Coverage Report

Created: 2022-11-30 06:20

/src/openssl/ssl/s3_cbc.c
Line
Count
Source (jump to first uncovered line)
1
/* ssl/s3_cbc.c */
2
/* ====================================================================
3
 * Copyright (c) 2012 The OpenSSL Project.  All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * 1. Redistributions of source code must retain the above copyright
10
 *    notice, this list of conditions and the following disclaimer.
11
 *
12
 * 2. Redistributions in binary form must reproduce the above copyright
13
 *    notice, this list of conditions and the following disclaimer in
14
 *    the documentation and/or other materials provided with the
15
 *    distribution.
16
 *
17
 * 3. All advertising materials mentioning features or use of this
18
 *    software must display the following acknowledgment:
19
 *    "This product includes software developed by the OpenSSL Project
20
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21
 *
22
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23
 *    endorse or promote products derived from this software without
24
 *    prior written permission. For written permission, please contact
25
 *    openssl-core@openssl.org.
26
 *
27
 * 5. Products derived from this software may not be called "OpenSSL"
28
 *    nor may "OpenSSL" appear in their names without prior written
29
 *    permission of the OpenSSL Project.
30
 *
31
 * 6. Redistributions of any form whatsoever must retain the following
32
 *    acknowledgment:
33
 *    "This product includes software developed by the OpenSSL Project
34
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35
 *
36
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47
 * OF THE POSSIBILITY OF SUCH DAMAGE.
48
 * ====================================================================
49
 *
50
 * This product includes cryptographic software written by Eric Young
51
 * (eay@cryptsoft.com).  This product includes software written by Tim
52
 * Hudson (tjh@cryptsoft.com).
53
 *
54
 */
55
56
#include "../crypto/constant_time_locl.h"
57
#include "ssl_locl.h"
58
59
#include <openssl/md5.h>
60
#include <openssl/sha.h>
61
62
/*
63
 * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
64
 * length field. (SHA-384/512 have 128-bit length.)
65
 */
66
#define MAX_HASH_BIT_COUNT_BYTES 16
67
68
/*
69
 * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
70
 * Currently SHA-384/512 has a 128-byte block size and that's the largest
71
 * supported by TLS.)
72
 */
73
#define MAX_HASH_BLOCK_SIZE 128
74
75
/*-
76
 * ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
77
 * record in |rec| by updating |rec->length| in constant time.
78
 *
79
 * block_size: the block size of the cipher used to encrypt the record.
80
 * returns:
81
 *   0: (in non-constant time) if the record is publicly invalid.
82
 *   1: if the padding was valid
83
 *  -1: otherwise.
84
 */
85
int ssl3_cbc_remove_padding(const SSL *s,
86
                            SSL3_RECORD *rec,
87
                            unsigned block_size, unsigned mac_size)
88
0
{
89
0
    unsigned padding_length, good;
90
0
    const unsigned overhead = 1 /* padding length byte */  + mac_size;
91
92
    /*
93
     * These lengths are all public so we can test them in non-constant time.
94
     */
95
0
    if (overhead > rec->length)
96
0
        return 0;
97
98
0
    padding_length = rec->data[rec->length - 1];
99
0
    good = constant_time_ge(rec->length, padding_length + overhead);
100
    /* SSLv3 requires that the padding is minimal. */
101
0
    good &= constant_time_ge(block_size, padding_length + 1);
102
0
    padding_length = good & (padding_length + 1);
103
0
    rec->length -= padding_length;
104
0
    rec->type |= padding_length << 8; /* kludge: pass padding length */
105
0
    return constant_time_select_int(good, 1, -1);
106
0
}
107
108
/*-
109
 * tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
110
 * record in |rec| in constant time and returns 1 if the padding is valid and
111
 * -1 otherwise. It also removes any explicit IV from the start of the record
112
 * without leaking any timing about whether there was enough space after the
113
 * padding was removed.
114
 *
115
 * block_size: the block size of the cipher used to encrypt the record.
