
54 | | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | | * copied and put under another distribution licence |
56 | | * [including the GNU Public Licence.] |
57 | | */ |
58 | | /* ==================================================================== |
59 | | * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. |
60 | | * |
61 | | * Redistribution and use in source and binary forms, with or without |
62 | | * modification, are permitted provided that the following conditions |
63 | | * are met: |
64 | | * |
65 | | * 1. Redistributions of source code must retain the above copyright |
66 | | * notice, this list of conditions and the following disclaimer. |
67 | | * |
68 | | * 2. Redistributions in binary form must reproduce the above copyright |
69 | | * notice, this list of conditions and the following disclaimer in |
70 | | * the documentation and/or other materials provided with the |
71 | | * distribution. |
72 | | * |
73 | | * 3. All advertising materials mentioning features or use of this |
74 | | * software must display the following acknowledgment: |
75 | | * "This product includes software developed by the OpenSSL Project |
76 | | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
77 | | * |
78 | | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
79 | | * endorse or promote products derived from this software without |
80 | | * prior written permission. For written permission, please contact |
81 | | * openssl-core@openssl.org. |
82 | | * |
83 | | * 5. Products derived from this software may not be called "OpenSSL" |
84 | | * nor may "OpenSSL" appear in their names without prior written |
85 | | * permission of the OpenSSL Project. |
86 | | * |
87 | | * 6. Redistributions of any form whatsoever must retain the following |
88 | | * acknowledgment: |
89 | | * "This product includes software developed by the OpenSSL Project |
90 | | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
91 | | * |
92 | | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
93 | | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
94 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
95 | | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
96 | | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
97 | | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
98 | | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
99 | | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
100 | | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
101 | | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
102 | | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
103 | | * OF THE POSSIBILITY OF SUCH DAMAGE. |
104 | | * ==================================================================== |
105 | | * |
106 | | * This product includes cryptographic software written by Eric Young |
107 | | * (eay@cryptsoft.com). This product includes software written by Tim |
108 | | * Hudson (tjh@cryptsoft.com). |
109 | | * |
110 | | */ |
111 | | |
112 | | #include <stdio.h> |
113 | | #include "cryptlib.h" |
114 | | #include <openssl/bn.h> |
115 | | #include <openssl/rsa.h> |
116 | | #include <openssl/rand.h> |
117 | | |
118 | | #ifndef RSA_NULL |
119 | | |
120 | | static int RSA_eay_public_encrypt(int flen, const unsigned char *from, |
121 | | unsigned char *to, RSA *rsa, int padding); |
122 | | static int RSA_eay_private_encrypt(int flen, const unsigned char *from, |
123 | | unsigned char *to, RSA *rsa, int padding); |
124 | | static int RSA_eay_public_decrypt(int flen, const unsigned char *from, |
125 | | unsigned char *to, RSA *rsa, int padding); |
126 | | static int RSA_eay_private_decrypt(int flen, const unsigned char *from, |
127 | | unsigned char *to, RSA *rsa, int padding); |
128 | | static int RSA_eay_mod_exp(BIGNUM *r0, const BIGNUM *i, RSA *rsa, |
129 | | BN_CTX *ctx); |
