Coverage Report

Created: 2024-05-21 06:52

/src/openssl/crypto/x509/v3_addr.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2006-2023 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
/*
11
 * Implementation of RFC 3779 section 2.2.
12
 */
13
14
#include <stdio.h>
15
#include <stdlib.h>
16
#include <assert.h>
17
#include <string.h>
18
19
#include <openssl/conf.h>
20
#include <openssl/asn1.h>
21
#include <openssl/asn1t.h>
22
#include <openssl/buffer.h>
23
#include <openssl/x509v3.h>
24
#include "internal/cryptlib.h"
25
#include "crypto/asn1.h"
26
#include "crypto/x509.h"
27
#include "ext_dat.h"
28
#include "x509_local.h"
29
30
#ifndef OPENSSL_NO_RFC3779
31
32
/*
33
 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
34
 */
35
36
ASN1_SEQUENCE(IPAddressRange) = {
37
    ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
38
    ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
39
} ASN1_SEQUENCE_END(IPAddressRange)
40
41
ASN1_CHOICE(IPAddressOrRange) = {
42
    ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
43
    ASN1_SIMPLE(IPAddressOrRange, u.addressRange,  IPAddressRange)
44
} ASN1_CHOICE_END(IPAddressOrRange)
45
46
ASN1_CHOICE(IPAddressChoice) = {
47
    ASN1_SIMPLE(IPAddressChoice,      u.inherit,           ASN1_NULL),
48
    ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
49
} ASN1_CHOICE_END(IPAddressChoice)
50
51
ASN1_SEQUENCE(IPAddressFamily) = {
52
    ASN1_SIMPLE(IPAddressFamily, addressFamily,   ASN1_OCTET_STRING),
53
    ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
54
} ASN1_SEQUENCE_END(IPAddressFamily)
55
56
ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
57
    ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
58
                          IPAddrBlocks, IPAddressFamily)
59
static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
60
61
IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
62
IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
63
IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
64
IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
65
66
/*
67
 * How much buffer space do we need for a raw address?
68
 */
69
# define ADDR_RAW_BUF_LEN 16
70
71
/*
72
 * What's the address length associated with this AFI?
73
 */
74
static int length_from_afi(const unsigned afi)
75
0
{
76
0
    switch (afi) {
77
0
    case IANA_AFI_IPV4:
78
0
        return 4;
79
0
    case IANA_AFI_IPV6:
80
0
        return 16;
81
0
    default:
82
0
        return 0;
83
0
    }
84
0
}
85
86
/*
87
 * Extract the AFI from an IPAddressFamily.
88
 */
89
unsigned int X509v3_addr_get_afi(const IPAddressFamily *f)
90
0
{
91
0
    if (f == NULL
92
0
            || f->addressFamily == NULL
93
0
            || f->addressFamily->data == NULL
94
0
            || f->addressFamily->length < 2)
95
0
        return 0;
96
0
    return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1];
97
0
}
98
99
/*
100
 * Expand the bitstring form of an address into a raw byte array.
101
 * At the moment this is coded for simplicity, not speed.
102
 */
103
static int addr_expand(unsigned char *addr,
104
                       const ASN1_BIT_STRING *bs,
105
                       const int length, const unsigned char fill)
106
0
{
107
0
    if (bs->length < 0 || bs->length > length)
108
0
        return 0;
109
0
    if (bs->length > 0) {
110
0
        memcpy(addr, bs->data, bs->length);
111
0
        if ((bs->flags & 7) != 0) {
112
0
            unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
113
114
0
            if (fill == 0)
115
0
                addr[bs->length - 1] &= ~mask;
116
0
            else
117
0
                addr[bs->length - 1] |= mask;
118
0
        }
119
0
    }
120
0
    memset(addr + bs->length, fill, length - bs->length);
121
0
    return 1;
122
0
}
123
124
/*
125
 * Extract the prefix length from a bitstring.
126
 */
127
0
# define addr_prefixlen(bs) ((int)((bs)->length * 8 - ((bs)->flags & 7)))
128
129
/*
130
 * i2r handler for one address bitstring.
131
 */
132
static int i2r_address(BIO *out,
133
                       const unsigned afi,
134
                       const unsigned char fill, const ASN1_BIT_STRING *bs)
135
0
{
136
0
    unsigned char addr[ADDR_RAW_BUF_LEN];
137
0
    int i, n;
138
139
0
    if (bs->length < 0)
140
0
        return 0;
141
0
    switch (afi) {
142
0
    case IANA_AFI_IPV4:
143
0
        if (!addr_expand(addr, bs, 4, fill))
144
0
            return 0;
145
0
        BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
146
0
        break;
147
0
    case IANA_AFI_IPV6:
148
0
        if (!addr_expand(addr, bs, 16, fill))
149
0
            return 0;
150
0
        for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
151
0
             n -= 2) ;
152
0
        for (i = 0; i < n; i += 2)
153
0
            BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
154
0
                       (i < 14 ? ":" : ""));
155
0
        if (i < 16)
156
0
            BIO_puts(out, ":");
157
0
        if (i == 0)
158
0
            BIO_puts(out, ":");
159
0
        break;
160
0
    default:
161
0
        for (i = 0; i < bs->length; i++)
162
0
            BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
163
0
        BIO_printf(out, "[%d]", (int)(bs->flags & 7));
164
0
        break;
165
0
    }
166
0
    return 1;
167
0
}
168
169
/*
170
 * i2r handler for a sequence of addresses and ranges.
