Coverage Report

Created: 2022-08-24 06:40

/src/duckdb/third_party/mbedtls/library/rsa.cpp
Line
Count
Source (jump to first uncovered line)
1
/*
2
 *  The RSA public-key cryptosystem
3
 *
4
 *  Copyright The Mbed TLS Contributors
5
 *  SPDX-License-Identifier: Apache-2.0
6
 *
7
 *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8
 *  not use this file except in compliance with the License.
9
 *  You may obtain a copy of the License at
10
 *
11
 *  http://www.apache.org/licenses/LICENSE-2.0
12
 *
13
 *  Unless required by applicable law or agreed to in writing, software
14
 *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15
 *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
 *  See the License for the specific language governing permissions and
17
 *  limitations under the License.
18
 */
19
20
/*
21
 *  The following sources were referenced in the design of this implementation
22
 *  of the RSA algorithm:
23
 *
24
 *  [1] A method for obtaining digital signatures and public-key cryptosystems
25
 *      R Rivest, A Shamir, and L Adleman
26
 *      http://people.csail.mit.edu/rivest/pubs.html#RSA78
27
 *
28
 *  [2] Handbook of Applied Cryptography - 1997, Chapter 8
29
 *      Menezes, van Oorschot and Vanstone
30
 *
31
 *  [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks
32
 *      Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice and
33
 *      Stefan Mangard
34
 *      https://arxiv.org/abs/1702.08719v2
35
 *
36
 */
37
38
#include "common.h"
39
40
#if defined(MBEDTLS_RSA_C)
41
42
#include "mbedtls/rsa.h"
43
#include "rsa_alt_helpers.h"
44
#include "mbedtls/oid.h"
45
#include "mbedtls/platform_util.h"
46
#include "mbedtls/error.h"
47
#include "constant_time_internal.h"
48
#include "mbedtls/constant_time.h"
49
50
#include <string.h>
51
52
#if defined(MBEDTLS_PKCS1_V21)
53
#include "mbedtls/md.h"
54
#endif
55
56
#if defined(MBEDTLS_PKCS1_V15) && !defined(__OpenBSD__) && !defined(__NetBSD__)
57
#include <stdlib.h>
58
#endif
59
60
#if defined(MBEDTLS_PLATFORM_C)
61
#include "mbedtls/platform.h"
62
#else
63
#include <stdio.h>
64
#define mbedtls_printf printf
65
#define mbedtls_calloc calloc
66
#define mbedtls_free   free
67
#endif
68
69
#if !defined(MBEDTLS_RSA_ALT)
70
71
/* Parameter validation macros */
72
#define RSA_VALIDATE_RET( cond )                                       \
73
0
    MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_RSA_BAD_INPUT_DATA )
74
#define RSA_VALIDATE( cond )                                           \
75
0
    MBEDTLS_INTERNAL_VALIDATE( cond )
76
77
int mbedtls_rsa_import( mbedtls_rsa_context *ctx,
78
                        const mbedtls_mpi *N,
79
                        const mbedtls_mpi *P, const mbedtls_mpi *Q,
80
                        const mbedtls_mpi *D, const mbedtls_mpi *E )
81
0
{
82
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
83
0
    RSA_VALIDATE_RET( ctx != NULL );
84
85
0
    if( ( N != NULL && ( ret = mbedtls_mpi_copy( &ctx->N, N ) ) != 0 ) ||
86
0
        ( P != NULL && ( ret = mbedtls_mpi_copy( &ctx->P, P ) ) != 0 ) ||
87
0
        ( Q != NULL && ( ret = mbedtls_mpi_copy( &ctx->Q, Q ) ) != 0 ) ||
88
0
        ( D != NULL && ( ret = mbedtls_mpi_copy( &ctx->D, D ) ) != 0 ) ||
89
0
        ( E != NULL && ( ret = mbedtls_mpi_copy( &ctx->E, E ) ) != 0 ) )
90
0
    {
91
0
        return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
92
0
    }
93
94
0
    if( N != NULL )
95
0
        ctx->len = mbedtls_mpi_size( &ctx->N );
96
97
0
    return( 0 );
98
0
}
99
100
int mbedtls_rsa_import_raw( mbedtls_rsa_context *ctx,
101
                            unsigned char const *N, size_t N_len,
102
                            unsigned char const *P, size_t P_len,
103
                            unsigned char const *Q, size_t Q_len,
104
                            unsigned char const *D, size_t D_len,
105
                            unsigned char const *E, size_t E_len )
106
0
{
107
0
    int ret = 0;
108
0
    RSA_VALIDATE_RET( ctx != NULL );
109
110
0
    if( N != NULL )
111
0
    {
112
0
        MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->N, N, N_len ) );
113
0
        ctx->len = mbedtls_mpi_size( &ctx->N );
114
0
    }
115
116
0
    if( P != NULL )
117
0
        MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->P, P, P_len ) );
118
119
0
    if( Q != NULL )
120
0
        MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->Q, Q, Q_len ) );
121
122
0
    if( D != NULL )
123
0
        MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->D, D, D_len ) );
124
125
0
    if( E != NULL )
126
0
        MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->E, E, E_len ) );
127
128
0
cleanup:
129
130
0
    if( ret != 0 )
131
0
        return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
132
133
0
    return( 0 );
134
0
}
135
136
/*
137
 * Checks whether the context fields are set in such a way
138
 * that the RSA primitives will be able to execute without error.
139
 * It does *not* make guarantees for consistency of the parameters.
140
 */
141
static int rsa_check_context( mbedtls_rsa_context const *ctx, int is_priv,
142
                              int blinding_needed )
143
0
{
144
0
#if !defined(MBEDTLS_RSA_NO_CRT)
145
    /* blinding_needed is only used for NO_CRT to decide whether
146
     * P,Q need to be present or not. */
147
0
    ((void) blinding_needed);
148
0
#endif
149
150
0
    if( ctx->len != mbedtls_mpi_size( &ctx->N ) ||
151
0
        ctx->len > MBEDTLS_MPI_MAX_SIZE )
152
0
    {
153
0
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
154
0
    }
155
156
    /*
157
     * 1. Modular exponentiation needs positive, odd moduli.
158
     */
159
160
    /* Modular exponentiation wrt. N is always used for
161
     * RSA public key operations. */
162
0
    if( mbedtls_mpi_cmp_int( &ctx->N, 0 ) <= 0 ||
163
0
        mbedtls_mpi_get_bit( &ctx->N, 0 ) == 0  )
164
0
    {
165
0
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
166
0
    }
167
168
0
#if !defined(MBEDTLS_RSA_NO_CRT)
169
    /* Modular exponentiation for P and Q is only
170
     * used for private key operations and if CRT
171
     * is used. */
172
0
    if( is_priv &&
173
0
        ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) <= 0 ||
174
0
          mbedtls_mpi_get_bit( &ctx->P, 0 ) == 0 ||
175
0
          mbedtls_mpi_cmp_int( &ctx->Q, 0 ) <= 0 ||
176
0
          mbedtls_mpi_get_bit( &ctx->Q, 0 ) == 0  ) )
177
0
    {
178
0
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
179
0
    }
180
0
#endif /* !MBEDTLS_RSA_NO_CRT */
181
182
    /*
183
     * 2. Exponents must be positive
184
     */
185
186
    /* Always need E for public key operations */
187
0
    if( mbedtls_mpi_cmp_int( &ctx->E, 0 ) <= 0 )
188
0
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
189
190
#if defined(MBEDTLS_RSA_NO_CRT)
191
    /* For private key operations, use D or DP & DQ
192
     * as (unblinded) exponents. */
193
    if( is_priv && mbedtls_mpi_cmp_int( &ctx->D, 0 ) <= 0 )
194
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
195
#else
196
0
    if( is_priv &&
197
0
        ( mbedtls_mpi_cmp_int( &ctx->DP, 0 ) <= 0 ||
198
0
          mbedtls_mpi_cmp_int( &ctx->DQ, 0 ) <= 0  ) )
199
0
    {
200
0
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
201
0
    }
202
0
#endif /* MBEDTLS_RSA_NO_CRT */
203
204
    /* Blinding shouldn't make exponents negative either,
205
     * so check that P, Q >= 1 if that hasn't yet been
206
     * done as part of 1. */
207
#if defined(MBEDTLS_RSA_NO_CRT)
208
    if( is_priv && blinding_needed &&
209
        ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) <= 0 ||
210
          mbedtls_mpi_cmp_int( &ctx->Q, 0 ) <= 0 ) )
211
    {
212
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
213
    }
214
#endif
215
216
    /* It wouldn't lead to an error if it wasn't satisfied,
217
     * but check for QP >= 1 nonetheless. */
218
0
#if !defined(MBEDTLS_RSA_NO_CRT)
219
0
    if( is_priv &&
220
0
        mbedtls_mpi_cmp_int( &ctx->QP, 0 ) <= 0 )
221
0
    {
222
0
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
223
0
    }
224
0
#endif
225
226
0
    return( 0 );
227
0
}
228
229
int mbedtls_rsa_complete( mbedtls_rsa_context *ctx )
230
0
{
231
0
    int ret = 0;
232
0
    int have_N, have_P, have_Q, have_D, have_E;
233
0
#if !defined(MBEDTLS_RSA_NO_CRT)
234
0
    int have_DP, have_DQ, have_QP;
235
0
#endif
236
0
    int n_missing, pq_missing, d_missing, is_pub, is_priv;
237
238
0
    RSA_VALIDATE_RET( ctx != NULL );
239
240
0
    have_N = ( mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 );
241
0
    have_P = ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 );
242
0
    have_Q = ( mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 );
243
0
    have_D = ( mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 );
244
0
    have_E = ( mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0 );
245
246
0
#if !defined(MBEDTLS_RSA_NO_CRT)
247
0
    have_DP = ( mbedtls_mpi_cmp_int( &ctx->DP, 0 ) != 0 );
248
0
    have_DQ = ( mbedtls_mpi_cmp_int( &ctx->DQ, 0 ) != 0 );
249
0
    have_QP = ( mbedtls_mpi_cmp_int( &ctx->QP, 0 ) != 0 );
250
0
#endif
251
252
    /*
253
     * Check whether provided parameters are enough
254
     * to deduce all others. The following incomplete
255
     * parameter sets for private keys are supported:
256
     *
257
     * (1) P, Q missing.
258
     * (2) D and potentially N missing.
259
     *
260
     */
261
262
0
    n_missing  =              have_P &&  have_Q &&  have_D && have_E;
263
0
    pq_missing =   have_N && !have_P && !have_Q &&  have_D && have_E;
264
0
    d_missing  =              have_P &&  have_Q && !have_D && have_E;
265
0
    is_pub     =   have_N && !have_P && !have_Q && !have_D && have_E;
266
267
    /* These three alternatives are mutually exclusive */
268
0
    is_priv = n_missing || pq_missing || d_missing;
269
270
0
    if( !is_priv && !is_pub )
271
0
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
272
273
    /*
274
     * Step 1: Deduce N if P, Q are provided.
275
     */
276
277
0
    if( !have_N && have_P && have_Q )
278
0
    {
279
0
        if( ( ret = mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P,
280
0
                                         &ctx->Q ) ) != 0 )
281
0
        {
282
0
            return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
283
0
        }
284
285
0
        ctx->len = mbedtls_mpi_size( &ctx->N );
286
0
    }
287
288
    /*
289
     * Step 2: Deduce and verify all remaining core parameters.
