Line | Count | Source (jump to first uncovered line) |
1 | | /*************************************************************************** |
2 | | * _ _ ____ _ |
3 | | * Project ___| | | | _ \| | |
4 | | * / __| | | | |_) | | |
5 | | * | (__| |_| | _ <| |___ |
6 | | * \___|\___/|_| \_\_____| |
7 | | * |
8 | | * Copyright (C) Daniel Stenberg, <daniel@haxx.se>, et al. |
9 | | * |
10 | | * This software is licensed as described in the file COPYING, which |
11 | | * you should have received as part of this distribution. The terms |
12 | | * are also available at https://curl.se/docs/copyright.html. |
13 | | * |
14 | | * You may opt to use, copy, modify, merge, publish, distribute and/or sell |
15 | | * copies of the Software, and permit persons to whom the Software is |
16 | | * furnished to do so, under the terms of the COPYING file. |
17 | | * |
18 | | * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY |
19 | | * KIND, either express or implied. |
20 | | * |
21 | | * SPDX-License-Identifier: curl |
22 | | * |
23 | | ***************************************************************************/ |
24 | | |
25 | | #include "curl_setup.h" |
26 | | |
27 | | #ifdef HAVE_NETINET_IN_H |
28 | | #include <netinet/in.h> |
29 | | #endif |
30 | | #ifdef HAVE_NETINET_IN6_H |
31 | | #include <netinet/in6.h> |
32 | | #endif |
33 | | #ifdef HAVE_NETDB_H |
34 | | #include <netdb.h> |
35 | | #endif |
36 | | #ifdef HAVE_ARPA_INET_H |
37 | | #include <arpa/inet.h> |
38 | | #endif |
39 | | #ifdef __VMS |
40 | | #include <in.h> |
41 | | #include <inet.h> |
42 | | #endif |
43 | | |
44 | | #include <setjmp.h> |
45 | | #include <signal.h> |
46 | | |
47 | | #include "urldata.h" |
48 | | #include "sendf.h" |
49 | | #include "hostip.h" |
50 | | #include "hash.h" |
51 | | #include "rand.h" |
52 | | #include "share.h" |
53 | | #include "url.h" |
54 | | #include "inet_ntop.h" |
55 | | #include "inet_pton.h" |
56 | | #include "multiif.h" |
57 | | #include "doh.h" |
58 | | #include "warnless.h" |
59 | | #include "strcase.h" |
60 | | #include "easy_lock.h" |
61 | | /* The last 3 #include files should be in this order */ |
62 | | #include "curl_printf.h" |
63 | | #include "curl_memory.h" |
64 | | #include "memdebug.h" |
65 | | |
66 | | #if defined(CURLRES_SYNCH) && \ |
67 | | defined(HAVE_ALARM) && \ |
68 | | defined(SIGALRM) && \ |
69 | | defined(HAVE_SIGSETJMP) && \ |
70 | | defined(GLOBAL_INIT_IS_THREADSAFE) |
71 | | /* alarm-based timeouts can only be used with all the dependencies satisfied */ |
72 | | #define USE_ALARM_TIMEOUT |
73 | | #endif |
74 | | |
75 | | #define MAX_HOSTCACHE_LEN (255 + 7) /* max FQDN + colon + port number + zero */ |
76 | | |
77 | 275 | #define MAX_DNS_CACHE_SIZE 29999 |
78 | | |
79 | | /* |
80 | | * hostip.c explained |
81 | | * ================== |
82 | | * |
83 | | * The main COMPILE-TIME DEFINES to keep in mind when reading the host*.c |
84 | | * source file are these: |
85 | | * |
86 | | * CURLRES_IPV6 - this host has getaddrinfo() and family, and thus we use |
87 | | * that. The host may not be able to resolve IPv6, but we do not really have to |
88 | | * take that into account. Hosts that are not IPv6-enabled have CURLRES_IPV4 |
89 | | * defined. |
90 | | * |
91 | | * CURLRES_ARES - is defined if libcurl is built to use c-ares for |
92 | | * asynchronous name resolves. This can be Windows or *nix. |
93 | | * |
94 | | * CURLRES_THREADED - is defined if libcurl is built to run under (native) |
95 | | * Windows, and then the name resolve will be done in a new thread, and the |
96 | | * supported API will be the same as for ares-builds. |
97 | | * |
98 | | * If any of the two previous are defined, CURLRES_ASYNCH is defined too. If |
99 | | * libcurl is not built to use an asynchronous resolver, CURLRES_SYNCH is |
100 | | * defined. |
101 | | * |
102 | | * The host*.c sources files are split up like this: |
103 | | * |
104 | | * hostip.c - method-independent resolver functions and utility functions |
105 | | * hostasyn.c - functions for asynchronous name resolves |
106 | | * hostsyn.c - functions for synchronous name resolves |
107 | | * hostip4.c - IPv4 specific functions |
108 | | * hostip6.c - IPv6 specific functions |
109 | | * |
110 | | * The two asynchronous name resolver backends are implemented in: |
111 | | * asyn-ares.c - functions for ares-using name resolves |
112 | | * asyn-thread.c - functions for threaded name resolves |
113 | | |
114 | | * The hostip.h is the united header file for all this. It defines the |
115 | | * CURLRES_* defines based on the config*.h and curl_setup.h defines. |
116 | | */ |
117 | | |
118 | | static void hostcache_unlink_entry(void *entry); |
119 | | |
120 | | #ifndef CURL_DISABLE_VERBOSE_STRINGS |
121 | | static void show_resolve_info(struct Curl_easy *data, |
122 | | struct Curl_dns_entry *dns); |
123 | | #else |
124 | | #define show_resolve_info(x,y) Curl_nop_stmt |
125 | | #endif |
126 | | |
127 | | /* |
128 | | * Curl_printable_address() stores a printable version of the 1st address |
129 | | * given in the 'ai' argument. The result will be stored in the buf that is |
130 | | * bufsize bytes big. |
131 | | * |
132 | | * If the conversion fails, the target buffer is empty. |
133 | | */ |
134 | | void Curl_printable_address(const struct Curl_addrinfo *ai, char *buf, |
135 | | size_t bufsize) |
136 | 0 | { |
137 | 0 | DEBUGASSERT(bufsize); |
138 | 0 | buf[0] = 0; |
139 | |
|
140 | 0 | switch(ai->ai_family) { |
141 | 0 | case AF_INET: { |
142 | 0 | const struct sockaddr_in *sa4 = (const void *)ai->ai_addr; |
143 | 0 | const struct in_addr *ipaddr4 = &sa4->sin_addr; |
144 | 0 | (void)Curl_inet_ntop(ai->ai_family, (const void *)ipaddr4, buf, bufsize); |
145 | 0 | break; |
146 | 0 | } |
147 | 0 | #ifdef USE_IPV6 |
148 | 0 | case AF_INET6: { |
149 | 0 | const struct sockaddr_in6 *sa6 = (const void *)ai->ai_addr; |
150 | 0 | const struct in6_addr *ipaddr6 = &sa6->sin6_addr; |
151 | 0 | (void)Curl_inet_ntop(ai->ai_family, (const void *)ipaddr6, buf, bufsize); |
152 | 0 | break; |
153 | 0 | } |
154 | 0 | #endif |
155 | 0 | default: |
156 | 0 | break; |
157 | 0 | } |
158 | 0 | } |
159 | | |
160 | | /* |
161 | | * Create a hostcache id string for the provided host + port, to be used by |
162 | | * the DNS caching. Without alloc. Return length of the id string. |
163 | | */ |
164 | | static size_t |
165 | | create_hostcache_id(const char *name, |
166 | | size_t nlen, /* 0 or actual name length */ |
167 | | int port, char *ptr, size_t buflen) |
168 | 89.5k | { |
169 | 89.5k | size_t len = nlen ? nlen : strlen(name); |
170 | 89.5k | DEBUGASSERT(buflen >= MAX_HOSTCACHE_LEN); |
171 | 89.5k | if(len > (buflen - 7)) |
172 | 0 | len = buflen - 7; |
173 | | /* store and lower case the name */ |
174 | 89.5k | Curl_strntolower(ptr, name, len); |
175 | 89.5k | return msnprintf(&ptr[len], 7, ":%u", port) + len; |
176 | 89.5k | } |
177 | | |
178 | | struct hostcache_prune_data { |