171
 */
172
static int i2r_IPAddressOrRanges(BIO *out,
173
                                 const int indent,
174
                                 const IPAddressOrRanges *aors,
175
                                 const unsigned afi)
176
0
{
177
0
    int i;
178
179
0
    for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
180
0
        const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
181
182
0
        BIO_printf(out, "%*s", indent, "");
183
0
        switch (aor->type) {
184
0
        case IPAddressOrRange_addressPrefix:
185
0
            if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
186
0
                return 0;
187
0
            BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
188
0
            continue;
189
0
        case IPAddressOrRange_addressRange:
190
0
            if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
191
0
                return 0;
192
0
            BIO_puts(out, "-");
193
0
            if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
194
0
                return 0;
195
0
            BIO_puts(out, "\n");
196
0
            continue;
197
0
        }
198
0
    }
199
0
    return 1;
200
0
}
201
202
/*
203
 * i2r handler for an IPAddrBlocks extension.
204
 */
205
static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
206
                            void *ext, BIO *out, int indent)
207
0
{
208
0
    const IPAddrBlocks *addr = ext;
209
0
    int i;
210
211
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
212
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
213
0
        const unsigned int afi = X509v3_addr_get_afi(f);
214
215
0
        switch (afi) {
216
0
        case IANA_AFI_IPV4:
217
0
            BIO_printf(out, "%*sIPv4", indent, "");
218
0
            break;
219
0
        case IANA_AFI_IPV6:
220
0
            BIO_printf(out, "%*sIPv6", indent, "");
221
0
            break;
222
0
        default:
223
0
            BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
224
0
            break;
225
0
        }
226
0
        if (f->addressFamily->length > 2) {
227
0
            switch (f->addressFamily->data[2]) {
228
0
            case 1:
229
0
                BIO_puts(out, " (Unicast)");
230
0
                break;
231
0
            case 2:
232
0
                BIO_puts(out, " (Multicast)");
233
0
                break;
234
0
            case 3:
235
0
                BIO_puts(out, " (Unicast/Multicast)");
236
0
                break;
237
0
            case 4:
238
0
                BIO_puts(out, " (MPLS)");
239
0
                break;
240
0
            case 64:
241
0
                BIO_puts(out, " (Tunnel)");
242
0
                break;
243
0
            case 65:
244
0
                BIO_puts(out, " (VPLS)");
245
0
                break;
246
0
            case 66:
247
0
                BIO_puts(out, " (BGP MDT)");
248
0
                break;
249
0
            case 128:
250
0
                BIO_puts(out, " (MPLS-labeled VPN)");
251
0
                break;
252
0
            default:
253
0
                BIO_printf(out, " (Unknown SAFI %u)",
254
0
                           (unsigned)f->addressFamily->data[2]);
255
0
                break;
256
0
            }
257
0
        }
258
0
        switch (f->ipAddressChoice->type) {
259
0
        case IPAddressChoice_inherit:
260
0
            BIO_puts(out, ": inherit\n");
261
0
            break;
262
0
        case IPAddressChoice_addressesOrRanges:
263
0
            BIO_puts(out, ":\n");
264
0
            if (!i2r_IPAddressOrRanges(out,
265
0
                                       indent + 2,
266
0
                                       f->ipAddressChoice->
267
0
                                       u.addressesOrRanges, afi))
268
0
                return 0;
269
0
            break;
270
0
        }
271
0
    }
272
0
    return 1;
273
0
}
274
275
/*
276
 * Sort comparison function for a sequence of IPAddressOrRange
277
 * elements.
278
 *
279
 * There's no sane answer we can give if addr_expand() fails, and an
280
 * assertion failure on externally supplied data is seriously uncool,
281
 * so we just arbitrarily declare that if given invalid inputs this
282
 * function returns -1.  If this messes up your preferred sort order
283
 * for garbage input, tough noogies.
284
 */
285
static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
286
                                const IPAddressOrRange *b, const int length)
287
0
{
288
0
    unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
289
0
    int prefixlen_a = 0, prefixlen_b = 0;
290
0
    int r;
291
292
0
    switch (a->type) {
293
0
    case IPAddressOrRange_addressPrefix:
294
0
        if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
295
0
            return -1;
296
0
        prefixlen_a = addr_prefixlen(a->u.addressPrefix);
297
0
        break;
298
0
    case IPAddressOrRange_addressRange:
299
0
        if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
300
0
            return -1;
301
0
        prefixlen_a = length * 8;
302
0
        break;
303
0
    }
304
305
0
    switch (b->type) {
306
0
    case IPAddressOrRange_addressPrefix:
307
0
        if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
308
0
            return -1;
309
0
        prefixlen_b = addr_prefixlen(b->u.addressPrefix);
310
0
        break;
311
0
    case IPAddressOrRange_addressRange:
312
0
        if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
313
0
            return -1;
314
0
        prefixlen_b = length * 8;
315
0
        break;
316
0
    }
317
318
0
    if ((r = memcmp(addr_a, addr_b, length)) != 0)
319
0
        return r;
320
0
    else
321
0
        return prefixlen_a - prefixlen_b;
322
0
}
323
324
/*
325
 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
326
 * comparison routines are only allowed two arguments.
327
 */
328
static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
329
                                  const IPAddressOrRange *const *b)
330
0
{
331
0
    return IPAddressOrRange_cmp(*a, *b, 4);
332
0
}
333
334
/*
335
 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
336
 * comparison routines are only allowed two arguments.
337
 */
338
static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
339
                                  const IPAddressOrRange *const *b)
340
0
{
341
0
    return IPAddressOrRange_cmp(*a, *b, 16);
342
0
}
343
344
/*
345
 * Calculate whether a range collapses to a prefix.
346
 * See last paragraph of RFC 3779 2.2.3.7.
347
 */
348
static int range_should_be_prefix(const unsigned char *min,
349
                                  const unsigned char *max, const int length)
350
0
{
351
0
    unsigned char mask;
352
0
    int i, j;
353
354
    /*
355
     * It is the responsibility of the caller to confirm min <= max. We don't
356
     * use ossl_assert() here since we have no way of signalling an error from
357
     * this function - so we just use a plain assert instead.
