/src/elfutils/libdwfl/dwfl_module_getdwarf.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Find debugging and symbol information for a module in libdwfl. |
2 | | Copyright (C) 2005-2012, 2014, 2015, 2025 Red Hat, Inc. |
3 | | Copyright (C) 2025 Mark J. Wielaard <mark@klomp.org> |
4 | | This file is part of elfutils. |
5 | | |
6 | | This file is free software; you can redistribute it and/or modify |
7 | | it under the terms of either |
8 | | |
9 | | * the GNU Lesser General Public License as published by the Free |
10 | | Software Foundation; either version 3 of the License, or (at |
11 | | your option) any later version |
12 | | |
13 | | or |
14 | | |
15 | | * the GNU General Public License as published by the Free |
16 | | Software Foundation; either version 2 of the License, or (at |
17 | | your option) any later version |
18 | | |
19 | | or both in parallel, as here. |
20 | | |
21 | | elfutils is distributed in the hope that it will be useful, but |
22 | | WITHOUT ANY WARRANTY; without even the implied warranty of |
23 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
24 | | General Public License for more details. |
25 | | |
26 | | You should have received copies of the GNU General Public License and |
27 | | the GNU Lesser General Public License along with this program. If |
28 | | not, see <http://www.gnu.org/licenses/>. */ |
29 | | |
30 | | #ifdef HAVE_CONFIG_H |
31 | | # include <config.h> |
32 | | #endif |
33 | | |
34 | | #include "libdwflP.h" |
35 | | #include <inttypes.h> |
36 | | #include <fcntl.h> |
37 | | #include <string.h> |
38 | | #include "libdwP.h" /* DWARF_E_* values are here. */ |
39 | | #include "libdwfl_stacktraceP.h" /* want the INTDECLS */ |
40 | | #include "libelfP.h" |
41 | | #include "system.h" |
42 | | |
43 | | static inline Dwfl_Error |
44 | | open_elf_file (Elf **elf, int *fd, char **name) |
45 | 4.20k | { |
46 | 4.20k | if (*elf == NULL) |
47 | 4.20k | { |
48 | | /* CBFAIL uses errno if it's set, so clear it first in case we don't |
49 | | set it with an open failure below. */ |
50 | 4.20k | errno = 0; |
51 | | |
52 | | /* If there was a pre-primed file name left that the callback left |
53 | | behind, try to open that file name. */ |
54 | 4.20k | if (*fd < 0 && *name != NULL) |
55 | 0 | *fd = TEMP_FAILURE_RETRY (open (*name, O_RDONLY)); |
56 | | |
57 | 4.20k | if (*fd < 0) |
58 | 4.19k | return CBFAIL; |
59 | | |
60 | 8 | return __libdw_open_file (fd, elf, true, false); |
61 | 4.20k | } |
62 | 0 | else if (unlikely (elf_kind (*elf) != ELF_K_ELF)) |
63 | 0 | { |
64 | 0 | elf_end (*elf); |
65 | 0 | *elf = NULL; |
66 | 0 | close (*fd); |
67 | 0 | *fd = -1; |
68 | 0 | return DWFL_E_BADELF; |
69 | 0 | } |
70 | | |
71 | | /* Elf file already open and looks fine. */ |
72 | 0 | return DWFL_E_NOERROR; |
73 | 4.20k | } |
74 | | |
75 | | /* Open libelf FILE->fd and compute the load base of ELF as loaded in MOD. |
76 | | When we return success, FILE->elf and FILE->vaddr are set up. */ |
77 | | static inline Dwfl_Error |
78 | | open_elf (Dwfl_Module *mod, struct dwfl_file *file) |
79 | 4.19k | { |
80 | 4.19k | Dwfl_Error error = open_elf_file (&file->elf, &file->fd, &file->name); |
81 | 4.19k | if (error != DWFL_E_NOERROR) |
82 | 4.19k | return error; |
83 | | |
84 | | /* Cache file->elf in Dwflst_Process_Tracker if available: */ |
85 | 0 | if (mod->dwfl->tracker != NULL && file->name != NULL) |
86 | 0 | { |
87 | 0 | INTUSE(dwflst_tracker_cache_elf) (mod->dwfl->tracker, file->name, |
88 | 0 | file->name, file->elf, file->fd); |
89 | 0 | } |
90 | |
|
91 | 0 | GElf_Ehdr ehdr_mem, *ehdr = gelf_getehdr (file->elf, &ehdr_mem); |
92 | 0 | if (ehdr == NULL) |
93 | 0 | { |
94 | 0 | elf_error: |
95 | 0 | elf_end (file->elf); |
96 | 0 | file->elf = NULL; |
97 | 0 | close (file->fd); |
98 | 0 | file->fd = -1; |
99 | 0 | return DWFL_E (LIBELF, elf_errno ()); |
100 | 0 | } |
101 | | |
102 | 0 | if (ehdr->e_type != ET_REL) |
103 | 0 | { |
104 | | /* In any non-ET_REL file, we compute the "synchronization address". |
105 | | |
106 | | We start with the address at the end of the first PT_LOAD |
107 | | segment. When prelink converts REL to RELA in an ET_DYN |
108 | | file, it expands the space between the beginning of the |
109 | | segment and the actual code/data addresses. Since that |
110 | | change wasn't made in the debug file, the distance from |
111 | | p_vaddr to an address of interest (in an st_value or DWARF |
112 | | data) now differs between the main and debug files. The |
113 | | distance from address_sync to an address of interest remains |
114 | | consistent. |
115 | | |
116 | | If there are no section headers at all (full stripping), then |
117 | | the end of the first segment is a valid synchronization address. |
118 | | This cannot happen in a prelinked file, since prelink itself |
119 | | relies on section headers for prelinking and for undoing it. |
120 | | (If you do full stripping on a prelinked file, then you get what |
121 | | you deserve--you can neither undo the prelinking, nor expect to |
122 | | line it up with a debug file separated before prelinking.) |
123 | | |
124 | | However, when prelink processes an ET_EXEC file, it can do |
125 | | something different. There it juggles the "special" sections |
126 | | (SHT_DYNSYM et al) to make space for the additional prelink |
127 | | special sections. Sometimes it will do this by moving a special |
128 | | section like .dynstr after the real program sections in the first |
129 | | PT_LOAD segment--i.e. to the end. That changes the end address of |
130 | | the segment, so it no longer lines up correctly and is not a valid |
131 | | synchronization address to use. Because of this, we need to apply |
132 | | a different prelink-savvy means to discover the synchronization |
133 | | address when there is a separate debug file and a prelinked main |
134 | | file. That is done in find_debuginfo, below. */ |
135 | |
|
136 | 0 | size_t phnum; |
137 | 0 | if (unlikely (elf_getphdrnum (file->elf, &phnum) != 0)) |
138 | 0 | goto elf_error; |
139 | | |
140 | 0 | file->vaddr = file->address_sync = 0; |
141 | 0 | for (size_t i = 0; i < phnum; ++i) |
142 | 0 | { |
143 | 0 | GElf_Phdr ph_mem; |
144 | 0 | GElf_Phdr *ph = gelf_getphdr (file->elf, i, &ph_mem); |
145 | 0 | if (unlikely (ph == NULL)) |
146 | 0 | goto elf_error; |
147 | 0 | if (ph->p_type == PT_LOAD) |
148 | 0 | { |
149 | 0 | file->vaddr = ph->p_vaddr & -ph->p_align; |
150 | 0 | file->address_sync = ph->p_vaddr + ph->p_memsz; |
151 | 0 | break; |
152 | 0 | } |
153 | 0 | } |
154 | 0 | } |
155 | | |
156 | | /* We only want to set the module e_type explicitly once, derived from |
157 | | the main ELF file. (It might be changed for the kernel, because |
158 | | that is special - see below.) open_elf is always called first for |
159 | | the main ELF file, because both find_dw and find_symtab call |
160 | | __libdwfl_getelf first to open the main file. So don't let debug |
161 | | or aux files override the module e_type. The kernel heuristic |
162 | | below could otherwise trigger for non-kernel/non-main files, since |
163 | | their phdrs might not match the actual load addresses. */ |
