Coverage Report

Created: 2023-11-12 09:30

/proc/self/cwd/external/com_google_googletest/googlemock/src/gmock-matchers.cc
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2007, Google Inc.
2
// All rights reserved.
3
//
4
// Redistribution and use in source and binary forms, with or without
5
// modification, are permitted provided that the following conditions are
6
// met:
7
//
8
//     * Redistributions of source code must retain the above copyright
9
// notice, this list of conditions and the following disclaimer.
10
//     * Redistributions in binary form must reproduce the above
11
// copyright notice, this list of conditions and the following disclaimer
12
// in the documentation and/or other materials provided with the
13
// distribution.
14
//     * Neither the name of Google Inc. nor the names of its
15
// contributors may be used to endorse or promote products derived from
16
// this software without specific prior written permission.
17
//
18
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30
31
// Google Mock - a framework for writing C++ mock classes.
32
//
33
// This file implements Matcher<const string&>, Matcher<string>, and
34
// utilities for defining matchers.
35
36
#include "gmock/gmock-matchers.h"
37
38
#include <string.h>
39
#include <iostream>
40
#include <sstream>
41
#include <string>
42
43
namespace testing {
44
namespace internal {
45
46
// Returns the description for a matcher defined using the MATCHER*()
47
// macro where the user-supplied description string is "", if
48
// 'negation' is false; otherwise returns the description of the
49
// negation of the matcher.  'param_values' contains a list of strings
50
// that are the print-out of the matcher's parameters.
51
GTEST_API_ std::string FormatMatcherDescription(bool negation,
52
                                                const char* matcher_name,
53
0
                                                const Strings& param_values) {
54
0
  std::string result = ConvertIdentifierNameToWords(matcher_name);
55
0
  if (param_values.size() >= 1) result += " " + JoinAsTuple(param_values);
56
0
  return negation ? "not (" + result + ")" : result;
57
0
}
58
59
// FindMaxBipartiteMatching and its helper class.
60
//
61
// Uses the well-known Ford-Fulkerson max flow method to find a maximum
62
// bipartite matching. Flow is considered to be from left to right.
63
// There is an implicit source node that is connected to all of the left
64
// nodes, and an implicit sink node that is connected to all of the
65
// right nodes. All edges have unit capacity.
66
//
67
// Neither the flow graph nor the residual flow graph are represented
68
// explicitly. Instead, they are implied by the information in 'graph' and
69
// a vector<int> called 'left_' whose elements are initialized to the
70
// value kUnused. This represents the initial state of the algorithm,
71
// where the flow graph is empty, and the residual flow graph has the
72
// following edges:
73
//   - An edge from source to each left_ node
74
//   - An edge from each right_ node to sink
75
//   - An edge from each left_ node to each right_ node, if the
76
//     corresponding edge exists in 'graph'.
77
//
78
// When the TryAugment() method adds a flow, it sets left_[l] = r for some
79
// nodes l and r. This induces the following changes:
80
//   - The edges (source, l), (l, r), and (r, sink) are added to the
81
//     flow graph.
82
//   - The same three edges are removed from the residual flow graph.
83
//   - The reverse edges (l, source), (r, l), and (sink, r) are added
84
//     to the residual flow graph, which is a directional graph
85
//     representing unused flow capacity.
86
//
87
// When the method augments a flow (moving left_[l] from some r1 to some
88
// other r2), this can be thought of as "undoing" the above steps with
89
// respect to r1 and "redoing" them with respect to r2.
90
//
91
// It bears repeating that the flow graph and residual flow graph are
92
// never represented explicitly, but can be derived by looking at the
93
// information in 'graph' and in left_.
94
//
95
// As an optimization, there is a second vector<int> called right_ which
96
// does not provide any new information. Instead, it enables more
97
// efficient queries about edges entering or leaving the right-side nodes
98
// of the flow or residual flow graphs. The following invariants are
99
// maintained:
100
//
101
// left[l] == kUnused or right[left[l]] == l
102
// right[r] == kUnused or left[right[r]] == r
103
//
104
// . [ source ]                                        .
105
// .   |||                                             .
106
// .   |||                                             .
107
// .   ||\--> left[0]=1  ---\    right[0]=-1 ----\     .
108
// .   ||                   |                    |     .
109
// .   |\---> left[1]=-1    \--> right[1]=0  ---\|     .
110
// .   |                                        ||     .
111
// .   \----> left[2]=2  ------> right[2]=2  --\||     .
112
// .                                           |||     .
113
// .         elements           matchers       vvv     .
114
// .                                         [ sink ]  .
115
//
116
// See Also:
117
//   [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method".
118
//       "Introduction to Algorithms (Second ed.)", pp. 651-664.
