Coverage Report

Created: 2025-12-05 06:44

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/dropbear/libtomcrypt/src/hashes/sha2/sha256.c
Line
Count
Source
1
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
2
 *
3
 * LibTomCrypt is a library that provides various cryptographic
4
 * algorithms in a highly modular and flexible manner.
5
 *
6
 * The library is free for all purposes without any express
7
 * guarantee it works.
8
 */
9
#include "tomcrypt.h"
10
11
/**
12
  @file sha256.c
13
  LTC_SHA256 by Tom St Denis
14
*/
15
16
#ifdef LTC_SHA256
17
18
const struct ltc_hash_descriptor sha256_desc =
19
{
20
    "sha256",
21
    0,
22
    32,
23
    64,
24
25
    /* OID */
26
   { 2, 16, 840, 1, 101, 3, 4, 2, 1,  },
27
   9,
28
29
    &sha256_init,
30
    &sha256_process,
31
    &sha256_done,
32
    &sha256_test,
33
    NULL
34
};
35
36
#ifdef LTC_SMALL_CODE
37
/* the K array */
38
static const ulong32 K[64] = {
39
    0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
40
    0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
41
    0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
42
    0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
43
    0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
44
    0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
45
    0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
46
    0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
47
    0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
48
    0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
49
    0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
50
    0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
51
    0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
52
};
53
#endif
54
55
/* Various logical functions */
56
74.2k
#define Ch(x,y,z)       (z ^ (x & (y ^ z)))
57
74.2k
#define Maj(x,y,z)      (((x | y) & z) | (x & y))
58
668k
#define S(x, n)         RORc((x),(n))
59
111k
#define R(x, n)         (((x)&0xFFFFFFFFUL)>>(n))
60
74.2k
#define Sigma0(x)       (S(x, 2) ^ S(x, 13) ^ S(x, 22))
61
74.2k
#define Sigma1(x)       (S(x, 6) ^ S(x, 11) ^ S(x, 25))
62
55.6k
#define Gamma0(x)       (S(x, 7) ^ S(x, 18) ^ R(x, 3))
63
55.6k
#define Gamma1(x)       (S(x, 17) ^ S(x, 19) ^ R(x, 10))
64
65
/* compress 512-bits */
66
#ifdef LTC_CLEAN_STACK
67
static int _sha256_compress(hash_state * md, unsigned char *buf)
68
#else
69
static int  sha256_compress(hash_state * md, unsigned char *buf)
70
#endif
71
1.16k
{
72
1.16k
    ulong32 S[8], W[64], t0, t1;
73
1.16k
#ifdef LTC_SMALL_CODE
74
1.16k
    ulong32 t;
75
1.16k
#endif
76
1.16k
    int i;
77
78
    /* copy state into S */
79
10.4k
    for (i = 0; i < 8; i++) {
80
9.28k
        S[i] = md->sha256.state[i];
81
9.28k
    }
82
83
    /* copy the state into 512-bits into W[0..15] */
84
19.7k
    for (i = 0; i < 16; i++) {
85
18.5k
        LOAD32H(W[i], buf + (4*i));
86
18.5k
    }
87
88
    /* fill W[16..63] */
89
56.8k
    for (i = 16; i < 64; i++) {
90
55.6k
        W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
91
55.6k
    }
92
93
    /* Compress */
94
1.16k
#ifdef LTC_SMALL_CODE
95
1.16k
#define RND(a,b,c,d,e,f,g,h,i)                         \
96
74.2k
     t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i];   \
97
74.2k
     t1 = Sigma0(a) + Maj(a, b, c);                    \
98
74.2k
     d += t0;                                          \
99
74.2k
     h  = t0 + t1;
100
101
75.4k
     for (i = 0; i < 64; ++i) {
102
74.2k
         RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i);
103
74.2k
         t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4];
104
74.2k
         S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t;
105
74.2k
     }
106
#else
107
#define RND(a,b,c,d,e,f,g,h,i,ki)                    \
108
     t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i];   \
109
     t1 = Sigma0(a) + Maj(a, b, c);                  \
110
     d += t0;                                        \
111
     h  = t0 + t1;
112
113
    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98);
114
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491);
115
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf);
116
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5);
117
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b);
118
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1);
119
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4);
120
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5);
121
    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98);
122
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01);
123
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be);
124
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3);
125
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74);
126
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe);
127
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7);
128
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174);
129
    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1);
130
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786);
131
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6);
132
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc);
133
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f);
134
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa);
135
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc);
136
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da);
137
    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152);
138
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d);
139
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8);
140
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7);
141
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3);
142
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147);
143
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351);
144
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967);
145
    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85);
146
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138);
147
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc);
148
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13);
149
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354);
150
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb);
151
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e);
