Coverage Report

Created: 2023-09-25 06:24

/src/double-conversion/double-conversion/bignum.cc
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2010 the V8 project authors. All rights reserved.
2
// Redistribution and use in source and binary forms, with or without
3
// modification, are permitted provided that the following conditions are
4
// met:
5
//
6
//     * Redistributions of source code must retain the above copyright
7
//       notice, this list of conditions and the following disclaimer.
8
//     * Redistributions in binary form must reproduce the above
9
//       copyright notice, this list of conditions and the following
10
//       disclaimer in the documentation and/or other materials provided
11
//       with the distribution.
12
//     * Neither the name of Google Inc. nor the names of its
13
//       contributors may be used to endorse or promote products derived
14
//       from this software without specific prior written permission.
15
//
16
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28
#include <algorithm>
29
#include <cstring>
30
31
#include "bignum.h"
32
#include "utils.h"
33
34
namespace double_conversion {
35
36
973k
Bignum::Chunk& Bignum::RawBigit(const int index) {
37
973k
  DOUBLE_CONVERSION_ASSERT(static_cast<unsigned>(index) < kBigitCapacity);
38
0
  return bigits_buffer_[index];
39
973k
}
40
41
42
17.9k
const Bignum::Chunk& Bignum::RawBigit(const int index) const {
43
17.9k
  DOUBLE_CONVERSION_ASSERT(static_cast<unsigned>(index) < kBigitCapacity);
44
0
  return bigits_buffer_[index];
45
17.9k
}
46
47
48
template<typename S>
49
0
static int BitSize(const S value) {
50
0
  (void) value;  // Mark variable as used.
51
0
  return 8 * sizeof(value);
52
0
}
53
54
// Guaranteed to lie in one Bigit.
55
0
void Bignum::AssignUInt16(const uint16_t value) {
56
0
  DOUBLE_CONVERSION_ASSERT(kBigitSize >= BitSize(value));
57
0
  Zero();
58
0
  if (value > 0) {
59
0
    RawBigit(0) = value;
60
0
    used_bigits_ = 1;
61
0
  }
62
0
}
63
64
65
2.97k
void Bignum::AssignUInt64(uint64_t value) {
66
2.97k
  Zero();
67
9.64k
  for(int i = 0; value > 0; ++i) {
68
6.66k
    RawBigit(i) = value & kBigitMask;
69
6.66k
    value >>= kBigitSize;
70
6.66k
    ++used_bigits_;
71
6.66k
  }
72
2.97k
}
73
74
75
0
void Bignum::AssignBignum(const Bignum& other) {
76
0
  exponent_ = other.exponent_;
77
0
  for (int i = 0; i < other.used_bigits_; ++i) {
78
0
    RawBigit(i) = other.RawBigit(i);
79
0
  }
80
0
  used_bigits_ = other.used_bigits_;
81
0
}
82
83
84
static uint64_t ReadUInt64(const Vector<const char> buffer,
85
                           const int from,
86
3.92k
                           const int digits_to_read) {
87
3.92k
  uint64_t result = 0;
88
70.3k
  for (int i = from; i < from + digits_to_read; ++i) {
89
66.4k
    const int digit = buffer[i] - '0';
90
66.4k
    DOUBLE_CONVERSION_ASSERT(0 <= digit && digit <= 9);
91
0
    result = result * 10 + digit;
92
66.4k
  }
93
3.92k
  return result;
94
3.92k
}
95
96
97
710
void Bignum::AssignDecimalString(const Vector<const char> value) {
98
  // 2^64 = 18446744073709551616 > 10^19
99
710
  static const int kMaxUint64DecimalDigits = 19;
100
710
  Zero();
101
710
  int length = value.length();
102
710
  unsigned pos = 0;
103
  // Let's just say that each digit needs 4 bits.
104
3.92k
  while (length >= kMaxUint64DecimalDigits) {
105
3.21k
    const uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
106
3.21k
    pos += kMaxUint64DecimalDigits;
107
3.21k
    length -= kMaxUint64DecimalDigits;
108
3.21k
    MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
109
3.21k
    AddUInt64(digits);
110
3.21k
  }
111
710
  const uint64_t digits = ReadUInt64(value, pos, length);
112
710
  MultiplyByPowerOfTen(length);
113
710
  AddUInt64(digits);
114
710
  Clamp();
115
710
}
116
117
118
0
static uint64_t HexCharValue(const int c) {
119
0
  if ('0' <= c && c <= '9') {
120
0
    return c - '0';
121
0
  }
122
0
  if ('a' <= c && c <= 'f') {
123
0
    return 10 + c - 'a';
124
0
  }
125
0
  DOUBLE_CONVERSION_ASSERT('A' <= c && c <= 'F');
126
0
  return 10 + c - 'A';
127
0
}
128
129
130
// Unlike AssignDecimalString(), this function is "only" used
131
// for unit-tests and therefore not performance critical.