164 | 0 | if (file == &mod->main) |
165 | 0 | { |
166 | 0 | mod->e_type = ehdr->e_type; |
167 | | |
168 | | /* Relocatable Linux kernels are ET_EXEC but act like ET_DYN. */ |
169 | 0 | if (mod->e_type == ET_EXEC && file->vaddr != mod->low_addr) |
170 | 0 | mod->e_type = ET_DYN; |
171 | 0 | } |
172 | 0 | else |
173 | 0 | assert (mod->main.elf != NULL); |
174 | | |
175 | 0 | return DWFL_E_NOERROR; |
176 | 0 | } |
177 | | |
178 | | /* We have an authoritative build ID for this module MOD, so don't use |
179 | | a file by name that doesn't match that ID. */ |
180 | | static void |
181 | | mod_verify_build_id (Dwfl_Module *mod) |
182 | 0 | { |
183 | 0 | assert (mod->build_id_len > 0); |
184 | | |
185 | 0 | switch (__builtin_expect (__libdwfl_find_build_id (mod, false, |
186 | 0 | mod->main.elf), 2)) |
187 | 0 | { |
188 | 0 | case 2: |
189 | | /* Build ID matches as it should. */ |
190 | 0 | return; |
191 | | |
192 | 0 | case -1: /* ELF error. */ |
193 | 0 | mod->elferr = INTUSE(dwfl_errno) (); |
194 | 0 | break; |
195 | | |
196 | 0 | case 0: /* File has no build ID note. */ |
197 | 0 | case 1: /* FIle has a build ID that does not match. */ |
198 | 0 | mod->elferr = DWFL_E_WRONG_ID_ELF; |
199 | 0 | break; |
200 | | |
201 | 0 | default: |
202 | 0 | abort (); |
203 | 0 | } |
204 | | |
205 | | /* We get here when it was the right ELF file. Clear it out. */ |
206 | 0 | elf_end (mod->main.elf); |
207 | 0 | mod->main.elf = NULL; |
208 | 0 | if (mod->main.fd >= 0) |
209 | 0 | { |
210 | 0 | close (mod->main.fd); |
211 | 0 | mod->main.fd = -1; |
212 | 0 | } |
213 | 0 | } |
214 | | |
215 | | /* Find the main ELF file for this module and open libelf on it. |
216 | | When we return success, MOD->main.elf and MOD->main.bias are set up. */ |
217 | | void |
218 | | internal_function |
219 | | __libdwfl_getelf (Dwfl_Module *mod) |
220 | 7.22k | { |
221 | 7.22k | if (mod->main.elf != NULL /* Already done. */ |
222 | 7.22k | || mod->elferr != DWFL_E_NOERROR) /* Cached failure. */ |
223 | 7.22k | return; |
224 | | |
225 | 0 | mod->main.fd = (*mod->dwfl->callbacks->find_elf) (MODCB_ARGS (mod), |
226 | 0 | &mod->main.name, |
227 | 0 | &mod->main.elf); |
228 | 0 | const bool fallback = mod->main.elf == NULL && mod->main.fd < 0; |
229 | 0 | mod->elferr = open_elf (mod, &mod->main); |
230 | 0 | if (mod->elferr != DWFL_E_NOERROR) |
231 | 0 | return; |
232 | | |
233 | 0 | if (!mod->main.valid) |
234 | 0 | { |
235 | | /* Clear any explicitly reported build ID, just in case it was wrong. |
236 | | We'll fetch it from the file when asked. */ |
237 | 0 | free (mod->build_id_bits); |
238 | 0 | mod->build_id_bits = NULL; |
239 | 0 | mod->build_id_len = 0; |
240 | 0 | } |
241 | 0 | else if (fallback) |
242 | 0 | mod_verify_build_id (mod); |
243 | |
|
244 | 0 | mod->main_bias = mod->e_type == ET_REL ? 0 : mod->low_addr - mod->main.vaddr; |
245 | 0 | } |
246 | | |
247 | | static inline void |
248 | | consider_shdr (GElf_Addr interp, |
249 | | GElf_Word sh_type, |
250 | | GElf_Xword sh_flags, |
251 | | GElf_Addr sh_addr, |
252 | | GElf_Xword sh_size, |
253 | | GElf_Addr *phighest) |
254 | 0 | { |
255 | 0 | if ((sh_flags & SHF_ALLOC) |
256 | 0 | && ((sh_type == SHT_PROGBITS && sh_addr != interp) |
257 | 0 | || sh_type == SHT_NOBITS)) |
258 | 0 | { |
259 | 0 | const GElf_Addr sh_end = sh_addr + sh_size; |
260 | 0 | if (sh_end > *phighest) |
261 | 0 | *phighest = sh_end; |
262 | 0 | } |
263 | 0 | } |
264 | | |
265 | | /* If the main file might have been prelinked, then we need to |
266 | | discover the correct synchronization address between the main and |
267 | | debug files. Because of prelink's section juggling, we cannot rely |
268 | | on the address_sync computed from PT_LOAD segments (see open_elf). |
269 | | |
270 | | We will attempt to discover a synchronization address based on the |
271 | | section headers instead. But finding a section address that is |
272 | | safe to use requires identifying which sections are SHT_PROGBITS. |
273 | | We can do that in the main file, but in the debug file all the |
274 | | allocated sections have been transformed into SHT_NOBITS so we have |
275 | | lost the means to match them up correctly. |
276 | | |
277 | | The only method left to us is to decode the .gnu.prelink_undo |
278 | | section in the prelinked main file. This shows what the sections |
279 | | looked like before prelink juggled them--when they still had a |
280 | | direct correspondence to the debug file. */ |
281 | | static Dwfl_Error |
282 | | find_prelink_address_sync (Dwfl_Module *mod, struct dwfl_file *file) |
283 | 0 | { |
284 | | /* The magic section is only identified by name. */ |
285 | 0 | size_t shstrndx; |
286 | 0 | if (elf_getshdrstrndx (mod->main.elf, &shstrndx) < 0) |
287 | 0 | return DWFL_E_LIBELF; |
288 | | |
289 | 0 | Elf_Scn *scn = NULL; |
290 | 0 | while ((scn = elf_nextscn (mod->main.elf, scn)) != NULL) |
291 | 0 | { |
292 | 0 | GElf_Shdr shdr_mem; |
293 | 0 | GElf_Shdr *shdr = gelf_getshdr (scn, &shdr_mem); |
294 | 0 | if (unlikely (shdr == NULL)) |
295 | 0 | return DWFL_E_LIBELF; |
296 | 0 | if (shdr->sh_type == SHT_PROGBITS |
297 | 0 | && !(shdr->sh_flags & SHF_ALLOC) |
298 | 0 | && shdr->sh_name != 0) |
299 | 0 | { |
300 | 0 | const char *secname = elf_strptr (mod->main.elf, shstrndx, |
301 | 0 | shdr->sh_name); |
302 | 0 | if (unlikely (secname == NULL)) |
303 | 0 | return DWFL_E_LIBELF; |
304 | 0 | if (!strcmp (secname, ".gnu.prelink_undo")) |
305 | 0 | break; |
306 | 0 | } |
307 | 0 | } |
308 | | |
309 | 0 | if (scn == NULL) |
310 | | /* There was no .gnu.prelink_undo section. */ |
311 | 0 | return DWFL_E_NOERROR; |
312 | | |
313 | 0 | Elf_Data *undodata = elf_rawdata (scn, NULL); |
314 | 0 | if (unlikely (undodata == NULL)) |
315 | 0 | return DWFL_E_LIBELF; |
316 | | |
317 | | /* Decode the section. It consists of the original ehdr, phdrs, |
318 | | and shdrs (but omits section 0). */ |
319 | | |
320 | 0 | union |
321 | 0 | { |
322 | 0 | Elf32_Ehdr e32; |
323 | 0 | Elf64_Ehdr e64; |
324 | 0 | } ehdr; |
325 | 0 | Elf_Data dst = |
326 | 0 | { |
327 | 0 | .d_buf = &ehdr, |
328 | 0 | .d_size = sizeof ehdr, |
329 | 0 | .d_type = ELF_T_EHDR, |
330 | 0 | .d_version = EV_CURRENT |
331 | 0 | }; |
332 | 0 | Elf_Data src = *undodata; |
333 | 0 | src.d_size = gelf_fsize (mod->main.elf, ELF_T_EHDR, 1, EV_CURRENT); |
334 | 0 | src.d_type = ELF_T_EHDR; |
335 | 0 | if (unlikely (gelf_xlatetom (mod->main.elf, &dst, &src, |
336 | 0 | elf_getident (mod->main.elf, NULL)[EI_DATA]) |
337 | 0 | == NULL)) |
338 | 0 | return DWFL_E_LIBELF; |
339 | | |
340 | 0 | size_t shentsize = gelf_fsize (mod->main.elf, ELF_T_SHDR, 1, EV_CURRENT); |
341 | 0 | size_t phentsize = gelf_fsize (mod->main.elf, ELF_T_PHDR, 1, EV_CURRENT); |
342 | |
|
343 | 0 | uint_fast16_t phnum; |
344 | 0 | uint_fast16_t shnum; |
345 | 0 | if (ehdr.e32.e_ident[EI_CLASS] == ELFCLASS32) |
346 | 0 | { |
347 | 0 | if (ehdr.e32.e_shentsize != shentsize |
348 | 0 | || ehdr.e32.e_phentsize != phentsize) |
349 | 0 | return DWFL_E_BAD_PRELINK; |
350 | 0 | phnum = ehdr.e32.e_phnum; |
351 | 0 | shnum = ehdr.e32.e_shnum; |
352 | 0 | } |
353 | 0 | else |
354 | 0 | { |