152
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85);
153
    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1);
154
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b);
155
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70);
156
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3);
157
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819);
158
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624);
159
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585);
160
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070);
161
    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116);
162
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08);
163
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c);
164
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5);
165
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3);
166
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a);
167
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f);
168
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3);
169
    RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee);
170
    RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f);
171
    RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814);
172
    RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208);
173
    RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa);
174
    RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb);
175
    RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7);
176
    RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2);
177
178
#undef RND
179
180
#endif
181
182
    /* feedback */
183
10.4k
    for (i = 0; i < 8; i++) {
184
9.28k
        md->sha256.state[i] = md->sha256.state[i] + S[i];
185
9.28k
    }
186
1.16k
    return CRYPT_OK;
187
1.16k
}
188
189
#ifdef LTC_CLEAN_STACK
190
static int sha256_compress(hash_state * md, unsigned char *buf)
191
{
192
    int err;
193
    err = _sha256_compress(md, buf);
194
    burn_stack(sizeof(ulong32) * 74);
195
    return err;
196
}
197
#endif
198
199
/**
200
   Initialize the hash state
201
   @param md   The hash state you wish to initialize
202
   @return CRYPT_OK if successful
203
*/
204
int sha256_init(hash_state * md)
205
952
{
206
952
    LTC_ARGCHK(md != NULL);
207
208
952
    md->sha256.curlen = 0;
209
952
    md->sha256.length = 0;
210
952
    md->sha256.state[0] = 0x6A09E667UL;
211
952
    md->sha256.state[1] = 0xBB67AE85UL;
212
952
    md->sha256.state[2] = 0x3C6EF372UL;
213
952
    md->sha256.state[3] = 0xA54FF53AUL;
214
952
    md->sha256.state[4] = 0x510E527FUL;
215
952
    md->sha256.state[5] = 0x9B05688CUL;
216
952
    md->sha256.state[6] = 0x1F83D9ABUL;
217
952
    md->sha256.state[7] = 0x5BE0CD19UL;
218
952
    return CRYPT_OK;
219
952
}
220
221
/**
222
   Process a block of memory though the hash
223
   @param md     The hash state
224
   @param in     The data to hash
225
   @param inlen  The length of the data (octets)
226
   @return CRYPT_OK if successful
227
*/
228
HASH_PROCESS(sha256_process, sha256_compress, sha256, 64)
229
230
/**
231
   Terminate the hash to get the digest
232
   @param md  The hash state
233
   @param out [out] The destination of the hash (32 bytes)
234
   @return CRYPT_OK if successful
235
*/
236
int sha256_done(hash_state * md, unsigned char *out)
237
952
{
238
952
    int i;
239
240
952
    LTC_ARGCHK(md  != NULL);
241
952
    LTC_ARGCHK(out != NULL);
242
243
952
    if (md->sha256.curlen >= sizeof(md->sha256.buf)) {
244
0
       return CRYPT_INVALID_ARG;
245
0
    }
246
247
248
    /* increase the length of the message */
249
952
    md->sha256.length += md->sha256.curlen * 8;
250
251
    /* append the '1' bit */
252
952
    md->sha256.buf[md->sha256.curlen++] = (unsigned char)0x80;
253
254
    /* if the length is currently above 56 bytes we append zeros
255
     * then compress.  Then we can fall back to padding zeros and length
256
     * encoding like normal.
257
     */
258
952
    if (md->sha256.curlen > 56) {
259
0
        while (md->sha256.curlen < 64) {
260
0
            md->sha256.buf[md->sha256.curlen++] = (unsigned char)0;
261
0
        }
262
0
        sha256_compress(md, md->sha256.buf);
263
0
        md->sha256.curlen = 0;
264
0
    }
265
266
    /* pad upto 56 bytes of zeroes */
267
24.8k
    while (md->sha256.curlen < 56) {
268
23.9k
        md->sha256.buf[md->sha256.curlen++] = (unsigned char)0;
269
23.9k
    }
270
271
    /* store length */
272
952
    STORE64H(md->sha256.length, md->sha256.buf+56);
273
952
    sha256_compress(md, md->sha256.buf);
274
275
    /* copy output */
276
8.56k
    for (i = 0; i < 8; i++) {
277
7.61k
        STORE32H(md->sha256.state[i], out+(4*i));
278
7.61k
    }
279
#ifdef LTC_CLEAN_STACK
280
    zeromem(md, sizeof(hash_state));
281
#endif
282
952
    return CRYPT_OK;
283
952
}
284
285
/**
286
  Self-test the hash
287
  @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
288
*/
289
int  sha256_test(void)
290
0
{
291
0
 #ifndef LTC_TEST
292
0
    return CRYPT_NOP;
293
 #else
294
  static const struct {
295
      const char *msg;
296
      unsigned char hash[32];
297
  } tests[] = {
298
    { "abc",
299
      { 0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea,
300
        0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23,
301
        0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c,
302
        0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad }
303
    },
304
    { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
305
      { 0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8,
306
        0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39,
307
        0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67,
308
        0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1 }
309
    },
310
  };
311
312
  int i;
313
  unsigned char tmp[32];
314
  hash_state md;
315
316
  for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
317
      sha256_init(&md);
318
      sha256_process(&md, (unsigned char*)tests[i].msg, (unsigned long)strlen(tests[i].msg));
319
      sha256_done(&md, tmp);
320
      if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "SHA256", i)) {
321
         return CRYPT_FAIL_TESTVECTOR;
322
      }
323
  }
324
  return CRYPT_OK;
325
 #endif
326
0
}
327
328
#endif
329
330
331
332
/* ref:         $Format:%D$ */
333
/* git commit:  $Format:%H$ */
334
/* commit time: $Format:%ai$ */