179 | | time_t now; |
180 | | time_t oldest; /* oldest time in cache not pruned. */ |
181 | | int max_age_sec; |
182 | | }; |
183 | | |
184 | | /* |
185 | | * This function is set as a callback to be called for every entry in the DNS |
186 | | * cache when we want to prune old unused entries. |
187 | | * |
188 | | * Returning non-zero means remove the entry, return 0 to keep it in the |
189 | | * cache. |
190 | | */ |
191 | | static int |
192 | | hostcache_entry_is_stale(void *datap, void *hc) |
193 | 51.0k | { |
194 | 51.0k | struct hostcache_prune_data *prune = |
195 | 51.0k | (struct hostcache_prune_data *) datap; |
196 | 51.0k | struct Curl_dns_entry *dns = (struct Curl_dns_entry *) hc; |
197 | | |
198 | 51.0k | if(dns->timestamp) { |
199 | | /* age in seconds */ |
200 | 51.0k | time_t age = prune->now - dns->timestamp; |
201 | 51.0k | if(age >= prune->max_age_sec) |
202 | 0 | return TRUE; |
203 | 51.0k | if(age > prune->oldest) |
204 | 280 | prune->oldest = age; |
205 | 51.0k | } |
206 | 51.0k | return FALSE; |
207 | 51.0k | } |
208 | | |
209 | | /* |
210 | | * Prune the DNS cache. This assumes that a lock has already been taken. |
211 | | * Returns the 'age' of the oldest still kept entry. |
212 | | */ |
213 | | static time_t |
214 | | hostcache_prune(struct Curl_hash *hostcache, int cache_timeout, |
215 | | time_t now) |
216 | 47.1k | { |
217 | 47.1k | struct hostcache_prune_data user; |
218 | | |
219 | 47.1k | user.max_age_sec = cache_timeout; |
220 | 47.1k | user.now = now; |
221 | 47.1k | user.oldest = 0; |
222 | | |
223 | 47.1k | Curl_hash_clean_with_criterium(hostcache, |
224 | 47.1k | (void *) &user, |
225 | 47.1k | hostcache_entry_is_stale); |
226 | | |
227 | 47.1k | return user.oldest; |
228 | 47.1k | } |
229 | | |
230 | | /* |
231 | | * Library-wide function for pruning the DNS cache. This function takes and |
232 | | * returns the appropriate locks. |
233 | | */ |
234 | | void Curl_hostcache_prune(struct Curl_easy *data) |
235 | 47.1k | { |
236 | 47.1k | time_t now; |
237 | | /* the timeout may be set -1 (forever) */ |
238 | 47.1k | int timeout = data->set.dns_cache_timeout; |
239 | | |
240 | 47.1k | if(!data->dns.hostcache) |
241 | | /* NULL hostcache means we cannot do it */ |
242 | 0 | return; |
243 | | |
244 | 47.1k | if(data->share) |
245 | 0 | Curl_share_lock(data, CURL_LOCK_DATA_DNS, CURL_LOCK_ACCESS_SINGLE); |
246 | | |
247 | 47.1k | now = time(NULL); |
248 | | |
249 | 47.1k | do { |
250 | | /* Remove outdated and unused entries from the hostcache */ |
251 | 47.1k | time_t oldest = hostcache_prune(data->dns.hostcache, timeout, now); |
252 | | |
253 | 47.1k | if(oldest < INT_MAX) |
254 | 47.1k | timeout = (int)oldest; /* we know it fits */ |
255 | 0 | else |
256 | 0 | timeout = INT_MAX - 1; |
257 | | |
258 | | /* if the cache size is still too big, use the oldest age as new |
259 | | prune limit */ |
260 | 47.1k | } while(timeout && |
261 | 47.1k | (Curl_hash_count(data->dns.hostcache) > MAX_DNS_CACHE_SIZE)); |
262 | | |
263 | 47.1k | if(data->share) |
264 | 0 | Curl_share_unlock(data, CURL_LOCK_DATA_DNS); |
265 | 47.1k | } |
266 | | |
267 | | #ifdef USE_ALARM_TIMEOUT |
268 | | /* Beware this is a global and unique instance. This is used to store the |
269 | | return address that we can jump back to from inside a signal handler. This |
270 | | is not thread-safe stuff. */ |
271 | | static sigjmp_buf curl_jmpenv; |
272 | | static curl_simple_lock curl_jmpenv_lock; |
273 | | #endif |
274 | | |
275 | | /* lookup address, returns entry if found and not stale */ |
276 | | static struct Curl_dns_entry *fetch_addr(struct Curl_easy *data, |
277 | | const char *hostname, |
278 | | int port) |
279 | 46.1k | { |
280 | 46.1k | struct Curl_dns_entry *dns = NULL; |
281 | 46.1k | char entry_id[MAX_HOSTCACHE_LEN]; |
282 | | |
283 | | /* Create an entry id, based upon the hostname and port */ |
284 | 46.1k | size_t entry_len = create_hostcache_id(hostname, 0, port, |
285 | 46.1k | entry_id, sizeof(entry_id)); |
286 | | |
287 | | /* See if it is already in our dns cache */ |
288 | 46.1k | dns = Curl_hash_pick(data->dns.hostcache, entry_id, entry_len + 1); |
289 | | |
290 | | /* No entry found in cache, check if we might have a wildcard entry */ |
291 | 46.1k | if(!dns && data->state.wildcard_resolve) { |
292 | 0 | entry_len = create_hostcache_id("*", 1, port, entry_id, sizeof(entry_id)); |
293 | | |
294 | | /* See if it is already in our dns cache */ |
295 | 0 | dns = Curl_hash_pick(data->dns.hostcache, entry_id, entry_len + 1); |
296 | 0 | } |
297 | | |
298 | 46.1k | if(dns && (data->set.dns_cache_timeout != -1)) { |
299 | | /* See whether the returned entry is stale. Done before we release lock */ |
300 | 2.68k | struct hostcache_prune_data user; |
301 | | |
302 | 2.68k | user.now = time(NULL); |
303 | 2.68k | user.max_age_sec = data->set.dns_cache_timeout; |
304 | 2.68k | user.oldest = 0; |
305 | | |
306 | 2.68k | if(hostcache_entry_is_stale(&user, dns)) { |
307 | 0 | infof(data, "Hostname in DNS cache was stale, zapped"); |
308 | 0 | dns = NULL; /* the memory deallocation is being handled by the hash */ |
309 | 0 | Curl_hash_delete(data->dns.hostcache, entry_id, entry_len + 1); |
310 | 0 | } |
311 | 2.68k | } |
312 | | |
313 | | /* See if the returned entry matches the required resolve mode */ |
314 | 46.1k | if(dns && data->conn->ip_version != CURL_IPRESOLVE_WHATEVER) { |
315 | 0 | int pf = PF_INET; |
316 | 0 | bool found = false; |
317 | 0 | struct Curl_addrinfo *addr = dns->addr; |
318 | |
|
319 | 0 | #ifdef PF_INET6 |
320 | 0 | if(data->conn->ip_version == CURL_IPRESOLVE_V6) |
321 | 0 | pf = PF_INET6; |
322 | 0 | #endif |
323 | |
|
324 | 0 | while(addr) { |
325 | 0 | if(addr->ai_family == pf) { |
326 | 0 | found = true; |
327 | 0 | break; |
328 | 0 | } |
329 | 0 | addr = addr->ai_next; |
330 | 0 | } |
331 | |
|
332 | 0 | if(!found) { |
333 | 0 | infof(data, "Hostname in DNS cache does not have needed family, zapped"); |
334 | 0 | dns = NULL; /* the memory deallocation is being handled by the hash */ |
335 | 0 | Curl_hash_delete(data->dns.hostcache, entry_id, entry_len + 1); |
336 | 0 | } |
337 | 0 | } |
338 | 46.1k | return dns; |
339 | 46.1k | } |
340 | | |
341 | | /* |
342 | | * Curl_fetch_addr() fetches a 'Curl_dns_entry' already in the DNS cache. |
343 | | * |
344 | | * Curl_resolv() checks initially and multi_runsingle() checks each time |
345 | | * it discovers the handle in the state WAITRESOLVE whether the hostname |
346 | | * has already been resolved and the address has already been stored in |
347 | | * the DNS cache. This short circuits waiting for a lot of pending |
348 | | * lookups for the same hostname requested by different handles. |
349 | | * |
350 | | * Returns the Curl_dns_entry entry pointer or NULL if not in the cache. |
351 | | * |
352 | | * The returned data *MUST* be "released" with Curl_resolv_unlink() after |
353 | | * use, or we will leak memory! |
354 | | */ |