355 | 0 | if (ehdr.e64.e_shentsize != shentsize |
356 | 0 | || ehdr.e64.e_phentsize != phentsize) |
357 | 0 | return DWFL_E_BAD_PRELINK; |
358 | 0 | phnum = ehdr.e64.e_phnum; |
359 | 0 | shnum = ehdr.e64.e_shnum; |
360 | 0 | } |
361 | | |
362 | | /* Since prelink does not store the zeroth section header in the undo |
363 | | section, it cannot support SHN_XINDEX encoding. */ |
364 | 0 | if (unlikely (shnum >= SHN_LORESERVE) || unlikely(shnum == 0) |
365 | 0 | || unlikely (undodata->d_size != (src.d_size |
366 | 0 | + phnum * phentsize |
367 | 0 | + (shnum - 1) * shentsize))) |
368 | 0 | return DWFL_E_BAD_PRELINK; |
369 | | |
370 | 0 | --shnum; |
371 | | |
372 | | /* We look at the allocated SHT_PROGBITS (or SHT_NOBITS) sections. (Most |
373 | | every file will have some SHT_PROGBITS sections, but it's possible to |
374 | | have one with nothing but .bss, i.e. SHT_NOBITS.) The special sections |
375 | | that can be moved around have different sh_type values--except for |
376 | | .interp, the section that became the PT_INTERP segment. So we exclude |
377 | | the SHT_PROGBITS section whose address matches the PT_INTERP p_vaddr. |
378 | | For this reason, we must examine the phdrs first to find PT_INTERP. */ |
379 | |
|
380 | 0 | GElf_Addr main_interp = 0; |
381 | 0 | { |
382 | 0 | size_t main_phnum; |
383 | 0 | if (unlikely (elf_getphdrnum (mod->main.elf, &main_phnum))) |
384 | 0 | return DWFL_E_LIBELF; |
385 | 0 | for (size_t i = 0; i < main_phnum; ++i) |
386 | 0 | { |
387 | 0 | GElf_Phdr phdr; |
388 | 0 | if (unlikely (gelf_getphdr (mod->main.elf, i, &phdr) == NULL)) |
389 | 0 | return DWFL_E_LIBELF; |
390 | 0 | if (phdr.p_type == PT_INTERP) |
391 | 0 | { |
392 | 0 | main_interp = phdr.p_vaddr; |
393 | 0 | break; |
394 | 0 | } |
395 | 0 | } |
396 | 0 | } |
397 | | |
398 | 0 | src.d_buf += src.d_size; |
399 | 0 | src.d_type = ELF_T_PHDR; |
400 | 0 | src.d_size = phnum * phentsize; |
401 | |
|
402 | 0 | GElf_Addr undo_interp = 0; |
403 | 0 | bool class32 = ehdr.e32.e_ident[EI_CLASS] == ELFCLASS32; |
404 | 0 | { |
405 | 0 | size_t phdr_size = class32 ? sizeof (Elf32_Phdr) : sizeof (Elf64_Phdr); |
406 | 0 | if (unlikely (phnum > SIZE_MAX / phdr_size)) |
407 | 0 | return DWFL_E_NOMEM; |
408 | 0 | const size_t phdrs_bytes = phnum * phdr_size; |
409 | 0 | void *phdrs = malloc (phdrs_bytes); |
410 | 0 | if (unlikely (phdrs == NULL)) |
411 | 0 | return DWFL_E_NOMEM; |
412 | 0 | dst.d_buf = phdrs; |
413 | 0 | dst.d_size = phdrs_bytes; |
414 | 0 | if (unlikely (gelf_xlatetom (mod->main.elf, &dst, &src, |
415 | 0 | ehdr.e32.e_ident[EI_DATA]) == NULL)) |
416 | 0 | { |
417 | 0 | free (phdrs); |
418 | 0 | return DWFL_E_LIBELF; |
419 | 0 | } |
420 | 0 | if (class32) |
421 | 0 | { |
422 | 0 | Elf32_Phdr (*p32)[phnum] = phdrs; |
423 | 0 | for (uint_fast16_t i = 0; i < phnum; ++i) |
424 | 0 | if ((*p32)[i].p_type == PT_INTERP) |
425 | 0 | { |
426 | 0 | undo_interp = (*p32)[i].p_vaddr; |
427 | 0 | break; |
428 | 0 | } |
429 | 0 | } |
430 | 0 | else |
431 | 0 | { |
432 | 0 | Elf64_Phdr (*p64)[phnum] = phdrs; |
433 | 0 | for (uint_fast16_t i = 0; i < phnum; ++i) |
434 | 0 | if ((*p64)[i].p_type == PT_INTERP) |
435 | 0 | { |
436 | 0 | undo_interp = (*p64)[i].p_vaddr; |
437 | 0 | break; |
438 | 0 | } |
439 | 0 | } |
440 | 0 | free (phdrs); |
441 | 0 | } |
442 | | |
443 | 0 | if (unlikely ((main_interp == 0) != (undo_interp == 0))) |
444 | 0 | return DWFL_E_BAD_PRELINK; |
445 | | |
446 | 0 | src.d_buf += src.d_size; |
447 | 0 | src.d_type = ELF_T_SHDR; |
448 | 0 | src.d_size = gelf_fsize (mod->main.elf, ELF_T_SHDR, shnum, EV_CURRENT); |
449 | |
|
450 | 0 | size_t shdr_size = class32 ? sizeof (Elf32_Shdr) : sizeof (Elf64_Shdr); |
451 | 0 | if (unlikely (shnum > SIZE_MAX / shdr_size)) |
452 | 0 | return DWFL_E_NOMEM; |
453 | 0 | const size_t shdrs_bytes = shnum * shdr_size; |
454 | 0 | void *shdrs = malloc (shdrs_bytes); |
455 | 0 | if (unlikely (shdrs == NULL)) |
456 | 0 | return DWFL_E_NOMEM; |
457 | 0 | dst.d_buf = shdrs; |
458 | 0 | dst.d_size = shdrs_bytes; |
459 | 0 | if (unlikely (gelf_xlatetom (mod->main.elf, &dst, &src, |
460 | 0 | ehdr.e32.e_ident[EI_DATA]) == NULL)) |
461 | 0 | { |
462 | 0 | free (shdrs); |
463 | 0 | return DWFL_E_LIBELF; |
464 | 0 | } |
465 | | |
466 | | /* Now we can look at the original section headers of the main file |
467 | | before it was prelinked. First we'll apply our method to the main |
468 | | file sections as they are after prelinking, to calculate the |
469 | | synchronization address of the main file. Then we'll apply that |
470 | | same method to the saved section headers, to calculate the matching |
471 | | synchronization address of the debug file. |
472 | | |
473 | | The method is to consider SHF_ALLOC sections that are either |
474 | | SHT_PROGBITS or SHT_NOBITS, excluding the section whose sh_addr |
475 | | matches the PT_INTERP p_vaddr. The special sections that can be |
476 | | moved by prelink have other types, except for .interp (which |
477 | | becomes PT_INTERP). The "real" sections cannot move as such, but |
478 | | .bss can be split into .dynbss and .bss, with the total memory |
479 | | image remaining the same but being spread across the two sections. |
480 | | So we consider the highest section end, which still matches up. */ |
481 | | |
482 | 0 | GElf_Addr highest; |
483 | |
|
484 | 0 | highest = 0; |
485 | 0 | scn = NULL; |
486 | 0 | while ((scn = elf_nextscn (mod->main.elf, scn)) != NULL) |
487 | 0 | { |
488 | 0 | GElf_Shdr sh_mem; |
489 | 0 | GElf_Shdr *sh = gelf_getshdr (scn, &sh_mem); |
490 | 0 | if (unlikely (sh == NULL)) |
491 | 0 | { |
492 | 0 | free (shdrs); |
493 | 0 | return DWFL_E_LIBELF; |
494 | 0 | } |
495 | 0 | consider_shdr (main_interp, sh->sh_type, sh->sh_flags, |
496 | 0 | sh->sh_addr, sh->sh_size, &highest); |
497 | 0 | } |
498 | 0 | if (highest > mod->main.vaddr) |
499 | 0 | { |
500 | 0 | mod->main.address_sync = highest; |
501 | |
|
502 | 0 | highest = 0; |
503 | 0 | if (class32) |
504 | 0 | { |
505 | 0 | Elf32_Shdr (*s32)[shnum] = shdrs; |
506 | 0 | for (size_t i = 0; i < shnum; ++i) |
507 | 0 | consider_shdr (undo_interp, (*s32)[i].sh_type, |
508 | 0 | (*s32)[i].sh_flags, (*s32)[i].sh_addr, |
509 | 0 | (*s32)[i].sh_size, &highest); |
510 | 0 | } |
511 | 0 | else |
512 | 0 | { |
513 | 0 | Elf64_Shdr (*s64)[shnum] = shdrs; |
514 | 0 | for (size_t i = 0; i < shnum; ++i) |
515 | 0 | consider_shdr (undo_interp, (*s64)[i].sh_type, |
516 | 0 | (*s64)[i].sh_flags, (*s64)[i].sh_addr, |
517 | 0 | (*s64)[i].sh_size, &highest); |
518 | 0 | } |
519 | |
|
520 | 0 | if (highest > file->vaddr) |
521 | 0 | file->address_sync = highest; |
522 | 0 | else |
523 | 0 | { |
524 | 0 | free (shdrs); |
525 | 0 | return DWFL_E_BAD_PRELINK; |
526 | 0 | } |
527 | 0 | } |
528 | | |
529 | 0 | free (shdrs); |
530 | |
|
531 | 0 | return DWFL_E_NOERROR; |
532 | 0 | } |
533 | | |
534 | | /* Find the separate debuginfo file for this module and open libelf on it. |
535 | | When we return success, MOD->debug is set up. */ |
536 | | static Dwfl_Error |
537 | | find_debuginfo (Dwfl_Module *mod) |
538 | 4.19k | { |
539 | 4.19k | if (mod->debug.elf != NULL) |
540 | 0 | return DWFL_E_NOERROR; |
541 | | |