290
     */
291
292
0
    if( pq_missing )
293
0
    {
294
0
        ret = mbedtls_rsa_deduce_primes( &ctx->N, &ctx->E, &ctx->D,
295
0
                                         &ctx->P, &ctx->Q );
296
0
        if( ret != 0 )
297
0
            return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
298
299
0
    }
300
0
    else if( d_missing )
301
0
    {
302
0
        if( ( ret = mbedtls_rsa_deduce_private_exponent( &ctx->P,
303
0
                                                         &ctx->Q,
304
0
                                                         &ctx->E,
305
0
                                                         &ctx->D ) ) != 0 )
306
0
        {
307
0
            return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
308
0
        }
309
0
    }
310
311
    /*
312
     * Step 3: Deduce all additional parameters specific
313
     *         to our current RSA implementation.
314
     */
315
316
0
#if !defined(MBEDTLS_RSA_NO_CRT)
317
0
    if( is_priv && ! ( have_DP && have_DQ && have_QP ) )
318
0
    {
319
0
        ret = mbedtls_rsa_deduce_crt( &ctx->P,  &ctx->Q,  &ctx->D,
320
0
                                      &ctx->DP, &ctx->DQ, &ctx->QP );
321
0
        if( ret != 0 )
322
0
            return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
323
0
    }
324
0
#endif /* MBEDTLS_RSA_NO_CRT */
325
326
    /*
327
     * Step 3: Basic sanity checks
328
     */
329
330
0
    return( rsa_check_context( ctx, is_priv, 1 ) );
331
0
}
332
333
int mbedtls_rsa_export_raw( const mbedtls_rsa_context *ctx,
334
                            unsigned char *N, size_t N_len,
335
                            unsigned char *P, size_t P_len,
336
                            unsigned char *Q, size_t Q_len,
337
                            unsigned char *D, size_t D_len,
338
                            unsigned char *E, size_t E_len )
339
0
{
340
0
    int ret = 0;
341
0
    int is_priv;
342
0
    RSA_VALIDATE_RET( ctx != NULL );
343
344
    /* Check if key is private or public */
345
0
    is_priv =
346
0
        mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
347
0
        mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
348
0
        mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
349
0
        mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
350
0
        mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
351
352
0
    if( !is_priv )
353
0
    {
354
        /* If we're trying to export private parameters for a public key,
355
         * something must be wrong. */
356
0
        if( P != NULL || Q != NULL || D != NULL )
357
0
            return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
358
359
0
    }
360
361
0
    if( N != NULL )
362
0
        MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->N, N, N_len ) );
363
364
0
    if( P != NULL )
365
0
        MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->P, P, P_len ) );
366
367
0
    if( Q != NULL )
368
0
        MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->Q, Q, Q_len ) );
369
370
0
    if( D != NULL )
371
0
        MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->D, D, D_len ) );
372
373
0
    if( E != NULL )
374
0
        MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->E, E, E_len ) );
375
376
0
cleanup:
377
378
0
    return( ret );
379
0
}
380
381
int mbedtls_rsa_export( const mbedtls_rsa_context *ctx,
382
                        mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q,
383
                        mbedtls_mpi *D, mbedtls_mpi *E )
384
0
{
385
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
386
0
    int is_priv;
387
0
    RSA_VALIDATE_RET( ctx != NULL );
388
389
    /* Check if key is private or public */
390
0
    is_priv =
391
0
        mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
392
0
        mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
393
0
        mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
394
0
        mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
395
0
        mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
396
397
0
    if( !is_priv )
398
0
    {
399
        /* If we're trying to export private parameters for a public key,
400
         * something must be wrong. */
401
0
        if( P != NULL || Q != NULL || D != NULL )
402
0
            return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
403
404
0
    }
405
406
    /* Export all requested core parameters. */
407
408
0
    if( ( N != NULL && ( ret = mbedtls_mpi_copy( N, &ctx->N ) ) != 0 ) ||
409
0
        ( P != NULL && ( ret = mbedtls_mpi_copy( P, &ctx->P ) ) != 0 ) ||
410
0
        ( Q != NULL && ( ret = mbedtls_mpi_copy( Q, &ctx->Q ) ) != 0 ) ||
411
0
        ( D != NULL && ( ret = mbedtls_mpi_copy( D, &ctx->D ) ) != 0 ) ||
412
0
        ( E != NULL && ( ret = mbedtls_mpi_copy( E, &ctx->E ) ) != 0 ) )
413
0
    {
414
0
        return( ret );
415
0
    }
416
417
0
    return( 0 );
418
0
}
419
420
/*
421
 * Export CRT parameters
422
 * This must also be implemented if CRT is not used, for being able to
423
 * write DER encoded RSA keys. The helper function mbedtls_rsa_deduce_crt
424
 * can be used in this case.
425
 */
426
int mbedtls_rsa_export_crt( const mbedtls_rsa_context *ctx,
427
                            mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP )
428
0
{
429
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
430
0
    int is_priv;
431
0
    RSA_VALIDATE_RET( ctx != NULL );
432
433
    /* Check if key is private or public */
434
0
    is_priv =
435
0
        mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
436
0
        mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
437
0
        mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
438
0
        mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
439
0
        mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
440
441
0
    if( !is_priv )
442
0
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
443
444
0
#if !defined(MBEDTLS_RSA_NO_CRT)
445
    /* Export all requested blinding parameters. */
446
0
    if( ( DP != NULL && ( ret = mbedtls_mpi_copy( DP, &ctx->DP ) ) != 0 ) ||
447
0
        ( DQ != NULL && ( ret = mbedtls_mpi_copy( DQ, &ctx->DQ ) ) != 0 ) ||
448
0
        ( QP != NULL && ( ret = mbedtls_mpi_copy( QP, &ctx->QP ) ) != 0 ) )
449
0
    {
450
0
        return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
451
0
    }
452
#else
453
    if( ( ret = mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
454
                                        DP, DQ, QP ) ) != 0 )
455
    {
456
        return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
457
    }
458
#endif
459
460
0
    return( 0 );
461
0
}
462
463
/*
464
 * Initialize an RSA context
465
 */
466
void mbedtls_rsa_init( mbedtls_rsa_context *ctx )
467
0
{
468
0
    RSA_VALIDATE( ctx != NULL );
469
470
0
    memset( ctx, 0, sizeof( mbedtls_rsa_context ) );
471
472
0
    ctx->padding = MBEDTLS_RSA_PKCS_V15;
473
0
    ctx->hash_id = MBEDTLS_MD_NONE;
474
475
#if defined(MBEDTLS_THREADING_C)
476
    /* Set ctx->ver to nonzero to indicate that the mutex has been
477
     * initialized and will need to be freed. */
478
    ctx->ver = 1;
479
    mbedtls_mutex_init( &ctx->mutex );
480
#endif
481
0
}
482
483
/*
484
 * Set padding for an existing RSA context
485
 */
486
int mbedtls_rsa_set_padding( mbedtls_rsa_context *ctx, int padding,
487
                             mbedtls_md_type_t hash_id )
488
0
{
489
0
    switch( padding )
490
0
    {
491
0
#if defined(MBEDTLS_PKCS1_V15)
492
0
        case MBEDTLS_RSA_PKCS_V15:
493
0
            break;
494
0
#endif
495
496
#if defined(MBEDTLS_PKCS1_V21)
497
        case MBEDTLS_RSA_PKCS_V21:
498
            break;
499
#endif
500
0
        default:
501
0
            return( MBEDTLS_ERR_RSA_INVALID_PADDING );
502
0
    }
503
504
0
    if( ( padding == MBEDTLS_RSA_PKCS_V21 ) &&
505
0
        ( hash_id != MBEDTLS_MD_NONE ) )
506
0
    {
507
0
        const mbedtls_md_info_t *md_info;
508
509
0
        md_info = mbedtls_md_info_from_type( hash_id );
510
0
        if( md_info == NULL )
511
0
            return( MBEDTLS_ERR_RSA_INVALID_PADDING );
512
0
    }
513
514
0
    ctx->padding = padding;
515
0
    ctx->hash_id = hash_id;
516
517
0
    return( 0 );
518
0
}
519
520
/*
521
 * Get length in bytes of RSA modulus
522
 */
523
524
size_t mbedtls_rsa_get_len( const mbedtls_rsa_context *ctx )
525
0
{
526
0
    return( ctx->len );
527
0
}
528
529
530
#if defined(MBEDTLS_GENPRIME)
531
532
/*
533
 * Generate an RSA keypair
534
 *
535
 * This generation method follows the RSA key pair generation procedure of
536
 * FIPS 186-4 if 2^16 < exponent < 2^256 and nbits = 2048 or nbits = 3072.
537
 */
538
int mbedtls_rsa_gen_key( mbedtls_rsa_context *ctx,
539
                 int (*f_rng)(void *, unsigned char *, size_t),
540
                 void *p_rng,
541
                 unsigned int nbits, int exponent )
542
{
543
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
544
    mbedtls_mpi H, G, L;
545
    int prime_quality = 0;
546
    RSA_VALIDATE_RET( ctx != NULL );
547
    RSA_VALIDATE_RET( f_rng != NULL );
548
549
    /*
550
     * If the modulus is 1024 bit long or shorter, then the security strength of
551
     * the RSA algorithm is less than or equal to 80 bits and therefore an error
552
     * rate of 2^-80 is sufficient.