132
0
void Bignum::AssignHexString(Vector<const char> value) {
133
0
  Zero();
134
  // Required capacity could be reduced by ignoring leading zeros.
135
0
  EnsureCapacity(((value.length() * 4) + kBigitSize - 1) / kBigitSize);
136
0
  DOUBLE_CONVERSION_ASSERT(sizeof(uint64_t) * 8 >= kBigitSize + 4);  // TODO: static_assert
137
  // Accumulates converted hex digits until at least kBigitSize bits.
138
  // Works with non-factor-of-four kBigitSizes.
139
0
  uint64_t tmp = 0;
140
0
  for (int cnt = 0; !value.is_empty(); value.pop_back()) {
141
0
    tmp |= (HexCharValue(value.last()) << cnt);
142
0
    if ((cnt += 4) >= kBigitSize) {
143
0
      RawBigit(used_bigits_++) = (tmp & kBigitMask);
144
0
      cnt -= kBigitSize;
145
0
      tmp >>= kBigitSize;
146
0
    }
147
0
  }
148
0
  if (tmp > 0) {
149
0
    DOUBLE_CONVERSION_ASSERT(tmp <= kBigitMask);
150
0
    RawBigit(used_bigits_++) = static_cast<Bignum::Chunk>(tmp & kBigitMask);
151
0
  }
152
0
  Clamp();
153
0
}
154
155
156
3.92k
void Bignum::AddUInt64(const uint64_t operand) {
157
3.92k
  if (operand == 0) {
158
1.65k
    return;
159
1.65k
  }
160
2.26k
  Bignum other;
161
2.26k
  other.AssignUInt64(operand);
162
2.26k
  AddBignum(other);
163
2.26k
}
164
165
166
2.26k
void Bignum::AddBignum(const Bignum& other) {
167
2.26k
  DOUBLE_CONVERSION_ASSERT(IsClamped());
168
2.26k
  DOUBLE_CONVERSION_ASSERT(other.IsClamped());
169
170
  // If this has a greater exponent than other append zero-bigits to this.
171
  // After this call exponent_ <= other.exponent_.
172
0
  Align(other);
173
174
  // There are two possibilities:
175
  //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent)
176
  //     bbbbb 00000000
177
  //   ----------------
178
  //   ccccccccccc 0000
179
  // or
180
  //    aaaaaaaaaa 0000
181
  //  bbbbbbbbb 0000000
182
  //  -----------------
183
  //  cccccccccccc 0000
184
  // In both cases we might need a carry bigit.
185
186
2.26k
  EnsureCapacity(1 + (std::max)(BigitLength(), other.BigitLength()) - exponent_);
187
2.26k
  Chunk carry = 0;
188
2.26k
  int bigit_pos = other.exponent_ - exponent_;
189
2.26k
  DOUBLE_CONVERSION_ASSERT(bigit_pos >= 0);
190
2.26k
  for (int i = used_bigits_; i < bigit_pos; ++i) {
191
0
    RawBigit(i) = 0;
192
0
  }
193
7.53k
  for (int i = 0; i < other.used_bigits_; ++i) {
194
5.27k
    const Chunk my = (bigit_pos < used_bigits_) ? RawBigit(bigit_pos) : 0;
195
5.27k
    const Chunk sum = my + other.RawBigit(i) + carry;
196
5.27k
    RawBigit(bigit_pos) = sum & kBigitMask;
197
5.27k
    carry = sum >> kBigitSize;
198
5.27k
    ++bigit_pos;
199
5.27k
  }
200
2.59k
  while (carry != 0) {
201
328
    const Chunk my = (bigit_pos < used_bigits_) ? RawBigit(bigit_pos) : 0;
202
328
    const Chunk sum = my + carry;
203
328
    RawBigit(bigit_pos) = sum & kBigitMask;
204
328
    carry = sum >> kBigitSize;
205
328
    ++bigit_pos;
206
328
  }
207
2.26k
  used_bigits_ = static_cast<int16_t>(std::max(bigit_pos, static_cast<int>(used_bigits_)));
208
2.26k
  DOUBLE_CONVERSION_ASSERT(IsClamped());
209
2.26k
}
210
211
212
0
void Bignum::SubtractBignum(const Bignum& other) {
213
0
  DOUBLE_CONVERSION_ASSERT(IsClamped());
214
0
  DOUBLE_CONVERSION_ASSERT(other.IsClamped());
215
  // We require this to be bigger than other.