542 | 4.19k | GElf_Word debuglink_crc = 0; |
543 | 4.19k | const char *debuglink_file; |
544 | 4.19k | debuglink_file = INTUSE(dwelf_elf_gnu_debuglink) (mod->main.elf, |
545 | 4.19k | &debuglink_crc); |
546 | | |
547 | 4.19k | mod->debug.fd = (*mod->dwfl->callbacks->find_debuginfo) (MODCB_ARGS (mod), |
548 | 4.19k | mod->main.name, |
549 | 4.19k | debuglink_file, |
550 | 4.19k | debuglink_crc, |
551 | 4.19k | &mod->debug.name); |
552 | 4.19k | Dwfl_Error result = open_elf (mod, &mod->debug); |
553 | 4.19k | if (result == DWFL_E_NOERROR && mod->debug.address_sync != 0) |
554 | 0 | result = find_prelink_address_sync (mod, &mod->debug); |
555 | 4.19k | return result; |
556 | 4.19k | } |
557 | | |
558 | | /* Try to find the alternative debug link for the given DWARF and set |
559 | | it if found. Only called when mod->dw is already setup but still |
560 | | might need an alternative (dwz multi) debug file. filename is either |
561 | | the main or debug name from which the Dwarf was created. */ |
562 | | static void |
563 | | find_debug_altlink (Dwfl_Module *mod, const char *filename) |
564 | 138 | { |
565 | 138 | assert (mod->dw != NULL); |
566 | | |
567 | 138 | const char *altname; |
568 | 138 | const void *build_id; |
569 | 138 | ssize_t build_id_len = INTUSE(dwelf_dwarf_gnu_debugaltlink) (mod->dw, |
570 | 138 | &altname, |
571 | 138 | &build_id); |
572 | | |
573 | 138 | if (build_id_len > 0) |
574 | 10 | { |
575 | | /* We could store altfile in the module, but don't really need it. */ |
576 | 10 | char *altfile = NULL; |
577 | 10 | mod->alt_fd = (*mod->dwfl->callbacks->find_debuginfo) (MODCB_ARGS (mod), |
578 | 10 | filename, |
579 | 10 | altname, |
580 | 10 | 0, |
581 | 10 | &altfile); |
582 | | |
583 | | /* The (internal) callbacks might just set mod->alt_elf directly |
584 | | because they open the Elf anyway for sanity checking. |
585 | | Otherwise open either the given file name or use the fd |
586 | | returned. */ |
587 | 10 | Dwfl_Error error = open_elf_file (&mod->alt_elf, &mod->alt_fd, |
588 | 10 | &altfile); |
589 | 10 | if (error == DWFL_E_NOERROR) |
590 | 0 | { |
591 | 0 | mod->alt = INTUSE(dwarf_begin_elf) (mod->alt_elf, |
592 | 0 | DWARF_C_READ, NULL); |
593 | 0 | if (mod->alt == NULL) |
594 | 0 | { |
595 | 0 | elf_end (mod->alt_elf); |
596 | 0 | mod->alt_elf = NULL; |
597 | 0 | close (mod->alt_fd); |
598 | 0 | mod->alt_fd = -1; |
599 | 0 | } |
600 | 0 | else |
601 | 0 | dwarf_setalt (mod->dw, mod->alt); |
602 | 0 | } |
603 | | |
604 | 10 | free (altfile); /* See above, we don't really need it. */ |
605 | 10 | } |
606 | 138 | } |
607 | | |
608 | | /* Try to find a symbol table in FILE. |
609 | | Returns DWFL_E_NOERROR if a proper one is found. |
610 | | Returns DWFL_E_NO_SYMTAB if not, but still sets results for SHT_DYNSYM. */ |
611 | | static Dwfl_Error |
612 | | load_symtab (struct dwfl_file *file, struct dwfl_file **symfile, |
613 | | Elf_Scn **symscn, Elf_Scn **xndxscn, |
614 | | size_t *syments, int *first_global, GElf_Word *strshndx) |
615 | 0 | { |
616 | 0 | bool symtab = false; |
617 | 0 | Elf_Scn *scn = NULL; |
618 | 0 | while ((scn = elf_nextscn (file->elf, scn)) != NULL) |
619 | 0 | { |
620 | 0 | GElf_Shdr shdr_mem, *shdr = gelf_getshdr (scn, &shdr_mem); |
621 | 0 | if (shdr != NULL) |
622 | 0 | switch (shdr->sh_type) |
623 | 0 | { |
624 | 0 | case SHT_SYMTAB: |
625 | 0 | if (shdr->sh_entsize == 0) |
626 | 0 | break; |
627 | 0 | symtab = true; |
628 | 0 | *symscn = scn; |
629 | 0 | *symfile = file; |
630 | 0 | *strshndx = shdr->sh_link; |
631 | 0 | *syments = shdr->sh_size / shdr->sh_entsize; |
632 | 0 | *first_global = shdr->sh_info; |
633 | 0 | if (*xndxscn != NULL) |
634 | 0 | return DWFL_E_NOERROR; |
635 | 0 | break; |
636 | | |
637 | 0 | case SHT_DYNSYM: |
638 | 0 | if (symtab) |
639 | 0 | break; |
640 | | /* Use this if need be, but keep looking for SHT_SYMTAB. */ |
641 | 0 | if (shdr->sh_entsize == 0) |
642 | 0 | break; |
643 | 0 | *symscn = scn; |
644 | 0 | *symfile = file; |
645 | 0 | *strshndx = shdr->sh_link; |
646 | 0 | *syments = shdr->sh_size / shdr->sh_entsize; |
647 | 0 | *first_global = shdr->sh_info; |
648 | 0 | break; |
649 | | |
650 | 0 | case SHT_SYMTAB_SHNDX: |
651 | 0 | *xndxscn = scn; |
652 | 0 | if (symtab) |
653 | 0 | return DWFL_E_NOERROR; |
654 | 0 | break; |
655 | | |
656 | 0 | default: |
657 | 0 | break; |
658 | 0 | } |
659 | 0 | } |
660 | | |
661 | 0 | if (symtab) |
662 | | /* We found one, though no SHT_SYMTAB_SHNDX to go with it. */ |
663 | 0 | return DWFL_E_NOERROR; |
664 | | |
665 | | /* We found no SHT_SYMTAB, so any SHT_SYMTAB_SHNDX was bogus. |
666 | | We might have found an SHT_DYNSYM and set *SYMSCN et al though. */ |
667 | 0 | *xndxscn = NULL; |
668 | 0 | return DWFL_E_NO_SYMTAB; |
669 | 0 | } |
670 | | |
671 | | |
672 | | /* Translate addresses into file offsets. |
673 | | OFFS[*] start out zero and remain zero if unresolved. */ |
674 | | static void |
675 | | find_offsets (Elf *elf, GElf_Addr main_bias, size_t phnum, size_t n, |
676 | | GElf_Addr addrs[n], GElf_Off offs[n]) |
677 | 0 | { |
678 | 0 | size_t unsolved = n; |
679 | 0 | for (size_t i = 0; i < phnum; ++i) |
680 | 0 | { |
681 | 0 | GElf_Phdr phdr_mem; |
682 | 0 | GElf_Phdr *phdr = gelf_getphdr (elf, i, &phdr_mem); |
683 | 0 | if (phdr != NULL && phdr->p_type == PT_LOAD && phdr->p_memsz > 0) |
684 | 0 | for (size_t j = 0; j < n; ++j) |
685 | 0 | if (offs[j] == 0 |
686 | 0 | && addrs[j] >= phdr->p_vaddr + main_bias |
687 | 0 | && addrs[j] - (phdr->p_vaddr + main_bias) < phdr->p_filesz) |
688 | 0 | { |
689 | 0 | offs[j] = addrs[j] - (phdr->p_vaddr + main_bias) + phdr->p_offset; |
690 | 0 | if (--unsolved == 0) |
691 | 0 | break; |
692 | 0 | } |
693 | 0 | } |
694 | 0 | } |
695 | | |
696 | | /* This is a string section/segment, so we want to make sure the last |
697 | | valid index contains a zero character to terminate a string. */ |
698 | | static void |
699 | | validate_strdata (Elf_Data *symstrdata) |
700 | 0 | { |
701 | 0 | size_t size = symstrdata->d_size; |
702 | 0 | const char *buf = symstrdata->d_buf; |
703 | 0 | while (size > 0 && *(buf + size - 1) != '\0') |
704 | 0 | --size; |
705 | 0 | symstrdata->d_size = size; |
706 | 0 | } |
707 | | |
708 | | |
709 | | /* Various addresses we might want to pull from the dynamic segment. */ |
710 | | enum |
711 | | { |
712 | | i_symtab, |
713 | | i_strtab, |
714 | | i_hash, |
715 | | i_gnu_hash, |
716 | | i_max |
717 | | }; |
718 | | |
719 | | /* Translate pointers into file offsets. ADJUST is either zero |
720 | | in case the dynamic segment wasn't adjusted or mod->main_bias. |
721 | | Will set mod->symfile if the translated offsets can be used as |
722 | | symbol table. */ |
723 | | static void |
724 | | translate_offs (GElf_Addr adjust, |
725 | | Dwfl_Module *mod, size_t phnum, |
726 | | GElf_Addr addrs[i_max], GElf_Xword strsz, |
727 | | GElf_Ehdr *ehdr) |
728 | 0 | { |
729 | 0 | GElf_Off offs[i_max] = { 0, }; |
730 | 0 | find_offsets (mod->main.elf, adjust, phnum, i_max, addrs, offs); |
731 | | |
732 | | /* Figure out the size of the symbol table. */ |
733 | 0 | if (offs[i_hash] != 0) |
734 | 0 | { |
735 | | /* In the original format, .hash says the size of .dynsym. */ |