553
     */
554
    if( nbits > 1024 )
555
        prime_quality = MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR;
556
557
    mbedtls_mpi_init( &H );
558
    mbedtls_mpi_init( &G );
559
    mbedtls_mpi_init( &L );
560
561
    if( nbits < 128 || exponent < 3 || nbits % 2 != 0 )
562
    {
563
        ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
564
        goto cleanup;
565
    }
566
567
    /*
568
     * find primes P and Q with Q < P so that:
569
     * 1.  |P-Q| > 2^( nbits / 2 - 100 )
570
     * 2.  GCD( E, (P-1)*(Q-1) ) == 1
571
     * 3.  E^-1 mod LCM(P-1, Q-1) > 2^( nbits / 2 )
572
     */
573
    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &ctx->E, exponent ) );
574
575
    do
576
    {
577
        MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->P, nbits >> 1,
578
                                                prime_quality, f_rng, p_rng ) );
579
580
        MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->Q, nbits >> 1,
581
                                                prime_quality, f_rng, p_rng ) );
582
583
        /* make sure the difference between p and q is not too small (FIPS 186-4 §B.3.3 step 5.4) */
584
        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &H, &ctx->P, &ctx->Q ) );
585
        if( mbedtls_mpi_bitlen( &H ) <= ( ( nbits >= 200 ) ? ( ( nbits >> 1 ) - 99 ) : 0 ) )
586
            continue;
587
588
        /* not required by any standards, but some users rely on the fact that P > Q */
589
        if( H.s < 0 )
590
            mbedtls_mpi_swap( &ctx->P, &ctx->Q );
591
592
        /* Temporarily replace P,Q by P-1, Q-1 */
593
        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->P, &ctx->P, 1 ) );
594
        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->Q, &ctx->Q, 1 ) );
595
        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &H, &ctx->P, &ctx->Q ) );
596
597
        /* check GCD( E, (P-1)*(Q-1) ) == 1 (FIPS 186-4 §B.3.1 criterion 2(a)) */
598
        MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->E, &H  ) );
599
        if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
600
            continue;
601
602
        /* compute smallest possible D = E^-1 mod LCM(P-1, Q-1) (FIPS 186-4 §B.3.1 criterion 3(b)) */
603
        MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->P, &ctx->Q ) );
604
        MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &L, NULL, &H, &G ) );
605
        MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &ctx->D, &ctx->E, &L ) );
606
607
        if( mbedtls_mpi_bitlen( &ctx->D ) <= ( ( nbits + 1 ) / 2 ) ) // (FIPS 186-4 §B.3.1 criterion 3(a))
608
            continue;
609
610
        break;
611
    }
612
    while( 1 );
613
614
    /* Restore P,Q */
615
    MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->P,  &ctx->P, 1 ) );
616
    MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->Q,  &ctx->Q, 1 ) );
617
618
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) );
619
620
    ctx->len = mbedtls_mpi_size( &ctx->N );
621
622
#if !defined(MBEDTLS_RSA_NO_CRT)
623
    /*
624
     * DP = D mod (P - 1)
625
     * DQ = D mod (Q - 1)
626
     * QP = Q^-1 mod P
627
     */
628
    MBEDTLS_MPI_CHK( mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
629
                                             &ctx->DP, &ctx->DQ, &ctx->QP ) );
630
#endif /* MBEDTLS_RSA_NO_CRT */
631
632
    /* Double-check */
633
    MBEDTLS_MPI_CHK( mbedtls_rsa_check_privkey( ctx ) );
634
635
cleanup:
636
637
    mbedtls_mpi_free( &H );
638
    mbedtls_mpi_free( &G );
639
    mbedtls_mpi_free( &L );
640
641
    if( ret != 0 )
642
    {
643
        mbedtls_rsa_free( ctx );
644
645
        if( ( -ret & ~0x7f ) == 0 )
646
            ret = MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_KEY_GEN_FAILED, ret );
647
        return( ret );
648
    }
649
650
    return( 0 );
651
}
652
653
#endif /* MBEDTLS_GENPRIME */
654
655
/*
656
 * Check a public RSA key
657
 */
658
int mbedtls_rsa_check_pubkey( const mbedtls_rsa_context *ctx )
659
0
{
660
0
    RSA_VALIDATE_RET( ctx != NULL );
661
662
0
    if( rsa_check_context( ctx, 0 /* public */, 0 /* no blinding */ ) != 0 )
663
0
        return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
664
665
0
    if( mbedtls_mpi_bitlen( &ctx->N ) < 128 )
666
0
    {
667
0
        return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
668
0
    }
669
670
0
    if( mbedtls_mpi_get_bit( &ctx->E, 0 ) == 0 ||
671
0
        mbedtls_mpi_bitlen( &ctx->E )     < 2  ||
672
0
        mbedtls_mpi_cmp_mpi( &ctx->E, &ctx->N ) >= 0 )
673
0
    {
674
0
        return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
675
0
    }
676
677
0
    return( 0 );
678
0
}
679
680
/*
681
 * Check for the consistency of all fields in an RSA private key context
682
 */
683
int mbedtls_rsa_check_privkey( const mbedtls_rsa_context *ctx )
684
0
{
685
0
    RSA_VALIDATE_RET( ctx != NULL );
686
687
0
    if( mbedtls_rsa_check_pubkey( ctx ) != 0 ||
688
0
        rsa_check_context( ctx, 1 /* private */, 1 /* blinding */ ) != 0 )
689
0
    {
690
0
        return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
691
0
    }
692
693
0
    if( mbedtls_rsa_validate_params( &ctx->N, &ctx->P, &ctx->Q,
694
0
                                     &ctx->D, &ctx->E, NULL, NULL ) != 0 )
695
0
    {
696
0
        return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
697
0
    }
698
699
0
#if !defined(MBEDTLS_RSA_NO_CRT)
700
0
    else if( mbedtls_rsa_validate_crt( &ctx->P, &ctx->Q, &ctx->D,
701
0
                                       &ctx->DP, &ctx->DQ, &ctx->QP ) != 0 )
702
0
    {
703
0
        return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
704
0
    }
705
0
#endif
706
707
0
    return( 0 );
708
0
}
709
710
/*
711
 * Check if contexts holding a public and private key match
712
 */
713
int mbedtls_rsa_check_pub_priv( const mbedtls_rsa_context *pub,
714
                                const mbedtls_rsa_context *prv )
715
0
{
716
0
    RSA_VALIDATE_RET( pub != NULL );
717
0
    RSA_VALIDATE_RET( prv != NULL );
718
719
0
    if( mbedtls_rsa_check_pubkey( pub )  != 0 ||
720
0
        mbedtls_rsa_check_privkey( prv ) != 0 )
721
0
    {
722
0
        return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
723
0
    }
724
725
0
    if( mbedtls_mpi_cmp_mpi( &pub->N, &prv->N ) != 0 ||
726
0
        mbedtls_mpi_cmp_mpi( &pub->E, &prv->E ) != 0 )
727
0
    {
728
0
        return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
729
0
    }
730
731
0
    return( 0 );
732
0
}
733
734
/*
735
 * Do an RSA public key operation
736
 */
737
int mbedtls_rsa_public( mbedtls_rsa_context *ctx,
738
                const unsigned char *input,
739
                unsigned char *output )
740
0
{
741
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
742
0
    size_t olen;
743
0
    mbedtls_mpi T;
744
0
    RSA_VALIDATE_RET( ctx != NULL );
745
0
    RSA_VALIDATE_RET( input != NULL );
746
0
    RSA_VALIDATE_RET( output != NULL );
747
748
0
    if( rsa_check_context( ctx, 0 /* public */, 0 /* no blinding */ ) )
749
0
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
750
751
0
    mbedtls_mpi_init( &T );
752
753
#if defined(MBEDTLS_THREADING_C)
754
    if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 )
755
        return( ret );
756
#endif
757
758
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) );
759
760
0
    if( mbedtls_mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
761
0
    {
762
0
        ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
763
0
        goto cleanup;
764
0
    }
765
766
0
    olen = ctx->len;
767
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) );
768
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) );
769
770
0
cleanup:
771
#if defined(MBEDTLS_THREADING_C)
772
    if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
773
        return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
774
#endif
775
776
0
    mbedtls_mpi_free( &T );
777
778
0
    if( ret != 0 )
779
0
        return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_PUBLIC_FAILED, ret ) );
780
781
0
    return( 0 );
782
0
}
783
784
/*
785
 * Generate or update blinding values, see section 10 of:
786
 *  KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
787
 *  DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer
788
 *  Berlin Heidelberg, 1996. p. 104-113.
789
 */
790
static int rsa_prepare_blinding( mbedtls_rsa_context *ctx,
791
                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
792
0
{
793
0
    int ret, count = 0;
794
0
    mbedtls_mpi R;
795
796
0
    mbedtls_mpi_init( &R );
797
798
0
    if( ctx->Vf.p != NULL )
799
0
    {
800
        /* We already have blinding values, just update them by squaring */
801
0
        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &ctx->Vi ) );
802
0
        MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
803
0
        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vf, &ctx->Vf, &ctx->Vf ) );
804
0
        MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vf, &ctx->Vf, &ctx->N ) );
805
806
0
        goto cleanup;
807
0
    }
808
809
    /* Unblinding value: Vf = random number, invertible mod N */
810
0
    do {
811
0
        if( count++ > 10 )
812
0
        {
813
0
            ret = MBEDTLS_ERR_RSA_RNG_FAILED;
814
0
            goto cleanup;
815
0
        }
816
817
0
        MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &ctx->Vf, ctx->len - 1, f_rng, p_rng ) );
818
819
        /* Compute Vf^-1 as R * (R Vf)^-1 to avoid leaks from inv_mod. */
820
0
        MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, ctx->len - 1, f_rng, p_rng ) );
821
0
        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vf, &R ) );
822
0
        MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
823
824
        /* At this point, Vi is invertible mod N if and only if both Vf and R
825
         * are invertible mod N. If one of them isn't, we don't need to know
826
         * which one, we just loop and choose new values for both of them.
827
         * (Each iteration succeeds with overwhelming probability.) */
828
0
        ret = mbedtls_mpi_inv_mod( &ctx->Vi, &ctx->Vi, &ctx->N );
829
0
        if( ret != 0 && ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
830
0
            goto cleanup;
831
832
0
    } while( ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
833
834
    /* Finish the computation of Vf^-1 = R * (R Vf)^-1 */
835
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &R ) );
836
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
837
838
    /* Blinding value: Vi = Vf^(-e) mod N
839
     * (Vi already contains Vf^-1 at this point) */
840
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN ) );
841
842
843
0
cleanup:
844
0
    mbedtls_mpi_free( &R );
845
846
0
    return( ret );
847
0
}
848
849
/*
850
 * Exponent blinding supposed to prevent side-channel attacks using multiple
851
 * traces of measurements to recover the RSA key. The more collisions are there,
852
 * the more bits of the key can be recovered. See [3].
853
 *
854
 * Collecting n collisions with m bit long blinding value requires 2^(m-m/n)
855
 * observations on avarage.
856
 *
857
 * For example with 28 byte blinding to achieve 2 collisions the adversary has
858
 * to make 2^112 observations on avarage.
859
 *
860
 * (With the currently (as of 2017 April) known best algorithms breaking 2048
861
 * bit RSA requires approximately as much time as trying out 2^112 random keys.
862
 * Thus in this sense with 28 byte blinding the security is not reduced by
863
 * side-channel attacks like the one in [3])
864
 *
865
 * This countermeasure does not help if the key recovery is possible with a
866
 * single trace.
