/src/openssl/crypto/rsa/rsa_oaep.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* crypto/rsa/rsa_oaep.c */ |
2 | | /* |
3 | | * Written by Ulf Moeller. This software is distributed on an "AS IS" basis, |
4 | | * WITHOUT WARRANTY OF ANY KIND, either express or implied. |
5 | | */ |
6 | | |
7 | | /* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */ |
8 | | |
9 | | /* |
10 | | * See Victor Shoup, "OAEP reconsidered," Nov. 2000, <URL: |
11 | | * http://www.shoup.net/papers/oaep.ps.Z> for problems with the security |
12 | | * proof for the original OAEP scheme, which EME-OAEP is based on. A new |
13 | | * proof can be found in E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern, |
14 | | * "RSA-OEAP is Still Alive!", Dec. 2000, <URL: |
15 | | * http://eprint.iacr.org/2000/061/>. The new proof has stronger requirements |
16 | | * for the underlying permutation: "partial-one-wayness" instead of |
17 | | * one-wayness. For the RSA function, this is an equivalent notion. |
18 | | */ |
19 | | |
20 | | #include "constant_time_locl.h" |
21 | | |
22 | | #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA1) |
23 | | # include <stdio.h> |
24 | | # include "cryptlib.h" |
25 | | # include <openssl/bn.h> |
26 | | # include <openssl/rsa.h> |
27 | | # include <openssl/evp.h> |
28 | | # include <openssl/rand.h> |
29 | | # include <openssl/sha.h> |
30 | | |
31 | | int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen, |
32 | | const unsigned char *from, int flen, |
33 | | const unsigned char *param, int plen) |
34 | 0 | { |
35 | 0 | return RSA_padding_add_PKCS1_OAEP_mgf1(to, tlen, from, flen, |
36 | 0 | param, plen, NULL, NULL); |
37 | 0 | } |
38 | | |
39 | | int RSA_padding_add_PKCS1_OAEP_mgf1(unsigned char *to, int tlen, |
40 | | const unsigned char *from, int flen, |
41 | | const unsigned char *param, int plen, |
42 | | const EVP_MD *md, const EVP_MD *mgf1md) |
43 | 0 | { |
44 | 0 | int i, emlen = tlen - 1; |
45 | 0 | unsigned char *db, *seed; |
46 | 0 | unsigned char *dbmask, seedmask[EVP_MAX_MD_SIZE]; |
47 | 0 | int mdlen; |
48 | |
|
49 | 0 | if (md == NULL) |
50 | 0 | md = EVP_sha1(); |
51 | 0 | if (mgf1md == NULL) |
52 | 0 | mgf1md = md; |
53 | |
|
54 | 0 | mdlen = EVP_MD_size(md); |
55 | |
|
56 | 0 | if (flen > emlen - 2 * mdlen - 1) { |
57 | 0 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, |
58 | 0 | RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
59 | 0 | return 0; |
60 | 0 | } |
61 | | |
62 | 0 | if (emlen < 2 * mdlen + 1) { |
63 | 0 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, |
64 | 0 | RSA_R_KEY_SIZE_TOO_SMALL); |
65 | 0 | return 0; |
66 | 0 | } |
67 | | |
68 | 0 | to[0] = 0; |
69 | 0 | seed = to + 1; |
70 | 0 | db = to + mdlen + 1; |
71 | |
|
72 | 0 | if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL)) |
73 | 0 | return 0; |
74 | 0 | memset(db + mdlen, 0, emlen - flen - 2 * mdlen - 1); |
75 | 0 | db[emlen - flen - mdlen - 1] = 0x01; |
76 | 0 | memcpy(db + emlen - flen - mdlen, from, (unsigned int)flen); |
77 | 0 | if (RAND_bytes(seed, mdlen) <= 0) |
78 | 0 | return 0; |
79 | | # ifdef PKCS_TESTVECT |
80 | | memcpy(seed, |
81 | | "\xaa\xfd\x12\xf6\x59\xca\xe6\x34\x89\xb4\x79\xe5\x07\x6d\xde\xc2\xf0\x6c\xb5\x8f", |
82 | | 20); |
83 | | # endif |
84 | | |
85 | 0 | dbmask = OPENSSL_malloc(emlen - mdlen); |
86 | 0 | if (dbmask == NULL) { |
87 | 0 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE); |
88 | 0 | return 0; |
89 | 0 | } |
90 | | |
91 | 0 | if (PKCS1_MGF1(dbmask, emlen - mdlen, seed, mdlen, mgf1md) < 0) |
92 | 0 | goto err; |