736 | |
|
737 | 0 | size_t entsz = SH_ENTSIZE_HASH (ehdr); |
738 | 0 | Elf_Data *data = elf_getdata_rawchunk (mod->main.elf, |
739 | 0 | offs[i_hash] + entsz, entsz, |
740 | 0 | (entsz == 4 |
741 | 0 | ? ELF_T_WORD : ELF_T_XWORD)); |
742 | 0 | if (data != NULL) |
743 | 0 | mod->syments = (entsz == 4 |
744 | 0 | ? *(const GElf_Word *) data->d_buf |
745 | 0 | : *(const GElf_Xword *) data->d_buf); |
746 | 0 | } |
747 | 0 | if (offs[i_gnu_hash] != 0 && mod->syments == 0) |
748 | 0 | { |
749 | | /* In the new format, we can derive it with some work. */ |
750 | |
|
751 | 0 | const struct |
752 | 0 | { |
753 | 0 | Elf32_Word nbuckets; |
754 | 0 | Elf32_Word symndx; |
755 | 0 | Elf32_Word maskwords; |
756 | 0 | Elf32_Word shift2; |
757 | 0 | } *header; |
758 | |
|
759 | 0 | Elf_Data *data = elf_getdata_rawchunk (mod->main.elf, offs[i_gnu_hash], |
760 | 0 | sizeof *header, ELF_T_WORD); |
761 | 0 | if (data != NULL) |
762 | 0 | { |
763 | 0 | header = data->d_buf; |
764 | 0 | Elf32_Word nbuckets = header->nbuckets; |
765 | 0 | Elf32_Word symndx = header->symndx; |
766 | 0 | GElf_Off buckets_at = (offs[i_gnu_hash] + sizeof *header |
767 | 0 | + (gelf_getclass (mod->main.elf) |
768 | 0 | * sizeof (Elf32_Word) |
769 | 0 | * header->maskwords)); |
770 | | |
771 | | // elf_getdata_rawchunk takes a size_t, make sure it |
772 | | // doesn't overflow. |
773 | | #if SIZE_MAX <= UINT32_MAX |
774 | | if (nbuckets > SIZE_MAX / sizeof (Elf32_Word)) |
775 | | data = NULL; |
776 | | else |
777 | | #endif |
778 | 0 | data = elf_getdata_rawchunk (mod->main.elf, buckets_at, |
779 | 0 | nbuckets * sizeof (Elf32_Word), |
780 | 0 | ELF_T_WORD); |
781 | 0 | if (data != NULL && symndx < nbuckets) |
782 | 0 | { |
783 | 0 | const Elf32_Word *const buckets = data->d_buf; |
784 | 0 | Elf32_Word maxndx = symndx; |
785 | 0 | for (Elf32_Word bucket = 0; bucket < nbuckets; ++bucket) |
786 | 0 | if (buckets[bucket] > maxndx) |
787 | 0 | maxndx = buckets[bucket]; |
788 | |
|
789 | 0 | GElf_Off hasharr_at = (buckets_at |
790 | 0 | + nbuckets * sizeof (Elf32_Word)); |
791 | 0 | hasharr_at += (maxndx - symndx) * sizeof (Elf32_Word); |
792 | 0 | do |
793 | 0 | { |
794 | 0 | data = elf_getdata_rawchunk (mod->main.elf, |
795 | 0 | hasharr_at, |
796 | 0 | sizeof (Elf32_Word), |
797 | 0 | ELF_T_WORD); |
798 | 0 | if (data != NULL |
799 | 0 | && (*(const Elf32_Word *) data->d_buf & 1u)) |
800 | 0 | { |
801 | 0 | mod->syments = maxndx + 1; |
802 | 0 | break; |
803 | 0 | } |
804 | 0 | ++maxndx; |
805 | 0 | hasharr_at += sizeof (Elf32_Word); |
806 | 0 | } |
807 | 0 | while (data != NULL); |
808 | 0 | } |
809 | 0 | } |
810 | 0 | } |
811 | 0 | if (offs[i_strtab] > offs[i_symtab] && mod->syments == 0) |
812 | 0 | mod->syments = ((offs[i_strtab] - offs[i_symtab]) |
813 | 0 | / gelf_fsize (mod->main.elf, |
814 | 0 | ELF_T_SYM, 1, EV_CURRENT)); |
815 | |
|
816 | 0 | if (mod->syments > 0) |
817 | 0 | { |
818 | 0 | mod->symdata = elf_getdata_rawchunk (mod->main.elf, |
819 | 0 | offs[i_symtab], |
820 | 0 | gelf_fsize (mod->main.elf, |
821 | 0 | ELF_T_SYM, |
822 | 0 | mod->syments, |
823 | 0 | EV_CURRENT), |
824 | 0 | ELF_T_SYM); |
825 | 0 | if (mod->symdata != NULL) |
826 | 0 | { |
827 | 0 | mod->symstrdata = elf_getdata_rawchunk (mod->main.elf, |
828 | 0 | offs[i_strtab], |
829 | 0 | strsz, |
830 | 0 | ELF_T_BYTE); |
831 | 0 | if (mod->symstrdata == NULL) |
832 | 0 | mod->symdata = NULL; |
833 | 0 | else |
834 | 0 | validate_strdata (mod->symstrdata); |
835 | 0 | } |
836 | 0 | if (mod->symdata == NULL) |
837 | 0 | mod->symerr = DWFL_E (LIBELF, elf_errno ()); |
838 | 0 | else |
839 | 0 | { |
840 | 0 | mod->symfile = &mod->main; |
841 | 0 | mod->symerr = DWFL_E_NOERROR; |
842 | 0 | } |
843 | 0 | } |
844 | 0 | } |
845 | | |
846 | | /* Try to find a dynamic symbol table via phdrs. */ |
847 | | static void |
848 | | find_dynsym (Dwfl_Module *mod) |
849 | 0 | { |
850 | 0 | GElf_Ehdr ehdr_mem; |
851 | 0 | GElf_Ehdr *ehdr = gelf_getehdr (mod->main.elf, &ehdr_mem); |
852 | |
|
853 | 0 | size_t phnum; |
854 | 0 | if (unlikely (elf_getphdrnum (mod->main.elf, &phnum) != 0)) |
855 | 0 | return; |
856 | | |
857 | 0 | for (size_t i = 0; i < phnum; ++i) |
858 | 0 | { |
859 | 0 | GElf_Phdr phdr_mem; |
860 | 0 | GElf_Phdr *phdr = gelf_getphdr (mod->main.elf, i, &phdr_mem); |
861 | 0 | if (phdr == NULL) |
862 | 0 | break; |
863 | | |
864 | 0 | if (phdr->p_type == PT_DYNAMIC) |
865 | 0 | { |
866 | | /* Examine the dynamic section for the pointers we need. */ |
867 | |
|
868 | 0 | Elf_Data *data = elf_getdata_rawchunk (mod->main.elf, |
869 | 0 | phdr->p_offset, phdr->p_filesz, |
870 | 0 | ELF_T_DYN); |
871 | 0 | if (data == NULL) |
872 | 0 | continue; |
873 | | |
874 | 0 | GElf_Addr addrs[i_max] = { 0, }; |
875 | 0 | GElf_Xword strsz = 0; |
876 | 0 | size_t n = data->d_size / gelf_fsize (mod->main.elf, |
877 | 0 | ELF_T_DYN, 1, EV_CURRENT); |
878 | 0 | for (size_t j = 0; j < n; ++j) |
879 | 0 | { |
880 | 0 | GElf_Dyn dyn_mem; |
881 | 0 | GElf_Dyn *dyn = gelf_getdyn (data, j, &dyn_mem); |
882 | 0 | if (dyn != NULL) |
883 | 0 | switch (dyn->d_tag) |
884 | 0 | { |
885 | 0 | case DT_SYMTAB: |
886 | 0 | addrs[i_symtab] = dyn->d_un.d_ptr; |
887 | 0 | continue; |
888 | | |
889 | 0 | case DT_HASH: |
890 | 0 | addrs[i_hash] = dyn->d_un.d_ptr; |
891 | 0 | continue; |
892 | | |
893 | 0 | case DT_GNU_HASH: |
894 | 0 | addrs[i_gnu_hash] = dyn->d_un.d_ptr; |
895 | 0 | continue; |
896 | | |
897 | 0 | case DT_STRTAB: |
898 | 0 | addrs[i_strtab] = dyn->d_un.d_ptr; |
899 | 0 | continue; |
900 | | |
901 | 0 | case DT_STRSZ: |
902 | 0 | strsz = dyn->d_un.d_val; |
903 | 0 | continue; |
904 | | |
905 | 0 | default: |
906 | 0 | continue; |
907 | | |
908 | 0 | case DT_NULL: |
909 | 0 | break; |
910 | 0 | } |
911 | 0 | break; |
912 | 0 | } |
913 | | |
914 | | /* First try unadjusted, like ELF files from disk, vdso. |
915 | | Then try for already adjusted dynamic section, like ELF |
916 | | from remote memory. */ |
917 | 0 | translate_offs (0, mod, phnum, addrs, strsz, ehdr); |
918 | 0 | if (mod->symfile == NULL) |
919 | 0 | translate_offs (mod->main_bias, mod, phnum, addrs, strsz, ehdr); |
920 | |
|
921 | 0 | return; |
922 | 0 | } |
923 | 0 | } |
924 | 0 | } |
925 | | |
926 | | |
927 | | #if USE_LZMA |
928 | | /* Try to find the offset between the main file and .gnu_debugdata. */ |
929 | | static bool |
930 | | find_aux_address_sync (Dwfl_Module *mod) |
931 | | { |
932 | | /* Don't trust the phdrs in the minisymtab elf file to be setup correctly. |
933 | | The address_sync is equal to the main file it is embedded in at first. */ |
934 | | mod->aux_sym.address_sync = mod->main.address_sync; |
935 | | |
936 | | /* Adjust address_sync for the difference in entry addresses, attempting to |
937 | | account for ELF relocation changes after aux was split. */ |
938 | | GElf_Ehdr ehdr_main, ehdr_aux; |
939 | | if (unlikely (gelf_getehdr (mod->main.elf, &ehdr_main) == NULL) |
940 | | || unlikely (gelf_getehdr (mod->aux_sym.elf, &ehdr_aux) == NULL)) |
941 | | return false; |
942 | | mod->aux_sym.address_sync += ehdr_aux.e_entry - ehdr_main.e_entry; |
943 | | |