130 | | static int RSA_eay_init(RSA *rsa); |
131 | | static int RSA_eay_finish(RSA *rsa); |
132 | | static RSA_METHOD rsa_pkcs1_eay_meth = { |
133 | | "Eric Young's PKCS#1 RSA", |
134 | | RSA_eay_public_encrypt, |
135 | | RSA_eay_public_decrypt, /* signature verification */ |
136 | | RSA_eay_private_encrypt, /* signing */ |
137 | | RSA_eay_private_decrypt, |
138 | | RSA_eay_mod_exp, |
139 | | BN_mod_exp_mont, /* XXX probably we should not use Montgomery |
140 | | * if e == 3 */ |
141 | | RSA_eay_init, |
142 | | RSA_eay_finish, |
143 | | 0, /* flags */ |
144 | | NULL, |
145 | | 0, /* rsa_sign */ |
146 | | 0, /* rsa_verify */ |
147 | | NULL /* rsa_keygen */ |
148 | | }; |
149 | | |
150 | | const RSA_METHOD *RSA_PKCS1_SSLeay(void) |
151 | 133 | { |
152 | 133 | return (&rsa_pkcs1_eay_meth); |
153 | 133 | } |
154 | | |
155 | | static int RSA_eay_public_encrypt(int flen, const unsigned char *from, |
156 | | unsigned char *to, RSA *rsa, int padding) |
157 | 0 | { |
158 | 0 | BIGNUM *f, *ret; |
159 | 0 | int i, j, k, num = 0, r = -1; |
160 | 0 | unsigned char *buf = NULL; |
161 | 0 | BN_CTX *ctx = NULL; |
162 | |
|
163 | 0 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_MAX_MODULUS_BITS) { |
164 | 0 | RSAerr(RSA_F_RSA_EAY_PUBLIC_ENCRYPT, RSA_R_MODULUS_TOO_LARGE); |
165 | 0 | return -1; |
166 | 0 | } |
167 | | |
168 | 0 | if (BN_ucmp(rsa->n, rsa->e) <= 0) { |
169 | 0 | RSAerr(RSA_F_RSA_EAY_PUBLIC_ENCRYPT, RSA_R_BAD_E_VALUE); |
170 | 0 | return -1; |
171 | 0 | } |
172 | | |
173 | | /* for large moduli, enforce exponent limit */ |
174 | 0 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_SMALL_MODULUS_BITS) { |
175 | 0 | if (BN_num_bits(rsa->e) > OPENSSL_RSA_MAX_PUBEXP_BITS) { |
176 | 0 | RSAerr(RSA_F_RSA_EAY_PUBLIC_ENCRYPT, RSA_R_BAD_E_VALUE); |
177 | 0 | return -1; |
178 | 0 | } |
179 | 0 | } |
180 | | |
181 | 0 | if ((ctx = BN_CTX_new()) == NULL) |
182 | 0 | goto err; |
183 | 0 | BN_CTX_start(ctx); |
184 | 0 | f = BN_CTX_get(ctx); |
185 | 0 | ret = BN_CTX_get(ctx); |
186 | 0 | num = BN_num_bytes(rsa->n); |
187 | 0 | buf = OPENSSL_malloc(num); |
188 | 0 | if (!f || !ret || !buf) { |
189 | 0 | RSAerr(RSA_F_RSA_EAY_PUBLIC_ENCRYPT, ERR_R_MALLOC_FAILURE); |
190 | 0 | goto err; |
191 | 0 | } |
192 | | |
193 | 0 | switch (padding) { |
194 | 0 | case RSA_PKCS1_PADDING: |
195 | 0 | i = RSA_padding_add_PKCS1_type_2(buf, num, from, flen); |
196 | 0 | break; |
197 | 0 | # ifndef OPENSSL_NO_SHA |
198 | 0 | case RSA_PKCS1_OAEP_PADDING: |
199 | 0 | i = RSA_padding_add_PKCS1_OAEP(buf, num, from, flen, NULL, 0); |
200 | 0 | break; |
201 | 0 | # endif |
202 | 0 | case RSA_SSLV23_PADDING: |
203 | 0 | i = RSA_padding_add_SSLv23(buf, num, from, flen); |
204 | 0 | break; |
205 | 0 | case RSA_NO_PADDING: |
206 | 0 | i = RSA_padding_add_none(buf, num, from, flen); |
207 | 0 | break; |
208 | 0 | default: |
209 | 0 | RSAerr(RSA_F_RSA_EAY_PUBLIC_ENCRYPT, RSA_R_UNKNOWN_PADDING_TYPE); |
210 | 0 | goto err; |
211 | 0 | } |
212 | 0 | if (i <= 0) |
213 | 0 | goto err; |
214 | | |
215 | 0 | if (BN_bin2bn(buf, num, f) == NULL) |
216 | 0 | goto err; |
217 | | |
218 | 0 | if (BN_ucmp(f, rsa->n) >= 0) { |
219 | | /* usually the padding functions would catch this */ |
220 | 0 | RSAerr(RSA_F_RSA_EAY_PUBLIC_ENCRYPT, |
221 | 0 | RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
222 | 0 | goto err; |
223 | 0 | } |
224 | | |
225 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
226 | 0 | if (!BN_MONT_CTX_set_locked |
227 | 0 | (&rsa->_method_mod_n, CRYPTO_LOCK_RSA, rsa->n, ctx)) |
228 | 0 | goto err; |
229 | | |
230 | 0 | if (!rsa->meth->bn_mod_exp(ret, f, rsa->e, rsa->n, ctx, |
231 | 0 | rsa->_method_mod_n)) |
232 | 0 | goto err; |
233 | | |
234 | | /* |
235 | | * put in leading 0 bytes if the number is less than the length of the |
236 | | * modulus |
237 | | */ |
238 | 0 | j = BN_num_bytes(ret); |