358
     */
359
0
    assert(memcmp(min, max, length) <= 0);
360
361
0
    for (i = 0; i < length && min[i] == max[i]; i++) ;
362
0
    for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
363
0
    if (i < j)
364
0
        return -1;
365
0
    if (i > j)
366
0
        return i * 8;
367
0
    mask = min[i] ^ max[i];
368
0
    switch (mask) {
369
0
    case 0x01:
370
0
        j = 7;
371
0
        break;
372
0
    case 0x03:
373
0
        j = 6;
374
0
        break;
375
0
    case 0x07:
376
0
        j = 5;
377
0
        break;
378
0
    case 0x0F:
379
0
        j = 4;
380
0
        break;
381
0
    case 0x1F:
382
0
        j = 3;
383
0
        break;
384
0
    case 0x3F:
385
0
        j = 2;
386
0
        break;
387
0
    case 0x7F:
388
0
        j = 1;
389
0
        break;
390
0
    default:
391
0
        return -1;
392
0
    }
393
0
    if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
394
0
        return -1;
395
0
    else
396
0
        return i * 8 + j;
397
0
}
398
399
/*
400
 * Construct a prefix.
401
 */
402
static int make_addressPrefix(IPAddressOrRange **result, unsigned char *addr,
403
                              const int prefixlen, const int afilen)
404
0
{
405
0
    int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
406
0
    IPAddressOrRange *aor = IPAddressOrRange_new();
407
408
0
    if (prefixlen < 0 || prefixlen > (afilen * 8))
409
0
        return 0;
410
0
    if (aor == NULL)
411
0
        return 0;
412
0
    aor->type = IPAddressOrRange_addressPrefix;
413
0
    if (aor->u.addressPrefix == NULL &&
414
0
        (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
415
0
        goto err;
416
0
    if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
417
0
        goto err;
418
0
    if (bitlen > 0)
419
0
        aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
420
0
    ossl_asn1_string_set_bits_left(aor->u.addressPrefix, 8 - bitlen);
421
422
0
    *result = aor;
423
0
    return 1;
424
425
0
 err:
426
0
    IPAddressOrRange_free(aor);
427
0
    return 0;
428
0
}
429
430
/*
431
 * Construct a range.  If it can be expressed as a prefix,
432
 * return a prefix instead.  Doing this here simplifies
433
 * the rest of the code considerably.
434
 */
435
static int make_addressRange(IPAddressOrRange **result,
436
                             unsigned char *min,
437
                             unsigned char *max, const int length)
438
0
{
439
0
    IPAddressOrRange *aor;
440
0
    int i, prefixlen;
441
442
0
    if (memcmp(min, max, length) > 0)
443
0
        return 0;
444
445
0
    if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
446
0
        return make_addressPrefix(result, min, prefixlen, length);
447
448
0
    if ((aor = IPAddressOrRange_new()) == NULL)
449
0
        return 0;
450
0
    aor->type = IPAddressOrRange_addressRange;
451
0
    if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
452
0
        goto err;
453
0
    if (aor->u.addressRange->min == NULL &&
454
0
        (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
455
0
        goto err;
456
0
    if (aor->u.addressRange->max == NULL &&
457
0
        (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
458
0
        goto err;
459
460
0
    for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
461
0
    if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
462
0
        goto err;
463
0
    ossl_asn1_string_set_bits_left(aor->u.addressRange->min, 0);
464
0
    if (i > 0) {
465
0
        unsigned char b = min[i - 1];
466
0
        int j = 1;
467
468
0
        while ((b & (0xFFU >> j)) != 0)
469
0
            ++j;
470
0
        aor->u.addressRange->min->flags |= 8 - j;
471
0
    }
472
473
0
    for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
474
0
    if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
475
0
        goto err;
476
0
    ossl_asn1_string_set_bits_left(aor->u.addressRange->max, 0);
477
0
    if (i > 0) {
478
0
        unsigned char b = max[i - 1];
479
0
        int j = 1;
480
481
0
        while ((b & (0xFFU >> j)) != (0xFFU >> j))
482
0
            ++j;
483
0
        aor->u.addressRange->max->flags |= 8 - j;
484
0
    }
485
486
0
    *result = aor;
487
0
    return 1;
488
489
0
 err:
490
0
    IPAddressOrRange_free(aor);
491
0
    return 0;
492
0
}
493
494
/*
495
 * Construct a new address family or find an existing one.
496
 */
497
static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
498
                                             const unsigned afi,
499
                                             const unsigned *safi)
500
0
{
501
0
    IPAddressFamily *f;
502
0
    unsigned char key[3];
503
0
    int keylen;
504
0
    int i;
505
506
0
    key[0] = (afi >> 8) & 0xFF;
507
0
    key[1] = afi & 0xFF;
508
0
    if (safi != NULL) {
509
0
        key[2] = *safi & 0xFF;
510
0
        keylen = 3;
511
0
    } else {
512
0
        keylen = 2;
513
0
    }
514
515
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
516
0
        f = sk_IPAddressFamily_value(addr, i);
517
0
        if (f->addressFamily->length == keylen &&
518
0
            !memcmp(f->addressFamily->data, key, keylen))
519
0
            return f;
520
0
    }
521
522
0
    if ((f = IPAddressFamily_new()) == NULL)
523
0
        goto err;
524
0
    if (f->ipAddressChoice == NULL &&
525
0
        (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
526
0
        goto err;
527
0
    if (f->addressFamily == NULL &&
528
0
        (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
529
0
        goto err;
530
0
    if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
531
0
        goto err;
532
0
    if (!sk_IPAddressFamily_push(addr, f))
533
0
        goto err;
534
535
0
    return f;
536
537
0
 err:
538
0
    IPAddressFamily_free(f);
539
0
    return NULL;
540
0
}
541
542
/*
543
 * Add an inheritance element.