216
0
  DOUBLE_CONVERSION_ASSERT(LessEqual(other, *this));
217
218
0
  Align(other);
219
220
0
  const int offset = other.exponent_ - exponent_;
221
0
  Chunk borrow = 0;
222
0
  int i;
223
0
  for (i = 0; i < other.used_bigits_; ++i) {
224
0
    DOUBLE_CONVERSION_ASSERT((borrow == 0) || (borrow == 1));
225
0
    const Chunk difference = RawBigit(i + offset) - other.RawBigit(i) - borrow;
226
0
    RawBigit(i + offset) = difference & kBigitMask;
227
0
    borrow = difference >> (kChunkSize - 1);
228
0
  }
229
0
  while (borrow != 0) {
230
0
    const Chunk difference = RawBigit(i + offset) - borrow;
231
0
    RawBigit(i + offset) = difference & kBigitMask;
232
0
    borrow = difference >> (kChunkSize - 1);
233
0
    ++i;
234
0
  }
235
0
  Clamp();
236
0
}
237
238
239
4.26k
void Bignum::ShiftLeft(const int shift_amount) {
240
4.26k
  if (used_bigits_ == 0) {
241
0
    return;
242
0
  }
243
4.26k
  exponent_ += static_cast<int16_t>(shift_amount / kBigitSize);
244
4.26k
  const int local_shift = shift_amount % kBigitSize;
245
4.26k
  EnsureCapacity(used_bigits_ + 1);
246
4.26k
  BigitsShiftLeft(local_shift);
247
4.26k
}
248
249
250
6.67k
void Bignum::MultiplyByUInt32(const uint32_t factor) {
251
6.67k
  if (factor == 1) {
252
0
    return;
253
0
  }
254
6.67k
  if (factor == 0) {
255
0
    Zero();
256
0
    return;
257
0
  }
258
6.67k
  if (used_bigits_ == 0) {
259
0
    return;
260
0
  }
261
  // The product of a bigit with the factor is of size kBigitSize + 32.
262
  // Assert that this number + 1 (for the carry) fits into double chunk.
263
6.67k
  DOUBLE_CONVERSION_ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
264
0
  DoubleChunk carry = 0;
265
199k
  for (int i = 0; i < used_bigits_; ++i) {
266
192k
    const DoubleChunk product = static_cast<DoubleChunk>(factor) * RawBigit(i) + carry;
267
192k
    RawBigit(i) = static_cast<Chunk>(product & kBigitMask);
268
192k
    carry = (product >> kBigitSize);
269
192k
  }
270
11.8k
  while (carry != 0) {
271
5.18k
    EnsureCapacity(used_bigits_ + 1);
272
5.18k
    RawBigit(used_bigits_) = carry & kBigitMask;
273
5.18k
    used_bigits_++;
274
5.18k
    carry >>= kBigitSize;
275
5.18k
  }
276
6.67k
}
277
278
279
3.75k
void Bignum::MultiplyByUInt64(const uint64_t factor) {
280
3.75k
  if (factor == 1) {
281
0
    return;
282
0
  }
283
3.75k
  if (factor == 0) {
284
0
    Zero();
285
0
    return;
286
0
  }
287
3.75k
  if (used_bigits_ == 0) {
288
0
    return;
289
0
  }
290
3.75k
  DOUBLE_CONVERSION_ASSERT(kBigitSize < 32);
291
0
  uint64_t carry = 0;
292
3.75k
  const uint64_t low = factor & 0xFFFFFFFF;
293
3.75k
  const uint64_t high = factor >> 32;
294
77.4k
  for (int i = 0; i < used_bigits_; ++i) {
295
73.6k
    const uint64_t product_low = low * RawBigit(i);
296
73.6k
    const uint64_t product_high = high * RawBigit(i);
297
73.6k
    const uint64_t tmp = (carry & kBigitMask) + product_low;
298
73.6k
    RawBigit(i) = tmp & kBigitMask;
299
73.6k
    carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
300
73.6k
        (product_high << (32 - kBigitSize));
301
73.6k
  }
302
12.1k
  while (carry != 0) {
303
8.43k
    EnsureCapacity(used_bigits_ + 1);
304
8.43k
    RawBigit(used_bigits_) = carry & kBigitMask;
305
8.43k
    used_bigits_++;
306
8.43k
    carry >>= kBigitSize;