944 | | /* The shdrs are setup OK to make find_prelink_address_sync () do the right |
945 | | thing, which is possibly more reliable, but it needs .gnu.prelink_undo. */ |
946 | | if (mod->aux_sym.address_sync != 0) |
947 | | return find_prelink_address_sync (mod, &mod->aux_sym) == DWFL_E_NOERROR; |
948 | | |
949 | | return true; |
950 | | } |
951 | | #endif |
952 | | |
953 | | /* Try to find the auxiliary symbol table embedded in the main elf file |
954 | | section .gnu_debugdata. Only matters if the symbol information comes |
955 | | from the main file dynsym. No harm done if not found. */ |
956 | | static void |
957 | | find_aux_sym (Dwfl_Module *mod __attribute__ ((unused)), |
958 | | Elf_Scn **aux_symscn __attribute__ ((unused)), |
959 | | Elf_Scn **aux_xndxscn __attribute__ ((unused)), |
960 | | GElf_Word *aux_strshndx __attribute__ ((unused))) |
961 | 0 | { |
962 | | /* Since a .gnu_debugdata section is compressed using lzma don't do |
963 | | anything unless we have support for that. */ |
964 | | #if USE_LZMA |
965 | | Elf *elf = mod->main.elf; |
966 | | |
967 | | size_t shstrndx; |
968 | | if (elf_getshdrstrndx (elf, &shstrndx) < 0) |
969 | | return; |
970 | | |
971 | | Elf_Scn *scn = NULL; |
972 | | while ((scn = elf_nextscn (elf, scn)) != NULL) |
973 | | { |
974 | | GElf_Shdr shdr_mem; |
975 | | GElf_Shdr *shdr = gelf_getshdr (scn, &shdr_mem); |
976 | | if (shdr == NULL) |
977 | | return; |
978 | | |
979 | | const char *name = elf_strptr (elf, shstrndx, shdr->sh_name); |
980 | | if (name == NULL) |
981 | | return; |
982 | | |
983 | | if (!strcmp (name, ".gnu_debugdata")) |
984 | | break; |
985 | | } |
986 | | |
987 | | if (scn == NULL) |
988 | | return; |
989 | | |
990 | | /* Found the .gnu_debugdata section. Uncompress the lzma image and |
991 | | turn it into an ELF image. */ |
992 | | Elf_Data *rawdata = elf_rawdata (scn, NULL); |
993 | | if (rawdata == NULL) |
994 | | return; |
995 | | |
996 | | Dwfl_Error error; |
997 | | void *buffer = NULL; |
998 | | size_t size = 0; |
999 | | error = __libdw_unlzma (-1, 0, rawdata->d_buf, rawdata->d_size, |
1000 | | &buffer, &size); |
1001 | | if (error == DWFL_E_NOERROR) |
1002 | | { |
1003 | | if (unlikely (size == 0)) |
1004 | | free (buffer); |
1005 | | else |
1006 | | { |
1007 | | mod->aux_sym.elf = elf_memory (buffer, size); |
1008 | | if (mod->aux_sym.elf == NULL) |
1009 | | free (buffer); |
1010 | | else |
1011 | | { |
1012 | | mod->aux_sym.fd = -1; |
1013 | | mod->aux_sym.elf->flags |= ELF_F_MALLOCED; |
1014 | | if (open_elf (mod, &mod->aux_sym) != DWFL_E_NOERROR) |
1015 | | return; |
1016 | | if (! find_aux_address_sync (mod)) |
1017 | | { |
1018 | | elf_end (mod->aux_sym.elf); |
1019 | | mod->aux_sym.elf = NULL; |
1020 | | return; |
1021 | | } |
1022 | | |
1023 | | /* So far, so good. Get minisymtab table data and cache it. */ |
1024 | | bool minisymtab = false; |
1025 | | scn = NULL; |
1026 | | while ((scn = elf_nextscn (mod->aux_sym.elf, scn)) != NULL) |
1027 | | { |
1028 | | GElf_Shdr shdr_mem, *shdr = gelf_getshdr (scn, &shdr_mem); |
1029 | | if (shdr != NULL) |
1030 | | switch (shdr->sh_type) |
1031 | | { |
1032 | | case SHT_SYMTAB: |
1033 | | if (shdr->sh_entsize == 0) |
1034 | | return; |
1035 | | minisymtab = true; |
1036 | | *aux_symscn = scn; |
1037 | | *aux_strshndx = shdr->sh_link; |
1038 | | mod->aux_syments = shdr->sh_size / shdr->sh_entsize; |
1039 | | mod->aux_first_global = shdr->sh_info; |
1040 | | if (*aux_xndxscn != NULL) |
1041 | | return; |
1042 | | break; |
1043 | | |
1044 | | case SHT_SYMTAB_SHNDX: |
1045 | | *aux_xndxscn = scn; |
1046 | | if (minisymtab) |
1047 | | return; |
1048 | | break; |
1049 | | |
1050 | | default: |
1051 | | break; |
1052 | | } |
1053 | | } |
1054 | | |
1055 | | if (minisymtab) |
1056 | | /* We found one, though no SHT_SYMTAB_SHNDX to go with it. */ |
1057 | | return; |
1058 | | |
1059 | | /* We found no SHT_SYMTAB, so everything else is bogus. */ |
1060 | | *aux_xndxscn = NULL; |
1061 | | *aux_strshndx = 0; |
1062 | | mod->aux_syments = 0; |
1063 | | elf_end (mod->aux_sym.elf); |
1064 | | mod->aux_sym.elf = NULL; |
1065 | | return; |
1066 | | } |
1067 | | } |
1068 | | } |
1069 | | else |
1070 | | free (buffer); |
1071 | | #endif |
1072 | 0 | } |
1073 | | |
1074 | | /* Try to find a symbol table in either MOD->main.elf or MOD->debug.elf. */ |
1075 | | static void |
1076 | | find_symtab (Dwfl_Module *mod) |
1077 | 0 | { |
1078 | 0 | if (mod->symdata != NULL || mod->aux_symdata != NULL /* Already done. */ |
1079 | 0 | || mod->symerr != DWFL_E_NOERROR) /* Cached previous failure. */ |
1080 | 0 | return; |
1081 | | |
1082 | 0 | __libdwfl_getelf (mod); |
1083 | 0 | mod->symerr = mod->elferr; |
1084 | 0 | if (mod->symerr != DWFL_E_NOERROR) |
1085 | 0 | return; |
1086 | | |
1087 | | /* First see if the main ELF file has the debugging information. */ |
1088 | 0 | Elf_Scn *symscn = NULL, *xndxscn = NULL; |
1089 | 0 | Elf_Scn *aux_symscn = NULL, *aux_xndxscn = NULL; |
1090 | 0 | GElf_Word strshndx, aux_strshndx = 0; |
1091 | 0 | mod->symerr = load_symtab (&mod->main, &mod->symfile, &symscn, |
1092 | 0 | &xndxscn, &mod->syments, &mod->first_global, |
1093 | 0 | &strshndx); |
1094 | 0 | switch (mod->symerr) |
1095 | 0 | { |
1096 | 0 | default: |
1097 | 0 | return; |
1098 | | |
1099 | 0 | case DWFL_E_NOERROR: |
1100 | 0 | break; |
1101 | | |
1102 | 0 | case DWFL_E_NO_SYMTAB: |
1103 | | /* Now we have to look for a separate debuginfo file. */ |
1104 | 0 | mod->symerr = find_debuginfo (mod); |
1105 | 0 | switch (mod->symerr) |
1106 | 0 | { |
1107 | 0 | default: |
1108 | 0 | return; |
1109 | | |
1110 | 0 | case DWFL_E_NOERROR: |
1111 | 0 | mod->symerr = load_symtab (&mod->debug, &mod->symfile, &symscn, |
1112 | 0 | &xndxscn, &mod->syments, |
1113 | 0 | &mod->first_global, &strshndx); |
1114 | 0 | break; |
1115 | | |
1116 | 0 | case DWFL_E_CB: /* The find_debuginfo hook failed. */ |
1117 | 0 | mod->symerr = DWFL_E_NO_SYMTAB; |
1118 | 0 | break; |
1119 | 0 | } |
1120 | | |
1121 | 0 | switch (mod->symerr) |
1122 | 0 | { |
1123 | 0 | default: |
1124 | 0 | return; |
1125 | | |
1126 | 0 | case DWFL_E_NOERROR: |
1127 | 0 | break; |
1128 | | |
1129 | 0 | case DWFL_E_NO_SYMTAB: |
1130 | | /* There might be an auxiliary table. */ |
1131 | 0 | find_aux_sym (mod, &aux_symscn, &aux_xndxscn, &aux_strshndx); |
1132 | |
|
1133 | 0 | if (symscn != NULL) |
1134 | 0 | { |
1135 | | /* We still have the dynamic symbol table. */ |
1136 | 0 | mod->symerr = DWFL_E_NOERROR; |
1137 | 0 | break; |
1138 | 0 | } |
1139 | | |
1140 | 0 | if (aux_symscn != NULL) |
1141 | 0 | { |
1142 | | /* We still have the auxiliary symbol table. */ |
1143 | 0 | mod->symerr = DWFL_E_NOERROR; |
1144 | 0 | goto aux_cache; |
1145 | 0 | } |
1146 | | |
1147 | | /* Last ditch, look for dynamic symbols without section headers. */ |
1148 | 0 | find_dynsym (mod); |
1149 | 0 | return; |
1150 | 0 | } |
1151 | 0 | break; |
1152 | 0 | } |
1153 | | |
1154 | | /* This does some sanity checks on the string table section. */ |
1155 | 0 | if (elf_strptr (mod->symfile->elf, strshndx, 0) == NULL) |
1156 | 0 | { |
1157 | 0 | elferr: |
1158 | 0 | mod->symdata = NULL; |
1159 | 0 | mod->syments = 0; |
1160 | 0 | mod->first_global = 0; |