93 | 0 | for (i = 0; i < emlen - mdlen; i++) |
94 | 0 | db[i] ^= dbmask[i]; |
95 | |
|
96 | 0 | if (PKCS1_MGF1(seedmask, mdlen, db, emlen - mdlen, mgf1md) < 0) |
97 | 0 | goto err; |
98 | 0 | for (i = 0; i < mdlen; i++) |
99 | 0 | seed[i] ^= seedmask[i]; |
100 | |
|
101 | 0 | OPENSSL_free(dbmask); |
102 | 0 | return 1; |
103 | | |
104 | 0 | err: |
105 | 0 | OPENSSL_free(dbmask); |
106 | 0 | return 0; |
107 | 0 | } |
108 | | |
109 | | int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen, |
110 | | const unsigned char *from, int flen, int num, |
111 | | const unsigned char *param, int plen) |
112 | 0 | { |
113 | 0 | return RSA_padding_check_PKCS1_OAEP_mgf1(to, tlen, from, flen, num, |
114 | 0 | param, plen, NULL, NULL); |
115 | 0 | } |
116 | | |
117 | | int RSA_padding_check_PKCS1_OAEP_mgf1(unsigned char *to, int tlen, |
118 | | const unsigned char *from, int flen, |
119 | | int num, const unsigned char *param, |
120 | | int plen, const EVP_MD *md, |
121 | | const EVP_MD *mgf1md) |
122 | 0 | { |
123 | 0 | int i, dblen, mlen = -1, one_index = 0, msg_index; |
124 | 0 | unsigned int good, found_one_byte; |
125 | 0 | const unsigned char *maskedseed, *maskeddb; |
126 | | /* |
127 | | * |em| is the encoded message, zero-padded to exactly |num| bytes: em = |
128 | | * Y || maskedSeed || maskedDB |
129 | | */ |
130 | 0 | unsigned char *db = NULL, *em = NULL, seed[EVP_MAX_MD_SIZE], |
131 | 0 | phash[EVP_MAX_MD_SIZE]; |
132 | 0 | int mdlen; |
133 | |
|
134 | 0 | if (md == NULL) |
135 | 0 | md = EVP_sha1(); |
136 | 0 | if (mgf1md == NULL) |
137 | 0 | mgf1md = md; |
138 | |
|
139 | 0 | mdlen = EVP_MD_size(md); |
140 | |
|
141 | 0 | if (tlen <= 0 || flen <= 0) |
142 | 0 | return -1; |
143 | | /* |
144 | | * |num| is the length of the modulus; |flen| is the length of the |
145 | | * encoded message. Therefore, for any |from| that was obtained by |
146 | | * decrypting a ciphertext, we must have |flen| <= |num|. Similarly, |
147 | | * num < 2 * mdlen + 2 must hold for the modulus irrespective of |
148 | | * the ciphertext, see PKCS #1 v2.2, section 7.1.2. |
149 | | * This does not leak any side-channel information. |
150 | | */ |
151 | 0 | if (num < flen || num < 2 * mdlen + 2) |
152 | 0 | goto decoding_err; |
153 | | |
154 | 0 | dblen = num - mdlen - 1; |
155 | 0 | db = OPENSSL_malloc(dblen); |
156 | 0 | em = OPENSSL_malloc(num); |
157 | 0 | if (db == NULL || em == NULL) { |
158 | 0 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE); |
159 | 0 | goto cleanup; |
160 | 0 | } |
161 | | |
162 | | /* |
163 | | * Always do this zero-padding copy (even when num == flen) to avoid |
164 | | * leaking that information. The copy still leaks some side-channel |
165 | | * information, but it's impossible to have a fixed memory access |
166 | | * pattern since we can't read out of the bounds of |from|. |
167 | | * |
168 | | * TODO(emilia): Consider porting BN_bn2bin_padded from BoringSSL. |
169 | | */ |
170 | 0 | memset(em, 0, num); |
171 | 0 | memcpy(em + num - flen, from, flen); |
172 | | |
173 | | /* |
174 | | * The first byte must be zero, however we must not leak if this is |
175 | | * true. See James H. Manger, "A Chosen Ciphertext Attack on RSA |
176 | | * Optimal Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001). |
177 | | */ |
178 | 0 | good = constant_time_is_zero(em[0]); |
179 | |
|
180 | 0 | maskedseed = em + 1; |
181 | 0 | maskeddb = em + 1 + mdlen; |
182 | |
|
183 | 0 | if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md)) |
184 | 0 | goto cleanup; |
185 | 0 | for (i = 0; i < mdlen; i++) |