307
8.43k
  }
308
3.75k
}
309
310
311
4.63k
void Bignum::MultiplyByPowerOfTen(const int exponent) {
312
4.63k
  static const uint64_t kFive27 = DOUBLE_CONVERSION_UINT64_2PART_C(0x6765c793, fa10079d);
313
4.63k
  static const uint16_t kFive1 = 5;
314
4.63k
  static const uint16_t kFive2 = kFive1 * 5;
315
4.63k
  static const uint16_t kFive3 = kFive2 * 5;
316
4.63k
  static const uint16_t kFive4 = kFive3 * 5;
317
4.63k
  static const uint16_t kFive5 = kFive4 * 5;
318
4.63k
  static const uint16_t kFive6 = kFive5 * 5;
319
4.63k
  static const uint32_t kFive7 = kFive6 * 5;
320
4.63k
  static const uint32_t kFive8 = kFive7 * 5;
321
4.63k
  static const uint32_t kFive9 = kFive8 * 5;
322
4.63k
  static const uint32_t kFive10 = kFive9 * 5;
323
4.63k
  static const uint32_t kFive11 = kFive10 * 5;
324
4.63k
  static const uint32_t kFive12 = kFive11 * 5;
325
4.63k
  static const uint32_t kFive13 = kFive12 * 5;
326
4.63k
  static const uint32_t kFive1_to_12[] =
327
4.63k
      { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
328
4.63k
        kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
329
330
4.63k
  DOUBLE_CONVERSION_ASSERT(exponent >= 0);
331
332
4.63k
  if (exponent == 0) {
333
365
    return;
334
365
  }
335
4.26k
  if (used_bigits_ == 0) {
336
710
    return;
337
710
  }
338
  // We shift by exponent at the end just before returning.
339
3.55k
  int remaining_exponent = exponent;
340
7.30k
  while (remaining_exponent >= 27) {
341
3.75k
    MultiplyByUInt64(kFive27);
342
3.75k
    remaining_exponent -= 27;
343
3.75k
  }
344
6.78k
  while (remaining_exponent >= 13) {
345
3.23k
    MultiplyByUInt32(kFive13);
346
3.23k
    remaining_exponent -= 13;
347
3.23k
  }
348
3.55k
  if (remaining_exponent > 0) {
349
3.44k
    MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
350
3.44k
  }
351
3.55k
  ShiftLeft(exponent);
352
3.55k
}
353
354
355
0
void Bignum::Square() {
356
0
  DOUBLE_CONVERSION_ASSERT(IsClamped());
357
0
  const int product_length = 2 * used_bigits_;
358
0
  EnsureCapacity(product_length);
359
360
  // Comba multiplication: compute each column separately.
361
  // Example: r = a2a1a0 * b2b1b0.
362
  //    r =  1    * a0b0 +
363
  //        10    * (a1b0 + a0b1) +
364
  //        100   * (a2b0 + a1b1 + a0b2) +
365
  //        1000  * (a2b1 + a1b2) +
366
  //        10000 * a2b2
367
  //
368
  // In the worst case we have to accumulate nb-digits products of digit*digit.
369
  //
370
  // Assert that the additional number of bits in a DoubleChunk are enough to
371
  // sum up used_digits of Bigit*Bigit.
372
0
  if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_bigits_) {
373
0
    DOUBLE_CONVERSION_UNIMPLEMENTED();
374
0
  }
375
0
  DoubleChunk accumulator = 0;
376
  // First shift the digits so we don't overwrite them.
377
0
  const int copy_offset = used_bigits_;
378
0
  for (int i = 0; i < used_bigits_; ++i) {
379
0
    RawBigit(copy_offset + i) = RawBigit(i);
380
0
  }
381
  // We have two loops to avoid some 'if's in the loop.
382
0
  for (int i = 0; i < used_bigits_; ++i) {
383
    // Process temporary digit i with power i.
384
    // The sum of the two indices must be equal to i.
385
0
    int bigit_index1 = i;
386
0
    int bigit_index2 = 0;
387
    // Sum all of the sub-products.