355 | | struct Curl_dns_entry * |
356 | | Curl_fetch_addr(struct Curl_easy *data, |
357 | | const char *hostname, |
358 | | int port) |
359 | 0 | { |
360 | 0 | struct Curl_dns_entry *dns = NULL; |
361 | |
|
362 | 0 | if(data->share) |
363 | 0 | Curl_share_lock(data, CURL_LOCK_DATA_DNS, CURL_LOCK_ACCESS_SINGLE); |
364 | |
|
365 | 0 | dns = fetch_addr(data, hostname, port); |
366 | |
|
367 | 0 | if(dns) |
368 | 0 | dns->refcount++; /* we use it! */ |
369 | |
|
370 | 0 | if(data->share) |
371 | 0 | Curl_share_unlock(data, CURL_LOCK_DATA_DNS); |
372 | |
|
373 | 0 | return dns; |
374 | 0 | } |
375 | | |
376 | | #ifndef CURL_DISABLE_SHUFFLE_DNS |
377 | | /* |
378 | | * Return # of addresses in a Curl_addrinfo struct |
379 | | */ |
380 | | static int num_addresses(const struct Curl_addrinfo *addr) |
381 | 0 | { |
382 | 0 | int i = 0; |
383 | 0 | while(addr) { |
384 | 0 | addr = addr->ai_next; |
385 | 0 | i++; |
386 | 0 | } |
387 | 0 | return i; |
388 | 0 | } |
389 | | |
390 | | UNITTEST CURLcode Curl_shuffle_addr(struct Curl_easy *data, |
391 | | struct Curl_addrinfo **addr); |
392 | | /* |
393 | | * Curl_shuffle_addr() shuffles the order of addresses in a 'Curl_addrinfo' |
394 | | * struct by re-linking its linked list. |
395 | | * |
396 | | * The addr argument should be the address of a pointer to the head node of a |
397 | | * `Curl_addrinfo` list and it will be modified to point to the new head after |
398 | | * shuffling. |
399 | | * |
400 | | * Not declared static only to make it easy to use in a unit test! |
401 | | * |
402 | | * @unittest: 1608 |
403 | | */ |
404 | | UNITTEST CURLcode Curl_shuffle_addr(struct Curl_easy *data, |
405 | | struct Curl_addrinfo **addr) |
406 | 0 | { |
407 | 0 | CURLcode result = CURLE_OK; |
408 | 0 | const int num_addrs = num_addresses(*addr); |
409 | |
|
410 | 0 | if(num_addrs > 1) { |
411 | 0 | struct Curl_addrinfo **nodes; |
412 | 0 | infof(data, "Shuffling %i addresses", num_addrs); |
413 | |
|
414 | 0 | nodes = malloc(num_addrs*sizeof(*nodes)); |
415 | 0 | if(nodes) { |
416 | 0 | int i; |
417 | 0 | unsigned int *rnd; |
418 | 0 | const size_t rnd_size = num_addrs * sizeof(*rnd); |
419 | | |
420 | | /* build a plain array of Curl_addrinfo pointers */ |
421 | 0 | nodes[0] = *addr; |
422 | 0 | for(i = 1; i < num_addrs; i++) { |
423 | 0 | nodes[i] = nodes[i-1]->ai_next; |
424 | 0 | } |
425 | |
|
426 | 0 | rnd = malloc(rnd_size); |
427 | 0 | if(rnd) { |
428 | | /* Fisher-Yates shuffle */ |
429 | 0 | if(Curl_rand(data, (unsigned char *)rnd, rnd_size) == CURLE_OK) { |
430 | 0 | struct Curl_addrinfo *swap_tmp; |
431 | 0 | for(i = num_addrs - 1; i > 0; i--) { |
432 | 0 | swap_tmp = nodes[rnd[i] % (unsigned int)(i + 1)]; |
433 | 0 | nodes[rnd[i] % (unsigned int)(i + 1)] = nodes[i]; |
434 | 0 | nodes[i] = swap_tmp; |
435 | 0 | } |
436 | | |
437 | | /* relink list in the new order */ |
438 | 0 | for(i = 1; i < num_addrs; i++) { |
439 | 0 | nodes[i-1]->ai_next = nodes[i]; |
440 | 0 | } |
441 | |
|
442 | 0 | nodes[num_addrs-1]->ai_next = NULL; |
443 | 0 | *addr = nodes[0]; |
444 | 0 | } |
445 | 0 | free(rnd); |
446 | 0 | } |
447 | 0 | else |
448 | 0 | result = CURLE_OUT_OF_MEMORY; |
449 | 0 | free(nodes); |
450 | 0 | } |
451 | 0 | else |
452 | 0 | result = CURLE_OUT_OF_MEMORY; |
453 | 0 | } |
454 | 0 | return result; |
455 | 0 | } |
456 | | #endif |
457 | | |
458 | | /* |
459 | | * Curl_cache_addr() stores a 'Curl_addrinfo' struct in the DNS cache. |
460 | | * |
461 | | * When calling Curl_resolv() has resulted in a response with a returned |
462 | | * address, we call this function to store the information in the dns |
463 | | * cache etc |
464 | | * |
465 | | * Returns the Curl_dns_entry entry pointer or NULL if the storage failed. |
466 | | */ |
467 | | struct Curl_dns_entry * |
468 | | Curl_cache_addr(struct Curl_easy *data, |
469 | | struct Curl_addrinfo *addr, |
470 | | const char *hostname, |
471 | | size_t hostlen, /* length or zero */ |
472 | | int port, |
473 | | bool permanent) |
474 | 43.4k | { |
475 | 43.4k | char entry_id[MAX_HOSTCACHE_LEN]; |
476 | 43.4k | size_t entry_len; |
477 | 43.4k | struct Curl_dns_entry *dns; |
478 | 43.4k | struct Curl_dns_entry *dns2; |
479 | | |
480 | 43.4k | #ifndef CURL_DISABLE_SHUFFLE_DNS |
481 | | /* shuffle addresses if requested */ |
482 | 43.4k | if(data->set.dns_shuffle_addresses) { |
483 | 0 | CURLcode result = Curl_shuffle_addr(data, &addr); |
484 | 0 | if(result) |
485 | 0 | return NULL; |
486 | 0 | } |
487 | 43.4k | #endif |
488 | 43.4k | if(!hostlen) |
489 | 43.4k | hostlen = strlen(hostname); |
490 | | |
491 | | /* Create a new cache entry */ |
492 | 43.4k | dns = calloc(1, sizeof(struct Curl_dns_entry) + hostlen); |
493 | 43.4k | if(!dns) { |
494 | 0 | return NULL; |
495 | 0 | } |
496 | | |
497 | | /* Create an entry id, based upon the hostname and port */ |
498 | 43.4k | entry_len = create_hostcache_id(hostname, hostlen, port, |
499 | 43.4k | entry_id, sizeof(entry_id)); |
500 | | |
501 | 43.4k | dns->refcount = 1; /* the cache has the first reference */ |
502 | 43.4k | dns->addr = addr; /* this is the address(es) */ |
503 | 43.4k | if(permanent) |
504 | 0 | dns->timestamp = 0; /* an entry that never goes stale */ |
505 | 43.4k | else { |
506 | 43.4k | dns->timestamp = time(NULL); |
507 | 43.4k | if(dns->timestamp == 0) |
508 | 0 | dns->timestamp = 1; |
509 | 43.4k | } |
510 | 43.4k | dns->hostport = port; |
511 | 43.4k | if(hostlen) |
512 | 43.4k | memcpy(dns->hostname, hostname, hostlen); |
513 | | |
514 | | /* Store the resolved data in our DNS cache. */ |
515 | 43.4k | dns2 = Curl_hash_add(data->dns.hostcache, entry_id, entry_len + 1, |
516 | 43.4k | (void *)dns); |
517 | 43.4k | if(!dns2) { |
518 | 0 | free(dns); |
519 | 0 | return NULL; |
520 | 0 | } |
521 | | |
522 | 43.4k | dns = dns2; |
523 | 43.4k | dns->refcount++; /* mark entry as in-use */ |
524 | 43.4k | return dns; |
525 | 43.4k | } |
526 | | |
527 | | #ifdef USE_IPV6 |
528 | | /* return a static IPv6 ::1 for the name */ |
529 | | static struct Curl_addrinfo *get_localhost6(int port, const char *name) |
530 | 0 | { |
531 | 0 | struct Curl_addrinfo *ca; |
532 | 0 | const size_t ss_size = sizeof(struct sockaddr_in6); |
533 | 0 | const size_t hostlen = strlen(name); |
534 | 0 | struct sockaddr_in6 sa6; |
535 | 0 | unsigned char ipv6[16]; |
536 | 0 | unsigned short port16 = (unsigned short)(port & 0xffff); |
537 | 0 | ca = calloc(1, sizeof(struct Curl_addrinfo) + ss_size + hostlen + 1); |
538 | 0 | if(!ca) |
539 | 0 | return NULL; |
540 | | |
541 | 0 | sa6.sin6_family = AF_INET6; |
542 | 0 | sa6.sin6_port = htons(port16); |
543 | 0 | sa6.sin6_flowinfo = 0; |
544 | 0 | sa6.sin6_scope_id = 0; |
545 | |
|
546 | 0 | (void)Curl_inet_pton(AF_INET6, "::1", ipv6); |
547 | 0 | memcpy(&sa6.sin6_addr, ipv6, sizeof(ipv6)); |
548 | |
|
549 | 0 | ca->ai_flags = 0; |
550 | 0 | ca->ai_family = AF_INET6; |
551 | 0 | ca->ai_socktype = SOCK_STREAM; |
552 | 0 | ca->ai_protocol = IPPROTO_TCP; |