867
 */
868
#define RSA_EXPONENT_BLINDING 28
869
870
/*
871
 * Do an RSA private key operation
872
 */
873
int mbedtls_rsa_private( mbedtls_rsa_context *ctx,
874
                 int (*f_rng)(void *, unsigned char *, size_t),
875
                 void *p_rng,
876
                 const unsigned char *input,
877
                 unsigned char *output )
878
0
{
879
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
880
0
    size_t olen;
881
882
    /* Temporary holding the result */
883
0
    mbedtls_mpi T;
884
885
    /* Temporaries holding P-1, Q-1 and the
886
     * exponent blinding factor, respectively. */
887
0
    mbedtls_mpi P1, Q1, R;
888
889
0
#if !defined(MBEDTLS_RSA_NO_CRT)
890
    /* Temporaries holding the results mod p resp. mod q. */
891
0
    mbedtls_mpi TP, TQ;
892
893
    /* Temporaries holding the blinded exponents for
894
     * the mod p resp. mod q computation (if used). */
895
0
    mbedtls_mpi DP_blind, DQ_blind;
896
897
    /* Pointers to actual exponents to be used - either the unblinded
898
     * or the blinded ones, depending on the presence of a PRNG. */
899
0
    mbedtls_mpi *DP = &ctx->DP;
900
0
    mbedtls_mpi *DQ = &ctx->DQ;
901
#else
902
    /* Temporary holding the blinded exponent (if used). */
903
    mbedtls_mpi D_blind;
904
905
    /* Pointer to actual exponent to be used - either the unblinded
906
     * or the blinded one, depending on the presence of a PRNG. */
907
    mbedtls_mpi *D = &ctx->D;
908
#endif /* MBEDTLS_RSA_NO_CRT */
909
910
    /* Temporaries holding the initial input and the double
911
     * checked result; should be the same in the end. */
912
0
    mbedtls_mpi I, C;
913
914
0
    RSA_VALIDATE_RET( ctx != NULL );
915
0
    RSA_VALIDATE_RET( input  != NULL );
916
0
    RSA_VALIDATE_RET( output != NULL );
917
918
0
    if( f_rng == NULL )
919
0
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
920
921
0
    if( rsa_check_context( ctx, 1 /* private key checks */,
922
0
                                1 /* blinding on        */ ) != 0 )
923
0
    {
924
0
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
925
0
    }
926
927
#if defined(MBEDTLS_THREADING_C)
928
    if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 )
929
        return( ret );
930
#endif
931
932
    /* MPI Initialization */
933
0
    mbedtls_mpi_init( &T );
934
935
0
    mbedtls_mpi_init( &P1 );
936
0
    mbedtls_mpi_init( &Q1 );
937
0
    mbedtls_mpi_init( &R );
938
939
#if defined(MBEDTLS_RSA_NO_CRT)
940
    mbedtls_mpi_init( &D_blind );
941
#else
942
0
    mbedtls_mpi_init( &DP_blind );
943
0
    mbedtls_mpi_init( &DQ_blind );
944
0
#endif
945
946
0
#if !defined(MBEDTLS_RSA_NO_CRT)
947
0
    mbedtls_mpi_init( &TP ); mbedtls_mpi_init( &TQ );
948
0
#endif
949
950
0
    mbedtls_mpi_init( &I );
951
0
    mbedtls_mpi_init( &C );
952
953
    /* End of MPI initialization */
954
955
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) );
956
0
    if( mbedtls_mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
957
0
    {
958
0
        ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
959
0
        goto cleanup;
960
0
    }
961
962
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &I, &T ) );
963
964
    /*
965
     * Blinding
966
     * T = T * Vi mod N
967
     */
968
0
    MBEDTLS_MPI_CHK( rsa_prepare_blinding( ctx, f_rng, p_rng ) );
969
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vi ) );
970
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) );
971
972
    /*
973
     * Exponent blinding
974
     */
975
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &P1, &ctx->P, 1 ) );
976
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &Q1, &ctx->Q, 1 ) );
977
978
#if defined(MBEDTLS_RSA_NO_CRT)
979
    /*
980
     * D_blind = ( P - 1 ) * ( Q - 1 ) * R + D
981
     */
982
    MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
983
                     f_rng, p_rng ) );
984
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &P1, &Q1 ) );
985
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &D_blind, &R ) );
986
    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &D_blind, &D_blind, &ctx->D ) );
987
988
    D = &D_blind;
989
#else
990
    /*
991
     * DP_blind = ( P - 1 ) * R + DP
992
     */
993
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
994
0
                     f_rng, p_rng ) );
995
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DP_blind, &P1, &R ) );
996
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DP_blind, &DP_blind,
997
0
                &ctx->DP ) );
998
999
0
    DP = &DP_blind;
1000
1001
    /*
1002
     * DQ_blind = ( Q - 1 ) * R + DQ
1003
     */
1004
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
1005
0
                     f_rng, p_rng ) );
1006
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DQ_blind, &Q1, &R ) );
1007
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DQ_blind, &DQ_blind,
1008
0
                &ctx->DQ ) );
1009
1010
0
    DQ = &DQ_blind;
1011
0
#endif /* MBEDTLS_RSA_NO_CRT */
1012
1013
#if defined(MBEDTLS_RSA_NO_CRT)
1014
    MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, D, &ctx->N, &ctx->RN ) );
1015
#else
1016
    /*
1017
     * Faster decryption using the CRT
1018
     *
1019
     * TP = input ^ dP mod P
1020
     * TQ = input ^ dQ mod Q
1021
     */
1022
1023
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &TP, &T, DP, &ctx->P, &ctx->RP ) );
1024
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &TQ, &T, DQ, &ctx->Q, &ctx->RQ ) );
1025
1026
    /*
1027
     * T = (TP - TQ) * (Q^-1 mod P) mod P
1028
     */
1029
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &TP, &TQ ) );
1030
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &TP, &T, &ctx->QP ) );
1031
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &TP, &ctx->P ) );
1032
1033
    /*
1034
     * T = TQ + T * Q
1035
     */
1036
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &TP, &T, &ctx->Q ) );
1037
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T, &TQ, &TP ) );
1038
0
#endif /* MBEDTLS_RSA_NO_CRT */
1039
1040
    /*
1041
     * Unblind
1042
     * T = T * Vf mod N
1043
     */
1044
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vf ) );
1045
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) );
1046
1047
    /* Verify the result to prevent glitching attacks. */
1048
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &C, &T, &ctx->E,
1049
0
                                          &ctx->N, &ctx->RN ) );
1050
0
    if( mbedtls_mpi_cmp_mpi( &C, &I ) != 0 )
1051
0
    {
1052
0
        ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
1053
0
        goto cleanup;
1054
0
    }
1055
1056
0
    olen = ctx->len;
1057
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) );
1058
1059
0
cleanup:
1060
#if defined(MBEDTLS_THREADING_C)
1061
    if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
1062
        return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
1063
#endif
1064
1065
0
    mbedtls_mpi_free( &P1 );
1066
0
    mbedtls_mpi_free( &Q1 );
1067
0
    mbedtls_mpi_free( &R );
1068
1069
#if defined(MBEDTLS_RSA_NO_CRT)
1070
    mbedtls_mpi_free( &D_blind );
1071
#else
1072
0
    mbedtls_mpi_free( &DP_blind );
1073
0
    mbedtls_mpi_free( &DQ_blind );
1074
0
#endif
1075
1076
0
    mbedtls_mpi_free( &T );
1077
1078
0
#if !defined(MBEDTLS_RSA_NO_CRT)
1079
0
    mbedtls_mpi_free( &TP ); mbedtls_mpi_free( &TQ );
1080
0
#endif
1081
1082
0
    mbedtls_mpi_free( &C );
1083
0
    mbedtls_mpi_free( &I );
1084
1085
0
    if( ret != 0 && ret >= -0x007f )
1086
0
        return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_PRIVATE_FAILED, ret ) );
1087
1088
0
    return( ret );
1089
0
}
1090
1091
#if defined(MBEDTLS_PKCS1_V21)
1092
/**
1093
 * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
1094
 *
1095
 * \param dst       buffer to mask
1096
 * \param dlen      length of destination buffer
1097
 * \param src       source of the mask generation
1098
 * \param slen      length of the source buffer
1099
 * \param md_ctx    message digest context to use
1100
 */
1101
static int mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src,
1102
                      size_t slen, mbedtls_md_context_t *md_ctx )
1103
{
1104
    unsigned char mask[MBEDTLS_MD_MAX_SIZE];
1105
    unsigned char counter[4];
1106
    unsigned char *p;
1107
    unsigned int hlen;
1108
    size_t i, use_len;
1109
    int ret = 0;
1110
1111
    memset( mask, 0, MBEDTLS_MD_MAX_SIZE );
1112
    memset( counter, 0, 4 );
1113
1114
    hlen = mbedtls_md_get_size( md_ctx->md_info );
1115
1116
    /* Generate and apply dbMask */
1117
    p = dst;
1118
1119
    while( dlen > 0 )
1120
    {
1121
        use_len = hlen;
1122
        if( dlen < hlen )
1123
            use_len = dlen;
1124
1125
        if( ( ret = mbedtls_md_starts( md_ctx ) ) != 0 )
1126
            goto exit;
1127
        if( ( ret = mbedtls_md_update( md_ctx, src, slen ) ) != 0 )
1128
            goto exit;
1129
        if( ( ret = mbedtls_md_update( md_ctx, counter, 4 ) ) != 0 )
1130
            goto exit;
1131
        if( ( ret = mbedtls_md_finish( md_ctx, mask ) ) != 0 )
1132
            goto exit;
1133
1134
        for( i = 0; i < use_len; ++i )
1135
            *p++ ^= mask[i];
1136
1137
        counter[3]++;
1138
1139
        dlen -= use_len;
1140
    }
1141
1142
exit:
1143
    mbedtls_platform_zeroize( mask, sizeof( mask ) );
1144
1145
    return( ret );
1146
}
1147
#endif /* MBEDTLS_PKCS1_V21 */
1148
1149
#if defined(MBEDTLS_PKCS1_V21)
1150
/*
1151
 * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
1152
 */
1153
int mbedtls_rsa_rsaes_oaep_encrypt( mbedtls_rsa_context *ctx,
1154
                            int (*f_rng)(void *, unsigned char *, size_t),
1155
                            void *p_rng,
1156
                            const unsigned char *label, size_t label_len,
1157
                            size_t ilen,
1158
                            const unsigned char *input,
1159
                            unsigned char *output )
1160
{
1161
    size_t olen;
1162
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1163
    unsigned char *p = output;
1164
    unsigned int hlen;
1165
    const mbedtls_md_info_t *md_info;
1166
    mbedtls_md_context_t md_ctx;
1167
1168
    RSA_VALIDATE_RET( ctx != NULL );
1169
    RSA_VALIDATE_RET( output != NULL );
1170
    RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1171
    RSA_VALIDATE_RET( label_len == 0 || label != NULL );
1172
1173
    if( f_rng == NULL )
1174
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1175
1176
    md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1177
    if( md_info == NULL )
1178
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1179
1180
    olen = ctx->len;
1181
    hlen = mbedtls_md_get_size( md_info );
1182
1183
    /* first comparison checks for overflow */
1184
    if( ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2 )
1185
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1186
1187
    memset( output, 0, olen );
1188
1189
    *p++ = 0;
1190
1191
    /* Generate a random octet string seed */
1192
    if( ( ret = f_rng( p_rng, p, hlen ) ) != 0 )
1193
        return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) );
1194
1195
    p += hlen;
1196
1197
    /* Construct DB */
1198
    if( ( ret = mbedtls_md( md_info, label, label_len, p ) ) != 0 )
1199
        return( ret );
1200
    p += hlen;
1201
    p += olen - 2 * hlen - 2 - ilen;
1202
    *p++ = 1;
1203
    if( ilen != 0 )
1204
        memcpy( p, input, ilen );
1205
1206
    mbedtls_md_init( &md_ctx );
1207
    if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1208
        goto exit;
1209
1210
    /* maskedDB: Apply dbMask to DB */
1211
    if( ( ret = mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen,
1212
                          &md_ctx ) ) != 0 )
1213
        goto exit;
1214
1215
    /* maskedSeed: Apply seedMask to seed */
1216
    if( ( ret = mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1,
1217
                          &md_ctx ) ) != 0 )
1218
        goto exit;
1219
1220
exit:
1221
    mbedtls_md_free( &md_ctx );
1222
1223
    if( ret != 0 )
1224
        return( ret );
1225
1226
    return( mbedtls_rsa_public(  ctx, output, output ) );
1227
}
1228
#endif /* MBEDTLS_PKCS1_V21 */
1229
1230
#if defined(MBEDTLS_PKCS1_V15)
1231
/*
1232
 * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function
1233
 */
1234
int mbedtls_rsa_rsaes_pkcs1_v15_encrypt( mbedtls_rsa_context *ctx,
1235
                                 int (*f_rng)(void *, unsigned char *, size_t),
1236