1161 | 0 | mod->symerr = DWFL_E (LIBELF, elf_errno ()); |
1162 | 0 | goto aux_cleanup; /* This cleans up some more and tries find_dynsym. */ |
1163 | 0 | } |
1164 | | |
1165 | | /* Cache the data; MOD->syments and MOD->first_global were set |
1166 | | above. If any of the sections is compressed, uncompress it |
1167 | | first. Only the string data section could theoretically be |
1168 | | compressed GNU style (as .zdebug_str). Everything else only ELF |
1169 | | gabi style (SHF_COMPRESSED). */ |
1170 | | |
1171 | 0 | Elf_Scn *symstrscn = elf_getscn (mod->symfile->elf, strshndx); |
1172 | 0 | if (symstrscn == NULL) |
1173 | 0 | goto elferr; |
1174 | | |
1175 | 0 | GElf_Shdr shdr_mem; |
1176 | 0 | GElf_Shdr *shdr = gelf_getshdr (symstrscn, &shdr_mem); |
1177 | 0 | if (shdr == NULL) |
1178 | 0 | goto elferr; |
1179 | | |
1180 | 0 | size_t shstrndx; |
1181 | 0 | if (elf_getshdrstrndx (mod->symfile->elf, &shstrndx) < 0) |
1182 | 0 | goto elferr; |
1183 | | |
1184 | 0 | const char *sname = elf_strptr (mod->symfile->elf, shstrndx, shdr->sh_name); |
1185 | 0 | if (sname == NULL) |
1186 | 0 | goto elferr; |
1187 | | |
1188 | 0 | if (startswith (sname, ".zdebug")) |
1189 | | /* Try to uncompress, but it might already have been, an error |
1190 | | might just indicate, already uncompressed. */ |
1191 | 0 | elf_compress_gnu (symstrscn, 0, 0); |
1192 | |
|
1193 | 0 | if ((shdr->sh_flags & SHF_COMPRESSED) != 0) |
1194 | 0 | if (elf_compress (symstrscn, 0, 0) < 0) |
1195 | 0 | goto elferr; |
1196 | | |
1197 | 0 | mod->symstrdata = elf_getdata (symstrscn, NULL); |
1198 | 0 | if (mod->symstrdata == NULL || mod->symstrdata->d_buf == NULL) |
1199 | 0 | goto elferr; |
1200 | 0 | else |
1201 | 0 | validate_strdata (mod->symstrdata); |
1202 | | |
1203 | 0 | if (xndxscn == NULL) |
1204 | 0 | mod->symxndxdata = NULL; |
1205 | 0 | else |
1206 | 0 | { |
1207 | 0 | shdr = gelf_getshdr (xndxscn, &shdr_mem); |
1208 | 0 | if (shdr == NULL) |
1209 | 0 | goto elferr; |
1210 | | |
1211 | 0 | if ((shdr->sh_flags & SHF_COMPRESSED) != 0) |
1212 | 0 | if (elf_compress (xndxscn, 0, 0) < 0) |
1213 | 0 | goto elferr; |
1214 | | |
1215 | 0 | mod->symxndxdata = elf_getdata (xndxscn, NULL); |
1216 | 0 | if (mod->symxndxdata == NULL || mod->symxndxdata->d_buf == NULL) |
1217 | 0 | goto elferr; |
1218 | 0 | } |
1219 | | |
1220 | 0 | shdr = gelf_getshdr (symscn, &shdr_mem); |
1221 | 0 | if (shdr == NULL) |
1222 | 0 | goto elferr; |
1223 | | |
1224 | 0 | if ((shdr->sh_flags & SHF_COMPRESSED) != 0) |
1225 | 0 | if (elf_compress (symscn, 0, 0) < 0) |
1226 | 0 | goto elferr; |
1227 | | |
1228 | 0 | mod->symdata = elf_getdata (symscn, NULL); |
1229 | 0 | if (mod->symdata == NULL || mod->symdata->d_buf == NULL) |
1230 | 0 | goto elferr; |
1231 | | |
1232 | | // Sanity check number of symbols. |
1233 | 0 | shdr = gelf_getshdr (symscn, &shdr_mem); |
1234 | 0 | if (shdr == NULL || shdr->sh_entsize == 0 |
1235 | 0 | || mod->syments > mod->symdata->d_size / shdr->sh_entsize |
1236 | 0 | || (size_t) mod->first_global > mod->syments) |
1237 | 0 | goto elferr; |
1238 | | |
1239 | | /* Cache any auxiliary symbol info, when it fails, just ignore aux_sym. */ |
1240 | 0 | if (aux_symscn != NULL) |
1241 | 0 | { |
1242 | 0 | aux_cache: |
1243 | | /* This does some sanity checks on the string table section. */ |
1244 | 0 | if (elf_strptr (mod->aux_sym.elf, aux_strshndx, 0) == NULL) |
1245 | 0 | { |
1246 | 0 | aux_cleanup: |
1247 | 0 | mod->aux_syments = 0; |
1248 | 0 | elf_end (mod->aux_sym.elf); |
1249 | 0 | mod->aux_sym.elf = NULL; |
1250 | | /* We thought we had something through shdrs, but it failed... |
1251 | | Last ditch, look for dynamic symbols without section headers. */ |
1252 | 0 | find_dynsym (mod); |
1253 | 0 | return; |
1254 | 0 | } |
1255 | | |
1256 | 0 | Elf_Scn *aux_strscn = elf_getscn (mod->aux_sym.elf, aux_strshndx); |
1257 | 0 | if (aux_strscn == NULL) |
1258 | 0 | goto elferr; |
1259 | | |
1260 | 0 | shdr = gelf_getshdr (aux_strscn, &shdr_mem); |
1261 | 0 | if (shdr == NULL) |
1262 | 0 | goto elferr; |
1263 | | |
1264 | 0 | size_t aux_shstrndx; |
1265 | 0 | if (elf_getshdrstrndx (mod->aux_sym.elf, &aux_shstrndx) < 0) |
1266 | 0 | goto elferr; |
1267 | | |
1268 | 0 | sname = elf_strptr (mod->aux_sym.elf, aux_shstrndx, |
1269 | 0 | shdr->sh_name); |
1270 | 0 | if (sname == NULL) |
1271 | 0 | goto elferr; |
1272 | | |
1273 | 0 | if (startswith (sname, ".zdebug")) |
1274 | | /* Try to uncompress, but it might already have been, an error |
1275 | | might just indicate, already uncompressed. */ |
1276 | 0 | elf_compress_gnu (aux_strscn, 0, 0); |
1277 | |
|
1278 | 0 | if ((shdr->sh_flags & SHF_COMPRESSED) != 0) |
1279 | 0 | if (elf_compress (aux_strscn, 0, 0) < 0) |
1280 | 0 | goto elferr; |
1281 | | |
1282 | 0 | mod->aux_symstrdata = elf_getdata (aux_strscn, NULL); |
1283 | 0 | if (mod->aux_symstrdata == NULL || mod->aux_symstrdata->d_buf == NULL) |
1284 | 0 | goto aux_cleanup; |
1285 | 0 | else |
1286 | 0 | validate_strdata (mod->aux_symstrdata); |
1287 | | |
1288 | 0 | if (aux_xndxscn == NULL) |
1289 | 0 | mod->aux_symxndxdata = NULL; |
1290 | 0 | else |
1291 | 0 | { |
1292 | 0 | shdr = gelf_getshdr (aux_xndxscn, &shdr_mem); |
1293 | 0 | if (shdr == NULL) |
1294 | 0 | goto elferr; |
1295 | | |
1296 | 0 | if ((shdr->sh_flags & SHF_COMPRESSED) != 0) |
1297 | 0 | if (elf_compress (aux_xndxscn, 0, 0) < 0) |
1298 | 0 | goto elferr; |
1299 | | |
1300 | 0 | mod->aux_symxndxdata = elf_getdata (aux_xndxscn, NULL); |
1301 | 0 | if (mod->aux_symxndxdata == NULL |
1302 | 0 | || mod->aux_symxndxdata->d_buf == NULL) |
1303 | 0 | goto aux_cleanup; |
1304 | 0 | } |
1305 | | |
1306 | 0 | shdr = gelf_getshdr (aux_symscn, &shdr_mem); |
1307 | 0 | if (shdr == NULL) |
1308 | 0 | goto elferr; |
1309 | | |
1310 | 0 | if ((shdr->sh_flags & SHF_COMPRESSED) != 0) |
1311 | 0 | if (elf_compress (aux_symscn, 0, 0) < 0) |
1312 | 0 | goto elferr; |
1313 | | |
1314 | 0 | mod->aux_symdata = elf_getdata (aux_symscn, NULL); |
1315 | 0 | if (mod->aux_symdata == NULL || mod->aux_symdata->d_buf == NULL) |
1316 | 0 | goto aux_cleanup; |
1317 | | |
1318 | | // Sanity check number of aux symbols. |
1319 | 0 | shdr = gelf_getshdr (aux_symscn, &shdr_mem); |
1320 | 0 | if (mod->aux_syments > mod->aux_symdata->d_size / shdr->sh_entsize |
1321 | 0 | || (size_t) mod->aux_first_global > mod->aux_syments) |
1322 | 0 | goto aux_cleanup; |
1323 | 0 | } |
1324 | 0 | } |
1325 | | |
1326 | | |
1327 | | /* Try to open a libebl backend for MOD. */ |
1328 | | Dwfl_Error |
1329 | | internal_function |
1330 | | __libdwfl_module_getebl (Dwfl_Module *mod) |
1331 | 0 | { |
1332 | 0 | if (mod->ebl == NULL) |
1333 | 0 | { |
1334 | 0 | __libdwfl_getelf (mod); |
1335 | 0 | if (mod->elferr != DWFL_E_NOERROR) |
1336 | 0 | return mod->elferr; |
1337 | | |
1338 | 0 | mod->ebl = ebl_openbackend (mod->main.elf); |
1339 | 0 | if (mod->ebl == NULL) |
1340 | 0 | return DWFL_E_LIBEBL; |
1341 | 0 | } |
1342 | 0 | return DWFL_E_NOERROR; |
1343 | 0 | } |
1344 | | |
1345 | | /* Try to start up libdw on DEBUGFILE. */ |
1346 | | static Dwfl_Error |
1347 | | load_dw (Dwfl_Module *mod, struct dwfl_file *debugfile) |