544
 */
545
int X509v3_addr_add_inherit(IPAddrBlocks *addr,
546
                            const unsigned afi, const unsigned *safi)
547
0
{
548
0
    IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
549
550
0
    if (f == NULL ||
551
0
        f->ipAddressChoice == NULL ||
552
0
        (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
553
0
         f->ipAddressChoice->u.addressesOrRanges != NULL))
554
0
        return 0;
555
0
    if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
556
0
        f->ipAddressChoice->u.inherit != NULL)
557
0
        return 1;
558
0
    if (f->ipAddressChoice->u.inherit == NULL &&
559
0
        (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
560
0
        return 0;
561
0
    f->ipAddressChoice->type = IPAddressChoice_inherit;
562
0
    return 1;
563
0
}
564
565
/*
566
 * Construct an IPAddressOrRange sequence, or return an existing one.
567
 */
568
static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
569
                                               const unsigned afi,
570
                                               const unsigned *safi)
571
0
{
572
0
    IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
573
0
    IPAddressOrRanges *aors = NULL;
574
575
0
    if (f == NULL ||
576
0
        f->ipAddressChoice == NULL ||
577
0
        (f->ipAddressChoice->type == IPAddressChoice_inherit &&
578
0
         f->ipAddressChoice->u.inherit != NULL))
579
0
        return NULL;
580
0
    if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
581
0
        aors = f->ipAddressChoice->u.addressesOrRanges;
582
0
    if (aors != NULL)
583
0
        return aors;
584
0
    if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
585
0
        return NULL;
586
0
    switch (afi) {
587
0
    case IANA_AFI_IPV4:
588
0
        (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
589
0
        break;
590
0
    case IANA_AFI_IPV6:
591
0
        (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
592
0
        break;
593
0
    }
594
0
    f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
595
0
    f->ipAddressChoice->u.addressesOrRanges = aors;
596
0
    return aors;
597
0
}
598
599
/*
600
 * Add a prefix.
601
 */
602
int X509v3_addr_add_prefix(IPAddrBlocks *addr,
603
                           const unsigned afi,
604
                           const unsigned *safi,
605
                           unsigned char *a, const int prefixlen)
606
0
{
607
0
    IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
608
0
    IPAddressOrRange *aor;
609
610
0
    if (aors == NULL
611
0
            || !make_addressPrefix(&aor, a, prefixlen, length_from_afi(afi)))
612
0
        return 0;
613
0
    if (sk_IPAddressOrRange_push(aors, aor))
614
0
        return 1;
615
0
    IPAddressOrRange_free(aor);
616
0
    return 0;
617
0
}
618
619
/*
620
 * Add a range.
621
 */
622
int X509v3_addr_add_range(IPAddrBlocks *addr,
623
                          const unsigned afi,
624
                          const unsigned *safi,
625
                          unsigned char *min, unsigned char *max)
626
0
{
627
0
    IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
628
0
    IPAddressOrRange *aor;
629
0
    int length = length_from_afi(afi);
630
631
0
    if (aors == NULL)
632
0
        return 0;
633
0
    if (!make_addressRange(&aor, min, max, length))
634
0
        return 0;
635
0
    if (sk_IPAddressOrRange_push(aors, aor))
636
0
        return 1;
637
0
    IPAddressOrRange_free(aor);
638
0
    return 0;
639
0
}
640
641
/*
642
 * Extract min and max values from an IPAddressOrRange.
643
 */
644
static int extract_min_max(IPAddressOrRange *aor,
645
                           unsigned char *min, unsigned char *max, int length)
646
0
{
647
0
    if (aor == NULL || min == NULL || max == NULL)
648
0
        return 0;
649
0
    switch (aor->type) {
650
0
    case IPAddressOrRange_addressPrefix:
651
0
        return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
652
0
                addr_expand(max, aor->u.addressPrefix, length, 0xFF));
653
0
    case IPAddressOrRange_addressRange:
654
0
        return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
655
0
                addr_expand(max, aor->u.addressRange->max, length, 0xFF));
656
0
    }
657
0
    return 0;
658
0
}
659
660
/*
661
 * Public wrapper for extract_min_max().
662
 */
663
int X509v3_addr_get_range(IPAddressOrRange *aor,
664
                          const unsigned afi,
665
                          unsigned char *min,
666
                          unsigned char *max, const int length)
667
0
{
668
0
    int afi_length = length_from_afi(afi);
669
670
0
    if (aor == NULL || min == NULL || max == NULL ||
671
0
        afi_length == 0 || length < afi_length ||
672
0
        (aor->type != IPAddressOrRange_addressPrefix &&
673
0
         aor->type != IPAddressOrRange_addressRange) ||
674
0
        !extract_min_max(aor, min, max, afi_length))
675
0
        return 0;
676
677
0
    return afi_length;
678
0
}
679
680
/*
681
 * Sort comparison function for a sequence of IPAddressFamily.
682
 *
683
 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
684
 * the ordering: I can read it as meaning that IPv6 without a SAFI
685
 * comes before IPv4 with a SAFI, which seems pretty weird.  The
686
 * examples in appendix B suggest that the author intended the
687
 * null-SAFI rule to apply only within a single AFI, which is what I
688
 * would have expected and is what the following code implements.
689
 */
690
static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
691
                               const IPAddressFamily *const *b_)
692
0
{
693
0
    const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
694
0
    const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
695
0
    int len = ((a->length <= b->length) ? a->length : b->length);
696
0
    int cmp = memcmp(a->data, b->data, len);
697
698
0
    return cmp ? cmp : a->length - b->length;
699
0
}
700
701
static int IPAddressFamily_check_len(const IPAddressFamily *f)
702
0
{
703
0
    if (f->addressFamily->length < 2 || f->addressFamily->length > 3)
704
0
        return 0;
705
0
    else
706
0
        return 1;
707
0
}
708
709
/*
710
 * Check whether an IPAddrBLocks is in canonical form.
