/src/dng_sdk/source/dng_spline.cpp
Line | Count | Source |
1 | | /*****************************************************************************/ |
2 | | // Copyright 2006-2007 Adobe Systems Incorporated |
3 | | // All Rights Reserved. |
4 | | // |
5 | | // NOTICE: Adobe permits you to use, modify, and distribute this file in |
6 | | // accordance with the terms of the Adobe license agreement accompanying it. |
7 | | /*****************************************************************************/ |
8 | | |
9 | | /* $Id: //mondo/dng_sdk_1_4/dng_sdk/source/dng_spline.cpp#1 $ */ |
10 | | /* $DateTime: 2012/05/30 13:28:51 $ */ |
11 | | /* $Change: 832332 $ */ |
12 | | /* $Author: tknoll $ */ |
13 | | |
14 | | /*****************************************************************************/ |
15 | | |
16 | | #include "dng_spline.h" |
17 | | |
18 | | #include "dng_assertions.h" |
19 | | #include "dng_exceptions.h" |
20 | | |
21 | | /******************************************************************************/ |
22 | | |
23 | | dng_spline_solver::dng_spline_solver () |
24 | | |
25 | 56 | : X () |
26 | 56 | , Y () |
27 | 56 | , S () |
28 | | |
29 | 56 | { |
30 | | |
31 | 56 | } |
32 | | |
33 | | /******************************************************************************/ |
34 | | |
35 | | dng_spline_solver::~dng_spline_solver () |
36 | 56 | { |
37 | | |
38 | 56 | } |
39 | | |
40 | | /******************************************************************************/ |
41 | | |
42 | | void dng_spline_solver::Reset () |
43 | 56 | { |
44 | | |
45 | 56 | X.clear (); |
46 | 56 | Y.clear (); |
47 | | |
48 | 56 | S.clear (); |
49 | | |
50 | 56 | } |
51 | | |
52 | | /******************************************************************************/ |
53 | | |
54 | | void dng_spline_solver::Add (real64 x, real64 y) |
55 | 217 | { |
56 | | |
57 | 217 | X.push_back (x); |
58 | 217 | Y.push_back (y); |
59 | | |
60 | 217 | } |
61 | | |
62 | | /******************************************************************************/ |
63 | | |
64 | | void dng_spline_solver::Solve () |
65 | 56 | { |
66 | | |
67 | | // This code computes the unique curve such that: |
68 | | // It is C0, C1, and C2 continuous |
69 | | // The second derivative is zero at the end points |
70 | | |
71 | 56 | int32 count = (int32) X.size (); |
72 | | |
73 | 56 | DNG_ASSERT (count >= 2, "Too few points"); |
74 | | |
75 | 56 | int32 start = 0; |
76 | 56 | int32 end = count; |
77 | | |
78 | 56 | real64 A = X [start+1] - X [start]; |
79 | 56 | real64 B = (Y [start+1] - Y [start]) / A; |
80 | | |
81 | 56 | S.resize (count); |
82 | | |
83 | 56 | S [start] = B; |
84 | | |
85 | 56 | int32 j; |
86 | | |
87 | | // Slopes here are a weighted average of the slopes |
88 | | // to each of the adjcent control points. |
89 | | |
90 | 161 | for (j = start + 2; j < end; ++j) |
91 | 105 | { |
92 | | |
93 | 105 | real64 C = X [j] - X [j-1]; |
94 | 105 | real64 D = (Y [j] - Y [j-1]) / C; |
95 | | |
96 | 105 | S [j-1] = (B * C + D * A) / (A + C); |
97 | | |
98 | 105 | A = C; |
99 | 105 | B = D; |
100 | | |
101 | 105 | } |
102 | | |
103 | 56 | S [end-1] = 2.0 * B - S [end-2]; |
104 | 56 | S [start] = 2.0 * S [start] - S [start+1]; |
105 | | |
106 | 56 | if ((end - start) > 2) |
107 | 47 | { |
108 | | |
109 | 47 | dng_std_vector<real64> E; |
110 | 47 | dng_std_vector<real64> F; |
111 | 47 | dng_std_vector<real64> G; |
112 | | |
113 | 47 | E.resize (count); |