239 | 0 | i = BN_bn2bin(ret, &(to[num - j])); |
240 | 0 | for (k = 0; k < (num - i); k++) |
241 | 0 | to[k] = 0; |
242 | |
|
243 | 0 | r = num; |
244 | 0 | err: |
245 | 0 | if (ctx != NULL) { |
246 | 0 | BN_CTX_end(ctx); |
247 | 0 | BN_CTX_free(ctx); |
248 | 0 | } |
249 | 0 | if (buf != NULL) { |
250 | 0 | OPENSSL_cleanse(buf, num); |
251 | 0 | OPENSSL_free(buf); |
252 | 0 | } |
253 | 0 | return (r); |
254 | 0 | } |
255 | | |
256 | | static BN_BLINDING *rsa_get_blinding(RSA *rsa, int *local, BN_CTX *ctx) |
257 | 0 | { |
258 | 0 | BN_BLINDING *ret; |
259 | 0 | int got_write_lock = 0; |
260 | 0 | CRYPTO_THREADID cur; |
261 | |
|
262 | 0 | CRYPTO_r_lock(CRYPTO_LOCK_RSA); |
263 | |
|
264 | 0 | if (rsa->blinding == NULL) { |
265 | 0 | CRYPTO_r_unlock(CRYPTO_LOCK_RSA); |
266 | 0 | CRYPTO_w_lock(CRYPTO_LOCK_RSA); |
267 | 0 | got_write_lock = 1; |
268 | |
|
269 | 0 | if (rsa->blinding == NULL) |
270 | 0 | rsa->blinding = RSA_setup_blinding(rsa, ctx); |
271 | 0 | } |
272 | |
|
273 | 0 | ret = rsa->blinding; |
274 | 0 | if (ret == NULL) |
275 | 0 | goto err; |
276 | | |
277 | 0 | CRYPTO_THREADID_current(&cur); |
278 | 0 | if (!CRYPTO_THREADID_cmp(&cur, BN_BLINDING_thread_id(ret))) { |
279 | | /* rsa->blinding is ours! */ |
280 | |
|
281 | 0 | *local = 1; |
282 | 0 | } else { |
283 | | /* resort to rsa->mt_blinding instead */ |
284 | | |
285 | | /* |
286 | | * instructs rsa_blinding_convert(), rsa_blinding_invert() that the |
287 | | * BN_BLINDING is shared, meaning that accesses require locks, and |
288 | | * that the blinding factor must be stored outside the BN_BLINDING |
289 | | */ |
290 | 0 | *local = 0; |
291 | |
|
292 | 0 | if (rsa->mt_blinding == NULL) { |
293 | 0 | if (!got_write_lock) { |
294 | 0 | CRYPTO_r_unlock(CRYPTO_LOCK_RSA); |
295 | 0 | CRYPTO_w_lock(CRYPTO_LOCK_RSA); |
296 | 0 | got_write_lock = 1; |
297 | 0 | } |
298 | |
|
299 | 0 | if (rsa->mt_blinding == NULL) |
300 | 0 | rsa->mt_blinding = RSA_setup_blinding(rsa, ctx); |
301 | 0 | } |
302 | 0 | ret = rsa->mt_blinding; |
303 | 0 | } |
304 | |
|
305 | 0 | err: |
306 | 0 | if (got_write_lock) |
307 | 0 | CRYPTO_w_unlock(CRYPTO_LOCK_RSA); |
308 | 0 | else |
309 | 0 | CRYPTO_r_unlock(CRYPTO_LOCK_RSA); |
310 | 0 | return ret; |
311 | 0 | } |
312 | | |
313 | | static int rsa_blinding_convert(BN_BLINDING *b, BIGNUM *f, BIGNUM *unblind, |
314 | | BN_CTX *ctx) |
315 | 0 | { |
316 | 0 | if (unblind == NULL) |
317 | | /* |
318 | | * Local blinding: store the unblinding factor in BN_BLINDING. |
319 | | */ |
320 | 0 | return BN_BLINDING_convert_ex(f, NULL, b, ctx); |
321 | 0 | else { |
322 | | /* |
323 | | * Shared blinding: store the unblinding factor outside BN_BLINDING. |
324 | | */ |
325 | 0 | int ret; |
326 | 0 | CRYPTO_w_lock(CRYPTO_LOCK_RSA_BLINDING); |
327 | 0 | ret = BN_BLINDING_convert_ex(f, unblind, b, ctx); |
328 | 0 | CRYPTO_w_unlock(CRYPTO_LOCK_RSA_BLINDING); |
329 | 0 | return ret; |
330 | 0 | } |
331 | 0 | } |
332 | | |
333 | | static int rsa_blinding_invert(BN_BLINDING *b, BIGNUM *f, BIGNUM *unblind, |
334 | | BN_CTX *ctx) |
335 | 0 | { |
336 | | /* |
337 | | * For local blinding, unblind is set to NULL, and BN_BLINDING_invert_ex |
338 | | * will use the unblinding factor stored in BN_BLINDING. If BN_BLINDING |
339 | | * is shared between threads, unblind must be non-null: |
340 | | * BN_BLINDING_invert_ex will then use the local unblinding factor, and |
341 | | * will only read the modulus from BN_BLINDING. In both cases it's safe |
342 | | * to access the blinding without a lock. |
343 | | */ |
344 | 0 | return BN_BLINDING_invert_ex(f, unblind, b, ctx); |
345 | 0 | } |
346 | | |
347 | | /* signing */ |
348 | | static int RSA_eay_private_encrypt(int flen, const unsigned char *from, |
349 | | unsigned char *to, RSA *rsa, int padding) |
350 | 0 | { |
351 | 0 | BIGNUM *f, *ret, *res; |