388
0
    while (bigit_index1 >= 0) {
389
0
      const Chunk chunk1 = RawBigit(copy_offset + bigit_index1);
390
0
      const Chunk chunk2 = RawBigit(copy_offset + bigit_index2);
391
0
      accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
392
0
      bigit_index1--;
393
0
      bigit_index2++;
394
0
    }
395
0
    RawBigit(i) = static_cast<Chunk>(accumulator) & kBigitMask;
396
0
    accumulator >>= kBigitSize;
397
0
  }
398
0
  for (int i = used_bigits_; i < product_length; ++i) {
399
0
    int bigit_index1 = used_bigits_ - 1;
400
0
    int bigit_index2 = i - bigit_index1;
401
    // Invariant: sum of both indices is again equal to i.
402
    // Inner loop runs 0 times on last iteration, emptying accumulator.
403
0
    while (bigit_index2 < used_bigits_) {
404
0
      const Chunk chunk1 = RawBigit(copy_offset + bigit_index1);
405
0
      const Chunk chunk2 = RawBigit(copy_offset + bigit_index2);
406
0
      accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
407
0
      bigit_index1--;
408
0
      bigit_index2++;
409
0
    }
410
    // The overwritten RawBigit(i) will never be read in further loop iterations,
411
    // because bigit_index1 and bigit_index2 are always greater
412
    // than i - used_bigits_.
413
0
    RawBigit(i) = static_cast<Chunk>(accumulator) & kBigitMask;
414
0
    accumulator >>= kBigitSize;
415
0
  }
416
  // Since the result was guaranteed to lie inside the number the
417
  // accumulator must be 0 now.
418
0
  DOUBLE_CONVERSION_ASSERT(accumulator == 0);
419
420
  // Don't forget to update the used_digits and the exponent.
421
0
  used_bigits_ = static_cast<int16_t>(product_length);
422
0
  exponent_ *= 2;
423
0
  Clamp();
424
0
}
425
426
427
0
void Bignum::AssignPowerUInt16(uint16_t base, const int power_exponent) {
428
0
  DOUBLE_CONVERSION_ASSERT(base != 0);
429
0
  DOUBLE_CONVERSION_ASSERT(power_exponent >= 0);
430
0
  if (power_exponent == 0) {
431
0
    AssignUInt16(1);
432
0
    return;
433
0
  }
434
0
  Zero();
435
0
  int shifts = 0;
436
  // We expect base to be in range 2-32, and most often to be 10.
437
  // It does not make much sense to implement different algorithms for counting
438
  // the bits.
439
0
  while ((base & 1) == 0) {
440
0
    base >>= 1;
441
0
    shifts++;
442
0
  }
443
0
  int bit_size = 0;
444
0
  int tmp_base = base;
445
0
  while (tmp_base != 0) {
446
0
    tmp_base >>= 1;
447
0
    bit_size++;
448
0
  }
449
0
  const int final_size = bit_size * power_exponent;
450
  // 1 extra bigit for the shifting, and one for rounded final_size.
451
0
  EnsureCapacity(final_size / kBigitSize + 2);
452
453
  // Left to Right exponentiation.
454
0
  int mask = 1;
455
0
  while (power_exponent >= mask) mask <<= 1;
456
457
  // The mask is now pointing to the bit above the most significant 1-bit of
458
  // power_exponent.
459
  // Get rid of first 1-bit;
460
0
  mask >>= 2;
461
0
  uint64_t this_value = base;
462
463
0
  bool delayed_multiplication = false;
464
0
  const uint64_t max_32bits = 0xFFFFFFFF;
465
0
  while (mask != 0 && this_value <= max_32bits) {
466
0
    this_value = this_value * this_value;
467
    // Verify that there is enough space in this_value to perform the
468
    // multiplication.  The first bit_size bits must be 0.
469
0
    if ((power_exponent & mask) != 0) {
470
0
      DOUBLE_CONVERSION_ASSERT(bit_size > 0);
471
0
      const uint64_t base_bits_mask =
472
0
        ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
473
0
      const bool high_bits_zero = (this_value & base_bits_mask) == 0;
474
0
      if (high_bits_zero) {
475
0
        this_value *= base;
476
0
      } else {
477
0
        delayed_multiplication = true;
478
0
      }
479
0
    }
480
0
    mask >>= 1;
481
0
  }
482
0
  AssignUInt64(this_value);
483
0
  if (delayed_multiplication) {
484
0
    MultiplyByUInt32(base);
485
0
  }
486
487
  // Now do the same thing as a bignum.
488
0
  while (mask != 0) {
489
0
    Square();
490
0
    if ((power_exponent & mask) != 0) {
491
0
      MultiplyByUInt32(base);
492
0
    }
493
0
    mask >>= 1;
494
0
  }
495
496
  // And finally add the saved shifts.