553 | 0 | ca->ai_addrlen = (curl_socklen_t)ss_size; |
554 | 0 | ca->ai_next = NULL; |
555 | 0 | ca->ai_addr = (void *)((char *)ca + sizeof(struct Curl_addrinfo)); |
556 | 0 | memcpy(ca->ai_addr, &sa6, ss_size); |
557 | 0 | ca->ai_canonname = (char *)ca->ai_addr + ss_size; |
558 | 0 | strcpy(ca->ai_canonname, name); |
559 | 0 | return ca; |
560 | 0 | } |
561 | | #else |
562 | | #define get_localhost6(x,y) NULL |
563 | | #endif |
564 | | |
565 | | /* return a static IPv4 127.0.0.1 for the given name */ |
566 | | static struct Curl_addrinfo *get_localhost(int port, const char *name) |
567 | 0 | { |
568 | 0 | struct Curl_addrinfo *ca; |
569 | 0 | struct Curl_addrinfo *ca6; |
570 | 0 | const size_t ss_size = sizeof(struct sockaddr_in); |
571 | 0 | const size_t hostlen = strlen(name); |
572 | 0 | struct sockaddr_in sa; |
573 | 0 | unsigned int ipv4; |
574 | 0 | unsigned short port16 = (unsigned short)(port & 0xffff); |
575 | | |
576 | | /* memset to clear the sa.sin_zero field */ |
577 | 0 | memset(&sa, 0, sizeof(sa)); |
578 | 0 | sa.sin_family = AF_INET; |
579 | 0 | sa.sin_port = htons(port16); |
580 | 0 | if(Curl_inet_pton(AF_INET, "127.0.0.1", (char *)&ipv4) < 1) |
581 | 0 | return NULL; |
582 | 0 | memcpy(&sa.sin_addr, &ipv4, sizeof(ipv4)); |
583 | |
|
584 | 0 | ca = calloc(1, sizeof(struct Curl_addrinfo) + ss_size + hostlen + 1); |
585 | 0 | if(!ca) |
586 | 0 | return NULL; |
587 | 0 | ca->ai_flags = 0; |
588 | 0 | ca->ai_family = AF_INET; |
589 | 0 | ca->ai_socktype = SOCK_STREAM; |
590 | 0 | ca->ai_protocol = IPPROTO_TCP; |
591 | 0 | ca->ai_addrlen = (curl_socklen_t)ss_size; |
592 | 0 | ca->ai_addr = (void *)((char *)ca + sizeof(struct Curl_addrinfo)); |
593 | 0 | memcpy(ca->ai_addr, &sa, ss_size); |
594 | 0 | ca->ai_canonname = (char *)ca->ai_addr + ss_size; |
595 | 0 | strcpy(ca->ai_canonname, name); |
596 | |
|
597 | 0 | ca6 = get_localhost6(port, name); |
598 | 0 | if(!ca6) |
599 | 0 | return ca; |
600 | 0 | ca6->ai_next = ca; |
601 | 0 | return ca6; |
602 | 0 | } |
603 | | |
604 | | #ifdef USE_IPV6 |
605 | | /* |
606 | | * Curl_ipv6works() returns TRUE if IPv6 seems to work. |
607 | | */ |
608 | | bool Curl_ipv6works(struct Curl_easy *data) |
609 | 0 | { |
610 | 0 | if(data) { |
611 | | /* the nature of most system is that IPv6 status does not come and go |
612 | | during a program's lifetime so we only probe the first time and then we |
613 | | have the info kept for fast reuse */ |
614 | 0 | DEBUGASSERT(data); |
615 | 0 | DEBUGASSERT(data->multi); |
616 | 0 | if(data->multi->ipv6_up == IPV6_UNKNOWN) { |
617 | 0 | bool works = Curl_ipv6works(NULL); |
618 | 0 | data->multi->ipv6_up = works ? IPV6_WORKS : IPV6_DEAD; |
619 | 0 | } |
620 | 0 | return data->multi->ipv6_up == IPV6_WORKS; |
621 | 0 | } |
622 | 0 | else { |
623 | 0 | int ipv6_works = -1; |
624 | | /* probe to see if we have a working IPv6 stack */ |
625 | 0 | curl_socket_t s = socket(PF_INET6, SOCK_DGRAM, 0); |
626 | 0 | if(s == CURL_SOCKET_BAD) |
627 | | /* an IPv6 address was requested but we cannot get/use one */ |
628 | 0 | ipv6_works = 0; |
629 | 0 | else { |
630 | 0 | ipv6_works = 1; |
631 | 0 | sclose(s); |
632 | 0 | } |
633 | 0 | return (ipv6_works>0)?TRUE:FALSE; |
634 | 0 | } |
635 | 0 | } |
636 | | #endif /* USE_IPV6 */ |
637 | | |
638 | | /* |
639 | | * Curl_host_is_ipnum() returns TRUE if the given string is a numerical IPv4 |
640 | | * (or IPv6 if supported) address. |
641 | | */ |
642 | | bool Curl_host_is_ipnum(const char *hostname) |
643 | 58.2k | { |
644 | 58.2k | struct in_addr in; |
645 | 58.2k | #ifdef USE_IPV6 |
646 | 58.2k | struct in6_addr in6; |
647 | 58.2k | #endif |
648 | 58.2k | if(Curl_inet_pton(AF_INET, hostname, &in) > 0 |
649 | 58.2k | #ifdef USE_IPV6 |
650 | 58.2k | || Curl_inet_pton(AF_INET6, hostname, &in6) > 0 |
651 | 58.2k | #endif |
652 | 58.2k | ) |
653 | 21.5k | return TRUE; |
654 | 36.7k | return FALSE; |
655 | 58.2k | } |
656 | | |
657 | | |
658 | | /* return TRUE if 'part' is a case insensitive tail of 'full' */ |
659 | | static bool tailmatch(const char *full, const char *part) |
660 | 0 | { |
661 | 0 | size_t plen = strlen(part); |
662 | 0 | size_t flen = strlen(full); |
663 | 0 | if(plen > flen) |
664 | 0 | return FALSE; |
665 | 0 | return strncasecompare(part, &full[flen - plen], plen); |
666 | 0 | } |
667 | | |
668 | | /* |
669 | | * Curl_resolv() is the main name resolve function within libcurl. It resolves |
670 | | * a name and returns a pointer to the entry in the 'entry' argument (if one |
671 | | * is provided). This function might return immediately if we are using asynch |
672 | | * resolves. See the return codes. |
673 | | * |
674 | | * The cache entry we return will get its 'inuse' counter increased when this |
675 | | * function is used. You MUST call Curl_resolv_unlink() later (when you are |
676 | | * done using this struct) to decrease the reference counter again. |
677 | | * |
678 | | * Return codes: |
679 | | * |
680 | | * CURLRESOLV_ERROR (-1) = error, no pointer |
681 | | * CURLRESOLV_RESOLVED (0) = OK, pointer provided |
682 | | * CURLRESOLV_PENDING (1) = waiting for response, no pointer |
683 | | */ |
684 | | |
685 | | enum resolve_t Curl_resolv(struct Curl_easy *data, |
686 | | const char *hostname, |
687 | | int port, |
688 | | bool allowDOH, |
689 | | struct Curl_dns_entry **entry) |
690 | 46.1k | { |
691 | 46.1k | struct Curl_dns_entry *dns = NULL; |
692 | 46.1k | CURLcode result; |
693 | 46.1k | enum resolve_t rc = CURLRESOLV_ERROR; /* default to failure */ |
694 | 46.1k | struct connectdata *conn = data->conn; |
695 | | /* We should intentionally error and not resolve .onion TLDs */ |
696 | 46.1k | size_t hostname_len = strlen(hostname); |
697 | 46.1k | if(hostname_len >= 7 && |
698 | 46.1k | (curl_strequal(&hostname[hostname_len - 6], ".onion") || |
699 | 46.1k | curl_strequal(&hostname[hostname_len - 7], ".onion."))) { |
700 | 0 | failf(data, "Not resolving .onion address (RFC 7686)"); |
701 | 0 | return CURLRESOLV_ERROR; |
702 | 0 | } |
703 | 46.1k | *entry = NULL; |
704 | 46.1k | #ifndef CURL_DISABLE_DOH |
705 | 46.1k | conn->bits.doh = FALSE; /* default is not */ |
706 | | #else |
707 | | (void)allowDOH; |
708 | | #endif |
709 | | |
710 | 46.1k | if(data->share) |
711 | 0 | Curl_share_lock(data, CURL_LOCK_DATA_DNS, CURL_LOCK_ACCESS_SINGLE); |
712 | | |
713 | 46.1k | dns = fetch_addr(data, hostname, port); |
714 | | |
715 | 46.1k | if(dns) { |
716 | 2.68k | infof(data, "Hostname %s was found in DNS cache", hostname); |
717 | 2.68k | dns->refcount++; /* we use it! */ |
718 | 2.68k | rc = CURLRESOLV_RESOLVED; |
719 | 2.68k | } |
720 | | |
721 | 46.1k | if(data->share) |
722 | 0 | Curl_share_unlock(data, CURL_LOCK_DATA_DNS); |
723 | | |
724 | 46.1k | if(!dns) { |
725 | | /* The entry was not in the cache. Resolve it to IP address */ |
726 | | |
727 | 43.4k | struct Curl_addrinfo *addr = NULL; |
728 | 43.4k | int respwait = 0; |
729 | 43.4k | #if !defined(CURL_DISABLE_DOH) || !defined(USE_RESOLVE_ON_IPS) |
