Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/dask/tokenize.py: 46%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

273 statements  

1from __future__ import annotations 

2 

3import copyreg 

4import dataclasses 

5import datetime 

6import decimal 

7import hashlib 

8import inspect 

9import pathlib 

10import pickle 

11import threading 

12import types 

13import uuid 

14from collections import OrderedDict 

15from collections.abc import Iterable 

16from contextvars import ContextVar 

17from functools import partial 

18 

19import cloudpickle 

20from tlz import curry, identity 

21from tlz.functoolz import Compose 

22 

23from dask import config 

24from dask.core import literal 

25from dask.hashing import hash_buffer_hex 

26from dask.utils import Dispatch 

27 

28 

29class TokenizationError(RuntimeError): 

30 pass 

31 

32 

33def _tokenize(*args: object, **kwargs: object) -> str: 

34 token: object = _normalize_seq_func(args) 

35 if kwargs: 

36 token = token, _normalize_seq_func(sorted(kwargs.items())) 

37 

38 # Pass `usedforsecurity=False` to support FIPS builds of Python 

39 return hashlib.md5(str(token).encode(), usedforsecurity=False).hexdigest() 

40 

41 

42tokenize_lock = threading.RLock() 

43_SEEN: dict[int, tuple[int, object]] = {} 

44_ENSURE_DETERMINISTIC: ContextVar[bool | None] = ContextVar("_ENSURE_DETERMINISTIC") 

45 

46 

47def tokenize( 

48 *args: object, ensure_deterministic: bool | None = None, **kwargs: object 

49) -> str: 

50 """Deterministic token 

51 

52 >>> tokenize([1, 2, '3']) # doctest: +SKIP 

53 '06961e8de572e73c2e74b51348177918' 

54 

55 >>> tokenize('Hello') == tokenize('Hello') 

56 True 

57 

58 Parameters 

59 ---------- 

60 args, kwargs: 

61 objects to tokenize 

62 ensure_deterministic: bool, optional 

63 If True, raise TokenizationError if the objects cannot be deterministically 

64 tokenized, e.g. two identical objects will return different tokens. 

65 Defaults to the `tokenize.ensure-deterministic` configuration parameter. 

66 """ 

67 global _SEEN 

68 with tokenize_lock: 

69 seen_before, _SEEN = _SEEN, {} 

70 token = None 

71 try: 

72 _ENSURE_DETERMINISTIC.get() 

73 except LookupError: 

74 token = _ENSURE_DETERMINISTIC.set(ensure_deterministic) 

75 try: 

76 return _tokenize(*args, **kwargs) 

77 finally: 

78 if token: 

79 _ENSURE_DETERMINISTIC.reset(token) 

80 _SEEN = seen_before 

81 

82 

83def _maybe_raise_nondeterministic(msg: str) -> None: 

84 try: 

85 val = _ENSURE_DETERMINISTIC.get() 

86 except LookupError: 

87 val = None 

88 if val or val is None and config.get("tokenize.ensure-deterministic"): 

89 raise TokenizationError(msg) 

90 

91 

92_IDENTITY_DISPATCH = ( 

93 int, 

94 float, 

95 str, 

96 bytes, 

97 type(None), 

98 slice, 

99 complex, 

100 type(Ellipsis), 

101 decimal.Decimal, 

102 datetime.date, 

103 datetime.time, 

104 datetime.datetime, 

105 datetime.timedelta, 

106 pathlib.PurePath, 

107) 

108normalize_token = Dispatch() 

109normalize_token.register( 

110 _IDENTITY_DISPATCH, 

111 identity, 

112) 

113 

114 

115@normalize_token.register((types.MappingProxyType, dict)) 

116def normalize_dict(d): 

117 with tokenize_lock: 

118 if id(d) in _SEEN: 

119 return "__seen", _SEEN[id(d)][0] 

120 _SEEN[id(d)] = len(_SEEN), d 

121 try: 

122 return "dict", _normalize_seq_func( 

123 sorted(d.items(), key=lambda kv: str(kv[0])) 

124 ) 

125 finally: 

126 _SEEN.pop(id(d), None) 

127 

128 

129@normalize_token.register(OrderedDict) 

130def normalize_ordered_dict(d): 

131 return _normalize_seq_func((type(d), list(d.items()))) 

132 

133 

134@normalize_token.register(set) 

135def normalize_set(s): 

136 # Note: in some Python version / OS combinations, set order changes every 

137 # time you recreate the set (even within the same interpreter). 