497
0
  ShiftLeft(shifts * power_exponent);
498
0
}
499
500
501
// Precondition: this/other < 16bit.
502
0
uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
503
0
  DOUBLE_CONVERSION_ASSERT(IsClamped());
504
0
  DOUBLE_CONVERSION_ASSERT(other.IsClamped());
505
0
  DOUBLE_CONVERSION_ASSERT(other.used_bigits_ > 0);
506
507
  // Easy case: if we have less digits than the divisor than the result is 0.
508
  // Note: this handles the case where this == 0, too.
509
0
  if (BigitLength() < other.BigitLength()) {
510
0
    return 0;
511
0
  }
512
513
0
  Align(other);
514
515
0
  uint16_t result = 0;
516
517
  // Start by removing multiples of 'other' until both numbers have the same
518
  // number of digits.
519
0
  while (BigitLength() > other.BigitLength()) {
520
    // This naive approach is extremely inefficient if `this` divided by other
521
    // is big. This function is implemented for doubleToString where
522
    // the result should be small (less than 10).
523
0
    DOUBLE_CONVERSION_ASSERT(other.RawBigit(other.used_bigits_ - 1) >= ((1 << kBigitSize) / 16));
524
0
    DOUBLE_CONVERSION_ASSERT(RawBigit(used_bigits_ - 1) < 0x10000);
525
    // Remove the multiples of the first digit.
526
    // Example this = 23 and other equals 9. -> Remove 2 multiples.
527
0
    result += static_cast<uint16_t>(RawBigit(used_bigits_ - 1));
528
0
    SubtractTimes(other, RawBigit(used_bigits_ - 1));
529
0
  }
530
531
0
  DOUBLE_CONVERSION_ASSERT(BigitLength() == other.BigitLength());
532
533
  // Both bignums are at the same length now.
534
  // Since other has more than 0 digits we know that the access to
535
  // RawBigit(used_bigits_ - 1) is safe.
536
0
  const Chunk this_bigit = RawBigit(used_bigits_ - 1);
537
0
  const Chunk other_bigit = other.RawBigit(other.used_bigits_ - 1);
538
539
0
  if (other.used_bigits_ == 1) {
540
    // Shortcut for easy (and common) case.
541
0
    int quotient = this_bigit / other_bigit;
542
0
    RawBigit(used_bigits_ - 1) = this_bigit - other_bigit * quotient;
543
0
    DOUBLE_CONVERSION_ASSERT(quotient < 0x10000);
544
0
    result += static_cast<uint16_t>(quotient);
545
0
    Clamp();
546
0
    return result;
547
0
  }
548
549
0
  const int division_estimate = this_bigit / (other_bigit + 1);
550
0
  DOUBLE_CONVERSION_ASSERT(division_estimate < 0x10000);
551
0
  result += static_cast<uint16_t>(division_estimate);
552
0
  SubtractTimes(other, division_estimate);
553
554
0
  if (other_bigit * (division_estimate + 1) > this_bigit) {
555
    // No need to even try to subtract. Even if other's remaining digits were 0
556
    // another subtraction would be too much.
557
0
    return result;
558
0
  }
559
560
0
  while (LessEqual(other, *this)) {
561
0
    SubtractBignum(other);
562
0
    result++;
563
0
  }
564
0
  return result;
565
0
}
566
567
568
template<typename S>
569
0
static int SizeInHexChars(S number) {
570
0
  DOUBLE_CONVERSION_ASSERT(number > 0);
571
0
  int result = 0;
572
0
  while (number != 0) {
573
0
    number >>= 4;
574
0
    result++;
575
0
  }
576
0
  return result;
577
0
}
578
579
580
0
static char HexCharOfValue(const int value) {
581
0
  DOUBLE_CONVERSION_ASSERT(0 <= value && value <= 16);
582
0
  if (value < 10) {
583
0
    return static_cast<char>(value + '0');
584
0
  }
585
0
  return static_cast<char>(value - 10 + 'A');
586
0
}
587
588
589
0
bool Bignum::ToHexString(char* buffer, const int buffer_size) const {
590
0
  DOUBLE_CONVERSION_ASSERT(IsClamped());
591
  // Each bigit must be printable as separate hex-character.