730 | 43.4k | struct in_addr in; |
731 | 43.4k | #endif |
732 | 43.4k | #ifndef CURL_DISABLE_DOH |
733 | 43.4k | #ifndef USE_RESOLVE_ON_IPS |
734 | 43.4k | const |
735 | 43.4k | #endif |
736 | 43.4k | bool ipnum = FALSE; |
737 | 43.4k | #endif |
738 | | |
739 | | /* notify the resolver start callback */ |
740 | 43.4k | if(data->set.resolver_start) { |
741 | 0 | int st; |
742 | 0 | Curl_set_in_callback(data, true); |
743 | 0 | st = data->set.resolver_start( |
744 | 0 | #ifdef USE_CURL_ASYNC |
745 | 0 | data->state.async.resolver, |
746 | | #else |
747 | | NULL, |
748 | | #endif |
749 | 0 | NULL, |
750 | 0 | data->set.resolver_start_client); |
751 | 0 | Curl_set_in_callback(data, false); |
752 | 0 | if(st) |
753 | 0 | return CURLRESOLV_ERROR; |
754 | 0 | } |
755 | | |
756 | 43.4k | #ifndef USE_RESOLVE_ON_IPS |
757 | | /* First check if this is an IPv4 address string */ |
758 | 43.4k | if(Curl_inet_pton(AF_INET, hostname, &in) > 0) { |
759 | | /* This is a dotted IP address 123.123.123.123-style */ |
760 | 43.4k | addr = Curl_ip2addr(AF_INET, &in, hostname, port); |
761 | 43.4k | if(!addr) |
762 | 0 | return CURLRESOLV_ERROR; |
763 | 43.4k | } |
764 | 0 | #ifdef USE_IPV6 |
765 | 0 | else { |
766 | 0 | struct in6_addr in6; |
767 | | /* check if this is an IPv6 address string */ |
768 | 0 | if(Curl_inet_pton(AF_INET6, hostname, &in6) > 0) { |
769 | | /* This is an IPv6 address literal */ |
770 | 0 | addr = Curl_ip2addr(AF_INET6, &in6, hostname, port); |
771 | 0 | if(!addr) |
772 | 0 | return CURLRESOLV_ERROR; |
773 | 0 | } |
774 | 0 | } |
775 | 43.4k | #endif /* USE_IPV6 */ |
776 | | |
777 | | #else /* if USE_RESOLVE_ON_IPS */ |
778 | | #ifndef CURL_DISABLE_DOH |
779 | | /* First check if this is an IPv4 address string */ |
780 | | if(Curl_inet_pton(AF_INET, hostname, &in) > 0) |
781 | | /* This is a dotted IP address 123.123.123.123-style */ |
782 | | ipnum = TRUE; |
783 | | #ifdef USE_IPV6 |
784 | | else { |
785 | | struct in6_addr in6; |
786 | | /* check if this is an IPv6 address string */ |
787 | | if(Curl_inet_pton(AF_INET6, hostname, &in6) > 0) |
788 | | /* This is an IPv6 address literal */ |
789 | | ipnum = TRUE; |
790 | | } |
791 | | #endif /* USE_IPV6 */ |
792 | | #endif /* CURL_DISABLE_DOH */ |
793 | | |
794 | | #endif /* !USE_RESOLVE_ON_IPS */ |
795 | | |
796 | 43.4k | if(!addr) { |
797 | 0 | if(conn->ip_version == CURL_IPRESOLVE_V6 && !Curl_ipv6works(data)) |
798 | 0 | return CURLRESOLV_ERROR; |
799 | | |
800 | 0 | if(strcasecompare(hostname, "localhost") || |
801 | 0 | tailmatch(hostname, ".localhost")) |
802 | 0 | addr = get_localhost(port, hostname); |
803 | 0 | #ifndef CURL_DISABLE_DOH |
804 | 0 | else if(allowDOH && data->set.doh && !ipnum) |
805 | 0 | addr = Curl_doh(data, hostname, port, &respwait); |
806 | 0 | #endif |
807 | 0 | else { |
808 | | /* Check what IP specifics the app has requested and if we can provide |
809 | | * it. If not, bail out. */ |
810 | 0 | if(!Curl_ipvalid(data, conn)) |
811 | 0 | return CURLRESOLV_ERROR; |
812 | | /* If Curl_getaddrinfo() returns NULL, 'respwait' might be set to a |
813 | | non-zero value indicating that we need to wait for the response to |
814 | | the resolve call */ |
815 | 0 | addr = Curl_getaddrinfo(data, hostname, port, &respwait); |
816 | 0 | } |
817 | 0 | } |
818 | 43.4k | if(!addr) { |
819 | 0 | if(respwait) { |
820 | | /* the response to our resolve call will come asynchronously at |
821 | | a later time, good or bad */ |
822 | | /* First, check that we have not received the info by now */ |
823 | 0 | result = Curl_resolv_check(data, &dns); |
824 | 0 | if(result) /* error detected */ |
825 | 0 | return CURLRESOLV_ERROR; |
826 | 0 | if(dns) |
827 | 0 | rc = CURLRESOLV_RESOLVED; /* pointer provided */ |
828 | 0 | else |
829 | 0 | rc = CURLRESOLV_PENDING; /* no info yet */ |
830 | 0 | } |
831 | 0 | } |
832 | 43.4k | else { |
833 | 43.4k | if(data->share) |
834 | 0 | Curl_share_lock(data, CURL_LOCK_DATA_DNS, CURL_LOCK_ACCESS_SINGLE); |
835 | | |
836 | | /* we got a response, store it in the cache */ |
837 | 43.4k | dns = Curl_cache_addr(data, addr, hostname, 0, port, FALSE); |
838 | | |
839 | 43.4k | if(data->share) |
840 | 0 | Curl_share_unlock(data, CURL_LOCK_DATA_DNS); |
841 | | |
842 | 43.4k | if(!dns) |
843 | | /* returned failure, bail out nicely */ |
844 | 0 | Curl_freeaddrinfo(addr); |
845 | 43.4k | else { |
846 | 43.4k | rc = CURLRESOLV_RESOLVED; |
847 | 43.4k | show_resolve_info(data, dns); |
848 | 43.4k | } |
849 | 43.4k | } |
850 | 43.4k | } |
851 | | |
852 | 46.1k | *entry = dns; |
853 | | |
854 | 46.1k | return rc; |
855 | 46.1k | } |
856 | | |
857 | | #ifdef USE_ALARM_TIMEOUT |
858 | | /* |
859 | | * This signal handler jumps back into the main libcurl code and continues |
860 | | * execution. This effectively causes the remainder of the application to run |
861 | | * within a signal handler which is nonportable and could lead to problems. |
862 | | */ |
863 | | CURL_NORETURN static |
864 | | void alarmfunc(int sig) |
865 | | { |
866 | | (void)sig; |
867 | | siglongjmp(curl_jmpenv, 1); |
868 | | } |
869 | | #endif /* USE_ALARM_TIMEOUT */ |
870 | | |
871 | | /* |
872 | | * Curl_resolv_timeout() is the same as Curl_resolv() but specifies a |
873 | | * timeout. This function might return immediately if we are using asynch |
874 | | * resolves. See the return codes. |
875 | | * |
876 | | * The cache entry we return will get its 'inuse' counter increased when this |
877 | | * function is used. You MUST call Curl_resolv_unlink() later (when you are |
878 | | * done using this struct) to decrease the reference counter again. |
879 | | * |
880 | | * If built with a synchronous resolver and use of signals is not |
881 | | * disabled by the application, then a nonzero timeout will cause a |
882 | | * timeout after the specified number of milliseconds. Otherwise, timeout |
883 | | * is ignored. |
884 | | * |
885 | | * Return codes: |
886 | | * |
887 | | * CURLRESOLV_TIMEDOUT(-2) = warning, time too short or previous alarm expired |
888 | | * CURLRESOLV_ERROR (-1) = error, no pointer |
889 | | * CURLRESOLV_RESOLVED (0) = OK, pointer provided |
890 | | * CURLRESOLV_PENDING (1) = waiting for response, no pointer |
891 | | */ |
892 | | |
893 | | enum resolve_t Curl_resolv_timeout(struct Curl_easy *data, |
894 | | const char *hostname, |
895 | | int port, |
896 | | struct Curl_dns_entry **entry, |
897 | | timediff_t timeoutms) |
898 | 43.8k | { |
899 | | #ifdef USE_ALARM_TIMEOUT |
900 | | #ifdef HAVE_SIGACTION |
901 | | struct sigaction keep_sigact; /* store the old struct here */ |
902 | | volatile bool keep_copysig = FALSE; /* whether old sigact has been saved */ |
903 | | struct sigaction sigact; |
904 | | #else |
905 | | #ifdef HAVE_SIGNAL |
906 | | void (*keep_sigact)(int); /* store the old handler here */ |
907 | | #endif /* HAVE_SIGNAL */ |
908 | | #endif /* HAVE_SIGACTION */ |
909 | | volatile long timeout; |