                                 void *p_rng, size_t ilen,
1237
                                 const unsigned char *input,
1238
                                 unsigned char *output )
1239
0
{
1240
0
    size_t nb_pad, olen;
1241
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1242
0
    unsigned char *p = output;
1243
1244
0
    RSA_VALIDATE_RET( ctx != NULL );
1245
0
    RSA_VALIDATE_RET( output != NULL );
1246
0
    RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1247
1248
0
    olen = ctx->len;
1249
1250
    /* first comparison checks for overflow */
1251
0
    if( ilen + 11 < ilen || olen < ilen + 11 )
1252
0
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1253
1254
0
    nb_pad = olen - 3 - ilen;
1255
1256
0
    *p++ = 0;
1257
1258
0
    if( f_rng == NULL )
1259
0
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1260
1261
0
    *p++ = MBEDTLS_RSA_CRYPT;
1262
1263
0
    while( nb_pad-- > 0 )
1264
0
    {
1265
0
        int rng_dl = 100;
1266
1267
0
        do {
1268
0
            ret = f_rng( p_rng, p, 1 );
1269
0
        } while( *p == 0 && --rng_dl && ret == 0 );
1270
1271
        /* Check if RNG failed to generate data */
1272
0
        if( rng_dl == 0 || ret != 0 )
1273
0
            return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) );
1274
1275
0
        p++;
1276
0
    }
1277
1278
0
    *p++ = 0;
1279
0
    if( ilen != 0 )
1280
0
        memcpy( p, input, ilen );
1281
1282
0
    return( mbedtls_rsa_public(  ctx, output, output ) );
1283
0
}
1284
#endif /* MBEDTLS_PKCS1_V15 */
1285
1286
/*
1287
 * Add the message padding, then do an RSA operation
1288
 */
1289
int mbedtls_rsa_pkcs1_encrypt( mbedtls_rsa_context *ctx,
1290
                       int (*f_rng)(void *, unsigned char *, size_t),
1291
                       void *p_rng,
1292
                       size_t ilen,
1293
                       const unsigned char *input,
1294
                       unsigned char *output )
1295
0
{
1296
0
    RSA_VALIDATE_RET( ctx != NULL );
1297
0
    RSA_VALIDATE_RET( output != NULL );
1298
0
    RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1299
1300
0
    switch( ctx->padding )
1301
0
    {
1302
0
#if defined(MBEDTLS_PKCS1_V15)
1303
0
        case MBEDTLS_RSA_PKCS_V15:
1304
0
            return mbedtls_rsa_rsaes_pkcs1_v15_encrypt( ctx, f_rng, p_rng,
1305
0
                                                        ilen, input, output );
1306
0
#endif
1307
1308
#if defined(MBEDTLS_PKCS1_V21)
1309
        case MBEDTLS_RSA_PKCS_V21:
1310
            return mbedtls_rsa_rsaes_oaep_encrypt( ctx, f_rng, p_rng, NULL, 0,
1311
                                                   ilen, input, output );
1312
#endif
1313
1314
0
        default:
1315
0
            return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1316
0
    }
1317
0
}
1318
1319
#if defined(MBEDTLS_PKCS1_V21)
1320
/*
1321
 * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
1322
 */
1323
int mbedtls_rsa_rsaes_oaep_decrypt( mbedtls_rsa_context *ctx,
1324
                            int (*f_rng)(void *, unsigned char *, size_t),
1325
                            void *p_rng,
1326
                            const unsigned char *label, size_t label_len,
1327
                            size_t *olen,
1328
                            const unsigned char *input,
1329
                            unsigned char *output,
1330
                            size_t output_max_len )
1331
{
1332
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1333
    size_t ilen, i, pad_len;
1334
    unsigned char *p, bad, pad_done;
1335
    unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1336
    unsigned char lhash[MBEDTLS_MD_MAX_SIZE];
1337
    unsigned int hlen;
1338
    const mbedtls_md_info_t *md_info;
1339
    mbedtls_md_context_t md_ctx;
1340
1341
    RSA_VALIDATE_RET( ctx != NULL );
1342
    RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1343
    RSA_VALIDATE_RET( label_len == 0 || label != NULL );
1344
    RSA_VALIDATE_RET( input != NULL );
1345
    RSA_VALIDATE_RET( olen != NULL );
1346
1347
    /*
1348
     * Parameters sanity checks
1349
     */
1350
    if( ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1351
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1352
1353
    ilen = ctx->len;
1354
1355
    if( ilen < 16 || ilen > sizeof( buf ) )
1356
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1357
1358
    md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1359
    if( md_info == NULL )
1360
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1361
1362
    hlen = mbedtls_md_get_size( md_info );
1363
1364
    // checking for integer underflow
1365
    if( 2 * hlen + 2 > ilen )
1366
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1367
1368
    /*
1369
     * RSA operation
1370
     */
1371
    ret = mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
1372
1373
    if( ret != 0 )
1374
        goto cleanup;
1375
1376
    /*
1377
     * Unmask data and generate lHash
1378
     */
1379
    mbedtls_md_init( &md_ctx );
1380
    if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1381
    {
1382
        mbedtls_md_free( &md_ctx );
1383
        goto cleanup;
1384
    }
1385
1386
    /* seed: Apply seedMask to maskedSeed */
1387
    if( ( ret = mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
1388
                          &md_ctx ) ) != 0 ||
1389
    /* DB: Apply dbMask to maskedDB */
1390
        ( ret = mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
1391
                          &md_ctx ) ) != 0 )
1392
    {
1393
        mbedtls_md_free( &md_ctx );
1394
        goto cleanup;
1395
    }
1396
1397
    mbedtls_md_free( &md_ctx );
1398
1399
    /* Generate lHash */
1400
    if( ( ret = mbedtls_md( md_info, label, label_len, lhash ) ) != 0 )
1401
        goto cleanup;
1402
1403
    /*
1404
     * Check contents, in "constant-time"
1405
     */
1406
    p = buf;
1407
    bad = 0;
1408
1409
    bad |= *p++; /* First byte must be 0 */
1410
1411
    p += hlen; /* Skip seed */
1412
1413
    /* Check lHash */
1414
    for( i = 0; i < hlen; i++ )
1415
        bad |= lhash[i] ^ *p++;
1416
1417
    /* Get zero-padding len, but always read till end of buffer
1418
     * (minus one, for the 01 byte) */
1419
    pad_len = 0;
1420
    pad_done = 0;
1421
    for( i = 0; i < ilen - 2 * hlen - 2; i++ )
1422
    {
1423
        pad_done |= p[i];
1424
        pad_len += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
1425
    }
1426
1427
    p += pad_len;
1428
    bad |= *p++ ^ 0x01;
1429
1430
    /*
1431
     * The only information "leaked" is whether the padding was correct or not
1432
     * (eg, no data is copied if it was not correct). This meets the
1433
     * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between
1434
     * the different error conditions.
1435
     */
1436
    if( bad != 0 )
1437
    {
1438
        ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
1439
        goto cleanup;
1440
    }
1441
1442
    if( ilen - ( p - buf ) > output_max_len )
1443
    {
1444
        ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
1445
        goto cleanup;
1446
    }
1447
1448
    *olen = ilen - (p - buf);
1449
    if( *olen != 0 )
1450
        memcpy( output, p, *olen );
1451
    ret = 0;
1452
1453
cleanup:
1454
    mbedtls_platform_zeroize( buf, sizeof( buf ) );
1455
    mbedtls_platform_zeroize( lhash, sizeof( lhash ) );
1456
1457
    return( ret );
1458
}
1459
#endif /* MBEDTLS_PKCS1_V21 */
1460
1461
#if defined(MBEDTLS_PKCS1_V15)
1462
/*
1463
 * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
1464
 */
1465
int mbedtls_rsa_rsaes_pkcs1_v15_decrypt( mbedtls_rsa_context *ctx,
1466
                                 int (*f_rng)(void *, unsigned char *, size_t),
1467
                                 void *p_rng,
1468
                                 size_t *olen,
1469
                                 const unsigned char *input,
1470
                                 unsigned char *output,
1471
                                 size_t output_max_len )
1472
0
{
1473
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1474
0
    size_t ilen;
1475
0
    unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1476
1477
0
    RSA_VALIDATE_RET( ctx != NULL );
1478
0
    RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1479
0
    RSA_VALIDATE_RET( input != NULL );
1480
0
    RSA_VALIDATE_RET( olen != NULL );
1481
1482
0
    ilen = ctx->len;
1483
1484
0
    if( ctx->padding != MBEDTLS_RSA_PKCS_V15 )
1485
0
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1486
1487
0
    if( ilen < 16 || ilen > sizeof( buf ) )
1488
0
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1489
1490
0
    ret = mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
1491
1492
0
    if( ret != 0 )
1493
0
        goto cleanup;
1494
1495
0
    ret = mbedtls_ct_rsaes_pkcs1_v15_unpadding( buf, ilen,
1496
0
                                                output, output_max_len, olen );
1497
1498
0
cleanup:
1499
0
    mbedtls_platform_zeroize( buf, sizeof( buf ) );
1500
1501
0
    return( ret );
1502
0
}
1503
#endif /* MBEDTLS_PKCS1_V15 */
1504
1505
/*
1506
 * Do an RSA operation, then remove the message padding
1507
 */
1508
int mbedtls_rsa_pkcs1_decrypt( mbedtls_rsa_context *ctx,
1509
                       int (*f_rng)(void *, unsigned char *, size_t),
1510
                       void *p_rng,
1511
                       size_t *olen,
1512
                       const unsigned char *input,
1513
                       unsigned char *output,
1514
                       size_t output_max_len)
1515
0
{
1516
0
    RSA_VALIDATE_RET( ctx != NULL );
1517
0
    RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1518
0
    RSA_VALIDATE_RET( input != NULL );
1519
0
    RSA_VALIDATE_RET( olen != NULL );
1520
1521
0
    switch( ctx->padding )
1522
0
    {
1523
0
#if defined(MBEDTLS_PKCS1_V15)
1524
0
        case MBEDTLS_RSA_PKCS_V15:
1525
0
            return mbedtls_rsa_rsaes_pkcs1_v15_decrypt( ctx, f_rng, p_rng, olen,
1526
0
                                                input, output, output_max_len );
1527
0
#endif
1528
1529
#if defined(MBEDTLS_PKCS1_V21)
1530
        case MBEDTLS_RSA_PKCS_V21:
1531
            return mbedtls_rsa_rsaes_oaep_decrypt( ctx, f_rng, p_rng, NULL, 0,
1532
                                           olen, input, output,
1533
                                           output_max_len );
1534
#endif
1535
1536
0
        default:
1537
0
            return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1538
0
    }
1539
0
}
1540
1541
#if defined(MBEDTLS_PKCS1_V21)
1542
static int rsa_rsassa_pss_sign( mbedtls_rsa_context *ctx,
1543
                         int (*f_rng)(void *, unsigned char *, size_t),
1544
                         void *p_rng,
1545
                         mbedtls_md_type_t md_alg,
1546
                         unsigned int hashlen,
1547
                         const unsigned char *hash,
1548
                         int saltlen,
1549
                         unsigned char *sig )
1550
{
1551
    size_t olen;
1552
    unsigned char *p = sig;
1553
    unsigned char *salt = NULL;
1554
    size_t slen, min_slen, hlen, offset = 0;
1555
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1556
    size_t msb;
1557
    const mbedtls_md_info_t *md_info;
1558
    mbedtls_md_context_t md_ctx;
1559
    RSA_VALIDATE_RET( ctx != NULL );
1560
    RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
1561
                        hashlen == 0 ) ||
1562
                      hash != NULL );
1563
    RSA_VALIDATE_RET( sig != NULL );
1564
1565
    if( ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1566
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1567
1568
    if( f_rng == NULL )
1569
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1570
1571
    olen = ctx->len;
1572
1573
    if( md_alg != MBEDTLS_MD_NONE )
1574
    {
1575
        /* Gather length of hash to sign */
1576
        md_info = mbedtls_md_info_from_type( md_alg );
1577
        if( md_info == NULL )
1578
            return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1579
1580
        if( hashlen != mbedtls_md_get_size( md_info ) )
1581
            return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1582
    }
1583
1584
    md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1585
    if( md_info == NULL )
1586
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1587
1588
    hlen = mbedtls_md_get_size( md_info );
1589
1590
    if (saltlen == MBEDTLS_RSA_SALT_LEN_ANY)
1591
    {
1592
       /* Calculate the largest possible salt length, up to the hash size.