116
 * returns:
117
 *   0: (in non-constant time) if the record is publicly invalid.
118
 *   1: if the padding was valid
119
 *  -1: otherwise.
120
 */
121
int tls1_cbc_remove_padding(const SSL *s,
122
                            SSL3_RECORD *rec,
123
                            unsigned block_size, unsigned mac_size)
124
0
{
125
0
    unsigned padding_length, good, to_check, i;
126
0
    const unsigned overhead = 1 /* padding length byte */  + mac_size;
127
    /* Check if version requires explicit IV */
128
0
    if (SSL_USE_EXPLICIT_IV(s)) {
129
        /*
130
         * These lengths are all public so we can test them in non-constant
131
         * time.
132
         */
133
0
        if (overhead + block_size > rec->length)
134
0
            return 0;
135
        /* We can now safely skip explicit IV */
136
0
        rec->data += block_size;
137
0
        rec->input += block_size;
138
0
        rec->length -= block_size;
139
0
    } else if (overhead > rec->length)
140
0
        return 0;
141
142
0
    padding_length = rec->data[rec->length - 1];
143
144
    /*
145
     * NB: if compression is in operation the first packet may not be of even
146
     * length so the padding bug check cannot be performed. This bug
147
     * workaround has been around since SSLeay so hopefully it is either
148
     * fixed now or no buggy implementation supports compression [steve]
149
     */
150
0
    if ((s->options & SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand) {
151
        /* First packet is even in size, so check */
152
0
        if ((CRYPTO_memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0", 8) == 0) &&
153
0
            !(padding_length & 1)) {
154
0
            s->s3->flags |= TLS1_FLAGS_TLS_PADDING_BUG;
155
0
        }
156
0
        if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) && padding_length > 0) {
157
0
            padding_length--;
158
0
        }
159
0
    }
160
161
0
    if (EVP_CIPHER_flags(s->enc_read_ctx->cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) {
162
        /* padding is already verified */
163
0
        rec->length -= padding_length + 1;
164
0
        return 1;
165
0
    }
166
167
0
    good = constant_time_ge(rec->length, overhead + padding_length);
168
    /*
169
     * The padding consists of a length byte at the end of the record and
170
     * then that many bytes of padding, all with the same value as the length
171
     * byte. Thus, with the length byte included, there are i+1 bytes of
172
     * padding. We can't check just |padding_length+1| bytes because that
173
     * leaks decrypted information. Therefore we always have to check the
174
     * maximum amount of padding possible. (Again, the length of the record
175
     * is public information so we can use it.)
176
     */
177
0
    to_check = 255;             /* maximum amount of padding. */
178
0
    if (to_check > rec->length - 1)
179
0
        to_check = rec->length - 1;
180
181
0
    for (i = 0; i < to_check; i++) {
182
0
        unsigned char mask = constant_time_ge_8(padding_length, i);
183
0
        unsigned char b = rec->data[rec->length - 1 - i];
184
        /*
185
         * The final |padding_length+1| bytes should all have the value
186
         * |padding_length|. Therefore the XOR should be zero.
187
         */
188
0
        good &= ~(mask & (padding_length ^ b));
189
0
    }
190
191
    /*
192
     * If any of the final |padding_length+1| bytes had the wrong value, one
193
     * or more of the lower eight bits of |good| will be cleared.
194
     */
195
0
    good = constant_time_eq(0xff, good & 0xff);
196
0
    padding_length = good & (padding_length + 1);
197
0
    rec->length -= padding_length;
198
0
    rec->type |= padding_length << 8; /* kludge: pass padding length */
199
200
0
    return constant_time_select_int(good, 1, -1);
201
0
}
202
203
/*-
204
 * ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
205
 * constant time (independent of the concrete value of rec->length, which may
206
 * vary within a 256-byte window).
207
 *
208
 * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
209
 * this function.