352 | 0 | int i, j, k, num = 0, r = -1; |
353 | 0 | unsigned char *buf = NULL; |
354 | 0 | BN_CTX *ctx = NULL; |
355 | 0 | int local_blinding = 0; |
356 | | /* |
357 | | * Used only if the blinding structure is shared. A non-NULL unblind |
358 | | * instructs rsa_blinding_convert() and rsa_blinding_invert() to store |
359 | | * the unblinding factor outside the blinding structure. |
360 | | */ |
361 | 0 | BIGNUM *unblind = NULL; |
362 | 0 | BN_BLINDING *blinding = NULL; |
363 | |
|
364 | 0 | if ((ctx = BN_CTX_new()) == NULL) |
365 | 0 | goto err; |
366 | 0 | BN_CTX_start(ctx); |
367 | 0 | f = BN_CTX_get(ctx); |
368 | 0 | ret = BN_CTX_get(ctx); |
369 | 0 | num = BN_num_bytes(rsa->n); |
370 | 0 | buf = OPENSSL_malloc(num); |
371 | 0 | if (!f || !ret || !buf) { |
372 | 0 | RSAerr(RSA_F_RSA_EAY_PRIVATE_ENCRYPT, ERR_R_MALLOC_FAILURE); |
373 | 0 | goto err; |
374 | 0 | } |
375 | | |
376 | 0 | switch (padding) { |
377 | 0 | case RSA_PKCS1_PADDING: |
378 | 0 | i = RSA_padding_add_PKCS1_type_1(buf, num, from, flen); |
379 | 0 | break; |
380 | 0 | case RSA_X931_PADDING: |
381 | 0 | i = RSA_padding_add_X931(buf, num, from, flen); |
382 | 0 | break; |
383 | 0 | case RSA_NO_PADDING: |
384 | 0 | i = RSA_padding_add_none(buf, num, from, flen); |
385 | 0 | break; |
386 | 0 | case RSA_SSLV23_PADDING: |
387 | 0 | default: |
388 | 0 | RSAerr(RSA_F_RSA_EAY_PRIVATE_ENCRYPT, RSA_R_UNKNOWN_PADDING_TYPE); |
389 | 0 | goto err; |
390 | 0 | } |
391 | 0 | if (i <= 0) |
392 | 0 | goto err; |
393 | | |
394 | 0 | if (BN_bin2bn(buf, num, f) == NULL) |
395 | 0 | goto err; |
396 | | |
397 | 0 | if (BN_ucmp(f, rsa->n) >= 0) { |
398 | | /* usually the padding functions would catch this */ |
399 | 0 | RSAerr(RSA_F_RSA_EAY_PRIVATE_ENCRYPT, |
400 | 0 | RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
401 | 0 | goto err; |
402 | 0 | } |
403 | | |
404 | 0 | if (!(rsa->flags & RSA_FLAG_NO_BLINDING)) { |
405 | 0 | blinding = rsa_get_blinding(rsa, &local_blinding, ctx); |
406 | 0 | if (blinding == NULL) { |
407 | 0 | RSAerr(RSA_F_RSA_EAY_PRIVATE_ENCRYPT, ERR_R_INTERNAL_ERROR); |
408 | 0 | goto err; |
409 | 0 | } |
410 | 0 | } |
411 | | |
412 | 0 | if (blinding != NULL) { |
413 | 0 | if (!local_blinding && ((unblind = BN_CTX_get(ctx)) == NULL)) { |
414 | 0 | RSAerr(RSA_F_RSA_EAY_PRIVATE_ENCRYPT, ERR_R_MALLOC_FAILURE); |
415 | 0 | goto err; |
416 | 0 | } |
417 | 0 | if (!rsa_blinding_convert(blinding, f, unblind, ctx)) |
418 | 0 | goto err; |
419 | 0 | } |
420 | | |
421 | 0 | if ((rsa->flags & RSA_FLAG_EXT_PKEY) || |
422 | 0 | ((rsa->p != NULL) && |
423 | 0 | (rsa->q != NULL) && |
424 | 0 | (rsa->dmp1 != NULL) && (rsa->dmq1 != NULL) && (rsa->iqmp != NULL))) { |
425 | 0 | if (!rsa->meth->rsa_mod_exp(ret, f, rsa, ctx)) |
426 | 0 | goto err; |
427 | 0 | } else { |
428 | 0 | BIGNUM local_d; |
429 | 0 | BIGNUM *d = NULL; |
430 | |
|
431 | 0 | if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { |
432 | 0 | BN_init(&local_d); |
433 | 0 | d = &local_d; |
434 | 0 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); |
435 | 0 | } else |
436 | 0 | d = rsa->d; |
437 | |
|
438 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
439 | 0 | if (!BN_MONT_CTX_set_locked |
440 | 0 | (&rsa->_method_mod_n, CRYPTO_LOCK_RSA, rsa->n, ctx)) |
441 | 0 | goto err; |
442 | | |
443 | 0 | if (!rsa->meth->bn_mod_exp(ret, f, d, rsa->n, ctx, |
444 | 0 | rsa->_method_mod_n)) |
445 | 0 | goto err; |
446 | 0 | } |
447 | | |
448 | 0 | if (blinding) |
449 | 0 | if (!rsa_blinding_invert(blinding, ret, unblind, ctx)) |
450 | 0 | goto err; |
451 | | |
452 | 0 | if (padding == RSA_X931_PADDING) { |
453 | 0 | BN_sub(f, rsa->n, ret); |
454 | 0 | if (BN_cmp(ret, f) > 0) |
455 | 0 | res = f; |
456 | 0 | else |
457 | 0 | res = ret; |
458 | 0 | } else |
459 | 0 | res = ret; |
460 | | |
461 | | /* |
