/src/openssl/engines/ccgost/gosthash.c
Line | Count | Source (jump to first uncovered line) |
1 | | /********************************************************************** |
2 | | * gosthash.c * |
3 | | * Copyright (c) 2005-2006 Cryptocom LTD * |
4 | | * This file is distributed under the same license as OpenSSL * |
5 | | * * |
6 | | * Implementation of GOST R 34.11-94 hash function * |
7 | | * uses on gost89.c and gost89.h Doesn't need OpenSSL * |
8 | | **********************************************************************/ |
9 | | #include <string.h> |
10 | | |
11 | | #include "gost89.h" |
12 | | #include "gosthash.h" |
13 | | |
14 | | /* |
15 | | * Use OPENSSL_malloc for memory allocation if compiled with |
16 | | * -DOPENSSL_BUILD, and libc malloc otherwise |
17 | | */ |
18 | | #ifndef MYALLOC |
19 | | # ifdef OPENSSL_BUILD |
20 | | # include <openssl/crypto.h> |
21 | | # define MYALLOC(size) OPENSSL_malloc(size) |
22 | | # define MYFREE(ptr) OPENSSL_free(ptr) |
23 | | # else |
24 | 0 | # define MYALLOC(size) malloc(size) |
25 | 0 | # define MYFREE(ptr) free(ptr) |
26 | | # endif |
27 | | #endif |
28 | | /* |
29 | | * Following functions are various bit meshing routines used in GOST R |
30 | | * 34.11-94 algorithms |
31 | | */ |
32 | | static void swap_bytes(byte * w, byte * k) |
33 | 0 | { |
34 | 0 | int i, j; |
35 | 0 | for (i = 0; i < 4; i++) |
36 | 0 | for (j = 0; j < 8; j++) |
37 | 0 | k[i + 4 * j] = w[8 * i + j]; |
38 | |
|
39 | 0 | } |
40 | | |
41 | | /* was A_A */ |
42 | | static void circle_xor8(const byte * w, byte * k) |
43 | 0 | { |
44 | 0 | byte buf[8]; |
45 | 0 | int i; |
46 | 0 | memcpy(buf, w, 8); |
47 | 0 | memmove(k, w + 8, 24); |
48 | 0 | for (i = 0; i < 8; i++) |
49 | 0 | k[i + 24] = buf[i] ^ k[i]; |
50 | 0 | } |
51 | | |
52 | | /* was R_R */ |
53 | | static void transform_3(byte * data) |
54 | 0 | { |
55 | 0 | unsigned short int acc; |
56 | 0 | acc = (data[0] ^ data[2] ^ data[4] ^ data[6] ^ data[24] ^ data[30]) | |
57 | 0 | ((data[1] ^ data[3] ^ data[5] ^ data[7] ^ data[25] ^ data[31]) << 8); |
58 | 0 | memmove(data, data + 2, 30); |
59 | 0 | data[30] = acc & 0xff; |
60 | 0 | data[31] = acc >> 8; |
61 | 0 | } |
62 | | |
63 | | /* Adds blocks of N bytes modulo 2**(8*n). Returns carry*/ |
64 | | static int add_blocks(int n, byte * left, const byte * right) |
65 | 0 | { |
66 | 0 | int i; |
67 | 0 | int carry = 0; |
68 | 0 | int sum; |
69 | 0 | for (i = 0; i < n; i++) { |
70 | 0 | sum = (int)left[i] + (int)right[i] + carry; |
71 | 0 | left[i] = sum & 0xff; |
72 | 0 | carry = sum >> 8; |
73 | 0 | } |
74 | 0 | return carry; |
75 | 0 | } |
76 | | |
77 | | /* Xor two sequences of bytes */ |
78 | | static void xor_blocks(byte * result, const byte * a, const byte * b, |
79 | | size_t len) |
80 | 0 | { |
81 | 0 | size_t i; |
82 | 0 | for (i = 0; i < len; i++) |
83 | 0 | result[i] = a[i] ^ b[i]; |
84 | 0 | } |
85 | | |
86 | | /* |
87 | | * Calculate H(i+1) = Hash(Hi,Mi) |
