Coverage Report

Created: 2025-07-12 06:14

/src/double-conversion/double-conversion/diy-fp.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2010 the V8 project authors. All rights reserved.
2
// Redistribution and use in source and binary forms, with or without
3
// modification, are permitted provided that the following conditions are
4
// met:
5
//
6
//     * Redistributions of source code must retain the above copyright
7
//       notice, this list of conditions and the following disclaimer.
8
//     * Redistributions in binary form must reproduce the above
9
//       copyright notice, this list of conditions and the following
10
//       disclaimer in the documentation and/or other materials provided
11
//       with the distribution.
12
//     * Neither the name of Google Inc. nor the names of its
13
//       contributors may be used to endorse or promote products derived
14
//       from this software without specific prior written permission.
15
//
16
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28
#ifndef DOUBLE_CONVERSION_DIY_FP_H_
29
#define DOUBLE_CONVERSION_DIY_FP_H_
30
31
#include "utils.h"
32
33
namespace double_conversion {
34
35
// This "Do It Yourself Floating Point" class implements a floating-point number
36
// with a uint64 significand and an int exponent. Normalized DiyFp numbers will
37
// have the most significant bit of the significand set.
38
// Multiplication and Subtraction do not normalize their results.
39
// DiyFp store only non-negative numbers and are not designed to contain special
40
// doubles (NaN and Infinity).
41
class DiyFp {
42
 public:
43
  static const int kSignificandSize = 64;
44
45
2.91k
  DiyFp() : f_(0), e_(0) {}
46
7.00k
  DiyFp(const uint64_t significand, const int32_t exponent) : f_(significand), e_(exponent) {}
47
48
  // this -= other.
49
  // The exponents of both numbers must be the same and the significand of this
50
  // must be greater or equal than the significand of other.
51
  // The result will not be normalized.
52
0
  void Subtract(const DiyFp& other) {
53
0
    DOUBLE_CONVERSION_ASSERT(e_ == other.e_);
54
0
    DOUBLE_CONVERSION_ASSERT(f_ >= other.f_);
55
0
    f_ -= other.f_;
56
0
  }
57
58
  // Returns a - b.
59
  // The exponents of both numbers must be the same and a must be greater
60
  // or equal than b. The result will not be normalized.
61
0
  static DiyFp Minus(const DiyFp& a, const DiyFp& b) {
62
0
    DiyFp result = a;
63
0
    result.Subtract(b);
64
0
    return result;
65
0
  }
66
67
  // this *= other.
68
2.78k
  void Multiply(const DiyFp& other) {
69
    // Simply "emulates" a 128 bit multiplication.
70
    // However: the resulting number only contains 64 bits. The least
71
    // significant 64 bits are only used for rounding the most significant 64
72
    // bits.
73
2.78k
    const uint64_t kM32 = 0xFFFFFFFFU;
74
2.78k
    const uint64_t a = f_ >> 32;
75
2.78k
    const uint64_t b = f_ & kM32;
76
2.78k
    const uint64_t c = other.f_ >> 32;
77
2.78k
    const uint64_t d = other.f_ & kM32;
78
2.78k
    const uint64_t ac = a * c;
79
2.78k
    const uint64_t bc = b * c;
80
2.78k
    const uint64_t ad = a * d;
81
2.78k
    const uint64_t bd = b * d;
82
    // By adding 1U << 31 to tmp we round the final result.
83
    // Halfway cases will be rounded up.
84
2.78k
    const uint64_t tmp = (bd >> 32) + (ad & kM32) + (bc & kM32) + (1U << 31);
85
2.78k
    e_ += other.e_ + 64;
86
2.78k
    f_ = ac + (ad >> 32) + (bc >> 32) + (tmp >> 32);
87
2.78k
  }
88
89
  // returns a * b;
90
0
  static DiyFp Times(const DiyFp& a, const DiyFp& b) {
91
0
    DiyFp result = a;
92
0
    result.Multiply(b);
93
0
    return result;
94
0
  }
95
96
2.91k
  void Normalize() {
97
2.91k
    DOUBLE_CONVERSION_ASSERT(f_ != 0);
98
2.91k
    uint64_t significand = f_;
99
2.91k
    int32_t exponent = e_;
100
101
    // This method is mainly called for normalizing boundaries. In general,
102
    // boundaries need to be shifted by 10 bits, and we optimize for this case.
103
2.91k
    const uint64_t k10MSBits = DOUBLE_CONVERSION_UINT64_2PART_C(0xFFC00000, 00000000);
104
6.39k
    while ((significand & k10MSBits) == 0) {
105
3.48k
      significand <<= 10;
106
3.48k
      exponent -= 10;
107
3.48k
    }
108
7.47k
    while ((significand & kUint64MSB) == 0) {
109
4.56k
      significand <<= 1;
110
4.56k
      exponent--;
111
4.56k
    }
112
2.91k
    f_ = significand;
113
2.91k
    e_ = exponent;
114
2.91k
  }
115
116
0
  static DiyFp Normalize(const DiyFp& a) {
117
0
    DiyFp result = a;
118
0
    result.Normalize();
119
0
    return result;
120
0
  }
121
122
6.06k
  uint64_t f() const { return f_; }
123
12.3k
  int32_t e() const { return e_; }
124
125
397
  void set_f(uint64_t new_value) { f_ = new_value; }
126
90
  void set_e(int32_t new_value) { e_ = new_value; }
127
128
 private:
129
  static const uint64_t kUint64MSB = DOUBLE_CONVERSION_UINT64_2PART_C(0x80000000, 00000000);
130
131
  uint64_t f_;
132
  int32_t e_;
133
};
134
135
}  // namespace double_conversion
136
137
#endif  // DOUBLE_CONVERSION_DIY_FP_H_