119
//   [2] "Ford-Fulkerson algorithm", Wikipedia,
120
//       'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm'
121
class MaxBipartiteMatchState {
122
 public:
123
  explicit MaxBipartiteMatchState(const MatchMatrix& graph)
124
      : graph_(&graph),
125
        left_(graph_->LhsSize(), kUnused),
126
0
        right_(graph_->RhsSize(), kUnused) {}
127
128
  // Returns the edges of a maximal match, each in the form {left, right}.
129
0
  ElementMatcherPairs Compute() {
130
    // 'seen' is used for path finding { 0: unseen, 1: seen }.
131
0
    ::std::vector<char> seen;
132
    // Searches the residual flow graph for a path from each left node to
133
    // the sink in the residual flow graph, and if one is found, add flow
134
    // to the graph. It's okay to search through the left nodes once. The
135
    // edge from the implicit source node to each previously-visited left
136
    // node will have flow if that left node has any path to the sink
137
    // whatsoever. Subsequent augmentations can only add flow to the
138
    // network, and cannot take away that previous flow unit from the source.
139
    // Since the source-to-left edge can only carry one flow unit (or,
140
    // each element can be matched to only one matcher), there is no need
141
    // to visit the left nodes more than once looking for augmented paths.
142
    // The flow is known to be possible or impossible by looking at the
143
    // node once.
144
0
    for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
145
      // Reset the path-marking vector and try to find a path from
146
      // source to sink starting at the left_[ilhs] node.
147
0
      GTEST_CHECK_(left_[ilhs] == kUnused)
148
0
          << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs];
149
      // 'seen' initialized to 'graph_->RhsSize()' copies of 0.
150
0
      seen.assign(graph_->RhsSize(), 0);
151
0
      TryAugment(ilhs, &seen);
152
0
    }
153
0
    ElementMatcherPairs result;
154
0
    for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) {
155
0
      size_t irhs = left_[ilhs];
156
0
      if (irhs == kUnused) continue;
157
0
      result.push_back(ElementMatcherPair(ilhs, irhs));
158
0
    }
159
0
    return result;
160
0
  }
161
162
 private:
163
  static const size_t kUnused = static_cast<size_t>(-1);
164
165
  // Perform a depth-first search from left node ilhs to the sink.  If a
166
  // path is found, flow is added to the network by linking the left and
167
  // right vector elements corresponding each segment of the path.
168
  // Returns true if a path to sink was found, which means that a unit of
169
  // flow was added to the network. The 'seen' vector elements correspond
170
  // to right nodes and are marked to eliminate cycles from the search.
171
  //
172
  // Left nodes will only be explored at most once because they
173
  // are accessible from at most one right node in the residual flow
174
  // graph.
175
  //
176
  // Note that left_[ilhs] is the only element of left_ that TryAugment will
177
  // potentially transition from kUnused to another value. Any other
178
  // left_ element holding kUnused before TryAugment will be holding it
179
  // when TryAugment returns.
180
  //
181
0
  bool TryAugment(size_t ilhs, ::std::vector<char>* seen) {
182
0
    for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
183
0
      if ((*seen)[irhs]) continue;
184
0
      if (!graph_->HasEdge(ilhs, irhs)) continue;
185
      // There's an available edge from ilhs to irhs.
186
0
      (*seen)[irhs] = 1;
187
      // Next a search is performed to determine whether
188
      // this edge is a dead end or leads to the sink.
189
      //
190
      // right_[irhs] == kUnused means that there is residual flow from
191
      // right node irhs to the sink, so we can use that to finish this
192
      // flow path and return success.
193
      //
194
      // Otherwise there is residual flow to some ilhs. We push flow
195
      // along that path and call ourselves recursively to see if this
196
      // ultimately leads to sink.
197
0
      if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) {
198
        // Add flow from left_[ilhs] to right_[irhs].
199
0
        left_[ilhs] = irhs;
200
0
        right_[irhs] = ilhs;
201
0
        return true;
202
0
      }
203
0
    }
204
0
    return false;
205
0
  }
206
207
  const MatchMatrix* graph_;  // not owned
208
  // Each element of the left_ vector represents a left hand side node
209
  // (i.e. an element) and each element of right_ is a right hand side
210
  // node (i.e. a matcher). The values in the left_ vector indicate
211
  // outflow from that node to a node on the right_ side. The values
212
  // in the right_ indicate inflow, and specify which left_ node is
213
  // feeding that right_ node, if any. For example, left_[3] == 1 means
214
  // there's a flow from element #3 to matcher #1. Such a flow would also
215
  // be redundantly represented in the right_ vector as right_[1] == 3.
216
  // Elements of left_ and right_ are either kUnused or mutually
217
  // referent. Mutually referent means that left_[right_[i]] = i and
218
  // right_[left_[i]] = i.