88 | | * Where H and M are 32 bytes long |
89 | | */ |
90 | | static int hash_step(gost_ctx * c, byte * H, const byte * M) |
91 | 0 | { |
92 | 0 | byte U[32], W[32], V[32], S[32], Key[32]; |
93 | 0 | int i; |
94 | | /* Compute first key */ |
95 | 0 | xor_blocks(W, H, M, 32); |
96 | 0 | swap_bytes(W, Key); |
97 | | /* Encrypt first 8 bytes of H with first key */ |
98 | 0 | gost_enc_with_key(c, Key, H, S); |
99 | | /* Compute second key */ |
100 | 0 | circle_xor8(H, U); |
101 | 0 | circle_xor8(M, V); |
102 | 0 | circle_xor8(V, V); |
103 | 0 | xor_blocks(W, U, V, 32); |
104 | 0 | swap_bytes(W, Key); |
105 | | /* encrypt second 8 bytes of H with second key */ |
106 | 0 | gost_enc_with_key(c, Key, H + 8, S + 8); |
107 | | /* compute third key */ |
108 | 0 | circle_xor8(U, U); |
109 | 0 | U[31] = ~U[31]; |
110 | 0 | U[29] = ~U[29]; |
111 | 0 | U[28] = ~U[28]; |
112 | 0 | U[24] = ~U[24]; |
113 | 0 | U[23] = ~U[23]; |
114 | 0 | U[20] = ~U[20]; |
115 | 0 | U[18] = ~U[18]; |
116 | 0 | U[17] = ~U[17]; |
117 | 0 | U[14] = ~U[14]; |
118 | 0 | U[12] = ~U[12]; |
119 | 0 | U[10] = ~U[10]; |
120 | 0 | U[8] = ~U[8]; |
121 | 0 | U[7] = ~U[7]; |
122 | 0 | U[5] = ~U[5]; |
123 | 0 | U[3] = ~U[3]; |
124 | 0 | U[1] = ~U[1]; |
125 | 0 | circle_xor8(V, V); |
126 | 0 | circle_xor8(V, V); |
127 | 0 | xor_blocks(W, U, V, 32); |
128 | 0 | swap_bytes(W, Key); |
129 | | /* encrypt third 8 bytes of H with third key */ |
130 | 0 | gost_enc_with_key(c, Key, H + 16, S + 16); |
131 | | /* Compute fourth key */ |
132 | 0 | circle_xor8(U, U); |
133 | 0 | circle_xor8(V, V); |
134 | 0 | circle_xor8(V, V); |
135 | 0 | xor_blocks(W, U, V, 32); |
136 | 0 | swap_bytes(W, Key); |
137 | | /* Encrypt last 8 bytes with fourth key */ |
138 | 0 | gost_enc_with_key(c, Key, H + 24, S + 24); |
139 | 0 | for (i = 0; i < 12; i++) |
140 | 0 | transform_3(S); |
141 | 0 | xor_blocks(S, S, M, 32); |
142 | 0 | transform_3(S); |
143 | 0 | xor_blocks(S, S, H, 32); |
144 | 0 | for (i = 0; i < 61; i++) |
145 | 0 | transform_3(S); |
146 | 0 | memcpy(H, S, 32); |
147 | 0 | return 1; |
148 | 0 | } |
149 | | |
150 | | /* |
151 | | * Initialize gost_hash ctx - cleans up temporary structures and set up |
152 | | * substitution blocks |
153 | | */ |
154 | | int init_gost_hash_ctx(gost_hash_ctx * ctx, |
155 | | const gost_subst_block * subst_block) |
156 | 0 | { |
157 | 0 | memset(ctx, 0, sizeof(gost_hash_ctx)); |
158 | 0 | ctx->cipher_ctx = (gost_ctx *) MYALLOC(sizeof(gost_ctx)); |
159 | 0 | if (!ctx->cipher_ctx) { |
160 | 0 | return 0; |
161 | 0 | } |
162 | 0 | gost_init(ctx->cipher_ctx, subst_block); |
163 | 0 | return 1; |
164 | 0 | } |
165 | | |
166 | | /* |
167 | | * Free cipher CTX if it is dynamically allocated. Do not use |
168 | | * if cipher ctx is statically allocated as in OpenSSL implementation of |
169 | | * GOST hash algroritm |
170 | | * |
171 | | */ |
172 | | void done_gost_hash_ctx(gost_hash_ctx * ctx) |
173 | 0 | { |
174 | | /* |