210
 *
211
 * On entry:
212
 *   rec->orig_len >= md_size
213
 *   md_size <= EVP_MAX_MD_SIZE
214
 *
215
 * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
216
 * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
217
 * a single or pair of cache-lines, then the variable memory accesses don't
218
 * actually affect the timing. CPUs with smaller cache-lines [if any] are
219
 * not multi-core and are not considered vulnerable to cache-timing attacks.
220
 */
221
#define CBC_MAC_ROTATE_IN_PLACE
222
223
void ssl3_cbc_copy_mac(unsigned char *out,
224
                       const SSL3_RECORD *rec,
225
                       unsigned md_size, unsigned orig_len)
226
0
{
227
0
#if defined(CBC_MAC_ROTATE_IN_PLACE)
228
0
    unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE];
229
0
    unsigned char *rotated_mac;
230
#else
231
    unsigned char rotated_mac[EVP_MAX_MD_SIZE];
232
#endif
233
234
    /*
235
     * mac_end is the index of |rec->data| just after the end of the MAC.
236
     */
237
0
    unsigned mac_end = rec->length;
238
0
    unsigned mac_start = mac_end - md_size;
239
    /*
240
     * scan_start contains the number of bytes that we can ignore because the
241
     * MAC's position can only vary by 255 bytes.
242
     */
243
0
    unsigned scan_start = 0;
244
0
    unsigned i, j;
245
0
    unsigned div_spoiler;
246
0
    unsigned rotate_offset;
247
248
0
    OPENSSL_assert(orig_len >= md_size);
249
0
    OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
250
251
0
#if defined(CBC_MAC_ROTATE_IN_PLACE)
252
0
    rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf) & 63);
253
0
#endif
254
255
    /* This information is public so it's safe to branch based on it. */
256
0
    if (orig_len > md_size + 255 + 1)
257
0
        scan_start = orig_len - (md_size + 255 + 1);
258
    /*
259
     * div_spoiler contains a multiple of md_size that is used to cause the
260
     * modulo operation to be constant time. Without this, the time varies
261
     * based on the amount of padding when running on Intel chips at least.
262
     * The aim of right-shifting md_size is so that the compiler doesn't
263
     * figure out that it can remove div_spoiler as that would require it to
264
     * prove that md_size is always even, which I hope is beyond it.
265
     */
266
0
    div_spoiler = md_size >> 1;
267
0
    div_spoiler <<= (sizeof(div_spoiler) - 1) * 8;
268
0
    rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
269
270
0
    memset(rotated_mac, 0, md_size);
271
0
    for (i = scan_start, j = 0; i < orig_len; i++) {
272
0
        unsigned char mac_started = constant_time_ge_8(i, mac_start);
273
0
        unsigned char mac_ended = constant_time_ge_8(i, mac_end);
274
0
        unsigned char b = rec->data[i];
275
0
        rotated_mac[j++] |= b & mac_started & ~mac_ended;
276
0
        j &= constant_time_lt(j, md_size);
277
0
    }
278
279
    /* Now rotate the MAC */
280
0
#if defined(CBC_MAC_ROTATE_IN_PLACE)
281
0
    j = 0;
282
0
    for (i = 0; i < md_size; i++) {
283
        /* in case cache-line is 32 bytes, touch second line */
284
0
        ((volatile unsigned char *)rotated_mac)[rotate_offset ^ 32];
285
0
        out[j++] = rotated_mac[rotate_offset++];
286
0
        rotate_offset &= constant_time_lt(rotate_offset, md_size);
287
0
    }
288
#else
289
    memset(out, 0, md_size);
290
    rotate_offset = md_size - rotate_offset;
291
    rotate_offset &= constant_time_lt(rotate_offset, md_size);
292
    for (i = 0; i < md_size; i++) {
293
        for (j = 0; j < md_size; j++)
294
            out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
295
        rotate_offset++;
296
        rotate_offset &= constant_time_lt(rotate_offset, md_size);
297
    }
298
#endif
299
0
}
300
301
/*
302
 * u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
303
 * little-endian order. The value of p is advanced by four.