138 # In most other cases, set ordering is consistent within the same interpreter. 

139 return "set", _normalize_seq_func(sorted(s, key=str)) 

140 

141 

142def _normalize_seq_func(seq: Iterable[object]) -> tuple[object, ...]: 

143 def _inner_normalize_token(item): 

144 # Don't go through Dispatch. That's slow 

145 if isinstance(item, _IDENTITY_DISPATCH): 

146 return item 

147 return normalize_token(item) 

148 

149 with tokenize_lock: 

150 if id(seq) in _SEEN: 

151 return "__seen", _SEEN[id(seq)][0] 

152 _SEEN[id(seq)] = len(_SEEN), seq 

153 try: 

154 return tuple(map(_inner_normalize_token, seq)) 

155 finally: 

156 del _SEEN[id(seq)] 

157 

158 

159@normalize_token.register((tuple, list)) 

160def normalize_seq(seq): 

161 return type(seq).__name__, _normalize_seq_func(seq) 

162 

163 

164@normalize_token.register(literal) 

165def normalize_literal(lit): 

166 return "literal", normalize_token(lit()) 

167 

168 

169@normalize_token.register(Compose) 

170def normalize_compose(func): 

171 return _normalize_seq_func((func.first,) + func.funcs) 

172 

173 

174@normalize_token.register((partial, curry)) 

175def normalize_partial(func): 

176 return _normalize_seq_func((func.func, func.args, func.keywords)) 

177 

178 

179@normalize_token.register((types.MethodType, types.MethodWrapperType)) 

180def normalize_bound_method(meth): 

181 return normalize_token(meth.__self__), meth.__name__ 

182 

183 

184@normalize_token.register(types.BuiltinFunctionType) 

185def normalize_builtin_function_or_method(func): 

186 # Note: BuiltinMethodType is BuiltinFunctionType 

187 self = getattr(func, "__self__", None) 

188 if self is not None and not inspect.ismodule(self): 

189 return normalize_bound_method(func) 

190 else: 

191 return normalize_object(func) 

192 

193 

194@normalize_token.register(object) 

195def normalize_object(o): 

196 method = getattr(o, "__dask_tokenize__", None) 

197 if method is not None and not isinstance(o, type): 

198 return method() 

199 

200 if type(o) is object: 

201 return _normalize_pure_object(o) 

202 

203 if isinstance(o, type): 

204 copyreg._slotnames(o) 

205 

206 if dataclasses.is_dataclass(o) and not isinstance(o, type): 

207 return _normalize_dataclass(o) 

208 

209 try: 

210 return _normalize_pickle(o) 

211 except Exception: 

212 _maybe_raise_nondeterministic( 

213 f"Object {o!r} cannot be deterministically hashed. This likely " 

214 "indicates that the object cannot be serialized deterministically." 

215 ) 

216 return uuid.uuid4().hex 

217 

218 

219_seen_objects = set() 

220 

221 

222def _normalize_pure_object(o: object) -> tuple[str, int]: 

223 _maybe_raise_nondeterministic( 

224 "object() cannot be deterministically hashed. See " 

225 "https://docs.dask.org/en/latest/custom-collections.html#implementing-deterministic-hashing " 

226 "for more information." 

227 ) 

228 # Idempotent, but not deterministic. Make sure that the id is not reused. 