462 | | * put in leading 0 bytes if the number is less than the length of the |
463 | | * modulus |
464 | | */ |
465 | 0 | j = BN_num_bytes(res); |
466 | 0 | i = BN_bn2bin(res, &(to[num - j])); |
467 | 0 | for (k = 0; k < (num - i); k++) |
468 | 0 | to[k] = 0; |
469 | |
|
470 | 0 | r = num; |
471 | 0 | err: |
472 | 0 | if (ctx != NULL) { |
473 | 0 | BN_CTX_end(ctx); |
474 | 0 | BN_CTX_free(ctx); |
475 | 0 | } |
476 | 0 | if (buf != NULL) { |
477 | 0 | OPENSSL_cleanse(buf, num); |
478 | 0 | OPENSSL_free(buf); |
479 | 0 | } |
480 | 0 | return (r); |
481 | 0 | } |
482 | | |
483 | | static int RSA_eay_private_decrypt(int flen, const unsigned char *from, |
484 | | unsigned char *to, RSA *rsa, int padding) |
485 | 0 | { |
486 | 0 | BIGNUM *f, *ret; |
487 | 0 | int j, num = 0, r = -1; |
488 | 0 | unsigned char *p; |
489 | 0 | unsigned char *buf = NULL; |
490 | 0 | BN_CTX *ctx = NULL; |
491 | 0 | int local_blinding = 0; |
492 | | /* |
493 | | * Used only if the blinding structure is shared. A non-NULL unblind |
494 | | * instructs rsa_blinding_convert() and rsa_blinding_invert() to store |
495 | | * the unblinding factor outside the blinding structure. |
496 | | */ |
497 | 0 | BIGNUM *unblind = NULL; |
498 | 0 | BN_BLINDING *blinding = NULL; |
499 | |
|
500 | 0 | if ((ctx = BN_CTX_new()) == NULL) |
501 | 0 | goto err; |
502 | 0 | BN_CTX_start(ctx); |
503 | 0 | f = BN_CTX_get(ctx); |
504 | 0 | ret = BN_CTX_get(ctx); |
505 | 0 | num = BN_num_bytes(rsa->n); |
506 | 0 | buf = OPENSSL_malloc(num); |
507 | 0 | if (!f || !ret || !buf) { |
508 | 0 | RSAerr(RSA_F_RSA_EAY_PRIVATE_DECRYPT, ERR_R_MALLOC_FAILURE); |
509 | 0 | goto err; |
510 | 0 | } |
511 | | |
512 | | /* |
513 | | * This check was for equality but PGP does evil things and chops off the |
514 | | * top '0' bytes |
515 | | */ |
516 | 0 | if (flen > num) { |
517 | 0 | RSAerr(RSA_F_RSA_EAY_PRIVATE_DECRYPT, |
518 | 0 | RSA_R_DATA_GREATER_THAN_MOD_LEN); |
519 | 0 | goto err; |
520 | 0 | } |
521 | | |
522 | | /* make data into a big number */ |
523 | 0 | if (BN_bin2bn(from, (int)flen, f) == NULL) |
524 | 0 | goto err; |
525 | | |
526 | 0 | if (BN_ucmp(f, rsa->n) >= 0) { |
527 | 0 | RSAerr(RSA_F_RSA_EAY_PRIVATE_DECRYPT, |
528 | 0 | RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
529 | 0 | goto err; |
530 | 0 | } |
531 | | |
532 | 0 | if (!(rsa->flags & RSA_FLAG_NO_BLINDING)) { |
533 | 0 | blinding = rsa_get_blinding(rsa, &local_blinding, ctx); |
534 | 0 | if (blinding == NULL) { |
535 | 0 | RSAerr(RSA_F_RSA_EAY_PRIVATE_DECRYPT, ERR_R_INTERNAL_ERROR); |
536 | 0 | goto err; |
537 | 0 | } |
538 | 0 | } |
539 | | |
540 | 0 | if (blinding != NULL) { |
541 | 0 | if (!local_blinding && ((unblind = BN_CTX_get(ctx)) == NULL)) { |
542 | 0 | RSAerr(RSA_F_RSA_EAY_PRIVATE_DECRYPT, ERR_R_MALLOC_FAILURE); |
543 | 0 | goto err; |
544 | 0 | } |
545 | 0 | if (!rsa_blinding_convert(blinding, f, unblind, ctx)) |
546 | 0 | goto err; |
547 | 0 | } |
548 | | |
549 | | /* do the decrypt */ |
550 | 0 | if ((rsa->flags & RSA_FLAG_EXT_PKEY) || |
551 | 0 | ((rsa->p != NULL) && |
552 | 0 | (rsa->q != NULL) && |
553 | 0 | (rsa->dmp1 != NULL) && (rsa->dmq1 != NULL) && (rsa->iqmp != NULL))) { |
554 | 0 | if (!rsa->meth->rsa_mod_exp(ret, f, rsa, ctx)) |
555 | 0 | goto err; |
556 | 0 | } else { |
557 | 0 | BIGNUM local_d; |
558 | 0 | BIGNUM *d = NULL; |
559 | |
|
560 | 0 | if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { |
561 | 0 | d = &local_d; |
562 | 0 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); |
563 | 0 | } else |
564 | 0 | d = rsa->d; |
565 | |
|
566 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
567 | 0 | if (!BN_MONT_CTX_set_locked |
568 | 0 | (&rsa->_method_mod_n, CRYPTO_LOCK_RSA, rsa->n, ctx)) |
569 | 0 | goto err; |
570 | 0 | if (!rsa->meth->bn_mod_exp(ret, f, d, rsa->n, ctx, |
571 | 0 | rsa->_method_mod_n)) |
572 | 0 | goto err; |
573 | 0 | } |