304
 */
305
#define u32toLE(n, p) \
306
0
        (*((p)++)=(unsigned char)(n), \
307
0
         *((p)++)=(unsigned char)(n>>8), \
308
0
         *((p)++)=(unsigned char)(n>>16), \
309
0
         *((p)++)=(unsigned char)(n>>24))
310
311
/*
312
 * These functions serialize the state of a hash and thus perform the
313
 * standard "final" operation without adding the padding and length that such
314
 * a function typically does.
315
 */
316
static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
317
0
{
318
0
    MD5_CTX *md5 = ctx;
319
0
    u32toLE(md5->A, md_out);
320
0
    u32toLE(md5->B, md_out);
321
0
    u32toLE(md5->C, md_out);
322
0
    u32toLE(md5->D, md_out);
323
0
}
324
325
static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
326
0
{
327
0
    SHA_CTX *sha1 = ctx;
328
0
    l2n(sha1->h0, md_out);
329
0
    l2n(sha1->h1, md_out);
330
0
    l2n(sha1->h2, md_out);
331
0
    l2n(sha1->h3, md_out);
332
0
    l2n(sha1->h4, md_out);
333
0
}
334
335
#define LARGEST_DIGEST_CTX SHA_CTX
336
337
#ifndef OPENSSL_NO_SHA256
338
static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
339
0
{
340
0
    SHA256_CTX *sha256 = ctx;
341
0
    unsigned i;
342
343
0
    for (i = 0; i < 8; i++) {
344
0
        l2n(sha256->h[i], md_out);
345
0
    }
346
0
}
347
348
# undef  LARGEST_DIGEST_CTX
349
# define LARGEST_DIGEST_CTX SHA256_CTX
350
#endif
351
352
#ifndef OPENSSL_NO_SHA512
353
static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
354
0
{
355
0
    SHA512_CTX *sha512 = ctx;
356
0
    unsigned i;
357
358
0
    for (i = 0; i < 8; i++) {
359
0
        l2n8(sha512->h[i], md_out);
360
0
    }
361
0
}
362
363
# undef  LARGEST_DIGEST_CTX
364
# define LARGEST_DIGEST_CTX SHA512_CTX
365
#endif
366
367
/*
368
 * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
369
 * which ssl3_cbc_digest_record supports.
370
 */
371
char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
372
0
{
373
#ifdef OPENSSL_FIPS
374
    if (FIPS_mode())
375
        return 0;
376
#endif
377
0
    switch (EVP_MD_CTX_type(ctx)) {
378
0
    case NID_md5:
379
0
    case NID_sha1:
380
0
#ifndef OPENSSL_NO_SHA256
381
0
    case NID_sha224:
382
0
    case NID_sha256:
383
0
#endif
384
0
#ifndef OPENSSL_NO_SHA512
385
0
    case NID_sha384:
386
0
    case NID_sha512:
387
0
#endif
388
0
        return 1;
389
0
    default:
390
0
        return 0;
391
0
    }
392
0
}
393
394
/*-
395
 * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
396
 * record.
397
 *
398
 *   ctx: the EVP_MD_CTX from which we take the hash function.
399
 *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
400
 *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
401
 *   md_out_size: if non-NULL, the number of output bytes is written here.
402
 *   header: the 13-byte, TLS record header.
403
 *   data: the record data itself, less any preceeding explicit IV.
404
 *   data_plus_mac_size: the secret, reported length of the data and MAC
405
 *     once the padding has been removed.
406
 *   data_plus_mac_plus_padding_size: the public length of the whole
407
 *     record, including padding.