910 | | volatile unsigned int prev_alarm = 0; |
911 | | #endif /* USE_ALARM_TIMEOUT */ |
912 | 43.8k | enum resolve_t rc; |
913 | | |
914 | 43.8k | *entry = NULL; |
915 | | |
916 | 43.8k | if(timeoutms < 0) |
917 | | /* got an already expired timeout */ |
918 | 3 | return CURLRESOLV_TIMEDOUT; |
919 | | |
920 | | #ifdef USE_ALARM_TIMEOUT |
921 | | if(data->set.no_signal) |
922 | | /* Ignore the timeout when signals are disabled */ |
923 | | timeout = 0; |
924 | | else |
925 | | timeout = (timeoutms > LONG_MAX) ? LONG_MAX : (long)timeoutms; |
926 | | |
927 | | if(!timeout) |
928 | | /* USE_ALARM_TIMEOUT defined, but no timeout actually requested */ |
929 | | return Curl_resolv(data, hostname, port, TRUE, entry); |
930 | | |
931 | | if(timeout < 1000) { |
932 | | /* The alarm() function only provides integer second resolution, so if |
933 | | we want to wait less than one second we must bail out already now. */ |
934 | | failf(data, |
935 | | "remaining timeout of %ld too small to resolve via SIGALRM method", |
936 | | timeout); |
937 | | return CURLRESOLV_TIMEDOUT; |
938 | | } |
939 | | /* This allows us to time-out from the name resolver, as the timeout |
940 | | will generate a signal and we will siglongjmp() from that here. |
941 | | This technique has problems (see alarmfunc). |
942 | | This should be the last thing we do before calling Curl_resolv(), |
943 | | as otherwise we would have to worry about variables that get modified |
944 | | before we invoke Curl_resolv() (and thus use "volatile"). */ |
945 | | curl_simple_lock_lock(&curl_jmpenv_lock); |
946 | | |
947 | | if(sigsetjmp(curl_jmpenv, 1)) { |
948 | | /* this is coming from a siglongjmp() after an alarm signal */ |
949 | | failf(data, "name lookup timed out"); |
950 | | rc = CURLRESOLV_ERROR; |
951 | | goto clean_up; |
952 | | } |
953 | | else { |
954 | | /************************************************************* |
955 | | * Set signal handler to catch SIGALRM |
956 | | * Store the old value to be able to set it back later! |
957 | | *************************************************************/ |
958 | | #ifdef HAVE_SIGACTION |
959 | | sigaction(SIGALRM, NULL, &sigact); |
960 | | keep_sigact = sigact; |
961 | | keep_copysig = TRUE; /* yes, we have a copy */ |
962 | | sigact.sa_handler = alarmfunc; |
963 | | #ifdef SA_RESTART |
964 | | /* HP-UX does not have SA_RESTART but defaults to that behavior! */ |
965 | | sigact.sa_flags &= ~SA_RESTART; |
966 | | #endif |
967 | | /* now set the new struct */ |
968 | | sigaction(SIGALRM, &sigact, NULL); |
969 | | #else /* HAVE_SIGACTION */ |
970 | | /* no sigaction(), revert to the much lamer signal() */ |
971 | | #ifdef HAVE_SIGNAL |
972 | | keep_sigact = signal(SIGALRM, alarmfunc); |
973 | | #endif |
974 | | #endif /* HAVE_SIGACTION */ |
975 | | |
976 | | /* alarm() makes a signal get sent when the timeout fires off, and that |
977 | | will abort system calls */ |
978 | | prev_alarm = alarm(curlx_sltoui(timeout/1000L)); |
979 | | } |
980 | | |
981 | | #else |
982 | | #ifndef CURLRES_ASYNCH |
983 | | if(timeoutms) |
984 | | infof(data, "timeout on name lookup is not supported"); |
985 | | #else |
986 | 43.8k | (void)timeoutms; /* timeoutms not used with an async resolver */ |
987 | 43.8k | #endif |
988 | 43.8k | #endif /* USE_ALARM_TIMEOUT */ |
989 | | |
990 | | /* Perform the actual name resolution. This might be interrupted by an |
991 | | * alarm if it takes too long. |
992 | | */ |
993 | 43.8k | rc = Curl_resolv(data, hostname, port, TRUE, entry); |
994 | | |
995 | | #ifdef USE_ALARM_TIMEOUT |
996 | | clean_up: |
997 | | |
998 | | if(!prev_alarm) |
999 | | /* deactivate a possibly active alarm before uninstalling the handler */ |
1000 | | alarm(0); |
1001 | | |
1002 | | #ifdef HAVE_SIGACTION |
1003 | | if(keep_copysig) { |
1004 | | /* we got a struct as it looked before, now put that one back nice |
1005 | | and clean */ |
1006 | | sigaction(SIGALRM, &keep_sigact, NULL); /* put it back */ |
1007 | | } |
1008 | | #else |
1009 | | #ifdef HAVE_SIGNAL |
1010 | | /* restore the previous SIGALRM handler */ |
1011 | | signal(SIGALRM, keep_sigact); |
1012 | | #endif |
1013 | | #endif /* HAVE_SIGACTION */ |
1014 | | |
1015 | | curl_simple_lock_unlock(&curl_jmpenv_lock); |
1016 | | |
1017 | | /* switch back the alarm() to either zero or to what it was before minus |
1018 | | the time we spent until now! */ |
1019 | | if(prev_alarm) { |
1020 | | /* there was an alarm() set before us, now put it back */ |
1021 | | timediff_t elapsed_secs = Curl_timediff(Curl_now(), |
1022 | | data->conn->created) / 1000; |
1023 | | |
1024 | | /* the alarm period is counted in even number of seconds */ |
1025 | | unsigned long alarm_set = (unsigned long)(prev_alarm - elapsed_secs); |
1026 | | |
1027 | | if(!alarm_set || |
1028 | | ((alarm_set >= 0x80000000) && (prev_alarm < 0x80000000)) ) { |
1029 | | /* if the alarm time-left reached zero or turned "negative" (counted |
1030 | | with unsigned values), we should fire off a SIGALRM here, but we |
1031 | | will not, and zero would be to switch it off so we never set it to |
1032 | | less than 1! */ |
1033 | | alarm(1); |
1034 | | rc = CURLRESOLV_TIMEDOUT; |
1035 | | failf(data, "Previous alarm fired off"); |
1036 | | } |
1037 | | else |
1038 | | alarm((unsigned int)alarm_set); |
1039 | | } |
1040 | | #endif /* USE_ALARM_TIMEOUT */ |
1041 | | |
1042 | 43.8k | return rc; |
1043 | 43.8k | } |
1044 | | |
1045 | | /* |
1046 | | * Curl_resolv_unlink() releases a reference to the given cached DNS entry. |
1047 | | * When the reference count reaches 0, the entry is destroyed. It is important |
1048 | | * that only one unlink is made for each Curl_resolv() call. |
1049 | | * |
1050 | | * May be called with 'data' == NULL for global cache. |
1051 | | */ |
1052 | | void Curl_resolv_unlink(struct Curl_easy *data, struct Curl_dns_entry **pdns) |
1053 | 46.1k | { |
1054 | 46.1k | struct Curl_dns_entry *dns = *pdns; |
1055 | 46.1k | *pdns = NULL; |
1056 | 46.1k | if(data && data->share) |
1057 | 0 | Curl_share_lock(data, CURL_LOCK_DATA_DNS, CURL_LOCK_ACCESS_SINGLE); |
1058 | | |
1059 | 46.1k | hostcache_unlink_entry(dns); |
1060 | | |
1061 | 46.1k | if(data && data->share) |
1062 | 0 | Curl_share_unlock(data, CURL_LOCK_DATA_DNS); |
1063 | 46.1k | } |
1064 | | |
1065 | | /* |
1066 | | * File-internal: release cache dns entry reference, free if inuse drops to 0 |
1067 | | */ |
1068 | | static void hostcache_unlink_entry(void *entry) |
1069 | 89.5k | { |
1070 | 89.5k | struct Curl_dns_entry *dns = (struct Curl_dns_entry *) entry; |
1071 | 89.5k | DEBUGASSERT(dns && (dns->refcount>0)); |
1072 | | |
1073 | 89.5k | dns->refcount--; |
1074 | 89.5k | if(dns->refcount == 0) { |
1075 | 43.4k | Curl_freeaddrinfo(dns->addr); |
1076 | | #ifdef USE_HTTPSRR |
1077 | | if(dns->hinfo) { |
1078 | | if(dns->hinfo->target) |
1079 | | free(dns->hinfo->target); |
1080 | | if(dns->hinfo->alpns) |