574 | | |
575 | 0 | if (blinding) |
576 | 0 | if (!rsa_blinding_invert(blinding, ret, unblind, ctx)) |
577 | 0 | goto err; |
578 | | |
579 | 0 | p = buf; |
580 | 0 | j = BN_bn2bin(ret, p); /* j is only used with no-padding mode */ |
581 | |
|
582 | 0 | switch (padding) { |
583 | 0 | case RSA_PKCS1_PADDING: |
584 | 0 | r = RSA_padding_check_PKCS1_type_2(to, num, buf, j, num); |
585 | 0 | break; |
586 | 0 | # ifndef OPENSSL_NO_SHA |
587 | 0 | case RSA_PKCS1_OAEP_PADDING: |
588 | 0 | r = RSA_padding_check_PKCS1_OAEP(to, num, buf, j, num, NULL, 0); |
589 | 0 | break; |
590 | 0 | # endif |
591 | 0 | case RSA_SSLV23_PADDING: |
592 | 0 | r = RSA_padding_check_SSLv23(to, num, buf, j, num); |
593 | 0 | break; |
594 | 0 | case RSA_NO_PADDING: |
595 | 0 | r = RSA_padding_check_none(to, num, buf, j, num); |
596 | 0 | break; |
597 | 0 | default: |
598 | 0 | RSAerr(RSA_F_RSA_EAY_PRIVATE_DECRYPT, RSA_R_UNKNOWN_PADDING_TYPE); |
599 | 0 | goto err; |
600 | 0 | } |
601 | 0 | if (r < 0) |
602 | 0 | RSAerr(RSA_F_RSA_EAY_PRIVATE_DECRYPT, RSA_R_PADDING_CHECK_FAILED); |
603 | |
|
604 | 0 | err: |
605 | 0 | if (ctx != NULL) { |
606 | 0 | BN_CTX_end(ctx); |
607 | 0 | BN_CTX_free(ctx); |
608 | 0 | } |
609 | 0 | if (buf != NULL) { |
610 | 0 | OPENSSL_cleanse(buf, num); |
611 | 0 | OPENSSL_free(buf); |
612 | 0 | } |
613 | 0 | return (r); |
614 | 0 | } |
615 | | |
616 | | /* signature verification */ |
617 | | static int RSA_eay_public_decrypt(int flen, const unsigned char *from, |
618 | | unsigned char *to, RSA *rsa, int padding) |
619 | 0 | { |
620 | 0 | BIGNUM *f, *ret; |
621 | 0 | int i, num = 0, r = -1; |
622 | 0 | unsigned char *p; |
623 | 0 | unsigned char *buf = NULL; |
624 | 0 | BN_CTX *ctx = NULL; |
625 | |
|
626 | 0 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_MAX_MODULUS_BITS) { |
627 | 0 | RSAerr(RSA_F_RSA_EAY_PUBLIC_DECRYPT, RSA_R_MODULUS_TOO_LARGE); |
628 | 0 | return -1; |
629 | 0 | } |
630 | | |
631 | 0 | if (BN_ucmp(rsa->n, rsa->e) <= 0) { |
632 | 0 | RSAerr(RSA_F_RSA_EAY_PUBLIC_DECRYPT, RSA_R_BAD_E_VALUE); |
633 | 0 | return -1; |
634 | 0 | } |
635 | | |
636 | | /* for large moduli, enforce exponent limit */ |
637 | 0 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_SMALL_MODULUS_BITS) { |
638 | 0 | if (BN_num_bits(rsa->e) > OPENSSL_RSA_MAX_PUBEXP_BITS) { |
639 | 0 | RSAerr(RSA_F_RSA_EAY_PUBLIC_DECRYPT, RSA_R_BAD_E_VALUE); |
640 | 0 | return -1; |
641 | 0 | } |
642 | 0 | } |
643 | | |
644 | 0 | if ((ctx = BN_CTX_new()) == NULL) |
645 | 0 | goto err; |
646 | 0 | BN_CTX_start(ctx); |
647 | 0 | f = BN_CTX_get(ctx); |
648 | 0 | ret = BN_CTX_get(ctx); |
649 | 0 | num = BN_num_bytes(rsa->n); |
650 | 0 | buf = OPENSSL_malloc(num); |
651 | 0 | if (!f || !ret || !buf) { |
652 | 0 | RSAerr(RSA_F_RSA_EAY_PUBLIC_DECRYPT, ERR_R_MALLOC_FAILURE); |
653 | 0 | goto err; |
654 | 0 | } |
655 | | |
656 | | /* |
657 | | * This check was for equality but PGP does evil things and chops off the |
658 | | * top '0' bytes |
659 | | */ |
660 | 0 | if (flen > num) { |
661 | 0 | RSAerr(RSA_F_RSA_EAY_PUBLIC_DECRYPT, RSA_R_DATA_GREATER_THAN_MOD_LEN); |
662 | 0 | goto err; |
663 | 0 | } |
664 | | |
665 | 0 | if (BN_bin2bn(from, flen, f) == NULL) |
666 | 0 | goto err; |
667 | | |
668 | 0 | if (BN_ucmp(f, rsa->n) >= 0) { |
669 | 0 | RSAerr(RSA_F_RSA_EAY_PUBLIC_DECRYPT, |
670 | 0 | RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
671 | 0 | goto err; |
672 | 0 | } |
673 | | |
674 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
675 | 0 | if (!BN_MONT_CTX_set_locked |
676 | 0 | (&rsa->_method_mod_n, CRYPTO_LOCK_RSA, rsa->n, ctx)) |
677 | 0 | goto err; |
678 | | |
679 | 0 | if (!rsa->meth->bn_mod_exp(ret, f, rsa->e, rsa->n, ctx, |
680 | 0 | rsa->_method_mod_n)) |
681 | 0 | goto err; |
682 | | |
683 | 0 | if ((padding == RSA_X931_PADDING) && ((ret->d[0] & 0xf) != 12)) |