408
 *   is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
409
 *
410
 * On entry: by virtue of having been through one of the remove_padding
411
 * functions, above, we know that data_plus_mac_size is large enough to contain
412
 * a padding byte and MAC. (If the padding was invalid, it might contain the
413
 * padding too. )
414
 * Returns 1 on success or 0 on error
415
 */
416
int ssl3_cbc_digest_record(const EVP_MD_CTX *ctx,
417
                            unsigned char *md_out,
418
                            size_t *md_out_size,
419
                            const unsigned char header[13],
420
                            const unsigned char *data,
421
                            size_t data_plus_mac_size,
422
                            size_t data_plus_mac_plus_padding_size,
423
                            const unsigned char *mac_secret,
424
                            unsigned mac_secret_length, char is_sslv3)
425
0
{
426
0
    union {
427
0
        double align;
428
0
        unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
429
0
    } md_state;
430
0
    void (*md_final_raw) (void *ctx, unsigned char *md_out);
431
0
    void (*md_transform) (void *ctx, const unsigned char *block);
432
0
    unsigned md_size, md_block_size = 64;
433
0
    unsigned sslv3_pad_length = 40, header_length, variance_blocks,
434
0
        len, max_mac_bytes, num_blocks,
435
0
        num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
436
0
    unsigned int bits;          /* at most 18 bits */
437
0
    unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
438
    /* hmac_pad is the masked HMAC key. */
439
0
    unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
440
0
    unsigned char first_block[MAX_HASH_BLOCK_SIZE];
441
0
    unsigned char mac_out[EVP_MAX_MD_SIZE];
442
0
    unsigned i, j, md_out_size_u;
443
0
    EVP_MD_CTX md_ctx;
444
    /*
445
     * mdLengthSize is the number of bytes in the length field that
446
     * terminates * the hash.
447
     */
448
0
    unsigned md_length_size = 8;
449
0
    char length_is_big_endian = 1;
450
451
    /*
452
     * This is a, hopefully redundant, check that allows us to forget about
453
     * many possible overflows later in this function.
454
     */
455
0
    OPENSSL_assert(data_plus_mac_plus_padding_size < 1024 * 1024);
456
457
0
    switch (EVP_MD_CTX_type(ctx)) {
458
0
    case NID_md5:
459
0
        if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
460
0
            return 0;
461
0
        md_final_raw = tls1_md5_final_raw;
462
0
        md_transform =
463
0
            (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
464
0
        md_size = 16;
465
0
        sslv3_pad_length = 48;
466
0
        length_is_big_endian = 0;
467
0
        break;
468
0
    case NID_sha1:
469
0
        if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
470
0
            return 0;
471
0
        md_final_raw = tls1_sha1_final_raw;
472
0
        md_transform =
473
0
            (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
474
0
        md_size = 20;
475
0
        break;
476
0
#ifndef OPENSSL_NO_SHA256
477
0
    case NID_sha224:
478
0
        if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
479
0
            return 0;
480
0
        md_final_raw = tls1_sha256_final_raw;
481
0
        md_transform =
482
0
            (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
483
0
        md_size = 224 / 8;
484
0
        break;
485
0
    case NID_sha256:
486
0
        if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
487
0
            return 0;
488
0
        md_final_raw = tls1_sha256_final_raw;
489
0
        md_transform =
490
0
            (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
491
0
        md_size = 32;
492
0
        break;
493
0
#endif
494
0
#ifndef OPENSSL_NO_SHA512
495
0
    case NID_sha384:
496
0
        if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
497
0
            return 0;
498
0
        md_final_raw = tls1_sha512_final_raw;
499
0
        md_transform =
500
0
            (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
501
0
        md_size = 384 / 8;
502
0
        md_block_size = 128;
503
0
        md_length_size = 16;
504
0
        break;
505
0
    case NID_sha512:
506
0
        if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
507
0
            return 0;
508
0
        md_final_raw = tls1_sha512_final_raw;
509
0
        md_transform =
510
0
            (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
511
0
        md_size = 64;
512
0
        md_block_size = 128;
513
0
        md_length_size = 16;
514
0
        break;
515
0
#endif
516
0
    default:
517
        /*
518
         * ssl3_cbc_record_digest_supported should have been called first to
519
         * check that the hash function is supported.