592
0
  DOUBLE_CONVERSION_ASSERT(kBigitSize % 4 == 0);
593
0
  static const int kHexCharsPerBigit = kBigitSize / 4;
594
595
0
  if (used_bigits_ == 0) {
596
0
    if (buffer_size < 2) {
597
0
      return false;
598
0
    }
599
0
    buffer[0] = '0';
600
0
    buffer[1] = '\0';
601
0
    return true;
602
0
  }
603
  // We add 1 for the terminating '\0' character.
604
0
  const int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
605
0
    SizeInHexChars(RawBigit(used_bigits_ - 1)) + 1;
606
0
  if (needed_chars > buffer_size) {
607
0
    return false;
608
0
  }
609
0
  int string_index = needed_chars - 1;
610
0
  buffer[string_index--] = '\0';
611
0
  for (int i = 0; i < exponent_; ++i) {
612
0
    for (int j = 0; j < kHexCharsPerBigit; ++j) {
613
0
      buffer[string_index--] = '0';
614
0
    }
615
0
  }
616
0
  for (int i = 0; i < used_bigits_ - 1; ++i) {
617
0
    Chunk current_bigit = RawBigit(i);
618
0
    for (int j = 0; j < kHexCharsPerBigit; ++j) {
619
0
      buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
620
0
      current_bigit >>= 4;
621
0
    }
622
0
  }
623
  // And finally the last bigit.
624
0
  Chunk most_significant_bigit = RawBigit(used_bigits_ - 1);
625
0
  while (most_significant_bigit != 0) {
626
0
    buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
627
0
    most_significant_bigit >>= 4;
628
0
  }
629
0
  return true;
630
0
}
631
632
633
5.44k
Bignum::Chunk Bignum::BigitOrZero(const int index) const {
634
5.44k
  if (index >= BigitLength()) {
635
0
    return 0;
636
0
  }
637
5.44k
  if (index < exponent_) {
638
296
    return 0;
639
296
  }
640
5.15k
  return RawBigit(index - exponent_);
641
5.44k
}
642
643
644
710
int Bignum::Compare(const Bignum& a, const Bignum& b) {
645
710
  DOUBLE_CONVERSION_ASSERT(a.IsClamped());
646
710
  DOUBLE_CONVERSION_ASSERT(b.IsClamped());
647
0
  const int bigit_length_a = a.BigitLength();
648
710
  const int bigit_length_b = b.BigitLength();
649
710
  if (bigit_length_a < bigit_length_b) {
650
5
    return -1;
651
5
  }
652
705
  if (bigit_length_a > bigit_length_b) {
653
0
    return +1;
654
0
  }
655
2.85k
  for (int i = bigit_length_a - 1; i >= (std::min)(a.exponent_, b.exponent_); --i) {
656
2.72k
    const Chunk bigit_a = a.BigitOrZero(i);
657
2.72k
    const Chunk bigit_b = b.BigitOrZero(i);
658
2.72k
    if (bigit_a < bigit_b) {
659
175
      return -1;
660
175
    }
661
2.54k
    if (bigit_a > bigit_b) {
662
397
      return +1;
663
397
    }
664
    // Otherwise they are equal up to this digit. Try the next digit.
665
2.54k
  }
666
133
  return 0;
667
705
}
668
669
670
0
int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
671
0
  DOUBLE_CONVERSION_ASSERT(a.IsClamped());
672
0
  DOUBLE_CONVERSION_ASSERT(b.IsClamped());
673
0
  DOUBLE_CONVERSION_ASSERT(c.IsClamped());
674
0
  if (a.BigitLength() < b.BigitLength()) {
675
0
    return PlusCompare(b, a, c);
676
0
  }
677
0
  if (a.BigitLength() + 1 < c.BigitLength()) {
678
0
    return -1;
679
0
  }
680
0
  if (a.BigitLength() > c.BigitLength()) {
681
0
    return +1;
682
0
  }
683
  // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
684
  // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
685
  // of 'a'.
686
0
  if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
687
0
    return -1;
688
0
  }
689
690
0
  Chunk borrow = 0;
691
  // Starting at min_exponent all digits are == 0. So no need to compare them.
