Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/dulwich/lru_cache.py: 21%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

203 statements  

1# lru_cache.py -- Simple LRU cache for dulwich 

2# Copyright (C) 2006, 2008 Canonical Ltd 

3# Copyright (C) 2022 Jelmer Vernooij <jelmer@jelmer.uk> 

4# 

5# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later 

6# Dulwich is dual-licensed under the Apache License, Version 2.0 and the GNU 

7# General Public License as published by the Free Software Foundation; version 2.0 

8# or (at your option) any later version. You can redistribute it and/or 

9# modify it under the terms of either of these two licenses. 

10# 

11# Unless required by applicable law or agreed to in writing, software 

12# distributed under the License is distributed on an "AS IS" BASIS, 

13# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

14# See the License for the specific language governing permissions and 

15# limitations under the License. 

16# 

17# You should have received a copy of the licenses; if not, see 

18# <http://www.gnu.org/licenses/> for a copy of the GNU General Public License 

19# and <http://www.apache.org/licenses/LICENSE-2.0> for a copy of the Apache 

20# License, Version 2.0. 

21# 

22 

23"""A simple least-recently-used (LRU) cache.""" 

24 

25from collections.abc import Iterable, Iterator 

26from typing import Callable, Generic, Optional, TypeVar, Union, cast 

27 

28_null_key = object() 

29 

30 

31K = TypeVar("K") 

32V = TypeVar("V") 

33 

34 

35class _LRUNode(Generic[K, V]): 

36 """This maintains the linked-list which is the lru internals.""" 

37 

38 __slots__ = ("cleanup", "key", "next_key", "prev", "size", "value") 

39 

40 prev: Optional["_LRUNode[K, V]"] 

41 next_key: Union[K, object] 

42 size: Optional[int] 

43 

44 def __init__( 

45 self, key: K, value: V, cleanup: Optional[Callable[[K, V], None]] = None 

46 ) -> None: 

47 self.prev = None 

48 self.next_key = _null_key 

49 self.key = key 

50 self.value = value 

51 self.cleanup = cleanup 

52 # TODO: We could compute this 'on-the-fly' like we used to, and remove 

53 # one pointer from this object, we just need to decide if it 

54 # actually costs us much of anything in normal usage 

55 self.size = None 

56 

57 def __repr__(self) -> str: 

58 if self.prev is None: 

59 prev_key = None 

60 else: 

61 prev_key = self.prev.key 

62 return f"{self.__class__.__name__}({self.key!r} n:{self.next_key!r} p:{prev_key!r})" 

63 

64 def run_cleanup(self) -> None: 

65 if self.cleanup is not None: 

66 self.cleanup(self.key, self.value) 

67 self.cleanup = None 

68 # Just make sure to break any refcycles, etc 

69 del self.value 

70 

71 

72class LRUCache(Generic[K, V]): 

73 """A class which manages a cache of entries, removing unused ones.""" 

74 

75 _least_recently_used: Optional[_LRUNode[K, V]] 

76 _most_recently_used: Optional[_LRUNode[K, V]] 

77 

78 def __init__( 

79 self, max_cache: int = 100, after_cleanup_count: Optional[int] = None 

80 ) -> None: 

81 """Initialize LRUCache. 

82 

83 Args: 

84 max_cache: Maximum number of entries to cache 

85 after_cleanup_count: Number of entries to keep after cleanup 

86 """ 

87 self._cache: dict[K, _LRUNode[K, V]] = {} 

88 # The "HEAD" of the lru linked list 

89 self._most_recently_used = None 

90 # The "TAIL" of the lru linked list 

91 self._least_recently_used = None 

92 self._update_max_cache(max_cache, after_cleanup_count) 

93 

94 def __contains__(self, key: K) -> bool: 

95 """Check if key is in cache.""" 

96 return key in self._cache 

97 

98 def __getitem__(self, key: K) -> V: 

99 """Get item from cache and mark as recently used.""" 

100 cache = self._cache 

101 node = cache[key] 

102 # Inlined from _record_access to decrease the overhead of __getitem__ 

103 # We also have more knowledge about structure if __getitem__ is 

104 # succeeding, then we know that self._most_recently_used must not be 

105 # None, etc. 