520
         */
521
0
        OPENSSL_assert(0);
522
0
        if (md_out_size)
523
0
            *md_out_size = 0;
524
0
        return 0;
525
0
    }
526
527
0
    OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
528
0
    OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
529
0
    OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
530
531
0
    header_length = 13;
532
0
    if (is_sslv3) {
533
0
        header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
534
0
                                                                  * number */  +
535
0
            1 /* record type */  +
536
0
            2 /* record length */ ;
537
0
    }
538
539
    /*
540
     * variance_blocks is the number of blocks of the hash that we have to
541
     * calculate in constant time because they could be altered by the
542
     * padding value. In SSLv3, the padding must be minimal so the end of
543
     * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
544
     * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
545
     * of hash termination (0x80 + 64-bit length) don't fit in the final
546
     * block, we say that the final two blocks can vary based on the padding.
547
     * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
548
     * required to be minimal. Therefore we say that the final six blocks can
549
     * vary based on the padding. Later in the function, if the message is
550
     * short and there obviously cannot be this many blocks then
551
     * variance_blocks can be reduced.
552
     */
553
0
    variance_blocks = is_sslv3 ? 2 : 6;
554
    /*
555
     * From now on we're dealing with the MAC, which conceptually has 13
556
     * bytes of `header' before the start of the data (TLS) or 71/75 bytes
557
     * (SSLv3)
558
     */
559
0
    len = data_plus_mac_plus_padding_size + header_length;
560
    /*
561
     * max_mac_bytes contains the maximum bytes of bytes in the MAC,
562
     * including * |header|, assuming that there's no padding.
563
     */
564
0
    max_mac_bytes = len - md_size - 1;
565
    /* num_blocks is the maximum number of hash blocks. */
566
0
    num_blocks =
567
0
        (max_mac_bytes + 1 + md_length_size + md_block_size -
568
0
         1) / md_block_size;
569
    /*
570
     * In order to calculate the MAC in constant time we have to handle the
571
     * final blocks specially because the padding value could cause the end
572
     * to appear somewhere in the final |variance_blocks| blocks and we can't
573
     * leak where. However, |num_starting_blocks| worth of data can be hashed
574
     * right away because no padding value can affect whether they are
575
     * plaintext.
576
     */
577
0
    num_starting_blocks = 0;
578
    /*
579
     * k is the starting byte offset into the conceptual header||data where
580
     * we start processing.
581
     */
582
0
    k = 0;
583
    /*
584
     * mac_end_offset is the index just past the end of the data to be MACed.
585
     */
586
0
    mac_end_offset = data_plus_mac_size + header_length - md_size;
587
    /*
588
     * c is the index of the 0x80 byte in the final hash block that contains
589
     * application data.
590
     */
591
0
    c = mac_end_offset % md_block_size;
592
    /*
593
     * index_a is the hash block number that contains the 0x80 terminating
594
     * value.
595
     */
596
0
    index_a = mac_end_offset / md_block_size;
597
    /*
598
     * index_b is the hash block number that contains the 64-bit hash length,
599
     * in bits.
600
     */
601
0
    index_b = (mac_end_offset + md_length_size) / md_block_size;
602
    /*
603
     * bits is the hash-length in bits. It includes the additional hash block
604
     * for the masked HMAC key, or whole of |header| in the case of SSLv3.
605
     */
606
607
    /*
608
     * For SSLv3, if we're going to have any starting blocks then we need at
609
     * least two because the header is larger than a single block.
610
     */
611
0
    if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
612
0
        num_starting_blocks = num_blocks - variance_blocks;
613
0
        k = md_block_size * num_starting_blocks;
614
0
    }
615
616
0
    bits = 8 * mac_end_offset;
617
0
    if (!is_sslv3) {
618
        /*
619
         * Compute the initial HMAC block. For SSLv3, the padding and secret
620
         * bytes are included in |header| because they take more than a
621
         * single block.