1593
        * Normally this is the hash length, which is the maximum salt length
1594
        * according to FIPS 185-4 §5.5 (e) and common practice. If there is not
1595
        * enough room, use the maximum salt length that fits. The constraint is
1596
        * that the hash length plus the salt length plus 2 bytes must be at most
1597
        * the key length. This complies with FIPS 186-4 §5.5 (e) and RFC 8017
1598
        * (PKCS#1 v2.2) §9.1.1 step 3. */
1599
        min_slen = hlen - 2;
1600
        if( olen < hlen + min_slen + 2 )
1601
            return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1602
        else if( olen >= hlen + hlen + 2 )
1603
            slen = hlen;
1604
        else
1605
            slen = olen - hlen - 2;
1606
    }
1607
    else if ( (saltlen < 0) || (saltlen + hlen + 2 > olen) )
1608
    {
1609
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1610
    }
1611
    else
1612
    {
1613
        slen = (size_t) saltlen;
1614
    }
1615
1616
    memset( sig, 0, olen );
1617
1618
    /* Note: EMSA-PSS encoding is over the length of N - 1 bits */
1619
    msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
1620
    p += olen - hlen - slen - 2;
1621
    *p++ = 0x01;
1622
1623
    /* Generate salt of length slen in place in the encoded message */
1624
    salt = p;
1625
    if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 )
1626
        return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) );
1627
1628
    p += slen;
1629
1630
    mbedtls_md_init( &md_ctx );
1631
    if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1632
        goto exit;
1633
1634
    /* Generate H = Hash( M' ) */
1635
    if( ( ret = mbedtls_md_starts( &md_ctx ) ) != 0 )
1636
        goto exit;
1637
    if( ( ret = mbedtls_md_update( &md_ctx, p, 8 ) ) != 0 )
1638
        goto exit;
1639
    if( ( ret = mbedtls_md_update( &md_ctx, hash, hashlen ) ) != 0 )
1640
        goto exit;
1641
    if( ( ret = mbedtls_md_update( &md_ctx, salt, slen ) ) != 0 )
1642
        goto exit;
1643
    if( ( ret = mbedtls_md_finish( &md_ctx, p ) ) != 0 )
1644
        goto exit;
1645
1646
    /* Compensate for boundary condition when applying mask */
1647
    if( msb % 8 == 0 )
1648
        offset = 1;
1649
1650
    /* maskedDB: Apply dbMask to DB */
1651
    if( ( ret = mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen,
1652
                          &md_ctx ) ) != 0 )
1653
        goto exit;
1654
1655
    msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
1656
    sig[0] &= 0xFF >> ( olen * 8 - msb );
1657
1658
    p += hlen;
1659
    *p++ = 0xBC;
1660
1661
exit:
1662
    mbedtls_md_free( &md_ctx );
1663
1664
    if( ret != 0 )
1665
        return( ret );
1666
1667
    return mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig );
1668
}
1669
1670
/*
1671
 * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function with
1672
 * the option to pass in the salt length.
1673
 */
1674
int mbedtls_rsa_rsassa_pss_sign_ext( mbedtls_rsa_context *ctx,
1675
                         int (*f_rng)(void *, unsigned char *, size_t),
1676
                         void *p_rng,
1677
                         mbedtls_md_type_t md_alg,
1678
                         unsigned int hashlen,
1679
                         const unsigned char *hash,
1680
                         int saltlen,
1681
                         unsigned char *sig )
1682
{
1683
    return rsa_rsassa_pss_sign( ctx, f_rng, p_rng, md_alg,
1684
                                hashlen, hash, saltlen, sig );
1685
}
1686
1687
1688
/*
1689
 * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
1690
 */
1691
int mbedtls_rsa_rsassa_pss_sign( mbedtls_rsa_context *ctx,
1692
                         int (*f_rng)(void *, unsigned char *, size_t),
1693
                         void *p_rng,
1694
                         mbedtls_md_type_t md_alg,
1695
                         unsigned int hashlen,
1696
                         const unsigned char *hash,
1697
                         unsigned char *sig )
1698
{
1699
    return rsa_rsassa_pss_sign( ctx, f_rng, p_rng, md_alg,
1700
                                hashlen, hash, MBEDTLS_RSA_SALT_LEN_ANY, sig );
1701
}
1702
#endif /* MBEDTLS_PKCS1_V21 */
1703
1704
#if defined(MBEDTLS_PKCS1_V15)
1705
/*
1706
 * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function
1707
 */
1708
1709
/* Construct a PKCS v1.5 encoding of a hashed message
1710
 *
1711
 * This is used both for signature generation and verification.
1712
 *
1713
 * Parameters:
1714
 * - md_alg:  Identifies the hash algorithm used to generate the given hash;
1715
 *            MBEDTLS_MD_NONE if raw data is signed.
1716
 * - hashlen: Length of hash. Must match md_alg if that's not NONE.
1717
 * - hash:    Buffer containing the hashed message or the raw data.
1718
 * - dst_len: Length of the encoded message.
1719
 * - dst:     Buffer to hold the encoded message.
1720
 *
1721
 * Assumptions:
1722
 * - hash has size hashlen.
1723
 * - dst points to a buffer of size at least dst_len.
1724
 *
1725
 */
1726
static int rsa_rsassa_pkcs1_v15_encode( mbedtls_md_type_t md_alg,
1727
                                        unsigned int hashlen,
1728
                                        const unsigned char *hash,
1729
                                        size_t dst_len,
1730
                                        unsigned char *dst )
1731
0
{
1732
0
    size_t oid_size  = 0;
1733
0
    size_t nb_pad    = dst_len;
1734
0
    unsigned char *p = dst;
1735
0
    const char *oid  = NULL;
1736
1737
    /* Are we signing hashed or raw data? */
1738
0
    if( md_alg != MBEDTLS_MD_NONE )
1739
0
    {
1740
0
        const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type( md_alg );
1741
0
        if( md_info == NULL )
1742
0
            return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1743
1744
0
        if( mbedtls_oid_get_oid_by_md( md_alg, &oid, &oid_size ) != 0 )
1745
0
            return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1746
1747
0
        if( hashlen != mbedtls_md_get_size( md_info ) )
1748
0
            return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1749
1750
        /* Double-check that 8 + hashlen + oid_size can be used as a
1751
         * 1-byte ASN.1 length encoding and that there's no overflow. */
1752
0
        if( 8 + hashlen + oid_size  >= 0x80         ||
1753
0
            10 + hashlen            <  hashlen      ||
1754
0
            10 + hashlen + oid_size <  10 + hashlen )
1755
0
            return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1756
1757
        /*
1758
         * Static bounds check:
1759
         * - Need 10 bytes for five tag-length pairs.
1760
         *   (Insist on 1-byte length encodings to protect against variants of
1761
         *    Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification)
1762
         * - Need hashlen bytes for hash
1763
         * - Need oid_size bytes for hash alg OID.
1764
         */
1765
0
        if( nb_pad < 10 + hashlen + oid_size )
1766
0
            return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1767
0
        nb_pad -= 10 + hashlen + oid_size;
1768
0
    }
1769
0
    else
1770
0
    {
1771
0
        if( nb_pad < hashlen )
1772
0
            return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1773
1774
0
        nb_pad -= hashlen;
1775
0
    }
1776
1777
    /* Need space for signature header and padding delimiter (3 bytes),
1778
     * and 8 bytes for the minimal padding */
1779
0
    if( nb_pad < 3 + 8 )
1780
0
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1781
0
    nb_pad -= 3;
1782
1783
    /* Now nb_pad is the amount of memory to be filled
1784
     * with padding, and at least 8 bytes long. */
1785
1786
    /* Write signature header and padding */
1787
0
    *p++ = 0;
1788
0
    *p++ = MBEDTLS_RSA_SIGN;
1789
0
    memset( p, 0xFF, nb_pad );
1790
0
    p += nb_pad;
1791
0
    *p++ = 0;
1792
1793
    /* Are we signing raw data? */
1794
0
    if( md_alg == MBEDTLS_MD_NONE )
1795
0
    {
1796
0
        memcpy( p, hash, hashlen );
1797
0
        return( 0 );
1798
0
    }
1799
1800
    /* Signing hashed data, add corresponding ASN.1 structure
1801
     *
1802
     * DigestInfo ::= SEQUENCE {
1803
     *   digestAlgorithm DigestAlgorithmIdentifier,
1804
     *   digest Digest }
1805
     * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
1806
     * Digest ::= OCTET STRING
1807
     *
1808
     * Schematic:
1809
     * TAG-SEQ + LEN [ TAG-SEQ + LEN [ TAG-OID  + LEN [ OID  ]
1810
     *                                 TAG-NULL + LEN [ NULL ] ]
1811
     *                 TAG-OCTET + LEN [ HASH ] ]
1812
     */
1813
0
    *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
1814
0
    *p++ = (unsigned char)( 0x08 + oid_size + hashlen );
1815
0
    *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
1816
0
    *p++ = (unsigned char)( 0x04 + oid_size );
1817
0
    *p++ = MBEDTLS_ASN1_OID;
1818
0
    *p++ = (unsigned char) oid_size;
1819
0
    memcpy( p, oid, oid_size );
1820
0
    p += oid_size;
1821
0
    *p++ = MBEDTLS_ASN1_NULL;
1822
0
    *p++ = 0x00;
1823
0
    *p++ = MBEDTLS_ASN1_OCTET_STRING;
1824
0
    *p++ = (unsigned char) hashlen;
1825
0
    memcpy( p, hash, hashlen );
1826
0
    p += hashlen;
1827
1828
    /* Just a sanity-check, should be automatic
1829
     * after the initial bounds check. */
1830
0
    if( p != dst + dst_len )
1831
0
    {
1832
0
        mbedtls_platform_zeroize( dst, dst_len );
1833
0
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1834
0
    }
1835
1836
0
    return( 0 );
1837
0
}
1838
1839
/*
1840
 * Do an RSA operation to sign the message digest
1841
 */
1842
int mbedtls_rsa_rsassa_pkcs1_v15_sign( mbedtls_rsa_context *ctx,
1843
                               int (*f_rng)(void *, unsigned char *, size_t),
1844
                               void *p_rng,
1845
                               mbedtls_md_type_t md_alg,
1846
                               unsigned int hashlen,
1847
                               const unsigned char *hash,
1848
                               unsigned char *sig )
1849
0
{
1850
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1851
0
    unsigned char *sig_try = NULL, *verif = NULL;
1852
1853
0
    RSA_VALIDATE_RET( ctx != NULL );
1854
0
    RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
1855
0
                        hashlen == 0 ) ||
1856
0
                      hash != NULL );
1857
0
    RSA_VALIDATE_RET( sig != NULL );
1858
1859
0
    if( ctx->padding != MBEDTLS_RSA_PKCS_V15 )
1860
0
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1861
1862
    /*
1863
     * Prepare PKCS1-v1.5 encoding (padding and hash identifier)
1864
     */
1865
1866
0
    if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash,
1867
0
                                             ctx->len, sig ) ) != 0 )
1868
0
        return( ret );
1869
1870
    /* Private key operation
1871
     *
1872
     * In order to prevent Lenstra's attack, make the signature in a
1873
     * temporary buffer and check it before returning it.