219
  ::std::vector<size_t> left_;
220
  ::std::vector<size_t> right_;
221
};
222
223
const size_t MaxBipartiteMatchState::kUnused;
224
225
0
GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) {
226
0
  return MaxBipartiteMatchState(g).Compute();
227
0
}
228
229
static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs,
230
0
                                     ::std::ostream* stream) {
231
0
  typedef ElementMatcherPairs::const_iterator Iter;
232
0
  ::std::ostream& os = *stream;
233
0
  os << "{";
234
0
  const char* sep = "";
235
0
  for (Iter it = pairs.begin(); it != pairs.end(); ++it) {
236
0
    os << sep << "\n  ("
237
0
       << "element #" << it->first << ", "
238
0
       << "matcher #" << it->second << ")";
239
0
    sep = ",";
240
0
  }
241
0
  os << "\n}";
242
0
}
243
244
0
bool MatchMatrix::NextGraph() {
245
0
  for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
246
0
    for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
247
0
      char& b = matched_[SpaceIndex(ilhs, irhs)];
248
0
      if (!b) {
249
0
        b = 1;
250
0
        return true;
251
0
      }
252
0
      b = 0;
253
0
    }
254
0
  }
255
0
  return false;
256
0
}
257
258
0
void MatchMatrix::Randomize() {
259
0
  for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
260
0
    for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
261
0
      char& b = matched_[SpaceIndex(ilhs, irhs)];
262
0
      b = static_cast<char>(rand() & 1);  // NOLINT
263
0
    }
264
0
  }
265
0
}
266
267
0
std::string MatchMatrix::DebugString() const {
268
0
  ::std::stringstream ss;
269
0
  const char* sep = "";
270
0
  for (size_t i = 0; i < LhsSize(); ++i) {
271
0
    ss << sep;
272
0
    for (size_t j = 0; j < RhsSize(); ++j) {
273
0
      ss << HasEdge(i, j);
274
0
    }
275
0
    sep = ";";
276
0
  }
277
0
  return ss.str();
278
0
}
279
280
void UnorderedElementsAreMatcherImplBase::DescribeToImpl(
281
0
    ::std::ostream* os) const {
282
0
  switch (match_flags()) {
283
0
    case UnorderedMatcherRequire::ExactMatch:
284
0
      if (matcher_describers_.empty()) {
285
0
        *os << "is empty";
286
0
        return;
287
0
      }
288
0
      if (matcher_describers_.size() == 1) {
289
0
        *os << "has " << Elements(1) << " and that element ";
290
0
        matcher_describers_[0]->DescribeTo(os);
291
0
        return;
292
0
      }
293
0
      *os << "has " << Elements(matcher_describers_.size())
294
0
          << " and there exists some permutation of elements such that:\n";
295
0
      break;
296
0
    case UnorderedMatcherRequire::Superset:
297
0
      *os << "a surjection from elements to requirements exists such that:\n";
298
0
      break;
299
0
    case UnorderedMatcherRequire::Subset:
300
0
      *os << "an injection from elements to requirements exists such that:\n";
301
0
      break;
302
0
  }
303
304
0
  const char* sep = "";
305
0
  for (size_t i = 0; i != matcher_describers_.size(); ++i) {
306
0
    *os << sep;
307
0
    if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
308
0
      *os << " - element #" << i << " ";
309
0
    } else {
310
0
      *os << " - an element ";
311
0
    }
312
0
    matcher_describers_[i]->DescribeTo(os);
313
0
    if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
314
0
      sep = ", and\n";
315
0
    } else {
316
0
      sep = "\n";
317
0
    }
318
0
  }
319
0
}
320
321
void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(
322
0
    ::std::ostream* os) const {
323
0
  switch (match_flags()) {
324
0
    case UnorderedMatcherRequire::ExactMatch:
325
0
      if (matcher_describers_.empty()) {
326
0
        *os << "isn't empty";
327
0
        return;
328
0
      }
329
0
      if (matcher_describers_.size() == 1) {
330
0
        *os << "doesn't have " << Elements(1) << ", or has " << Elements(1)
331
0
            << " that ";
332
0
        matcher_describers_[0]->DescribeNegationTo(os);
333
0
        return;
334
0
      }
335
0
      *os << "doesn't have " << Elements(matcher_describers_.size())
336
0
          << ", or there exists no permutation of elements such that:\n";
337
0
      break;
338
0
    case UnorderedMatcherRequire::Superset:
339
0
      *os << "no surjection from elements to requirements exists such that:\n";
340
0
      break;
341
0
    case UnorderedMatcherRequire::Subset:
342
0
      *os << "no injection from elements to requirements exists such that:\n";
343
0
      break;
344
0
  }
345
0
  const char* sep = "";
346
0
  for (size_t i = 0; i != matcher_describers_.size(); ++i) {
347
0
    *os << sep;
348
0
    if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
349
0
      *os << " - element #" << i << " ";
350
0
    } else {
351
0
      *os << " - an element ";
352
0
    }
353
0
    matcher_describers_[i]->DescribeTo(os);
354
0
    if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
355
0
      sep = ", and\n";
356
0
    } else {
357
0
      sep = "\n";
358
0
    }
359
0
  }
360
0
}
361
362
// Checks that all matchers match at least one element, and that all
363
// elements match at least one matcher. This enables faster matching
364
// and better error reporting.