711
 */
712
int X509v3_addr_is_canonical(IPAddrBlocks *addr)
713
0
{
714
0
    unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
715
0
    unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
716
0
    IPAddressOrRanges *aors;
717
0
    int i, j, k;
718
719
    /*
720
     * Empty extension is canonical.
721
     */
722
0
    if (addr == NULL)
723
0
        return 1;
724
725
    /*
726
     * Check whether the top-level list is in order.
727
     */
728
0
    for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
729
0
        const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
730
0
        const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
731
732
0
        if (!IPAddressFamily_check_len(a) || !IPAddressFamily_check_len(b))
733
0
            return 0;
734
735
0
        if (IPAddressFamily_cmp(&a, &b) >= 0)
736
0
            return 0;
737
0
    }
738
739
    /*
740
     * Top level's ok, now check each address family.
741
     */
742
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
743
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
744
0
        int length = length_from_afi(X509v3_addr_get_afi(f));
745
746
        /*
747
         * Inheritance is canonical.  Anything other than inheritance or
748
         * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
749
         */
750
0
        if (f == NULL || f->ipAddressChoice == NULL)
751
0
            return 0;
752
0
        switch (f->ipAddressChoice->type) {
753
0
        case IPAddressChoice_inherit:
754
0
            continue;
755
0
        case IPAddressChoice_addressesOrRanges:
756
0
            break;
757
0
        default:
758
0
            return 0;
759
0
        }
760
761
0
        if (!IPAddressFamily_check_len(f))
762
0
            return 0;
763
764
        /*
765
         * It's an IPAddressOrRanges sequence, check it.
766
         */
767
0
        aors = f->ipAddressChoice->u.addressesOrRanges;
768
0
        if (sk_IPAddressOrRange_num(aors) == 0)
769
0
            return 0;
770
0
        for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
771
0
            IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
772
0
            IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
773
774
0
            if (!extract_min_max(a, a_min, a_max, length) ||
775
0
                !extract_min_max(b, b_min, b_max, length))
776
0
                return 0;
777
778
            /*
779
             * Punt misordered list, overlapping start, or inverted range.
780
             */
781
0
            if (memcmp(a_min, b_min, length) >= 0 ||
782
0
                memcmp(a_min, a_max, length) > 0 ||
783
0
                memcmp(b_min, b_max, length) > 0)
784
0
                return 0;
785
786
            /*
787
             * Punt if adjacent or overlapping.  Check for adjacency by
788
             * subtracting one from b_min first.
789
             */
790
0
            for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
791
0
            if (memcmp(a_max, b_min, length) >= 0)
792
0
                return 0;
793
794
            /*
795
             * Check for range that should be expressed as a prefix.
796
             */
797
0
            if (a->type == IPAddressOrRange_addressRange &&
798
0
                range_should_be_prefix(a_min, a_max, length) >= 0)
799
0
                return 0;
800
0
        }
801
802
        /*
803
         * Check range to see if it's inverted or should be a
804
         * prefix.
805
         */
806
0
        j = sk_IPAddressOrRange_num(aors) - 1;
807
0
        {
808
0
            IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
809
810
0
            if (a != NULL && a->type == IPAddressOrRange_addressRange) {
811
0
                if (!extract_min_max(a, a_min, a_max, length))
812
0
                    return 0;
813
0
                if (memcmp(a_min, a_max, length) > 0 ||
814
0
                    range_should_be_prefix(a_min, a_max, length) >= 0)
815
0
                    return 0;
816
0
            }
817
0
        }
818
0
    }
819
820
    /*
821
     * If we made it through all that, we're happy.
822
     */
823
0
    return 1;
824
0
}
825
826
/*
827
 * Whack an IPAddressOrRanges into canonical form.
828
 */
829
static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
830
                                      const unsigned afi)
831
0
{
832
0
    int i, j, length = length_from_afi(afi);
833
834
    /*
835
     * Sort the IPAddressOrRanges sequence.
836
     */
837
0
    sk_IPAddressOrRange_sort(aors);
838
839
    /*
840
     * Clean up representation issues, punt on duplicates or overlaps.
841
     */
842
0
    for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
843
0
        IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
844
0
        IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
845
0
        unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
846
0
        unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
847
848
0
        if (!extract_min_max(a, a_min, a_max, length) ||
849
0
            !extract_min_max(b, b_min, b_max, length))
850
0
            return 0;
851
852
        /*
853
         * Punt inverted ranges.
854
         */
855
0
        if (memcmp(a_min, a_max, length) > 0 ||
856
0
            memcmp(b_min, b_max, length) > 0)
857
0
            return 0;
858
859
        /*
860
         * Punt overlaps.
861
         */
862
0
        if (memcmp(a_max, b_min, length) >= 0)
863
0
            return 0;
864
865
        /*
866
         * Merge if a and b are adjacent.  We check for
867
         * adjacency by subtracting one from b_min first.
868
         */
869
0
        for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
870
0
        if (memcmp(a_max, b_min, length) == 0) {
871
0
            IPAddressOrRange *merged;
872
873
0
            if (!make_addressRange(&merged, a_min, b_max, length))
874
0
                return 0;
875
0
            (void)sk_IPAddressOrRange_set(aors, i, merged);
876
0
            (void)sk_IPAddressOrRange_delete(aors, i + 1);
877
0
            IPAddressOrRange_free(a);
878
0
            IPAddressOrRange_free(b);
879
0
            --i;
880
0
            continue;
881
0
        }
882
0
    }
883
884
    /*
885
     * Check for inverted final range.