1874
     */
1875
1876
0
    sig_try = (unsigned char *) mbedtls_calloc( 1, ctx->len );
1877
0
    if( sig_try == NULL )
1878
0
        return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
1879
1880
0
    verif = (unsigned char *) mbedtls_calloc( 1, ctx->len );
1881
0
    if( verif == NULL )
1882
0
    {
1883
0
        mbedtls_free( sig_try );
1884
0
        return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
1885
0
    }
1886
1887
0
    MBEDTLS_MPI_CHK( mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig_try ) );
1888
0
    MBEDTLS_MPI_CHK( mbedtls_rsa_public( ctx, sig_try, verif ) );
1889
1890
0
    if( mbedtls_ct_memcmp( verif, sig, ctx->len ) != 0 )
1891
0
    {
1892
0
        ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED;
1893
0
        goto cleanup;
1894
0
    }
1895
1896
0
    memcpy( sig, sig_try, ctx->len );
1897
1898
0
cleanup:
1899
0
    mbedtls_platform_zeroize( sig_try, ctx->len );
1900
0
    mbedtls_platform_zeroize( verif, ctx->len );
1901
0
    mbedtls_free( sig_try );
1902
0
    mbedtls_free( verif );
1903
1904
0
    if( ret != 0 )
1905
0
        memset( sig, '!', ctx->len );
1906
0
    return( ret );
1907
0
}
1908
#endif /* MBEDTLS_PKCS1_V15 */
1909
1910
/*
1911
 * Do an RSA operation to sign the message digest
1912
 */
1913
int mbedtls_rsa_pkcs1_sign( mbedtls_rsa_context *ctx,
1914
                    int (*f_rng)(void *, unsigned char *, size_t),
1915
                    void *p_rng,
1916
                    mbedtls_md_type_t md_alg,
1917
                    unsigned int hashlen,
1918
                    const unsigned char *hash,
1919
                    unsigned char *sig )
1920
0
{
1921
0
    RSA_VALIDATE_RET( ctx != NULL );
1922
0
    RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
1923
0
                        hashlen == 0 ) ||
1924
0
                      hash != NULL );
1925
0
    RSA_VALIDATE_RET( sig != NULL );
1926
1927
0
    switch( ctx->padding )
1928
0
    {
1929
0
#if defined(MBEDTLS_PKCS1_V15)
1930
0
        case MBEDTLS_RSA_PKCS_V15:
1931
0
            return mbedtls_rsa_rsassa_pkcs1_v15_sign( ctx, f_rng, p_rng,
1932
0
                                                      md_alg, hashlen, hash, sig );
1933
0
#endif
1934
1935
#if defined(MBEDTLS_PKCS1_V21)
1936
        case MBEDTLS_RSA_PKCS_V21:
1937
            return mbedtls_rsa_rsassa_pss_sign( ctx, f_rng, p_rng, md_alg,
1938
                                                hashlen, hash, sig );
1939
#endif
1940
1941
0
        default:
1942
0
            return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1943
0
    }
1944
0
}
1945
1946
#if defined(MBEDTLS_PKCS1_V21)
1947
/*
1948
 * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
1949
 */
1950
int mbedtls_rsa_rsassa_pss_verify_ext( mbedtls_rsa_context *ctx,
1951
                               mbedtls_md_type_t md_alg,
1952
                               unsigned int hashlen,
1953
                               const unsigned char *hash,
1954
                               mbedtls_md_type_t mgf1_hash_id,
1955
                               int expected_salt_len,
1956
                               const unsigned char *sig )
1957
{
1958
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1959
    size_t siglen;
1960
    unsigned char *p;
1961
    unsigned char *hash_start;
1962
    unsigned char result[MBEDTLS_MD_MAX_SIZE];
1963
    unsigned char zeros[8];
1964
    unsigned int hlen;
1965
    size_t observed_salt_len, msb;
1966
    const mbedtls_md_info_t *md_info;
1967
    mbedtls_md_context_t md_ctx;
1968
    unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1969
1970
    RSA_VALIDATE_RET( ctx != NULL );
1971
    RSA_VALIDATE_RET( sig != NULL );
1972
    RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
1973
                        hashlen == 0 ) ||
1974
                      hash != NULL );
1975
1976
    siglen = ctx->len;
1977
1978
    if( siglen < 16 || siglen > sizeof( buf ) )
1979
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1980
1981
    ret = mbedtls_rsa_public(  ctx, sig, buf );
1982
1983
    if( ret != 0 )
1984
        return( ret );
1985
1986
    p = buf;
1987
1988
    if( buf[siglen - 1] != 0xBC )
1989
        return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1990
1991
    if( md_alg != MBEDTLS_MD_NONE )
1992
    {
1993
        /* Gather length of hash to sign */
1994
        md_info = mbedtls_md_info_from_type( md_alg );
1995
        if( md_info == NULL )
1996
            return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1997
1998
        if( hashlen != mbedtls_md_get_size( md_info ) )
1999
            return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2000
    }
2001
2002
    md_info = mbedtls_md_info_from_type( mgf1_hash_id );
2003
    if( md_info == NULL )
2004
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2005
2006
    hlen = mbedtls_md_get_size( md_info );
2007
2008
    memset( zeros, 0, 8 );
2009
2010
    /*
2011
     * Note: EMSA-PSS verification is over the length of N - 1 bits
2012
     */
2013
    msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
2014
2015
    if( buf[0] >> ( 8 - siglen * 8 + msb ) )
2016
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2017
2018
    /* Compensate for boundary condition when applying mask */
2019
    if( msb % 8 == 0 )
2020
    {
2021
        p++;
2022
        siglen -= 1;
2023
    }
2024
2025
    if( siglen < hlen + 2 )
2026
        return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2027
    hash_start = p + siglen - hlen - 1;
2028
2029
    mbedtls_md_init( &md_ctx );
2030
    if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
2031
        goto exit;
2032
2033
    ret = mgf_mask( p, siglen - hlen - 1, hash_start, hlen, &md_ctx );
2034
    if( ret != 0 )
2035
        goto exit;
2036
2037
    buf[0] &= 0xFF >> ( siglen * 8 - msb );
2038
2039
    while( p < hash_start - 1 && *p == 0 )
2040
        p++;
2041
2042
    if( *p++ != 0x01 )
2043
    {
2044
        ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
2045
        goto exit;
2046
    }
2047
2048
    observed_salt_len = hash_start - p;
2049
2050
    if( expected_salt_len != MBEDTLS_RSA_SALT_LEN_ANY &&
2051
        observed_salt_len != (size_t) expected_salt_len )
2052
    {
2053
        ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
2054
        goto exit;
2055
    }
2056
2057
    /*
2058
     * Generate H = Hash( M' )
2059
     */
2060
    ret = mbedtls_md_starts( &md_ctx );
2061
    if ( ret != 0 )
2062
        goto exit;
2063
    ret = mbedtls_md_update( &md_ctx, zeros, 8 );
2064
    if ( ret != 0 )
2065
        goto exit;
2066
    ret = mbedtls_md_update( &md_ctx, hash, hashlen );
2067
    if ( ret != 0 )
2068
        goto exit;
2069
    ret = mbedtls_md_update( &md_ctx, p, observed_salt_len );
2070
    if ( ret != 0 )
2071
        goto exit;
2072
    ret = mbedtls_md_finish( &md_ctx, result );
2073
    if ( ret != 0 )
2074
        goto exit;
2075
2076
    if( memcmp( hash_start, result, hlen ) != 0 )
2077
    {
2078
        ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
2079
        goto exit;
2080
    }
2081
2082
exit:
2083
    mbedtls_md_free( &md_ctx );
2084
2085
    return( ret );
2086
}
2087
2088
/*
2089
 * Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function
2090
 */
2091
int mbedtls_rsa_rsassa_pss_verify( mbedtls_rsa_context *ctx,
2092
                           mbedtls_md_type_t md_alg,
2093
                           unsigned int hashlen,
2094
                           const unsigned char *hash,
2095
                           const unsigned char *sig )
2096
{
2097
    mbedtls_md_type_t mgf1_hash_id;
2098
    RSA_VALIDATE_RET( ctx != NULL );
2099
    RSA_VALIDATE_RET( sig != NULL );
2100
    RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2101
                        hashlen == 0 ) ||
2102
                      hash != NULL );
2103
2104
    mgf1_hash_id = ( ctx->hash_id != MBEDTLS_MD_NONE )
2105
                             ? (mbedtls_md_type_t) ctx->hash_id
2106
                             : md_alg;
2107
2108
    return( mbedtls_rsa_rsassa_pss_verify_ext( ctx,
2109
                                               md_alg, hashlen, hash,
2110
                                               mgf1_hash_id,
2111
                                               MBEDTLS_RSA_SALT_LEN_ANY,
2112
                                               sig ) );
2113
2114
}
2115
#endif /* MBEDTLS_PKCS1_V21 */
2116
2117
#if defined(MBEDTLS_PKCS1_V15)
2118
/*
2119
 * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function
2120
 */
2121
int mbedtls_rsa_rsassa_pkcs1_v15_verify( mbedtls_rsa_context *ctx,
2122
                                 mbedtls_md_type_t md_alg,
2123
                                 unsigned int hashlen,
2124
                                 const unsigned char *hash,
2125
                                 const unsigned char *sig )
2126
0
{
2127
0
    int ret = 0;
2128
0
    size_t sig_len;
2129
0
    unsigned char *encoded = NULL, *encoded_expected = NULL;
2130
2131
0
    RSA_VALIDATE_RET( ctx != NULL );
2132
0
    RSA_VALIDATE_RET( sig != NULL );
2133
0
    RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2134
0
                        hashlen == 0 ) ||
2135
0
                      hash != NULL );
2136
2137
0
    sig_len = ctx->len;
2138
2139
    /*
2140
     * Prepare expected PKCS1 v1.5 encoding of hash.
2141
     */
2142
2143
0
    if( ( encoded          = (unsigned char *) mbedtls_calloc( 1, sig_len ) ) == NULL ||
2144
0
        ( encoded_expected = (unsigned char *) mbedtls_calloc( 1, sig_len ) ) == NULL )
2145
0
    {
2146
0
        ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
2147
0
        goto cleanup;
2148
0
    }
2149
2150
0
    if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash, sig_len,
2151
0
                                             encoded_expected ) ) != 0 )
2152
0
        goto cleanup;
2153
2154
    /*
2155
     * Apply RSA primitive to get what should be PKCS1 encoded hash.