684 | 0 | if (!BN_sub(ret, rsa->n, ret)) |
685 | 0 | goto err; |
686 | | |
687 | 0 | p = buf; |
688 | 0 | i = BN_bn2bin(ret, p); |
689 | |
|
690 | 0 | switch (padding) { |
691 | 0 | case RSA_PKCS1_PADDING: |
692 | 0 | r = RSA_padding_check_PKCS1_type_1(to, num, buf, i, num); |
693 | 0 | break; |
694 | 0 | case RSA_X931_PADDING: |
695 | 0 | r = RSA_padding_check_X931(to, num, buf, i, num); |
696 | 0 | break; |
697 | 0 | case RSA_NO_PADDING: |
698 | 0 | r = RSA_padding_check_none(to, num, buf, i, num); |
699 | 0 | break; |
700 | 0 | default: |
701 | 0 | RSAerr(RSA_F_RSA_EAY_PUBLIC_DECRYPT, RSA_R_UNKNOWN_PADDING_TYPE); |
702 | 0 | goto err; |
703 | 0 | } |
704 | 0 | if (r < 0) |
705 | 0 | RSAerr(RSA_F_RSA_EAY_PUBLIC_DECRYPT, RSA_R_PADDING_CHECK_FAILED); |
706 | |
|
707 | 0 | err: |
708 | 0 | if (ctx != NULL) { |
709 | 0 | BN_CTX_end(ctx); |
710 | 0 | BN_CTX_free(ctx); |
711 | 0 | } |
712 | 0 | if (buf != NULL) { |
713 | 0 | OPENSSL_cleanse(buf, num); |
714 | 0 | OPENSSL_free(buf); |
715 | 0 | } |
716 | 0 | return (r); |
717 | 0 | } |
718 | | |
719 | | static int RSA_eay_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) |
720 | 0 | { |
721 | 0 | BIGNUM *r1, *m1, *vrfy; |
722 | 0 | BIGNUM local_dmp1, local_dmq1, local_c, local_r1; |
723 | 0 | BIGNUM *dmp1, *dmq1, *c, *pr1; |
724 | 0 | int ret = 0; |
725 | |
|
726 | 0 | BN_CTX_start(ctx); |
727 | 0 | r1 = BN_CTX_get(ctx); |
728 | 0 | m1 = BN_CTX_get(ctx); |
729 | 0 | vrfy = BN_CTX_get(ctx); |
730 | |
|
731 | 0 | { |
732 | 0 | BIGNUM local_p, local_q; |
733 | 0 | BIGNUM *p = NULL, *q = NULL; |
734 | | |
735 | | /* |
736 | | * Make sure BN_mod_inverse in Montgomery intialization uses the |
737 | | * BN_FLG_CONSTTIME flag (unless RSA_FLAG_NO_CONSTTIME is set) |
738 | | */ |
739 | 0 | if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { |
740 | 0 | BN_init(&local_p); |
741 | 0 | p = &local_p; |
742 | 0 | BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME); |
743 | |
|
744 | 0 | BN_init(&local_q); |
745 | 0 | q = &local_q; |
746 | 0 | BN_with_flags(q, rsa->q, BN_FLG_CONSTTIME); |
747 | 0 | } else { |
748 | 0 | p = rsa->p; |
749 | 0 | q = rsa->q; |
750 | 0 | } |
751 | |
|
752 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) { |
753 | 0 | if (!BN_MONT_CTX_set_locked |
754 | 0 | (&rsa->_method_mod_p, CRYPTO_LOCK_RSA, p, ctx)) |
755 | 0 | goto err; |
756 | 0 | if (!BN_MONT_CTX_set_locked |
757 | 0 | (&rsa->_method_mod_q, CRYPTO_LOCK_RSA, q, ctx)) |
758 | 0 | goto err; |
759 | 0 | } |
760 | 0 | } |
761 | | |
762 | 0 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
763 | 0 | if (!BN_MONT_CTX_set_locked |
764 | 0 | (&rsa->_method_mod_n, CRYPTO_LOCK_RSA, rsa->n, ctx)) |
765 | 0 | goto err; |
766 | | |
767 | | /* compute I mod q */ |
768 | 0 | if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { |
769 | 0 | c = &local_c; |
770 | 0 | BN_with_flags(c, I, BN_FLG_CONSTTIME); |
771 | 0 | if (!BN_mod(r1, c, rsa->q, ctx)) |
772 | 0 | goto err; |
773 | 0 | } else { |
774 | 0 | if (!BN_mod(r1, I, rsa->q, ctx)) |
775 | 0 | goto err; |
776 | 0 | } |
777 | | |
778 | | /* compute r1^dmq1 mod q */ |
779 | 0 | if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { |
780 | 0 | dmq1 = &local_dmq1; |
781 | 0 | BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME); |
782 | 0 | } else |
783 | 0 | dmq1 = rsa->dmq1; |
784 | 0 | if (!rsa->meth->bn_mod_exp(m1, r1, dmq1, rsa->q, ctx, rsa->_method_mod_q)) |
785 | 0 | goto err; |
786 | | |
787 | | /* compute I mod p */ |
788 | 0 | if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { |
789 | 0 | c = &local_c; |
790 | 0 | BN_with_flags(c, I, BN_FLG_CONSTTIME); |
791 | 0 | if (!BN_mod(r1, c, rsa->p, ctx)) |
792 | 0 | goto err; |
793 | 0 | } else { |
794 | 0 | if (!BN_mod(r1, I, rsa->p, ctx)) |
795 | 0 | goto err; |
796 | 0 | } |
797 | | |
798 | | /* compute r1^dmp1 mod p */ |