186 | 0 | seed[i] ^= maskedseed[i]; |
187 | |
|
188 | 0 | if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md)) |
189 | 0 | goto cleanup; |
190 | 0 | for (i = 0; i < dblen; i++) |
191 | 0 | db[i] ^= maskeddb[i]; |
192 | |
|
193 | 0 | if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL)) |
194 | 0 | goto cleanup; |
195 | | |
196 | 0 | good &= constant_time_is_zero(CRYPTO_memcmp(db, phash, mdlen)); |
197 | |
|
198 | 0 | found_one_byte = 0; |
199 | 0 | for (i = mdlen; i < dblen; i++) { |
200 | | /* |
201 | | * Padding consists of a number of 0-bytes, followed by a 1. |
202 | | */ |
203 | 0 | unsigned int equals1 = constant_time_eq(db[i], 1); |
204 | 0 | unsigned int equals0 = constant_time_is_zero(db[i]); |
205 | 0 | one_index = constant_time_select_int(~found_one_byte & equals1, |
206 | 0 | i, one_index); |
207 | 0 | found_one_byte |= equals1; |
208 | 0 | good &= (found_one_byte | equals0); |
209 | 0 | } |
210 | |
|
211 | 0 | good &= found_one_byte; |
212 | | |
213 | | /* |
214 | | * At this point |good| is zero unless the plaintext was valid, |
215 | | * so plaintext-awareness ensures timing side-channels are no longer a |
216 | | * concern. |
217 | | */ |
218 | 0 | if (!good) |
219 | 0 | goto decoding_err; |
220 | | |
221 | 0 | msg_index = one_index + 1; |
222 | 0 | mlen = dblen - msg_index; |
223 | |
|
224 | 0 | if (tlen < mlen) { |
225 | 0 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, RSA_R_DATA_TOO_LARGE); |
226 | 0 | mlen = -1; |
227 | 0 | } else { |
228 | 0 | memcpy(to, db + msg_index, mlen); |
229 | 0 | goto cleanup; |
230 | 0 | } |
231 | | |
232 | 0 | decoding_err: |
233 | | /* |
234 | | * To avoid chosen ciphertext attacks, the error message should not |
235 | | * reveal which kind of decoding error happened. |
236 | | */ |
237 | 0 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, |
238 | 0 | RSA_R_OAEP_DECODING_ERROR); |
239 | 0 | cleanup: |
240 | 0 | if (db != NULL) { |
241 | 0 | OPENSSL_cleanse(db, dblen); |
242 | 0 | OPENSSL_free(db); |
243 | 0 | } |
244 | 0 | if (em != NULL) { |
245 | 0 | OPENSSL_cleanse(em, num); |
246 | 0 | OPENSSL_free(em); |
247 | 0 | } |
248 | 0 | return mlen; |
249 | 0 | } |
250 | | |
251 | | int PKCS1_MGF1(unsigned char *mask, long len, |
252 | | const unsigned char *seed, long seedlen, const EVP_MD *dgst) |
253 | 0 | { |
254 | 0 | long i, outlen = 0; |
255 | 0 | unsigned char cnt[4]; |
256 | 0 | EVP_MD_CTX c; |
257 | 0 | unsigned char md[EVP_MAX_MD_SIZE]; |
258 | 0 | int mdlen; |
259 | 0 | int rv = -1; |
260 | |
|
261 | 0 | EVP_MD_CTX_init(&c); |
262 | 0 | mdlen = EVP_MD_size(dgst); |
263 | 0 | if (mdlen < 0) |
264 | 0 | goto err; |
265 | 0 | for (i = 0; outlen < len; i++) { |
266 | 0 | cnt[0] = (unsigned char)((i >> 24) & 255); |
267 | 0 | cnt[1] = (unsigned char)((i >> 16) & 255); |
268 | 0 | cnt[2] = (unsigned char)((i >> 8)) & 255; |
269 | 0 | cnt[3] = (unsigned char)(i & 255); |
270 | 0 | if (!EVP_DigestInit_ex(&c, dgst, NULL) |
271 | 0 | || !EVP_DigestUpdate(&c, seed, seedlen) |
272 | 0 | || !EVP_DigestUpdate(&c, cnt, 4)) |
273 | 0 | goto err; |
274 | 0 | if (outlen + mdlen <= len) { |
275 | 0 | if (!EVP_DigestFinal_ex(&c, mask + outlen, NULL)) |
276 | 0 | goto err; |
277 | 0 | outlen += mdlen; |
278 | 0 | } else { |
279 | 0 | if (!EVP_DigestFinal_ex(&c, md, NULL)) |
280 | 0 | goto err; |
281 | 0 | memcpy(mask + outlen, md, len - outlen); |
282 | 0 | outlen = len; |
283 | 0 | } |
284 | 0 | } |
285 | 0 | rv = 0; |
286 | 0 | err: |
287 | 0 | EVP_MD_CTX_cleanup(&c); |
288 | 0 | return rv; |
289 | 0 | } |
290 | | |
291 | | #endif |