692
0
  const int min_exponent = (std::min)((std::min)(a.exponent_, b.exponent_), c.exponent_);
693
0
  for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
694
0
    const Chunk chunk_a = a.BigitOrZero(i);
695
0
    const Chunk chunk_b = b.BigitOrZero(i);
696
0
    const Chunk chunk_c = c.BigitOrZero(i);
697
0
    const Chunk sum = chunk_a + chunk_b;
698
0
    if (sum > chunk_c + borrow) {
699
0
      return +1;
700
0
    } else {
701
0
      borrow = chunk_c + borrow - sum;
702
0
      if (borrow > 1) {
703
0
        return -1;
704
0
      }
705
0
      borrow <<= kBigitSize;
706
0
    }
707
0
  }
708
0
  if (borrow == 0) {
709
0
    return 0;
710
0
  }
711
0
  return -1;
712
0
}
713
714
715
710
void Bignum::Clamp() {
716
710
  while (used_bigits_ > 0 && RawBigit(used_bigits_ - 1) == 0) {
717
0
    used_bigits_--;
718
0
  }
719
710
  if (used_bigits_ == 0) {
720
    // Zero.
721
0
    exponent_ = 0;
722
0
  }
723
710
}
724
725
726
2.26k
void Bignum::Align(const Bignum& other) {
727
2.26k
  if (exponent_ > other.exponent_) {
728
    // If "X" represents a "hidden" bigit (by the exponent) then we are in the
729
    // following case (a == this, b == other):
730
    // a:  aaaaaaXXXX   or a:   aaaaaXXX
731
    // b:     bbbbbbX      b: bbbbbbbbXX
732
    // We replace some of the hidden digits (X) of a with 0 digits.
733
    // a:  aaaaaa000X   or a:   aaaaa0XX
734
0
    const int zero_bigits = exponent_ - other.exponent_;
735
0
    EnsureCapacity(used_bigits_ + zero_bigits);
736
0
    for (int i = used_bigits_ - 1; i >= 0; --i) {
737
0
      RawBigit(i + zero_bigits) = RawBigit(i);
738
0
    }
739
0
    for (int i = 0; i < zero_bigits; ++i) {
740
0
      RawBigit(i) = 0;
741
0
    }
742
0
    used_bigits_ += static_cast<int16_t>(zero_bigits);
743
0
    exponent_ -= static_cast<int16_t>(zero_bigits);
744
745
0
    DOUBLE_CONVERSION_ASSERT(used_bigits_ >= 0);
746
0
    DOUBLE_CONVERSION_ASSERT(exponent_ >= 0);
747
0
  }
748
2.26k
}
749
750
751
4.26k
void Bignum::BigitsShiftLeft(const int shift_amount) {
752
4.26k
  DOUBLE_CONVERSION_ASSERT(shift_amount < kBigitSize);
753
4.26k
  DOUBLE_CONVERSION_ASSERT(shift_amount >= 0);
754
0
  Chunk carry = 0;
755
115k
  for (int i = 0; i < used_bigits_; ++i) {
756
111k
    const Chunk new_carry = RawBigit(i) >> (kBigitSize - shift_amount);
757
111k
    RawBigit(i) = ((RawBigit(i) << shift_amount) + carry) & kBigitMask;
758
111k
    carry = new_carry;
759
111k
  }
760
4.26k
  if (carry != 0) {
761
2.64k
    RawBigit(used_bigits_) = carry;
762
2.64k
    used_bigits_++;
763
2.64k
  }
764
4.26k
}
765
766
767
0
void Bignum::SubtractTimes(const Bignum& other, const int factor) {
768
0
  DOUBLE_CONVERSION_ASSERT(exponent_ <= other.exponent_);
769
0
  if (factor < 3) {
770
0
    for (int i = 0; i < factor; ++i) {
771
0
      SubtractBignum(other);
772
0
    }
773
0
    return;
774
0
  }
775
0
  Chunk borrow = 0;
776
0
  const int exponent_diff = other.exponent_ - exponent_;
777
0
  for (int i = 0; i < other.used_bigits_; ++i) {
778
0
    const DoubleChunk product = static_cast<DoubleChunk>(factor) * other.RawBigit(i);
779
0
    const DoubleChunk remove = borrow + product;
780
0
    const Chunk difference = RawBigit(i + exponent_diff) - (remove & kBigitMask);
781
0
    RawBigit(i + exponent_diff) = difference & kBigitMask;
782
0
    borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
783
0
                                (remove >> kBigitSize));
784
0
  }
785
0
  for (int i = other.used_bigits_ + exponent_diff; i < used_bigits_; ++i) {
786
0
    if (borrow == 0) {
787
0
      return;
788
0
    }
789
0
    const Chunk difference = RawBigit(i) - borrow;
790
0
    RawBigit(i) = difference & kBigitMask;
791
0
    borrow = difference >> (kChunkSize - 1);
792
0
  }
793
0
  Clamp();
794
0
}
795
796
797
}  // namespace double_conversion