622
         */
623
0
        bits += 8 * md_block_size;
624
0
        memset(hmac_pad, 0, md_block_size);
625
0
        OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
626
0
        memcpy(hmac_pad, mac_secret, mac_secret_length);
627
0
        for (i = 0; i < md_block_size; i++)
628
0
            hmac_pad[i] ^= 0x36;
629
630
0
        md_transform(md_state.c, hmac_pad);
631
0
    }
632
633
0
    if (length_is_big_endian) {
634
0
        memset(length_bytes, 0, md_length_size - 4);
635
0
        length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
636
0
        length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
637
0
        length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
638
0
        length_bytes[md_length_size - 1] = (unsigned char)bits;
639
0
    } else {
640
0
        memset(length_bytes, 0, md_length_size);
641
0
        length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
642
0
        length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
643
0
        length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
644
0
        length_bytes[md_length_size - 8] = (unsigned char)bits;
645
0
    }
646
647
0
    if (k > 0) {
648
0
        if (is_sslv3) {
649
0
            unsigned overhang;
650
651
            /*
652
             * The SSLv3 header is larger than a single block. overhang is
653
             * the number of bytes beyond a single block that the header
654
             * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
655
             * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
656
             * therefore we can be confident that the header_length will be
657
             * greater than |md_block_size|. However we add a sanity check just
658
             * in case
659
             */
660
0
            if (header_length <= md_block_size) {
661
                /* Should never happen */
662
0
                return 0;
663
0
            }
664
0
            overhang = header_length - md_block_size;
665
0
            md_transform(md_state.c, header);
666
0
            memcpy(first_block, header + md_block_size, overhang);
667
0
            memcpy(first_block + overhang, data, md_block_size - overhang);
668
0
            md_transform(md_state.c, first_block);
669
0
            for (i = 1; i < k / md_block_size - 1; i++)
670
0
                md_transform(md_state.c, data + md_block_size * i - overhang);
671
0
        } else {
672
            /* k is a multiple of md_block_size. */
673
0
            memcpy(first_block, header, 13);
674
0
            memcpy(first_block + 13, data, md_block_size - 13);
675
0
            md_transform(md_state.c, first_block);
676
0
            for (i = 1; i < k / md_block_size; i++)
677
0
                md_transform(md_state.c, data + md_block_size * i - 13);
678
0
        }
679
0
    }
680
681
0
    memset(mac_out, 0, sizeof(mac_out));
682
683
    /*
684
     * We now process the final hash blocks. For each block, we construct it
685
     * in constant time. If the |i==index_a| then we'll include the 0x80
686
     * bytes and zero pad etc. For each block we selectively copy it, in
687
     * constant time, to |mac_out|.
688
     */
689
0
    for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
690
0
         i++) {
691
0
        unsigned char block[MAX_HASH_BLOCK_SIZE];
692
0
        unsigned char is_block_a = constant_time_eq_8(i, index_a);
693
0
        unsigned char is_block_b = constant_time_eq_8(i, index_b);
694
0
        for (j = 0; j < md_block_size; j++) {
695
0
            unsigned char b = 0, is_past_c, is_past_cp1;
696
0
            if (k < header_length)
697
0
                b = header[k];
698
0
            else if (k < data_plus_mac_plus_padding_size + header_length)
699
0
                b = data[k - header_length];
700
0
            k++;
701
702
0
            is_past_c = is_block_a & constant_time_ge_8(j, c);
703
0
            is_past_cp1 = is_block_a & constant_time_ge_8(j, c + 1);
704
            /*
705
             * If this is the block containing the end of the application
706
             * data, and we are at the offset for the 0x80 value, then
707
             * overwrite b with 0x80.
708
             */
709
0
            b = constant_time_select_8(is_past_c, 0x80, b);
710
            /*
711
             * If this the the block containing the end of the application
712
             * data and we're past the 0x80 value then just write zero.
713
             */
714
0
            b = b & ~is_past_cp1;
715
            /*
716
             * If this is index_b (the final block), but not index_a (the end
717
             * of the data), then the 64-bit length didn't fit into index_a
718
             * and we're having to add an extra block of zeros.
719
             */
720
0
            b &= ~is_block_b | is_block_a;
721
722
            /*
723
             * The final bytes of one of the blocks contains the length.