106 mru = self._most_recently_used 

107 if node is mru: 

108 # Nothing to do, this node is already at the head of the queue 

109 return node.value 

110 # Remove this node from the old location 

111 node_prev = node.prev 

112 next_key = node.next_key 

113 # benchmarking shows that the lookup of _null_key in globals is faster 

114 # than the attribute lookup for (node is self._least_recently_used) 

115 if next_key is _null_key: 

116 # 'node' is the _least_recently_used, because it doesn't have a 

117 # 'next' item. So move the current lru to the previous node. 

118 self._least_recently_used = node_prev 

119 else: 

120 node_next = cache[cast(K, next_key)] 

121 node_next.prev = node_prev 

122 assert node_prev 

123 assert mru 

124 node_prev.next_key = next_key 

125 # Insert this node at the front of the list 

126 node.next_key = mru.key 

127 mru.prev = node 

128 self._most_recently_used = node 

129 node.prev = None 

130 return node.value 

131 

132 def __len__(self) -> int: 

133 """Return number of items in cache.""" 

134 return len(self._cache) 

135 

136 def _walk_lru(self) -> Iterator[_LRUNode[K, V]]: 

137 """Walk the LRU list, only meant to be used in tests.""" 

138 node = self._most_recently_used 

139 if node is not None: 

140 if node.prev is not None: 

141 raise AssertionError( 

142 "the _most_recently_used entry is not" 

143 " supposed to have a previous entry" 

144 f" {node}" 

145 ) 

146 while node is not None: 

147 if node.next_key is _null_key: 

148 if node is not self._least_recently_used: 

149 raise AssertionError( 

150 f"only the last node should have no next value: {node}" 

151 ) 

152 node_next = None 

153 else: 

154 node_next = self._cache[cast(K, node.next_key)] 

155 if node_next.prev is not node: 

156 raise AssertionError( 

157 f"inconsistency found, node.next.prev != node: {node}" 

158 ) 

159 if node.prev is None: 

160 if node is not self._most_recently_used: 

161 raise AssertionError( 

162 "only the _most_recently_used should" 

163 f" not have a previous node: {node}" 

164 ) 

165 else: 

166 if node.prev.next_key != node.key: 

167 raise AssertionError( 

168 f"inconsistency found, node.prev.next != node: {node}" 

169 ) 

170 yield node 

171 node = node_next 

172 

173 def add( 

174 self, key: K, value: V, cleanup: Optional[Callable[[K, V], None]] = None 

175 ) -> None: 

176 """Add a new value to the cache. 

177 

178 Also, if the entry is ever removed from the cache, call 

179 cleanup(key, value). 

180 

181 Args: 

182 key: The key to store it under 

183 value: The object to store 

184 cleanup: None or a function taking (key, value) to indicate 

185 'value' should be cleaned up. 

186 """ 

187 if key is _null_key: 

188 raise ValueError("cannot use _null_key as a key") 

189 if key in self._cache: 

190 node = self._cache[key] 

191 node.run_cleanup() 

192 node.value = value 

193 node.cleanup = cleanup 

194 else: 

195 node = _LRUNode(key, value, cleanup=cleanup) 

196 self._cache[key] = node 

197 self._record_access(node) 

198 

199 if len(self._cache) > self._max_cache: 

200 # Trigger the cleanup 

201 self.cleanup() 

202 

203 def cache_size(self) -> int: 

204 """Get the number of entries we will cache.""" 

205 return self._max_cache 

206 

207 def get(self, key: K, default: Optional[V] = None) -> Optional[V]: 

208 """Get value from cache with default if not found. 

209 

210 Args: 

211 key: Key to look up 

212 default: Default value if key not found 

213 

214 Returns: 

215 Value from cache or default 

216 """ 

217 node = self._cache.get(key, None) 

218 if node is None: 

219 return default 

220 self._record_access(node) 

221 return node.value 

222 

223 def keys(self) -> Iterable[K]: 

224 """Get the list of keys currently cached. 