886
     */
887
0
    j = sk_IPAddressOrRange_num(aors) - 1;
888
0
    {
889
0
        IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
890
891
0
        if (a != NULL && a->type == IPAddressOrRange_addressRange) {
892
0
            unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
893
894
0
            if (!extract_min_max(a, a_min, a_max, length))
895
0
                return 0;
896
0
            if (memcmp(a_min, a_max, length) > 0)
897
0
                return 0;
898
0
        }
899
0
    }
900
901
0
    return 1;
902
0
}
903
904
/*
905
 * Whack an IPAddrBlocks extension into canonical form.
906
 */
907
int X509v3_addr_canonize(IPAddrBlocks *addr)
908
0
{
909
0
    int i;
910
911
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
912
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
913
914
0
        if (!IPAddressFamily_check_len(f))
915
0
            return 0;
916
917
0
        if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
918
0
            !IPAddressOrRanges_canonize(f->ipAddressChoice->
919
0
                                        u.addressesOrRanges,
920
0
                                        X509v3_addr_get_afi(f)))
921
0
            return 0;
922
0
    }
923
0
    (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
924
0
    sk_IPAddressFamily_sort(addr);
925
0
    if (!ossl_assert(X509v3_addr_is_canonical(addr)))
926
0
        return 0;
927
0
    return 1;
928
0
}
929
930
/*
931
 * v2i handler for the IPAddrBlocks extension.
932
 */
933
static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
934
                              struct v3_ext_ctx *ctx,
935
                              STACK_OF(CONF_VALUE) *values)
936
0
{
937
0
    static const char v4addr_chars[] = "0123456789.";
938
0
    static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
939
0
    IPAddrBlocks *addr = NULL;
940
0
    char *s = NULL, *t;
941
0
    int i;
942
943
0
    if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
944
0
        ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB);
945
0
        return NULL;
946
0
    }
947
948
0
    for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
949
0
        CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
950
0
        unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
951
0
        unsigned afi, *safi = NULL, safi_;
952
0
        const char *addr_chars = NULL;
953
0
        int prefixlen, i1, i2, delim, length;
954
955
0
        if (!ossl_v3_name_cmp(val->name, "IPv4")) {
956
0
            afi = IANA_AFI_IPV4;
957
0
        } else if (!ossl_v3_name_cmp(val->name, "IPv6")) {
958
0
            afi = IANA_AFI_IPV6;
959
0
        } else if (!ossl_v3_name_cmp(val->name, "IPv4-SAFI")) {
960
0
            afi = IANA_AFI_IPV4;
961
0
            safi = &safi_;
962
0
        } else if (!ossl_v3_name_cmp(val->name, "IPv6-SAFI")) {
963
0
            afi = IANA_AFI_IPV6;
964
0
            safi = &safi_;
965
0
        } else {
966
0
            ERR_raise_data(ERR_LIB_X509V3, X509V3_R_EXTENSION_NAME_ERROR,
967
0
                           "%s", val->name);
968
0
            goto err;
969
0
        }
970
971
0
        switch (afi) {
972
0
        case IANA_AFI_IPV4:
973
0
            addr_chars = v4addr_chars;
974
0
            break;
975
0
        case IANA_AFI_IPV6:
976
0
            addr_chars = v6addr_chars;
977
0
            break;
978
0
        }
979
980
0
        length = length_from_afi(afi);
981
982
        /*
983
         * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate
984
         * the other input values.
985
         */
986
0
        if (safi != NULL) {
987
0
            *safi = strtoul(val->value, &t, 0);
988
0
            t += strspn(t, " \t");
989
0
            if (*safi > 0xFF || *t++ != ':') {
990
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_SAFI);
991
0
                X509V3_conf_add_error_name_value(val);
992
0
                goto err;
993
0
            }
994
0
            t += strspn(t, " \t");
995
0
            s = OPENSSL_strdup(t);
996
0
        } else {
997
0
            s = OPENSSL_strdup(val->value);
998
0
        }
999
0
        if (s == NULL)
1000
0
            goto err;
1001
1002
        /*
1003
         * Check for inheritance.  Not worth additional complexity to
1004
         * optimize this (seldom-used) case.
1005
         */
1006
0
        if (strcmp(s, "inherit") == 0) {
1007
0
            if (!X509v3_addr_add_inherit(addr, afi, safi)) {
1008
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_INHERITANCE);
1009
0
                X509V3_conf_add_error_name_value(val);
1010
0
                goto err;
1011
0
            }
1012
0
            OPENSSL_free(s);
1013
0
            s = NULL;
1014
0
            continue;
1015
0
        }
1016
1017
0
        i1 = strspn(s, addr_chars);
1018
0
        i2 = i1 + strspn(s + i1, " \t");
1019
0
        delim = s[i2++];
1020
0
        s[i1] = '\0';
1021
1022
0
        if (ossl_a2i_ipadd(min, s) != length) {
1023
0
            ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
1024
0
            X509V3_conf_add_error_name_value(val);
1025
0
            goto err;
1026
0
        }
1027
1028
0
        switch (delim) {
1029
0
        case '/':
1030
0
            prefixlen = (int)strtoul(s + i2, &t, 10);
1031
0
            if (t == s + i2
1032
0
                    || *t != '\0'
1033
0
                    || prefixlen > (length * 8)
1034
0
                    || prefixlen < 0) {
1035
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1036
0
                X509V3_conf_add_error_name_value(val);
1037
0
                goto err;
1038
0
            }
1039
0
            if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1040
0
                ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB);
1041
0
                goto err;
1042
0
            }
1043
0
            break;
1044
0
        case '-':
1045
0
            i1 = i2 + strspn(s + i2, " \t");
1046
0
            i2 = i1 + strspn(s + i1, addr_chars);
1047
0
            if (i1 == i2 || s[i2] != '\0') {
1048
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1049
0
                X509V3_conf_add_error_name_value(val);
1050
0
                goto err;
1051
0
            }
1052
0
            if (ossl_a2i_ipadd(max, s + i1) != length) {
1053
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
1054
0
                X509V3_conf_add_error_name_value(val);
1055
0
                goto err;
1056
0
            }
1057
0
            if (memcmp(min, max, length_from_afi(afi)) > 0) {
1058
0
                ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1059
0
                X509V3_conf_add_error_name_value(val);
1060
0
                goto err;
1061
0
            }
1062
0
            if (!X509v3_addr_add_range(addr, afi, safi, min, max)) {
1063
0
                ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB);
1064
0
                goto err;
1065
0
            }
1066
0
            break;
1067
0
        case '\0':
1068
0
            if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1069
0
                ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB);
1070
0
                goto err;
1071
0
            }
1072
0
            break;
1073
0
        default:
1074
0
            ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1075
0
            X509V3_conf_add_error_name_value(val);
1076
0
            goto err;
1077
0
        }
1078
1079
0
        OPENSSL_free(s);
1080
0
        s = NULL;
1081
0
    }
1082
1083
    /*
1084
     * Canonize the result, then we're done.