229 _seen_objects.add(o) 

230 return "object", id(o) 

231 

232 

233def _normalize_pickle(o: object) -> tuple: 

234 buffers: list[pickle.PickleBuffer] = [] 

235 pik: int | None = None 

236 pik2: int | None = None 

237 for _ in range(3): 

238 buffers.clear() 

239 try: 

240 out = pickle.dumps(o, protocol=5, buffer_callback=buffers.append) 

241 if b"__main__" in out: 

242 # Use `cloudpickle` for objects defined in `__main__` 

243 buffers.clear() 

244 out = cloudpickle.dumps(o, protocol=5, buffer_callback=buffers.append) 

245 pickle.loads(out, buffers=buffers) 

246 pik2 = hash_buffer_hex(out) 

247 except Exception: 

248 buffers.clear() 

249 try: 

250 out = cloudpickle.dumps(o, protocol=5, buffer_callback=buffers.append) 

251 pickle.loads(out, buffers=buffers) 

252 pik2 = hash_buffer_hex(out) 

253 except Exception: 

254 break 

255 if pik and pik2 and pik == pik2: 

256 break 

257 pik = pik2 

258 else: 

259 _maybe_raise_nondeterministic("Failed to tokenize deterministically") 

260 if pik is None: 

261 _maybe_raise_nondeterministic("Failed to tokenize deterministically") 

262 pik = int(uuid.uuid4()) 

263 return pik, [hash_buffer_hex(buf) for buf in buffers] 

264 

265 

266def _normalize_dataclass(obj): 

267 fields = [ 

268 (field.name, normalize_token(getattr(obj, field.name, None))) 

269 for field in dataclasses.fields(obj) 

270 ] 

271 params = obj.__dataclass_params__ 

272 params = [(attr, getattr(params, attr)) for attr in params.__slots__] 

273 

274 return normalize_object(type(obj)), params, fields 

275 

276 

277@normalize_token.register_lazy("pandas") 

278def register_pandas(): 

279 import pandas as pd 

280 

281 @normalize_token.register(pd.RangeIndex) 

282 def normalize_range_index(x): 

283 return type(x), x.start, x.stop, x.step, x.dtype, x.name 

284 

285 @normalize_token.register(pd.Index) 

286 def normalize_index(ind): 

287 values = ind.array 

288 return type(ind), ind.name, normalize_token(values) 

289 

290 @normalize_token.register(pd.MultiIndex) 

291 def normalize_index(ind): 

292 codes = ind.codes 

293 return ( 

294 [ind.name] 

295 + [normalize_token(x) for x in ind.levels] 

296 + [normalize_token(x) for x in codes] 

297 ) 

298 

299 @normalize_token.register(pd.Categorical) 

300 def normalize_categorical(cat): 

301 return [normalize_token(cat.codes), normalize_token(cat.dtype)] 

302 

303 @normalize_token.register(pd.arrays.PeriodArray) 

304 @normalize_token.register(pd.arrays.DatetimeArray) 

305 @normalize_token.register(pd.arrays.TimedeltaArray) 

306 def normalize_period_array(arr): 

307 return [normalize_token(arr.asi8), normalize_token(arr.dtype)] 

308 

309 @normalize_token.register(pd.arrays.IntervalArray) 

310 def normalize_interval_array(arr): 

311 return [ 

312 normalize_token(arr.left), 

313 normalize_token(arr.right), 

314 normalize_token(arr.closed), 

315 ] 

316 

317 @normalize_token.register(pd.Series) 

318 def normalize_series(s): 

319 return [ 

320 s.name, 

321 s.dtype, 

322 normalize_token(s._values), 

323 normalize_token(s.index), 

324 ] 

325 

326 @normalize_token.register(pd.DataFrame) 

327 def normalize_dataframe(df): 

328 mgr = df._mgr 

329 data = list(mgr.arrays) + [df.columns, df.index] 

330 return list(map(normalize_token, data)) 

331 

332 @normalize_token.register(pd.arrays.ArrowExtensionArray) 

333 def normalize_extension_array(arr): 

334 try: 

335 return (type(arr), normalize_token(arr._pa_array)) 

336 except AttributeError: 

337 return (type(arr), normalize_token(arr._data)) 

338 

339 @normalize_token.register(pd.api.extensions.ExtensionArray) 

340 def normalize_extension_array(arr): 

341 import numpy as np 

342 

343 return normalize_token(np.asarray(arr)) 

344 

345 # Dtypes 

346 @normalize_token.register(pd.api.types.CategoricalDtype) 

347 def normalize_categorical_dtype(dtype): 