2156
     */
2157
2158
0
    ret = mbedtls_rsa_public( ctx, sig, encoded );
2159
0
    if( ret != 0 )
2160
0
        goto cleanup;
2161
2162
    /*
2163
     * Compare
2164
     */
2165
2166
0
    if( ( ret = mbedtls_ct_memcmp( encoded, encoded_expected,
2167
0
                                              sig_len ) ) != 0 )
2168
0
    {
2169
0
        ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
2170
0
        goto cleanup;
2171
0
    }
2172
2173
0
cleanup:
2174
2175
0
    if( encoded != NULL )
2176
0
    {
2177
0
        mbedtls_platform_zeroize( encoded, sig_len );
2178
0
        mbedtls_free( encoded );
2179
0
    }
2180
2181
0
    if( encoded_expected != NULL )
2182
0
    {
2183
0
        mbedtls_platform_zeroize( encoded_expected, sig_len );
2184
0
        mbedtls_free( encoded_expected );
2185
0
    }
2186
2187
0
    return( ret );
2188
0
}
2189
#endif /* MBEDTLS_PKCS1_V15 */
2190
2191
/*
2192
 * Do an RSA operation and check the message digest
2193
 */
2194
int mbedtls_rsa_pkcs1_verify( mbedtls_rsa_context *ctx,
2195
                      mbedtls_md_type_t md_alg,
2196
                      unsigned int hashlen,
2197
                      const unsigned char *hash,
2198
                      const unsigned char *sig )
2199
0
{
2200
0
    RSA_VALIDATE_RET( ctx != NULL );
2201
0
    RSA_VALIDATE_RET( sig != NULL );
2202
0
    RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2203
0
                        hashlen == 0 ) ||
2204
0
                      hash != NULL );
2205
2206
0
    switch( ctx->padding )
2207
0
    {
2208
0
#if defined(MBEDTLS_PKCS1_V15)
2209
0
        case MBEDTLS_RSA_PKCS_V15:
2210
0
            return mbedtls_rsa_rsassa_pkcs1_v15_verify( ctx, md_alg,
2211
0
                                                        hashlen, hash, sig );
2212
0
#endif
2213
2214
#if defined(MBEDTLS_PKCS1_V21)
2215
        case MBEDTLS_RSA_PKCS_V21:
2216
            return mbedtls_rsa_rsassa_pss_verify( ctx, md_alg,
2217
                                                  hashlen, hash, sig );
2218
#endif
2219
2220
0
        default:
2221
0
            return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2222
0
    }
2223
0
}
2224
2225
/*
2226
 * Copy the components of an RSA key
2227
 */
2228
int mbedtls_rsa_copy( mbedtls_rsa_context *dst, const mbedtls_rsa_context *src )
2229
0
{
2230
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2231
0
    RSA_VALIDATE_RET( dst != NULL );
2232
0
    RSA_VALIDATE_RET( src != NULL );
2233
2234
0
    dst->len = src->len;
2235
2236
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->N, &src->N ) );
2237
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->E, &src->E ) );
2238
2239
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->D, &src->D ) );
2240
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->P, &src->P ) );
2241
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Q, &src->Q ) );
2242
2243
0
#if !defined(MBEDTLS_RSA_NO_CRT)
2244
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DP, &src->DP ) );
2245
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DQ, &src->DQ ) );
2246
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->QP, &src->QP ) );
2247
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RP, &src->RP ) );
2248
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RQ, &src->RQ ) );
2249
0
#endif
2250
2251
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RN, &src->RN ) );
2252
2253
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vi, &src->Vi ) );
2254
0
    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vf, &src->Vf ) );
2255
2256
0
    dst->padding = src->padding;
2257
0
    dst->hash_id = src->hash_id;
2258
2259
0
cleanup:
2260
0
    if( ret != 0 )
2261
0
        mbedtls_rsa_free( dst );
2262
2263
0
    return( ret );
2264
0
}
2265
2266
/*
2267
 * Free the components of an RSA key
2268
 */
2269
void mbedtls_rsa_free( mbedtls_rsa_context *ctx )
2270
0
{
2271
0
    if( ctx == NULL )
2272
0
        return;
2273
2274
0
    mbedtls_mpi_free( &ctx->Vi );
2275
0
    mbedtls_mpi_free( &ctx->Vf );
2276
0
    mbedtls_mpi_free( &ctx->RN );
2277
0
    mbedtls_mpi_free( &ctx->D  );
2278
0
    mbedtls_mpi_free( &ctx->Q  );
2279
0
    mbedtls_mpi_free( &ctx->P  );
2280
0
    mbedtls_mpi_free( &ctx->E  );
2281
0
    mbedtls_mpi_free( &ctx->N  );
2282
2283
0
#if !defined(MBEDTLS_RSA_NO_CRT)
2284
0
    mbedtls_mpi_free( &ctx->RQ );
2285
0
    mbedtls_mpi_free( &ctx->RP );
2286
0
    mbedtls_mpi_free( &ctx->QP );
2287
0
    mbedtls_mpi_free( &ctx->DQ );
2288
0
    mbedtls_mpi_free( &ctx->DP );
2289
0
#endif /* MBEDTLS_RSA_NO_CRT */
2290
2291
#if defined(MBEDTLS_THREADING_C)
2292
    /* Free the mutex, but only if it hasn't been freed already. */
2293
    if( ctx->ver != 0 )
2294
    {
2295
        mbedtls_mutex_free( &ctx->mutex );
2296
        ctx->ver = 0;
2297
    }
2298
#endif
2299
0
}
2300
2301
#endif /* !MBEDTLS_RSA_ALT */
2302
2303
#if defined(MBEDTLS_SELF_TEST)
2304
2305
#include "mbedtls/sha1.h"
2306
2307
/*
2308
 * Example RSA-1024 keypair, for test purposes
2309
 */
2310
#define KEY_LEN 128
2311
2312
#define RSA_N   "9292758453063D803DD603D5E777D788" \
2313
                "8ED1D5BF35786190FA2F23EBC0848AEA" \
2314
                "DDA92CA6C3D80B32C4D109BE0F36D6AE" \
2315
                "7130B9CED7ACDF54CFC7555AC14EEBAB" \
2316
                "93A89813FBF3C4F8066D2D800F7C38A8" \
2317
                "1AE31942917403FF4946B0A83D3D3E05" \
2318
                "EE57C6F5F5606FB5D4BC6CD34EE0801A" \
2319
                "5E94BB77B07507233A0BC7BAC8F90F79"
2320
2321
#define RSA_E   "10001"
2322
2323
#define RSA_D   "24BF6185468786FDD303083D25E64EFC" \
2324
                "66CA472BC44D253102F8B4A9D3BFA750" \
2325
                "91386C0077937FE33FA3252D28855837" \
2326
                "AE1B484A8A9A45F7EE8C0C634F99E8CD" \
2327
                "DF79C5CE07EE72C7F123142198164234" \
2328
                "CABB724CF78B8173B9F880FC86322407" \
2329
                "AF1FEDFDDE2BEB674CA15F3E81A1521E" \
2330
                "071513A1E85B5DFA031F21ECAE91A34D"
2331
2332
#define RSA_P   "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
2333
                "2C01CAD19EA484A87EA4377637E75500" \
2334
                "FCB2005C5C7DD6EC4AC023CDA285D796" \
2335
                "C3D9E75E1EFC42488BB4F1D13AC30A57"
2336
2337
#define RSA_Q   "C000DF51A7C77AE8D7C7370C1FF55B69" \
2338
                "E211C2B9E5DB1ED0BF61D0D9899620F4" \
2339
                "910E4168387E3C30AA1E00C339A79508" \
2340
                "8452DD96A9A5EA5D9DCA68DA636032AF"
2341
2342
#define PT_LEN  24
2343
#define RSA_PT  "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \
2344
                "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"
2345
2346
#if defined(MBEDTLS_PKCS1_V15)
2347
static int myrand( void *rng_state, unsigned char *output, size_t len )
2348
{
2349
#if !defined(__OpenBSD__) && !defined(__NetBSD__)
2350
    size_t i;
2351
2352
    if( rng_state != NULL )
2353
        rng_state  = NULL;
2354
2355
    for( i = 0; i < len; ++i )
2356
        output[i] = rand();
2357
#else
2358
    if( rng_state != NULL )
2359
        rng_state = NULL;
2360
2361
    arc4random_buf( output, len );
2362
#endif /* !OpenBSD && !NetBSD */
2363
2364
    return( 0 );
2365
}
2366
#endif /* MBEDTLS_PKCS1_V15 */
2367
2368
/*
2369
 * Checkup routine
2370
 */
2371
int mbedtls_rsa_self_test( int verbose )
2372
{
2373
    int ret = 0;
2374
#if defined(MBEDTLS_PKCS1_V15)
2375
    size_t len;
2376
    mbedtls_rsa_context rsa;
2377
    unsigned char rsa_plaintext[PT_LEN];
2378
    unsigned char rsa_decrypted[PT_LEN];
2379
    unsigned char rsa_ciphertext[KEY_LEN];
2380
#if defined(MBEDTLS_SHA1_C)
2381
    unsigned char sha1sum[20];
2382
#endif
2383
2384
    mbedtls_mpi K;
2385
2386
    mbedtls_mpi_init( &K );
2387
    mbedtls_rsa_init( &rsa );
2388
2389
    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_N  ) );
2390
    MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, &K, NULL, NULL, NULL, NULL ) );
2391
    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_P  ) );
2392
    MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, &K, NULL, NULL, NULL ) );
2393
    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_Q  ) );
2394
    MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, &K, NULL, NULL ) );
2395
    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_D  ) );
2396
    MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, &K, NULL ) );
2397
    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_E  ) );
2398
    MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, NULL, &K ) );
2399
2400
    MBEDTLS_MPI_CHK( mbedtls_rsa_complete( &rsa ) );
2401
2402
    if( verbose != 0 )
2403
        mbedtls_printf( "  RSA key validation: " );
2404
2405
    if( mbedtls_rsa_check_pubkey(  &rsa ) != 0 ||
2406
        mbedtls_rsa_check_privkey( &rsa ) != 0 )
2407
    {
2408
        if( verbose != 0 )
2409
            mbedtls_printf( "failed\n" );
2410
2411
        ret = 1;
2412
        goto cleanup;
2413
    }
2414
2415
    if( verbose != 0 )
2416
        mbedtls_printf( "passed\n  PKCS#1 encryption : " );
2417
2418
    memcpy( rsa_plaintext, RSA_PT, PT_LEN );
2419
2420
    if( mbedtls_rsa_pkcs1_encrypt( &rsa, myrand, NULL,
2421
                                   PT_LEN, rsa_plaintext,
2422
                                   rsa_ciphertext ) != 0 )
2423
    {
2424
        if( verbose != 0 )
2425
            mbedtls_printf( "failed\n" );
2426
2427
        ret = 1;
2428
        goto cleanup;
2429
    }
2430
2431
    if( verbose != 0 )
2432
        mbedtls_printf( "passed\n  PKCS#1 decryption : " );
2433
2434
    if( mbedtls_rsa_pkcs1_decrypt( &rsa, myrand, NULL,
2435
                                   &len, rsa_ciphertext, rsa_decrypted,
2436
                                   sizeof(rsa_decrypted) ) != 0 )
2437
    {
2438
        if( verbose != 0 )
2439
            mbedtls_printf( "failed\n" );
2440
2441
        ret = 1;
2442
        goto cleanup;
2443
    }
2444
2445
    if( memcmp( rsa_decrypted, rsa_plaintext, len ) != 0 )
2446
    {
2447
        if( verbose != 0 )
2448
            mbedtls_printf( "failed\n" );
2449
2450
        ret = 1;
2451
        goto cleanup;
2452
    }
2453
2454
    if( verbose != 0 )
2455
        mbedtls_printf( "passed\n" );
2456
2457
#if defined(MBEDTLS_SHA1_C)
2458
    if( verbose != 0 )
2459
        mbedtls_printf( "  PKCS#1 data sign  : " );
2460
2461
    if( mbedtls_sha1( rsa_plaintext, PT_LEN, sha1sum ) != 0 )
2462
    {
2463
        if( verbose != 0 )
2464
            mbedtls_printf( "failed\n" );
2465
2466
        return( 1 );
2467
    }
2468
2469
    if( mbedtls_rsa_pkcs1_sign( &rsa, myrand, NULL,
2470
                                MBEDTLS_MD_SHA1, 20,
2471
                                sha1sum, rsa_ciphertext ) != 0 )
2472
    {
2473
        if( verbose != 0 )
2474
            mbedtls_printf( "failed\n" );
2475
2476
        ret = 1;
2477
        goto cleanup;
2478
    }
2479
2480
    if( verbose != 0 )
2481
        mbedtls_printf( "passed\n  PKCS#1 sig. verify: " );
2482
2483
    if( mbedtls_rsa_pkcs1_verify( &rsa, MBEDTLS_MD_SHA1, 20,
2484
                                  sha1sum, rsa_ciphertext ) != 0 )
2485
    {
2486
        if( verbose != 0 )
2487
            mbedtls_printf( "failed\n" );
2488
2489
        ret = 1;
2490
        goto cleanup;
2491
    }
2492
2493
    if( verbose != 0 )
2494
        mbedtls_printf( "passed\n" );
2495
#endif /* MBEDTLS_SHA1_C */
2496
2497
    if( verbose != 0 )
2498
        mbedtls_printf( "\n" );
2499
2500
cleanup:
2501
    mbedtls_mpi_free( &K );
2502
    mbedtls_rsa_free( &rsa );
2503
#else /* MBEDTLS_PKCS1_V15 */
2504
    ((void) verbose);
2505
#endif /* MBEDTLS_PKCS1_V15 */
2506
    return( ret );
2507
}
2508
2509
#endif /* MBEDTLS_SELF_TEST */
2510
2511
#endif /* MBEDTLS_RSA_C */