114 | 47 | F.resize (count); |
115 | 47 | G.resize (count); |
116 | | |
117 | 47 | F [start] = 0.5; |
118 | 47 | E [end-1] = 0.5; |
119 | 47 | G [start] = 0.75 * (S [start] + S [start+1]); |
120 | 47 | G [end-1] = 0.75 * (S [end-2] + S [end-1]); |
121 | | |
122 | 152 | for (j = start+1; j < end - 1; ++j) |
123 | 105 | { |
124 | | |
125 | 105 | A = (X [j+1] - X [j-1]) * 2.0; |
126 | | |
127 | 105 | E [j] = (X [j+1] - X [j]) / A; |
128 | 105 | F [j] = (X [j] - X [j-1]) / A; |
129 | 105 | G [j] = 1.5 * S [j]; |
130 | | |
131 | 105 | } |
132 | | |
133 | 199 | for (j = start+1; j < end; ++j) |
134 | 152 | { |
135 | | |
136 | 152 | A = 1.0 - F [j-1] * E [j]; |
137 | | |
138 | 152 | if (j != end-1) F [j] /= A; |
139 | | |
140 | 152 | G [j] = (G [j] - G [j-1] * E [j]) / A; |
141 | | |
142 | 152 | } |
143 | | |
144 | 199 | for (j = end - 2; j >= start; --j) |
145 | 152 | G [j] = G [j] - F [j] * G [j+1]; |
146 | | |
147 | 246 | for (j = start; j < end; ++j) |
148 | 199 | S [j] = G [j]; |
149 | | |
150 | 47 | } |
151 | | |
152 | 56 | } |
153 | | |
154 | | /******************************************************************************/ |
155 | | |
156 | | bool dng_spline_solver::IsIdentity () const |
157 | 0 | { |
158 | | |
159 | 0 | int32 count = (int32) X.size (); |
160 | | |
161 | 0 | if (count != 2) |
162 | 0 | return false; |
163 | | |
164 | 0 | if (X [0] != 0.0 || X [1] != 1.0 || |
165 | 0 | Y [0] != 0.0 || Y [1] != 1.0) |
166 | 0 | return false; |
167 | | |
168 | 0 | return true; |
169 | | |
170 | 0 | } |
171 | | |
172 | | /******************************************************************************/ |
173 | | |
174 | | real64 dng_spline_solver::Evaluate (real64 x) const |
175 | 217k | { |
176 | | |
177 | 217k | int32 count = (int32) X.size (); |
178 | | |
179 | | // Check for off each end of point list. |
180 | | |
181 | 217k | if (x <= X [0]) |
182 | 3.66k | return Y [0]; |
183 | | |
184 | 213k | if (x >= X [count-1]) |
185 | 158k | return Y [count-1]; |
186 | | |
187 | | // Binary search for the index. |
188 | | |
189 | 55.2k | int32 lower = 1; |
190 | 55.2k | int32 upper = count - 1; |
191 | | |
192 | 94.2k | while (upper > lower) |
193 | 39.0k | { |
194 | | |
195 | 39.0k | int32 mid = (lower + upper) >> 1; |
196 | | |
197 | 39.0k | if (x == X [mid]) |
198 | 22 | { |
199 | 22 | return Y [mid]; |
200 | 22 | } |
201 | | |
202 | 38.9k | if (x > X [mid]) |
203 | 9.47k | lower = mid + 1; |
204 | 29.5k | else |
205 | 29.5k | upper = mid; |
206 | | |
207 | 38.9k | } |
208 | | |
209 | 55.2k | DNG_ASSERT (upper == lower, "Binary search error in point list"); |
210 | | |
211 | 55.2k | int32 j = lower; |
212 | | |
213 | | // X [j - 1] < x <= X [j] |
214 | | // A is the distance between the X [j] and X [j - 1] |
215 | | // B and C describe the fractional distance to either side. B + C = 1. |
216 | | |
217 | | // We compute a cubic spline between the two points with slopes |
218 | | // S[j-1] and S[j] at either end. Specifically, we compute the 1-D Bezier |
219 | | // with control values: |
220 | | // |
221 | | // Y[j-1], Y[j-1] + S[j-1]*A, Y[j]-S[j]*A, Y[j] |
222 | | |
223 | 55.2k | return EvaluateSplineSegment (x, |
224 | 55.2k | X [j - 1], |
225 | 55.2k | Y [j - 1], |
226 | 55.2k | S [j - 1], |
227 | 55.2k | X [j ], |
228 | 55.2k | Y [j ], |
229 | 55.2k | S [j ]); |
230 | | |
231 | 55.2k | } |
232 | | |
233 | | /*****************************************************************************/ |