1085
     */
1086
0
    if (!X509v3_addr_canonize(addr))
1087
0
        goto err;
1088
0
    return addr;
1089
1090
0
 err:
1091
0
    OPENSSL_free(s);
1092
0
    sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1093
0
    return NULL;
1094
0
}
1095
1096
/*
1097
 * OpenSSL dispatch
1098
 */
1099
const X509V3_EXT_METHOD ossl_v3_addr = {
1100
    NID_sbgp_ipAddrBlock,       /* nid */
1101
    0,                          /* flags */
1102
    ASN1_ITEM_ref(IPAddrBlocks), /* template */
1103
    0, 0, 0, 0,                 /* old functions, ignored */
1104
    0,                          /* i2s */
1105
    0,                          /* s2i */
1106
    0,                          /* i2v */
1107
    v2i_IPAddrBlocks,           /* v2i */
1108
    i2r_IPAddrBlocks,           /* i2r */
1109
    0,                          /* r2i */
1110
    NULL                        /* extension-specific data */
1111
};
1112
1113
/*
1114
 * Figure out whether extension sues inheritance.
1115
 */
1116
int X509v3_addr_inherits(IPAddrBlocks *addr)
1117
0
{
1118
0
    int i;
1119
1120
0
    if (addr == NULL)
1121
0
        return 0;
1122
0
    for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1123
0
        IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1124
1125
0
        if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1126
0
            return 1;
1127
0
    }
1128
0
    return 0;
1129
0
}
1130
1131
/*
1132
 * Figure out whether parent contains child.
1133
 */
1134
static int addr_contains(IPAddressOrRanges *parent,
1135
                         IPAddressOrRanges *child, int length)
1136
0
{
1137
0
    unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1138
0
    unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1139
0
    int p, c;
1140
1141
0
    if (child == NULL || parent == child)
1142
0
        return 1;
1143
0
    if (parent == NULL)
1144
0
        return 0;
1145
1146
0
    p = 0;
1147
0
    for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1148
0
        if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1149
0
                             c_min, c_max, length))
1150
0
            return 0;
1151
0
        for (;; p++) {
1152
0
            if (p >= sk_IPAddressOrRange_num(parent))
1153
0
                return 0;
1154
0
            if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1155
0
                                 p_min, p_max, length))
1156
0
                return 0;
1157
0
            if (memcmp(p_max, c_max, length) < 0)
1158
0
                continue;
1159
0
            if (memcmp(p_min, c_min, length) > 0)
1160
0
                return 0;
1161
0
            break;
1162
0
        }
1163
0
    }
1164
1165
0
    return 1;
1166
0
}
1167
1168
/*
1169
 * Test whether a is a subset of b.
1170
 */
1171
int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1172
0
{
1173
0
    int i;
1174
1175
0
    if (a == NULL || a == b)
1176
0
        return 1;
1177
0
    if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b))
1178
0
        return 0;
1179
0
    (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1180
0
    sk_IPAddressFamily_sort(b);
1181
    /* Could sort a here too and get O(|a|) running time instead of O(|a| ln |b|) */
1182
0
    for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1183
0
        IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1184
0
        int j = sk_IPAddressFamily_find(b, fa);
1185
0
        IPAddressFamily *fb = sk_IPAddressFamily_value(b, j);
1186
1187
0
        if (fb == NULL)
1188
0
            return 0;
1189
0
        if (!IPAddressFamily_check_len(fa) || !IPAddressFamily_check_len(fb))
1190
0
            return 0;
1191
0
        if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1192
0
                           fa->ipAddressChoice->u.addressesOrRanges,
1193
0
                           length_from_afi(X509v3_addr_get_afi(fb))))
1194
0
            return 0;
1195
0
    }
1196
0
    return 1;
1197
0
}
1198
1199
/*
1200
 * Validation error handling via callback.
1201
 */
1202
# define validation_err(_err_)            \
1203
0
    do {                                  \
1204
0
        if (ctx != NULL) {                \
1205
0
            ctx->error = _err_;           \
1206
0
            ctx->error_depth = i;         \
1207
0
            ctx->current_cert = x;        \
1208
0
            rv = ctx->verify_cb(0, ctx);  \
1209
0
        } else {                          \
1210
0
            rv = 0;                       \
1211
0
        }                                 \
1212
0
        if (rv == 0)                      \
1213
0
            goto done;                    \
1214
0
    } while (0)
1215
1216
/*
1217
 * Core code for RFC 3779 2.3 path validation.
1218
 *
1219
 * Returns 1 for success, 0 on error.