365
// Returns false, writing an explanation to 'listener', if and only
366
// if the success criteria are not met.
367
bool UnorderedElementsAreMatcherImplBase::VerifyMatchMatrix(
368
    const ::std::vector<std::string>& element_printouts,
369
0
    const MatchMatrix& matrix, MatchResultListener* listener) const {
370
0
  bool result = true;
371
0
  ::std::vector<char> element_matched(matrix.LhsSize(), 0);
372
0
  ::std::vector<char> matcher_matched(matrix.RhsSize(), 0);
373
374
0
  for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) {
375
0
    for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) {
376
0
      char matched = matrix.HasEdge(ilhs, irhs);
377
0
      element_matched[ilhs] |= matched;
378
0
      matcher_matched[irhs] |= matched;
379
0
    }
380
0
  }
381
382
0
  if (match_flags() & UnorderedMatcherRequire::Superset) {
383
0
    const char* sep =
384
0
        "where the following matchers don't match any elements:\n";
385
0
    for (size_t mi = 0; mi < matcher_matched.size(); ++mi) {
386
0
      if (matcher_matched[mi]) continue;
387
0
      result = false;
388
0
      if (listener->IsInterested()) {
389
0
        *listener << sep << "matcher #" << mi << ": ";
390
0
        matcher_describers_[mi]->DescribeTo(listener->stream());
391
0
        sep = ",\n";
392
0
      }
393
0
    }
394
0
  }
395
396
0
  if (match_flags() & UnorderedMatcherRequire::Subset) {
397
0
    const char* sep =
398
0
        "where the following elements don't match any matchers:\n";
399
0
    const char* outer_sep = "";
400
0
    if (!result) {
401
0
      outer_sep = "\nand ";
402
0
    }
403
0
    for (size_t ei = 0; ei < element_matched.size(); ++ei) {
404
0
      if (element_matched[ei]) continue;
405
0
      result = false;
406
0
      if (listener->IsInterested()) {
407
0
        *listener << outer_sep << sep << "element #" << ei << ": "
408
0
                  << element_printouts[ei];
409
0
        sep = ",\n";
410
0
        outer_sep = "";
411
0
      }
412
0
    }
413
0
  }
414
0
  return result;
415
0
}
416
417
bool UnorderedElementsAreMatcherImplBase::FindPairing(
418
0
    const MatchMatrix& matrix, MatchResultListener* listener) const {
419
0
  ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix);
420
421
0
  size_t max_flow = matches.size();
422
0
  if ((match_flags() & UnorderedMatcherRequire::Superset) &&
423
0
      max_flow < matrix.RhsSize()) {
424
0
    if (listener->IsInterested()) {
425
0
      *listener << "where no permutation of the elements can satisfy all "
426
0
                   "matchers, and the closest match is "
427
0
                << max_flow << " of " << matrix.RhsSize()
428
0
                << " matchers with the pairings:\n";
429
0
      LogElementMatcherPairVec(matches, listener->stream());
430
0
    }
431
0
    return false;
432
0
  }
433
0
  if ((match_flags() & UnorderedMatcherRequire::Subset) &&
434
0
      max_flow < matrix.LhsSize()) {
435
0
    if (listener->IsInterested()) {
436
0
      *listener
437
0
          << "where not all elements can be matched, and the closest match is "
438
0
          << max_flow << " of " << matrix.RhsSize()
439
0
          << " matchers with the pairings:\n";
440
0
      LogElementMatcherPairVec(matches, listener->stream());
441
0
    }
442
0
    return false;
443
0
  }
444
445
0
  if (matches.size() > 1) {
446
0
    if (listener->IsInterested()) {
447
0
      const char* sep = "where:\n";
448
0
      for (size_t mi = 0; mi < matches.size(); ++mi) {
449
0
        *listener << sep << " - element #" << matches[mi].first
450
0
                  << " is matched by matcher #" << matches[mi].second;
451
0
        sep = ",\n";
452
0
      }
453
0
    }
454
0
  }
455
0
  return true;
456
0
}
457
458
}  // namespace internal
459
}  // namespace testing