724
             */
725
0
            if (j >= md_block_size - md_length_size) {
726
                /* If this is index_b, write a length byte. */
727
0
                b = constant_time_select_8(is_block_b,
728
0
                                           length_bytes[j -
729
0
                                                        (md_block_size -
730
0
                                                         md_length_size)], b);
731
0
            }
732
0
            block[j] = b;
733
0
        }
734
735
0
        md_transform(md_state.c, block);
736
0
        md_final_raw(md_state.c, block);
737
        /* If this is index_b, copy the hash value to |mac_out|. */
738
0
        for (j = 0; j < md_size; j++)
739
0
            mac_out[j] |= block[j] & is_block_b;
740
0
    }
741
742
0
    EVP_MD_CTX_init(&md_ctx);
743
0
    if (EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */ ) <= 0)
744
0
        goto err;
745
0
    if (is_sslv3) {
746
        /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
747
0
        memset(hmac_pad, 0x5c, sslv3_pad_length);
748
749
0
        if (EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length) <= 0
750
0
                || EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length) <= 0
751
0
                || EVP_DigestUpdate(&md_ctx, mac_out, md_size) <= 0)
752
0
            goto err;
753
0
    } else {
754
        /* Complete the HMAC in the standard manner. */
755
0
        for (i = 0; i < md_block_size; i++)
756
0
            hmac_pad[i] ^= 0x6a;
757
758
0
        if (EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size) <= 0
759
0
                || EVP_DigestUpdate(&md_ctx, mac_out, md_size) <= 0)
760
0
            goto err;
761
0
    }
762
0
    EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
763
0
    if (md_out_size)
764
0
        *md_out_size = md_out_size_u;
765
0
    EVP_MD_CTX_cleanup(&md_ctx);
766
767
0
    return 1;
768
0
err:
769
0
    EVP_MD_CTX_cleanup(&md_ctx);
770
0
    return 0;
771
0
}
772
773
#ifdef OPENSSL_FIPS
774
775
/*
776
 * Due to the need to use EVP in FIPS mode we can't reimplement digests but
777
 * we can ensure the number of blocks processed is equal for all cases by
778
 * digesting additional data.
779
 */
780
781
void tls_fips_digest_extra(const EVP_CIPHER_CTX *cipher_ctx,
782
                           EVP_MD_CTX *mac_ctx, const unsigned char *data,
783
                           size_t data_len, size_t orig_len)
784
{
785
    size_t block_size, digest_pad, blocks_data, blocks_orig;
786
    if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE)
787
        return;
788
    block_size = EVP_MD_CTX_block_size(mac_ctx);
789
    /*-
790
     * We are in FIPS mode if we get this far so we know we have only SHA*
791
     * digests and TLS to deal with.
792
     * Minimum digest padding length is 17 for SHA384/SHA512 and 9
793
     * otherwise.
794
     * Additional header is 13 bytes. To get the number of digest blocks
795
     * processed round up the amount of data plus padding to the nearest
796
     * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise.
797
     * So we have:
798
     * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size
799
     * equivalently:
800
     * blocks = (payload_len + digest_pad + 12)/block_size + 1
801
     * HMAC adds a constant overhead.
802
     * We're ultimately only interested in differences so this becomes
803
     * blocks = (payload_len + 29)/128
804
     * for SHA384/SHA512 and
805
     * blocks = (payload_len + 21)/64
806
     * otherwise.
807
     */
808
    digest_pad = block_size == 64 ? 21 : 29;
809
    blocks_orig = (orig_len + digest_pad) / block_size;
810
    blocks_data = (data_len + digest_pad) / block_size;
811
    /*
812
     * MAC enough blocks to make up the difference between the original and
813
     * actual lengths plus one extra block to ensure this is never a no op.
814
     * The "data" pointer should always have enough space to perform this
815
     * operation as it is large enough for a maximum length TLS buffer.
816
     */
817
    EVP_DigestSignUpdate(mac_ctx, data,
818
                         (blocks_orig - blocks_data + 1) * block_size);
819
}
820
#endif