799 | 0 | if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { |
800 | 0 | dmp1 = &local_dmp1; |
801 | 0 | BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME); |
802 | 0 | } else |
803 | 0 | dmp1 = rsa->dmp1; |
804 | 0 | if (!rsa->meth->bn_mod_exp(r0, r1, dmp1, rsa->p, ctx, rsa->_method_mod_p)) |
805 | 0 | goto err; |
806 | | |
807 | 0 | if (!BN_sub(r0, r0, m1)) |
808 | 0 | goto err; |
809 | | /* |
810 | | * This will help stop the size of r0 increasing, which does affect the |
811 | | * multiply if it optimised for a power of 2 size |
812 | | */ |
813 | 0 | if (BN_is_negative(r0)) |
814 | 0 | if (!BN_add(r0, r0, rsa->p)) |
815 | 0 | goto err; |
816 | | |
817 | 0 | if (!BN_mul(r1, r0, rsa->iqmp, ctx)) |
818 | 0 | goto err; |
819 | | |
820 | | /* Turn BN_FLG_CONSTTIME flag on before division operation */ |
821 | 0 | if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { |
822 | 0 | pr1 = &local_r1; |
823 | 0 | BN_with_flags(pr1, r1, BN_FLG_CONSTTIME); |
824 | 0 | } else |
825 | 0 | pr1 = r1; |
826 | 0 | if (!BN_mod(r0, pr1, rsa->p, ctx)) |
827 | 0 | goto err; |
828 | | |
829 | | /* |
830 | | * If p < q it is occasionally possible for the correction of adding 'p' |
831 | | * if r0 is negative above to leave the result still negative. This can |
832 | | * break the private key operations: the following second correction |
833 | | * should *always* correct this rare occurrence. This will *never* happen |
834 | | * with OpenSSL generated keys because they ensure p > q [steve] |
835 | | */ |
836 | 0 | if (BN_is_negative(r0)) |
837 | 0 | if (!BN_add(r0, r0, rsa->p)) |
838 | 0 | goto err; |
839 | 0 | if (!BN_mul(r1, r0, rsa->q, ctx)) |
840 | 0 | goto err; |
841 | 0 | if (!BN_add(r0, r1, m1)) |
842 | 0 | goto err; |
843 | | |
844 | 0 | if (rsa->e && rsa->n) { |
845 | 0 | if (!rsa->meth->bn_mod_exp(vrfy, r0, rsa->e, rsa->n, ctx, |
846 | 0 | rsa->_method_mod_n)) |
847 | 0 | goto err; |
848 | | /* |
849 | | * If 'I' was greater than (or equal to) rsa->n, the operation will |
850 | | * be equivalent to using 'I mod n'. However, the result of the |
851 | | * verify will *always* be less than 'n' so we don't check for |
852 | | * absolute equality, just congruency. |
853 | | */ |
854 | 0 | if (!BN_sub(vrfy, vrfy, I)) |
855 | 0 | goto err; |
856 | 0 | if (!BN_mod(vrfy, vrfy, rsa->n, ctx)) |
857 | 0 | goto err; |
858 | 0 | if (BN_is_negative(vrfy)) |
859 | 0 | if (!BN_add(vrfy, vrfy, rsa->n)) |
860 | 0 | goto err; |
861 | 0 | if (!BN_is_zero(vrfy)) { |
862 | | /* |
863 | | * 'I' and 'vrfy' aren't congruent mod n. Don't leak |
864 | | * miscalculated CRT output, just do a raw (slower) mod_exp and |
865 | | * return that instead. |
866 | | */ |
867 | |
|
868 | 0 | BIGNUM local_d; |
869 | 0 | BIGNUM *d = NULL; |
870 | |
|
871 | 0 | if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) { |
872 | 0 | d = &local_d; |
873 | 0 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); |
874 | 0 | } else |
875 | 0 | d = rsa->d; |
876 | 0 | if (!rsa->meth->bn_mod_exp(r0, I, d, rsa->n, ctx, |
877 | 0 | rsa->_method_mod_n)) |
878 | 0 | goto err; |
879 | 0 | } |
880 | 0 | } |
881 | 0 | ret = 1; |
882 | 0 | err: |
883 | 0 | BN_CTX_end(ctx); |
884 | 0 | return (ret); |
885 | 0 | } |
886 | | |
887 | | static int RSA_eay_init(RSA *rsa) |
888 | 0 | { |
889 | 0 | rsa->flags |= RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_CACHE_PRIVATE; |
890 | 0 | return (1); |
891 | 0 | } |
892 | | |
893 | | static int RSA_eay_finish(RSA *rsa) |
894 | 0 | { |
895 | 0 | if (rsa->_method_mod_n != NULL) |
896 | 0 | BN_MONT_CTX_free(rsa->_method_mod_n); |
897 | 0 | if (rsa->_method_mod_p != NULL) |
898 | 0 | BN_MONT_CTX_free(rsa->_method_mod_p); |
899 | 0 | if (rsa->_method_mod_q != NULL) |
900 | 0 | BN_MONT_CTX_free(rsa->_method_mod_q); |
901 | 0 | return (1); |
902 | 0 | } |
903 | | |
904 | | #endif |