348 return [normalize_token(dtype.categories), normalize_token(dtype.ordered)] 

349 

350 @normalize_token.register(pd.api.extensions.ExtensionDtype) 

351 def normalize_period_dtype(dtype): 

352 return normalize_token(dtype.name) 

353 

354 @normalize_token.register(type(pd.NA)) 

355 def normalize_na(na): 

356 return pd.NA 

357 

358 @normalize_token.register(pd.offsets.BaseOffset) 

359 def normalize_offset(offset): 

360 return offset.freqstr 

361 

362 

363@normalize_token.register_lazy("numba") 

364def register_numba(): 

365 import numba 

366 

367 @normalize_token.register(numba.core.serialize.ReduceMixin) 

368 def normalize_numba_ufunc(obj): 

369 return normalize_token((obj._reduce_class(), obj._reduce_states())) 

370 

371 

372@normalize_token.register_lazy("pyarrow") 

373def register_pyarrow(): 

374 import pyarrow as pa 

375 

376 @normalize_token.register(pa.DataType) 

377 def normalize_datatype(dt): 

378 return pickle.dumps(dt, protocol=4) 

379 

380 @normalize_token.register(pa.Table) 

381 def normalize_table(dt): 

382 return ( 

383 "pa.Table", 

384 normalize_token(dt.schema), 

385 normalize_token(dt.columns), 

386 ) 

387 

388 @normalize_token.register(pa.ChunkedArray) 

389 def normalize_chunked_array(arr): 

390 return ( 

391 "pa.ChunkedArray", 

392 normalize_token(arr.type), 

393 normalize_token(arr.chunks), 

394 ) 

395 

396 @normalize_token.register(pa.Array) 

397 def normalize_chunked_array(arr): 

398 return ( 

399 "pa.Array", 

400 normalize_token(arr.type), 

401 normalize_token(arr.buffers()), 

402 ) 

403 

404 @normalize_token.register(pa.Buffer) 

405 def normalize_chunked_array(buf): 

406 return ("pa.Buffer", hash_buffer_hex(buf)) 

407 

408 

409@normalize_token.register_lazy("numpy") 

410def register_numpy(): 

411 import numpy as np 

412 

413 @normalize_token.register(np.ndarray) 

414 def normalize_array(x): 

415 if not x.shape: 

416 return (x.item(), x.dtype) 

417 if x.dtype.hasobject: 

418 try: 

419 try: 

420 # string fast-path 

421 data = hash_buffer_hex( 

422 "-".join(x.flat).encode( 

423 encoding="utf-8", errors="surrogatepass" 

424 ) 

425 ) 

426 except UnicodeDecodeError: 

427 # bytes fast-path 

428 data = hash_buffer_hex(b"-".join(x.flat)) 

429 except (TypeError, UnicodeDecodeError): 

430 return normalize_object(x) 

431 else: 

432 try: 

433 data = hash_buffer_hex(x.ravel(order="K").view("i1")) 

434 except (BufferError, AttributeError, ValueError): 

435 data = hash_buffer_hex(x.copy().ravel(order="K").view("i1")) 

436 return (data, x.dtype, x.shape) 

437 

438 @normalize_token.register(np.memmap) 

439 def normalize_mmap(mm): 

440 return hash_buffer_hex(np.ascontiguousarray(mm)) 

441 

442 @normalize_token.register(np.ufunc) 

443 def normalize_ufunc(func): 

444 try: 

445 return _normalize_pickle(func) 

446 except Exception: 

447 _maybe_raise_nondeterministic( 

448 f"Cannot tokenize numpy ufunc {func!r}. Please use functions " 

449 "of the dask.array.ufunc module instead. See also " 

450 "https://docs.dask.org/en/latest/array-numpy-compatibility.html" 

451 ) 

452 return uuid.uuid4().hex 

453 

454 @normalize_token.register(np.dtype) 

455 def normalize_dtype(dtype): 

456 return dtype.str 

457 

458 

459def _tokenize_deterministic(*args, **kwargs) -> str: 

460 # Utility to be strict about deterministic tokens 

461 return tokenize(*args, ensure_deterministic=True, **kwargs)