225 

226 Note that values returned here may not be available by the time you 

227 request them later. This is simply meant as a peak into the current 

228 state. 

229 

230 Returns: An unordered list of keys that are currently cached. 

231 """ 

232 return self._cache.keys() 

233 

234 def items(self) -> dict[K, V]: 

235 """Get the key:value pairs as a dict.""" 

236 return {k: n.value for k, n in self._cache.items()} 

237 

238 def cleanup(self) -> None: 

239 """Clear the cache until it shrinks to the requested size. 

240 

241 This does not completely wipe the cache, just makes sure it is under 

242 the after_cleanup_count. 

243 """ 

244 # Make sure the cache is shrunk to the correct size 

245 while len(self._cache) > self._after_cleanup_count: 

246 self._remove_lru() 

247 

248 def __setitem__(self, key: K, value: V) -> None: 

249 """Add a value to the cache, there will be no cleanup function.""" 

250 self.add(key, value, cleanup=None) 

251 

252 def _record_access(self, node: _LRUNode[K, V]) -> None: 

253 """Record that key was accessed.""" 

254 # Move 'node' to the front of the queue 

255 if self._most_recently_used is None: 

256 self._most_recently_used = node 

257 self._least_recently_used = node 

258 return 

259 elif node is self._most_recently_used: 

260 # Nothing to do, this node is already at the head of the queue 

261 return 

262 # We've taken care of the tail pointer, remove the node, and insert it 

263 # at the front 

264 # REMOVE 

265 if node is self._least_recently_used: 

266 self._least_recently_used = node.prev 

267 if node.prev is not None: 

268 node.prev.next_key = node.next_key 

269 if node.next_key is not _null_key: 

270 node_next = self._cache[cast(K, node.next_key)] 

271 node_next.prev = node.prev 

272 # INSERT 

273 node.next_key = self._most_recently_used.key 

274 self._most_recently_used.prev = node 

275 self._most_recently_used = node 

276 node.prev = None 

277 

278 def _remove_node(self, node: _LRUNode[K, V]) -> None: 

279 if node is self._least_recently_used: 

280 self._least_recently_used = node.prev 

281 self._cache.pop(node.key) 

282 # If we have removed all entries, remove the head pointer as well 

283 if self._least_recently_used is None: 

284 self._most_recently_used = None 

285 node.run_cleanup() 

286 # Now remove this node from the linked list 

287 if node.prev is not None: 

288 node.prev.next_key = node.next_key 

289 if node.next_key is not _null_key: 

290 node_next = self._cache[cast(K, node.next_key)] 

291 node_next.prev = node.prev 

292 # And remove this node's pointers 

293 node.prev = None 

294 node.next_key = _null_key 

295 

296 def _remove_lru(self) -> None: 

297 """Remove one entry from the lru, and handle consequences. 

298 

299 If there are no more references to the lru, then this entry should be 

300 removed from the cache. 

301 """ 

302 assert self._least_recently_used 

303 self._remove_node(self._least_recently_used) 

304 

305 def clear(self) -> None: 

306 """Clear out all of the cache.""" 

307 # Clean up in LRU order 

308 while self._cache: 

309 self._remove_lru() 

310 

311 def resize(self, max_cache: int, after_cleanup_count: Optional[int] = None) -> None: 

312 """Change the number of entries that will be cached.""" 

313 self._update_max_cache(max_cache, after_cleanup_count=after_cleanup_count) 

314 

315 def _update_max_cache( 

316 self, max_cache: int, after_cleanup_count: Optional[int] = None 

317 ) -> None: 

318 self._max_cache = max_cache 

319 if after_cleanup_count is None: 

320 self._after_cleanup_count = self._max_cache * 8 / 10 

321 else: 

322 self._after_cleanup_count = min(after_cleanup_count, self._max_cache) 

323 self.cleanup() 

324 

325 

326class LRUSizeCache(LRUCache[K, V]): 

327 """An LRUCache that removes things based on the size of the values. 