1348 | 7.22k | { |
1349 | 7.22k | if (mod->e_type == ET_REL && !debugfile->relocated) |
1350 | 1.04k | { |
1351 | 1.04k | const Dwfl_Callbacks *const cb = mod->dwfl->callbacks; |
1352 | | |
1353 | | /* The debugging sections have to be relocated. */ |
1354 | 1.04k | if (cb->section_address == NULL) |
1355 | 1.04k | return DWFL_E_NOREL; |
1356 | | |
1357 | 0 | Dwfl_Error error = __libdwfl_module_getebl (mod); |
1358 | 0 | if (error != DWFL_E_NOERROR) |
1359 | 0 | return error; |
1360 | | |
1361 | 0 | find_symtab (mod); |
1362 | 0 | Dwfl_Error result = mod->symerr; |
1363 | 0 | if (result == DWFL_E_NOERROR) |
1364 | 0 | result = __libdwfl_relocate (mod, debugfile->elf, true); |
1365 | 0 | if (result != DWFL_E_NOERROR) |
1366 | 0 | return result; |
1367 | 0 | } |
1368 | | |
1369 | 6.17k | mod->dw = INTUSE(dwarf_begin_elf) (debugfile->elf, DWARF_C_READ, NULL); |
1370 | 6.17k | if (mod->dw == NULL) |
1371 | 6.03k | { |
1372 | 6.03k | int err = INTUSE(dwarf_errno) (); |
1373 | 6.03k | return err == DWARF_E_NO_DWARF ? DWFL_E_NO_DWARF : DWFL_E (LIBDW, err); |
1374 | 6.03k | } |
1375 | | |
1376 | | /* Do this after dwarf_begin_elf has a chance to process the fd. */ |
1377 | 138 | if (mod->e_type == ET_REL && !debugfile->relocated) |
1378 | 0 | { |
1379 | | /* Don't keep the file descriptors around. */ |
1380 | 0 | if (mod->main.fd != -1 && elf_cntl (mod->main.elf, ELF_C_FDREAD) == 0) |
1381 | 0 | { |
1382 | 0 | close (mod->main.fd); |
1383 | 0 | mod->main.fd = -1; |
1384 | 0 | } |
1385 | 0 | if (debugfile->fd != -1 && elf_cntl (debugfile->elf, ELF_C_FDREAD) == 0) |
1386 | 0 | { |
1387 | 0 | close (debugfile->fd); |
1388 | 0 | debugfile->fd = -1; |
1389 | 0 | } |
1390 | 0 | } |
1391 | | |
1392 | | /* We might have already closed the fd when we asked dwarf_begin_elf to |
1393 | | create an Dwarf. Help out a little in case we need to find an alt, |
1394 | | dwo, or dwp file later. */ |
1395 | 138 | if (mod->dw->elfpath == NULL && mod->elfpath != NULL |
1396 | 138 | && debugfile == &mod->main) |
1397 | 114 | { |
1398 | 114 | mod->dw->elfpath = strdup (mod->elfpath); |
1399 | 114 | __libdw_set_debugdir (mod->dw); |
1400 | 114 | } |
1401 | | |
1402 | | /* Until we have iterated through all CU's, we might do lazy lookups. */ |
1403 | 138 | mod->lazycu = 1; |
1404 | | |
1405 | 138 | return DWFL_E_NOERROR; |
1406 | 6.17k | } |
1407 | | |
1408 | | /* Try to start up libdw on either the main file or the debuginfo file. */ |
1409 | | static void |
1410 | | find_dw (Dwfl_Module *mod) |
1411 | 7.22k | { |
1412 | 7.22k | if (mod->dw != NULL /* Already done. */ |
1413 | 7.22k | || mod->dwerr != DWFL_E_NOERROR) /* Cached previous failure. */ |
1414 | 0 | return; |
1415 | | |
1416 | 7.22k | __libdwfl_getelf (mod); |
1417 | 7.22k | mod->dwerr = mod->elferr; |
1418 | 7.22k | if (mod->dwerr != DWFL_E_NOERROR) |
1419 | 0 | return; |
1420 | | |
1421 | | /* First see if the main ELF file has the debugging information. */ |
1422 | 7.22k | mod->dwerr = load_dw (mod, &mod->main); |
1423 | 7.22k | switch (mod->dwerr) |
1424 | 7.22k | { |
1425 | 138 | case DWFL_E_NOERROR: |
1426 | 138 | mod->debug.elf = mod->main.elf; |
1427 | 138 | mod->debug.address_sync = mod->main.address_sync; |
1428 | | |
1429 | | /* The Dwarf might need an alt debug file, find that now after |
1430 | | everything about the debug file has been setup (the |
1431 | | find_debuginfo callback might need it). */ |
1432 | 138 | find_debug_altlink (mod, mod->main.name); |
1433 | 138 | return; |
1434 | | |
1435 | 4.19k | case DWFL_E_NO_DWARF: |
1436 | 4.19k | break; |
1437 | | |
1438 | 2.88k | default: |
1439 | 2.88k | goto canonicalize; |
1440 | 7.22k | } |
1441 | | |
1442 | | /* Now we have to look for a separate debuginfo file. */ |
1443 | 4.19k | mod->dwerr = find_debuginfo (mod); |
1444 | 4.19k | switch (mod->dwerr) |
1445 | 4.19k | { |
1446 | 0 | case DWFL_E_NOERROR: |
1447 | 0 | mod->dwerr = load_dw (mod, &mod->debug); |
1448 | 0 | if (mod->dwerr == DWFL_E_NOERROR) |
1449 | 0 | { |
1450 | | /* The Dwarf might need an alt debug file, find that now after |
1451 | | everything about the debug file has been setup (the |
1452 | | find_debuginfo callback might need it). */ |
1453 | 0 | find_debug_altlink (mod, mod->debug.name); |
1454 | 0 | return; |
1455 | 0 | } |
1456 | | |
1457 | 0 | break; |
1458 | | |
1459 | 4.18k | case DWFL_E_CB: /* The find_debuginfo hook failed. */ |
1460 | 4.18k | mod->dwerr = DWFL_E_NO_DWARF; |
1461 | 4.18k | return; |
1462 | | |
1463 | 8 | default: |
1464 | 8 | break; |
1465 | 4.19k | } |
1466 | | |
1467 | 2.89k | canonicalize: |
1468 | 2.89k | mod->dwerr = __libdwfl_canon_error (mod->dwerr); |
1469 | 2.89k | } |
1470 | | |
1471 | | Dwarf * |
1472 | | dwfl_module_getdwarf (Dwfl_Module *mod, Dwarf_Addr *bias) |
1473 | 11.0k | { |
1474 | 11.0k | if (mod == NULL) |
1475 | 3.80k | return NULL; |
1476 | | |
1477 | 7.22k | find_dw (mod); |
1478 | 7.22k | if (mod->dwerr == DWFL_E_NOERROR) |
1479 | 138 | { |
1480 | | /* If dwfl_module_getelf was used previously, then partial apply |
1481 | | relocation to miscellaneous sections in the debug file too. */ |
1482 | 138 | if (mod->e_type == ET_REL |
1483 | 138 | && mod->main.relocated && ! mod->debug.relocated) |
1484 | 0 | { |
1485 | 0 | mod->debug.relocated = true; |
1486 | 0 | if (mod->debug.elf != mod->main.elf) |
1487 | 0 | (void) __libdwfl_relocate (mod, mod->debug.elf, false); |
1488 | 0 | } |
1489 | | |
1490 | 138 | *bias = dwfl_adjusted_dwarf_addr (mod, 0); |
1491 | 138 | return mod->dw; |
1492 | 138 | } |
1493 | | |
1494 | 7.08k | __libdwfl_seterrno (mod->dwerr); |
1495 | 7.08k | return NULL; |
1496 | 7.22k | } |
1497 | | INTDEF (dwfl_module_getdwarf) |
1498 | | |
1499 | | int |
1500 | | dwfl_module_getsymtab (Dwfl_Module *mod) |
1501 | 0 | { |
1502 | 0 | if (mod == NULL) |
1503 | 0 | return -1; |
1504 | | |
1505 | 0 | find_symtab (mod); |
1506 | 0 | if (mod->symerr == DWFL_E_NOERROR) |
1507 | | /* We will skip the auxiliary zero entry if there is another one. */ |
1508 | 0 | return (mod->syments + mod->aux_syments |
1509 | 0 | - (mod->syments > 0 && mod->aux_syments > 0 ? 1 : 0)); |
1510 | | |
1511 | 0 | __libdwfl_seterrno (mod->symerr); |
1512 | 0 | return -1; |
1513 | 0 | } |
1514 | | INTDEF (dwfl_module_getsymtab) |
1515 | | |
1516 | | int |
1517 | | dwfl_module_getsymtab_first_global (Dwfl_Module *mod) |
1518 | 0 | { |
1519 | 0 | if (mod == NULL) |
1520 | 0 | return -1; |
1521 | | |
1522 | 0 | find_symtab (mod); |
1523 | 0 | if (mod->symerr == DWFL_E_NOERROR) |
1524 | 0 | { |
1525 | | /* All local symbols should come before all global symbols. If |
1526 | | we have an auxiliary table make sure all the main locals come |
1527 | | first, then all aux locals, then all main globals and finally all |
1528 | | aux globals. And skip the auxiliary table zero undefined |
1529 | | entry. */ |
1530 | 0 | int skip_aux_zero = (mod->syments > 0 && mod->aux_syments > 0) ? 1 : 0; |
1531 | 0 | return mod->first_global + mod->aux_first_global - skip_aux_zero; |
1532 | 0 | } |
1533 | | |
1534 | 0 | __libdwfl_seterrno (mod->symerr); |
1535 | 0 | return -1; |
1536 | 0 | } |
1537 | | INTDEF (dwfl_module_getsymtab_first_global) |