175 | | * No need to use gost_destroy, because cipher keys are not really secret |
176 | | * when hashing |
177 | | */ |
178 | 0 | MYFREE(ctx->cipher_ctx); |
179 | 0 | } |
180 | | |
181 | | /* |
182 | | * reset state of hash context to begin hashing new message |
183 | | */ |
184 | | int start_hash(gost_hash_ctx * ctx) |
185 | 0 | { |
186 | 0 | if (!ctx->cipher_ctx) |
187 | 0 | return 0; |
188 | 0 | memset(&(ctx->H), 0, 32); |
189 | 0 | memset(&(ctx->S), 0, 32); |
190 | 0 | ctx->len = 0L; |
191 | 0 | ctx->left = 0; |
192 | 0 | return 1; |
193 | 0 | } |
194 | | |
195 | | /* |
196 | | * Hash block of arbitrary length |
197 | | * |
198 | | * |
199 | | */ |
200 | | int hash_block(gost_hash_ctx * ctx, const byte * block, size_t length) |
201 | 0 | { |
202 | 0 | if (ctx->left) { |
203 | | /* |
204 | | * There are some bytes from previous step |
205 | | */ |
206 | 0 | unsigned int add_bytes = 32 - ctx->left; |
207 | 0 | if (add_bytes > length) { |
208 | 0 | add_bytes = length; |
209 | 0 | } |
210 | 0 | memcpy(&(ctx->remainder[ctx->left]), block, add_bytes); |
211 | 0 | ctx->left += add_bytes; |
212 | 0 | if (ctx->left < 32) { |
213 | 0 | return 1; |
214 | 0 | } |
215 | 0 | block += add_bytes; |
216 | 0 | length -= add_bytes; |
217 | 0 | hash_step(ctx->cipher_ctx, ctx->H, ctx->remainder); |
218 | 0 | add_blocks(32, ctx->S, ctx->remainder); |
219 | 0 | ctx->len += 32; |
220 | 0 | ctx->left = 0; |
221 | 0 | } |
222 | 0 | while (length >= 32) { |
223 | 0 | hash_step(ctx->cipher_ctx, ctx->H, block); |
224 | |
|
225 | 0 | add_blocks(32, ctx->S, block); |
226 | 0 | ctx->len += 32; |
227 | 0 | block += 32; |
228 | 0 | length -= 32; |
229 | 0 | } |
230 | 0 | if (length) { |
231 | 0 | memcpy(ctx->remainder, block, ctx->left = length); |
232 | 0 | } |
233 | 0 | return 1; |
234 | 0 | } |
235 | | |
236 | | /* |
237 | | * Compute hash value from current state of ctx |
238 | | * state of hash ctx becomes invalid and cannot be used for further |
239 | | * hashing. |
240 | | */ |
241 | | int finish_hash(gost_hash_ctx * ctx, byte * hashval) |
242 | 0 | { |
243 | 0 | byte buf[32]; |
244 | 0 | byte H[32]; |
245 | 0 | byte S[32]; |
246 | 0 | ghosthash_len fin_len = ctx->len; |
247 | 0 | byte *bptr; |
248 | 0 | memcpy(H, ctx->H, 32); |
249 | 0 | memcpy(S, ctx->S, 32); |
250 | 0 | if (ctx->left) { |
251 | 0 | memset(buf, 0, 32); |
252 | 0 | memcpy(buf, ctx->remainder, ctx->left); |
253 | 0 | hash_step(ctx->cipher_ctx, H, buf); |
254 | 0 | add_blocks(32, S, buf); |
255 | 0 | fin_len += ctx->left; |
256 | 0 | } |
257 | 0 | memset(buf, 0, 32); |
258 | 0 | bptr = buf; |
259 | 0 | fin_len <<= 3; /* Hash length in BITS!! */ |
260 | 0 | while (fin_len > 0) { |
261 | 0 | *(bptr++) = (byte) (fin_len & 0xFF); |
262 | 0 | fin_len >>= 8; |
263 | 0 | }; |
264 | 0 | hash_step(ctx->cipher_ctx, H, buf); |
265 | 0 | hash_step(ctx->cipher_ctx, H, S); |
266 | 0 | memcpy(hashval, H, 32); |
267 | 0 | return 1; |
268 | 0 | } |