1220
 *
1221
 * When returning 0, ctx->error MUST be set to an appropriate value other than
1222
 * X509_V_OK.
1223
 */
1224
static int addr_validate_path_internal(X509_STORE_CTX *ctx,
1225
                                       STACK_OF(X509) *chain,
1226
                                       IPAddrBlocks *ext)
1227
0
{
1228
0
    IPAddrBlocks *child = NULL;
1229
0
    int i, j, ret = 0, rv;
1230
0
    X509 *x;
1231
1232
0
    if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0)
1233
0
            || !ossl_assert(ctx != NULL || ext != NULL)
1234
0
            || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) {
1235
0
        if (ctx != NULL)
1236
0
            ctx->error = X509_V_ERR_UNSPECIFIED;
1237
0
        return 0;
1238
0
    }
1239
1240
    /*
1241
     * Figure out where to start.  If we don't have an extension to
1242
     * check, we're done.  Otherwise, check canonical form and
1243
     * set up for walking up the chain.
1244
     */
1245
0
    if (ext != NULL) {
1246
0
        i = -1;
1247
0
        x = NULL;
1248
0
    } else {
1249
0
        i = 0;
1250
0
        x = sk_X509_value(chain, i);
1251
0
        if ((ext = x->rfc3779_addr) == NULL)
1252
0
            return 1; /* Return success */
1253
0
    }
1254
0
    if (!X509v3_addr_is_canonical(ext))
1255
0
        validation_err(X509_V_ERR_INVALID_EXTENSION);
1256
0
    (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1257
0
    if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1258
0
        ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB);
1259
0
        if (ctx != NULL)
1260
0
            ctx->error = X509_V_ERR_OUT_OF_MEM;
1261
0
        goto done;
1262
0
    }
1263
0
    sk_IPAddressFamily_sort(child);
1264
1265
    /*
1266
     * Now walk up the chain.  No cert may list resources that its
1267
     * parent doesn't list.
1268
     */
1269
0
    for (i++; i < sk_X509_num(chain); i++) {
1270
0
        x = sk_X509_value(chain, i);
1271
0
        if (!X509v3_addr_is_canonical(x->rfc3779_addr))
1272
0
            validation_err(X509_V_ERR_INVALID_EXTENSION);
1273
0
        if (x->rfc3779_addr == NULL) {
1274
0
            for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1275
0
                IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1276
1277
0
                if (!IPAddressFamily_check_len(fc))
1278
0
                    goto done;
1279
1280
0
                if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1281
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1282
0
                    break;
1283
0
                }
1284
0
            }
1285
0
            continue;
1286
0
        }
1287
0
        (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1288
0
                                              IPAddressFamily_cmp);
1289
0
        sk_IPAddressFamily_sort(x->rfc3779_addr);
1290
0
        for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1291
0
            IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1292
0
            int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1293
0
            IPAddressFamily *fp =
1294
0
                sk_IPAddressFamily_value(x->rfc3779_addr, k);
1295
1296
0
            if (fp == NULL) {
1297
0
                if (fc->ipAddressChoice->type ==
1298
0
                    IPAddressChoice_addressesOrRanges) {
1299
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1300
0
                    break;
1301
0
                }
1302
0
                continue;
1303
0
            }
1304
1305
0
            if (!IPAddressFamily_check_len(fc) || !IPAddressFamily_check_len(fp))
1306
0
                goto done;
1307
1308
0
            if (fp->ipAddressChoice->type ==
1309
0
                IPAddressChoice_addressesOrRanges) {
1310
0
                if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1311
0
                    || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1312
0
                                     fc->ipAddressChoice->u.addressesOrRanges,
1313
0
                                     length_from_afi(X509v3_addr_get_afi(fc))))
1314
0
                    (void)sk_IPAddressFamily_set(child, j, fp);
1315
0
                else
1316
0
                    validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1317
0
            }
1318
0
        }
1319
0
    }
1320
1321
    /*
1322
     * Trust anchor can't inherit.
1323
     */
1324
0
    if (x->rfc3779_addr != NULL) {
1325
0
        for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1326
0
            IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
1327
1328
0
            if (!IPAddressFamily_check_len(fp))
1329
0
                goto done;
1330
1331
0
            if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1332
0
                && sk_IPAddressFamily_find(child, fp) >= 0)
1333
0
                validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1334
0
        }
1335
0
    }
1336
0
    ret = 1;
1337
0
 done:
1338
0
    sk_IPAddressFamily_free(child);
1339
0
    return ret;
1340
0
}
1341
1342
# undef validation_err
1343
1344
/*
1345
 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1346
 */
1347
int X509v3_addr_validate_path(X509_STORE_CTX *ctx)
1348
0
{
1349
0
    if (ctx->chain == NULL
1350
0
            || sk_X509_num(ctx->chain) == 0
1351
0
            || ctx->verify_cb == NULL) {
1352
0
        ctx->error = X509_V_ERR_UNSPECIFIED;
1353
0
        return 0;
1354
0
    }
1355
0
    return addr_validate_path_internal(ctx, ctx->chain, NULL);
1356
0
}
1357
1358
/*
1359
 * RFC 3779 2.3 path validation of an extension.
1360
 * Test whether chain covers extension.
1361
 */
1362
int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1363
                                      IPAddrBlocks *ext, int allow_inheritance)
1364
0
{
1365
0
    if (ext == NULL)
1366
0
        return 1;
1367
0
    if (chain == NULL || sk_X509_num(chain) == 0)
1368
0
        return 0;
1369
0
    if (!allow_inheritance && X509v3_addr_inherits(ext))
1370
0
        return 0;
1371
0
    return addr_validate_path_internal(NULL, chain, ext);
1372
0
}
1373
1374
#endif /* OPENSSL_NO_RFC3779 */