1081 | | free(dns->hinfo->alpns); |
1082 | | if(dns->hinfo->ipv4hints) |
1083 | | free(dns->hinfo->ipv4hints); |
1084 | | if(dns->hinfo->echconfiglist) |
1085 | | free(dns->hinfo->echconfiglist); |
1086 | | if(dns->hinfo->ipv6hints) |
1087 | | free(dns->hinfo->ipv6hints); |
1088 | | if(dns->hinfo->val) |
1089 | | free(dns->hinfo->val); |
1090 | | free(dns->hinfo); |
1091 | | } |
1092 | | #endif |
1093 | 43.4k | free(dns); |
1094 | 43.4k | } |
1095 | 89.5k | } |
1096 | | |
1097 | | /* |
1098 | | * Curl_init_dnscache() inits a new DNS cache. |
1099 | | */ |
1100 | | void Curl_init_dnscache(struct Curl_hash *hash, size_t size) |
1101 | 66.8k | { |
1102 | 66.8k | Curl_hash_init(hash, size, Curl_hash_str, Curl_str_key_compare, |
1103 | 66.8k | hostcache_unlink_entry); |
1104 | 66.8k | } |
1105 | | |
1106 | | /* |
1107 | | * Curl_hostcache_clean() |
1108 | | * |
1109 | | * This _can_ be called with 'data' == NULL but then of course no locking |
1110 | | * can be done! |
1111 | | */ |
1112 | | |
1113 | | void Curl_hostcache_clean(struct Curl_easy *data, |
1114 | | struct Curl_hash *hash) |
1115 | 66.8k | { |
1116 | 66.8k | if(data && data->share) |
1117 | 0 | Curl_share_lock(data, CURL_LOCK_DATA_DNS, CURL_LOCK_ACCESS_SINGLE); |
1118 | | |
1119 | 66.8k | Curl_hash_clean(hash); |
1120 | | |
1121 | 66.8k | if(data && data->share) |
1122 | 0 | Curl_share_unlock(data, CURL_LOCK_DATA_DNS); |
1123 | 66.8k | } |
1124 | | |
1125 | | |
1126 | | CURLcode Curl_loadhostpairs(struct Curl_easy *data) |
1127 | 0 | { |
1128 | 0 | struct curl_slist *hostp; |
1129 | 0 | char *host_end; |
1130 | | |
1131 | | /* Default is no wildcard found */ |
1132 | 0 | data->state.wildcard_resolve = false; |
1133 | |
|
1134 | 0 | for(hostp = data->state.resolve; hostp; hostp = hostp->next) { |
1135 | 0 | char entry_id[MAX_HOSTCACHE_LEN]; |
1136 | 0 | if(!hostp->data) |
1137 | 0 | continue; |
1138 | 0 | if(hostp->data[0] == '-') { |
1139 | 0 | unsigned long num = 0; |
1140 | 0 | size_t entry_len; |
1141 | 0 | size_t hlen = 0; |
1142 | 0 | host_end = strchr(&hostp->data[1], ':'); |
1143 | |
|
1144 | 0 | if(host_end) { |
1145 | 0 | hlen = host_end - &hostp->data[1]; |
1146 | 0 | num = strtoul(++host_end, NULL, 10); |
1147 | 0 | if(!hlen || (num > 0xffff)) |
1148 | 0 | host_end = NULL; |
1149 | 0 | } |
1150 | 0 | if(!host_end) { |
1151 | 0 | infof(data, "Bad syntax CURLOPT_RESOLVE removal entry '%s'", |
1152 | 0 | hostp->data); |
1153 | 0 | continue; |
1154 | 0 | } |
1155 | | /* Create an entry id, based upon the hostname and port */ |
1156 | 0 | entry_len = create_hostcache_id(&hostp->data[1], hlen, (int)num, |
1157 | 0 | entry_id, sizeof(entry_id)); |
1158 | 0 | if(data->share) |
1159 | 0 | Curl_share_lock(data, CURL_LOCK_DATA_DNS, CURL_LOCK_ACCESS_SINGLE); |
1160 | | |
1161 | | /* delete entry, ignore if it did not exist */ |
1162 | 0 | Curl_hash_delete(data->dns.hostcache, entry_id, entry_len + 1); |
1163 | |
|
1164 | 0 | if(data->share) |
1165 | 0 | Curl_share_unlock(data, CURL_LOCK_DATA_DNS); |
1166 | 0 | } |
1167 | 0 | else { |
1168 | 0 | struct Curl_dns_entry *dns; |
1169 | 0 | struct Curl_addrinfo *head = NULL, *tail = NULL; |
1170 | 0 | size_t entry_len; |
1171 | 0 | char address[64]; |
1172 | 0 | #if !defined(CURL_DISABLE_VERBOSE_STRINGS) |
1173 | 0 | char *addresses = NULL; |
1174 | 0 | #endif |
1175 | 0 | char *addr_begin; |
1176 | 0 | char *addr_end; |
1177 | 0 | char *port_ptr; |
1178 | 0 | int port = 0; |
1179 | 0 | char *end_ptr; |
1180 | 0 | bool permanent = TRUE; |
1181 | 0 | unsigned long tmp_port; |
1182 | 0 | bool error = true; |
1183 | 0 | char *host_begin = hostp->data; |
1184 | 0 | size_t hlen = 0; |
1185 | |
|
1186 | 0 | if(host_begin[0] == '+') { |
1187 | 0 | host_begin++; |
1188 | 0 | permanent = FALSE; |
1189 | 0 | } |
1190 | 0 | host_end = strchr(host_begin, ':'); |
1191 | 0 | if(!host_end) |
1192 | 0 | goto err; |
1193 | 0 | hlen = host_end - host_begin; |
1194 | |
|
1195 | 0 | port_ptr = host_end + 1; |
1196 | 0 | tmp_port = strtoul(port_ptr, &end_ptr, 10); |
1197 | 0 | if(tmp_port > USHRT_MAX || end_ptr == port_ptr || *end_ptr != ':') |
1198 | 0 | goto err; |
1199 | | |
1200 | 0 | port = (int)tmp_port; |
1201 | 0 | #if !defined(CURL_DISABLE_VERBOSE_STRINGS) |
1202 | 0 | addresses = end_ptr + 1; |
1203 | 0 | #endif |
1204 | |
|
1205 | 0 | while(*end_ptr) { |
1206 | 0 | size_t alen; |
1207 | 0 | struct Curl_addrinfo *ai; |
1208 | |
|
1209 | 0 | addr_begin = end_ptr + 1; |
1210 | 0 | addr_end = strchr(addr_begin, ','); |
1211 | 0 | if(!addr_end) |
1212 | 0 | addr_end = addr_begin + strlen(addr_begin); |
1213 | 0 | end_ptr = addr_end; |
1214 | | |
1215 | | /* allow IP(v6) address within [brackets] */ |
1216 | 0 | if(*addr_begin == '[') { |
1217 | 0 | if(addr_end == addr_begin || *(addr_end - 1) != ']') |
1218 | 0 | goto err; |
1219 | 0 | ++addr_begin; |
1220 | 0 | --addr_end; |
1221 | 0 | } |
1222 | | |
1223 | 0 | alen = addr_end - addr_begin; |
1224 | 0 | if(!alen) |
1225 | 0 | continue; |
1226 | | |
1227 | 0 | if(alen >= sizeof(address)) |
1228 | 0 | goto err; |
1229 | | |
1230 | 0 | memcpy(address, addr_begin, alen); |
1231 | 0 | address[alen] = '\0'; |
1232 | |
|
1233 | | #ifndef USE_IPV6 |
1234 | | if(strchr(address, ':')) { |
1235 | | infof(data, "Ignoring resolve address '%s', missing IPv6 support.", |
1236 | | address); |
1237 | | continue; |
1238 | | } |
1239 | | #endif |
1240 | |
|
1241 | 0 | ai = Curl_str2addr(address, port); |
1242 | 0 | if(!ai) { |
1243 | 0 | infof(data, "Resolve address '%s' found illegal", address); |
1244 | 0 | goto err; |
1245 | 0 | } |
1246 | | |
1247 | 0 | if(tail) { |
1248 | 0 | tail->ai_next = ai; |
1249 | 0 | tail = tail->ai_next; |
1250 | 0 | } |
1251 | 0 | else { |
1252 | 0 | head = tail = ai; |
1253 | 0 | } |
1254 | 0 | } |
1255 | | |
1256 | 0 | if(!head) |
1257 | 0 | goto err; |
1258 | | |
1259 | 0 | error = false; |
1260 | 0 | err: |
1261 | 0 | if(error) { |
1262 | 0 | failf(data, "Couldn't parse CURLOPT_RESOLVE entry '%s'", |
1263 | 0 | hostp->data); |
1264 | 0 | Curl_freeaddrinfo(head); |
1265 | 0 | return CURLE_SETOPT_OPTION_SYNTAX; |
1266 | 0 | } |
1267 | | |
1268 | | /* Create an entry id, based upon the hostname and port */ |
1269 | 0 | entry_len = create_hostcache_id(host_begin, hlen, port, |
1270 | 0 | entry_id, sizeof(entry_id)); |
1271 | |
|
1272 | 0 | if(data->share) |
1273 | 0 | Curl_share_lock(data, CURL_LOCK_DATA_DNS, CURL_LOCK_ACCESS_SINGLE); |
1274 | | |
1275 | | /* See if it is already in our dns cache */ |
1276 | 0 | dns = Curl_hash_pick(data->dns.hostcache, entry_id, entry_len + 1); |
1277 | |
|
1278 | 0 | if(dns) { |
1279 | 0 | infof(data, "RESOLVE %.*s:%d - old addresses discarded", |
1280 | 0 | (int)hlen, host_begin, port); |
1281 | | /* delete old entry, there are two reasons for this |
1282 | | 1. old entry may have different addresses. |
1283 | | 2. even if entry with correct addresses is already in the cache, |
1284 | | but if it is close to expire, then by the time next http |