328 

329 This differs in that it doesn't care how many actual items there are, 

330 it just restricts the cache to be cleaned up after so much data is stored. 

331 

332 The size of items added will be computed using compute_size(value), which 

333 defaults to len() if not supplied. 

334 """ 

335 

336 _compute_size: Callable[[V], int] 

337 

338 def __init__( 

339 self, 

340 max_size: int = 1024 * 1024, 

341 after_cleanup_size: Optional[int] = None, 

342 compute_size: Optional[Callable[[V], int]] = None, 

343 ) -> None: 

344 """Create a new LRUSizeCache. 

345 

346 Args: 

347 max_size: The max number of bytes to store before we start 

348 clearing out entries. 

349 after_cleanup_size: After cleaning up, shrink everything to this 

350 size. 

351 compute_size: A function to compute the size of the values. We 

352 use a function here, so that you can pass 'len' if you are just 

353 using simple strings, or a more complex function if you are using 

354 something like a list of strings, or even a custom object. 

355 The function should take the form "compute_size(value) => integer". 

356 If not supplied, it defaults to 'len()' 

357 """ 

358 self._value_size = 0 

359 if compute_size is None: 

360 self._compute_size = cast(Callable[[V], int], len) 

361 else: 

362 self._compute_size = compute_size 

363 self._update_max_size(max_size, after_cleanup_size=after_cleanup_size) 

364 LRUCache.__init__(self, max_cache=max(int(max_size / 512), 1)) 

365 

366 def add( 

367 self, key: K, value: V, cleanup: Optional[Callable[[K, V], None]] = None 

368 ) -> None: 

369 """Add a new value to the cache. 

370 

371 Also, if the entry is ever removed from the cache, call 

372 cleanup(key, value). 

373 

374 Args: 

375 key: The key to store it under 

376 value: The object to store 

377 cleanup: None or a function taking (key, value) to indicate 

378 'value' should be cleaned up. 

379 """ 

380 if key is _null_key: 

381 raise ValueError("cannot use _null_key as a key") 

382 node = self._cache.get(key, None) 

383 value_len = self._compute_size(value) 

384 if value_len >= self._after_cleanup_size: 

385 # The new value is 'too big to fit', as it would fill up/overflow 

386 # the cache all by itself 

387 if node is not None: 

388 # We won't be replacing the old node, so just remove it 

389 self._remove_node(node) 

390 if cleanup is not None: 

391 cleanup(key, value) 

392 return 

393 if node is None: 

394 node = _LRUNode(key, value, cleanup=cleanup) 

395 self._cache[key] = node 

396 else: 

397 assert node.size is not None 

398 self._value_size -= node.size 

399 node.size = value_len 

400 self._value_size += value_len 

401 self._record_access(node) 

402 

403 if self._value_size > self._max_size: 

404 # Time to cleanup 

405 self.cleanup() 

406 

407 def cleanup(self) -> None: 

408 """Clear the cache until it shrinks to the requested size. 

409 

410 This does not completely wipe the cache, just makes sure it is under 

411 the after_cleanup_size. 

412 """ 

413 # Make sure the cache is shrunk to the correct size 

414 while self._value_size > self._after_cleanup_size: 

415 self._remove_lru() 

416 

417 def _remove_node(self, node: _LRUNode[K, V]) -> None: 

418 assert node.size is not None 

419 self._value_size -= node.size 

420 LRUCache._remove_node(self, node) 

421 

422 def resize(self, max_size: int, after_cleanup_size: Optional[int] = None) -> None: 

423 """Change the number of bytes that will be cached.""" 

424 self._update_max_size(max_size, after_cleanup_size=after_cleanup_size) 

425 max_cache = max(int(max_size / 512), 1) 

426 self._update_max_cache(max_cache) 

427 

428 def _update_max_size( 

429 self, max_size: int, after_cleanup_size: Optional[int] = None 

430 ) -> None: 

431 self._max_size = max_size 

432 if after_cleanup_size is None: 

433 self._after_cleanup_size = self._max_size * 8 // 10 

434 else: 

435 self._after_cleanup_size = min(after_cleanup_size, self._max_size)