1285 | | request is made, it can get expired and pruned because old |
1286 | | entry is not necessarily marked as permanent. |
1287 | | 3. when adding a non-permanent entry, we want it to remove and |
1288 | | replace an existing permanent entry. |
1289 | | 4. when adding a non-permanent entry, we want it to get a "fresh" |
1290 | | timeout that starts _now_. */ |
1291 | |
|
1292 | 0 | Curl_hash_delete(data->dns.hostcache, entry_id, entry_len + 1); |
1293 | 0 | } |
1294 | | |
1295 | | /* put this new host in the cache */ |
1296 | 0 | dns = Curl_cache_addr(data, head, host_begin, hlen, port, permanent); |
1297 | 0 | if(dns) { |
1298 | | /* release the returned reference; the cache itself will keep the |
1299 | | * entry alive: */ |
1300 | 0 | dns->refcount--; |
1301 | 0 | } |
1302 | |
|
1303 | 0 | if(data->share) |
1304 | 0 | Curl_share_unlock(data, CURL_LOCK_DATA_DNS); |
1305 | |
|
1306 | 0 | if(!dns) { |
1307 | 0 | Curl_freeaddrinfo(head); |
1308 | 0 | return CURLE_OUT_OF_MEMORY; |
1309 | 0 | } |
1310 | 0 | #ifndef CURL_DISABLE_VERBOSE_STRINGS |
1311 | 0 | infof(data, "Added %.*s:%d:%s to DNS cache%s", |
1312 | 0 | (int)hlen, host_begin, port, addresses, |
1313 | 0 | permanent ? "" : " (non-permanent)"); |
1314 | 0 | #endif |
1315 | | |
1316 | | /* Wildcard hostname */ |
1317 | 0 | if((hlen == 1) && (host_begin[0] == '*')) { |
1318 | 0 | infof(data, "RESOLVE *:%d using wildcard", port); |
1319 | 0 | data->state.wildcard_resolve = true; |
1320 | 0 | } |
1321 | 0 | } |
1322 | 0 | } |
1323 | 0 | data->state.resolve = NULL; /* dealt with now */ |
1324 | |
|
1325 | 0 | return CURLE_OK; |
1326 | 0 | } |
1327 | | |
1328 | | #ifndef CURL_DISABLE_VERBOSE_STRINGS |
1329 | | static void show_resolve_info(struct Curl_easy *data, |
1330 | | struct Curl_dns_entry *dns) |
1331 | 43.4k | { |
1332 | 43.4k | struct Curl_addrinfo *a; |
1333 | 43.4k | CURLcode result = CURLE_OK; |
1334 | 43.4k | #ifdef CURLRES_IPV6 |
1335 | 43.4k | struct dynbuf out[2]; |
1336 | | #else |
1337 | | struct dynbuf out[1]; |
1338 | | #endif |
1339 | 43.4k | DEBUGASSERT(data); |
1340 | 43.4k | DEBUGASSERT(dns); |
1341 | | |
1342 | 43.4k | if(!data->set.verbose || |
1343 | | /* ignore no name or numerical IP addresses */ |
1344 | 43.4k | !dns->hostname[0] || Curl_host_is_ipnum(dns->hostname)) |
1345 | 43.4k | return; |
1346 | | |
1347 | 0 | a = dns->addr; |
1348 | |
|
1349 | 0 | infof(data, "Host %s:%d was resolved.", |
1350 | 0 | (dns->hostname[0] ? dns->hostname : "(none)"), dns->hostport); |
1351 | |
|
1352 | 0 | Curl_dyn_init(&out[0], 1024); |
1353 | 0 | #ifdef CURLRES_IPV6 |
1354 | 0 | Curl_dyn_init(&out[1], 1024); |
1355 | 0 | #endif |
1356 | |
|
1357 | 0 | while(a) { |
1358 | 0 | if( |
1359 | 0 | #ifdef CURLRES_IPV6 |
1360 | 0 | a->ai_family == PF_INET6 || |
1361 | 0 | #endif |
1362 | 0 | a->ai_family == PF_INET) { |
1363 | 0 | char buf[MAX_IPADR_LEN]; |
1364 | 0 | struct dynbuf *d = &out[(a->ai_family != PF_INET)]; |
1365 | 0 | Curl_printable_address(a, buf, sizeof(buf)); |
1366 | 0 | if(Curl_dyn_len(d)) |
1367 | 0 | result = Curl_dyn_addn(d, ", ", 2); |
1368 | 0 | if(!result) |
1369 | 0 | result = Curl_dyn_add(d, buf); |
1370 | 0 | if(result) { |
1371 | 0 | infof(data, "too many IP, cannot show"); |
1372 | 0 | goto fail; |
1373 | 0 | } |
1374 | 0 | } |
1375 | 0 | a = a->ai_next; |
1376 | 0 | } |
1377 | | |
1378 | 0 | #ifdef CURLRES_IPV6 |
1379 | 0 | infof(data, "IPv6: %s", |
1380 | 0 | (Curl_dyn_len(&out[1]) ? Curl_dyn_ptr(&out[1]) : "(none)")); |
1381 | 0 | #endif |
1382 | 0 | infof(data, "IPv4: %s", |
1383 | 0 | (Curl_dyn_len(&out[0]) ? Curl_dyn_ptr(&out[0]) : "(none)")); |
1384 | |
|
1385 | 0 | fail: |
1386 | 0 | Curl_dyn_free(&out[0]); |
1387 | 0 | #ifdef CURLRES_IPV6 |
1388 | 0 | Curl_dyn_free(&out[1]); |
1389 | 0 | #endif |
1390 | 0 | } |
1391 | | #endif |
1392 | | |
1393 | | CURLcode Curl_resolv_check(struct Curl_easy *data, |
1394 | | struct Curl_dns_entry **dns) |
1395 | 0 | { |
1396 | 0 | CURLcode result; |
1397 | | #if defined(CURL_DISABLE_DOH) && !defined(CURLRES_ASYNCH) |
1398 | | (void)data; |
1399 | | (void)dns; |
1400 | | #endif |
1401 | 0 | #ifndef CURL_DISABLE_DOH |
1402 | 0 | if(data->conn->bits.doh) { |
1403 | 0 | result = Curl_doh_is_resolved(data, dns); |
1404 | 0 | } |
1405 | 0 | else |
1406 | 0 | #endif |
1407 | 0 | result = Curl_resolver_is_resolved(data, dns); |
1408 | 0 | if(*dns) |
1409 | 0 | show_resolve_info(data, *dns); |
1410 | 0 | return result; |
1411 | 0 | } |
1412 | | |
1413 | | int Curl_resolv_getsock(struct Curl_easy *data, |
1414 | | curl_socket_t *socks) |
1415 | 0 | { |
1416 | 0 | #ifdef CURLRES_ASYNCH |
1417 | 0 | #ifndef CURL_DISABLE_DOH |
1418 | 0 | if(data->conn->bits.doh) |
1419 | | /* nothing to wait for during DoH resolve, those handles have their own |
1420 | | sockets */ |
1421 | 0 | return GETSOCK_BLANK; |
1422 | 0 | #endif |
1423 | 0 | return Curl_resolver_getsock(data, socks); |
1424 | | #else |
1425 | | (void)data; |
1426 | | (void)socks; |
1427 | | return GETSOCK_BLANK; |
1428 | | #endif |
1429 | 0 | } |
1430 | | |
1431 | | /* Call this function after Curl_connect() has returned async=TRUE and |
1432 | | then a successful name resolve has been received. |
1433 | | |
1434 | | Note: this function disconnects and frees the conn data in case of |
1435 | | resolve failure */ |
1436 | | CURLcode Curl_once_resolved(struct Curl_easy *data, bool *protocol_done) |
1437 | 0 | { |
1438 | 0 | CURLcode result; |
1439 | 0 | struct connectdata *conn = data->conn; |
1440 | |
|
1441 | 0 | #ifdef USE_CURL_ASYNC |
1442 | 0 | if(data->state.async.dns) { |
1443 | 0 | conn->dns_entry = data->state.async.dns; |
1444 | 0 | data->state.async.dns = NULL; |
1445 | 0 | } |
1446 | 0 | #endif |
1447 | |
|
1448 | 0 | result = Curl_setup_conn(data, protocol_done); |
1449 | |
|
1450 | 0 | if(result) { |
1451 | 0 | Curl_detach_connection(data); |
1452 | 0 | Curl_cpool_disconnect(data, conn, TRUE); |
1453 | 0 | } |
1454 | 0 | return result; |
1455 | 0 | } |
1456 | | |
1457 | | /* |
1458 | | * Curl_resolver_error() calls failf() with the appropriate message after a |
1459 | | * resolve error |
1460 | | */ |
1461 | | |
1462 | | #ifdef USE_CURL_ASYNC |
1463 | | CURLcode Curl_resolver_error(struct Curl_easy *data) |
1464 | 0 | { |
1465 | 0 | const char *host_or_proxy; |
1466 | 0 | CURLcode result; |
1467 | |
|
1468 | 0 | #ifndef CURL_DISABLE_PROXY |
1469 | 0 | struct connectdata *conn = data->conn; |
1470 | 0 | if(conn->bits.httpproxy) { |
1471 | 0 | host_or_proxy = "proxy"; |
1472 | 0 | result = CURLE_COULDNT_RESOLVE_PROXY; |
1473 | 0 | } |
1474 | 0 | else |
1475 | 0 | #endif |
1476 | 0 | { |
1477 | 0 | host_or_proxy = "host"; |
1478 | 0 | result = CURLE_COULDNT_RESOLVE_HOST; |
1479 | 0 | } |
1480 | |
|
1481 | 0 | failf(data, "Could not resolve %s: %s", host_or_proxy, |
1482 | 0 | data->state.async.hostname); |
1483 | |
|
1484 | 0 | return result; |
1485 | 0 | } |
1486 | | #endif /* USE_CURL_ASYNC */ |