Coverage Report

Created: 2024-09-19 09:45

/proc/self/cwd/external/boringssl/crypto/mem.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2
 * All rights reserved.
3
 *
4
 * This package is an SSL implementation written
5
 * by Eric Young (eay@cryptsoft.com).
6
 * The implementation was written so as to conform with Netscapes SSL.
7
 *
8
 * This library is free for commercial and non-commercial use as long as
9
 * the following conditions are aheared to.  The following conditions
10
 * apply to all code found in this distribution, be it the RC4, RSA,
11
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12
 * included with this distribution is covered by the same copyright terms
13
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14
 *
15
 * Copyright remains Eric Young's, and as such any Copyright notices in
16
 * the code are not to be removed.
17
 * If this package is used in a product, Eric Young should be given attribution
18
 * as the author of the parts of the library used.
19
 * This can be in the form of a textual message at program startup or
20
 * in documentation (online or textual) provided with the package.
21
 *
22
 * Redistribution and use in source and binary forms, with or without
23
 * modification, are permitted provided that the following conditions
24
 * are met:
25
 * 1. Redistributions of source code must retain the copyright
26
 *    notice, this list of conditions and the following disclaimer.
27
 * 2. Redistributions in binary form must reproduce the above copyright
28
 *    notice, this list of conditions and the following disclaimer in the
29
 *    documentation and/or other materials provided with the distribution.
30
 * 3. All advertising materials mentioning features or use of this software
31
 *    must display the following acknowledgement:
32
 *    "This product includes cryptographic software written by
33
 *     Eric Young (eay@cryptsoft.com)"
34
 *    The word 'cryptographic' can be left out if the rouines from the library
35
 *    being used are not cryptographic related :-).
36
 * 4. If you include any Windows specific code (or a derivative thereof) from
37
 *    the apps directory (application code) you must include an acknowledgement:
38
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39
 *
40
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50
 * SUCH DAMAGE.
51
 *
52
 * The licence and distribution terms for any publically available version or
53
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
54
 * copied and put under another distribution licence
55
 * [including the GNU Public Licence.] */
56
57
#include <openssl/mem.h>
58
59
#include <assert.h>
60
#include <errno.h>
61
#include <limits.h>
62
#include <stdarg.h>
63
#include <stdio.h>
64
#include <stdlib.h>
65
66
#include <openssl/err.h>
67
68
#if defined(OPENSSL_WINDOWS)
69
OPENSSL_MSVC_PRAGMA(warning(push, 3))
70
#include <windows.h>
71
OPENSSL_MSVC_PRAGMA(warning(pop))
72
#endif
73
74
#if defined(BORINGSSL_MALLOC_FAILURE_TESTING)
75
#include <errno.h>
76
#include <signal.h>
77
#include <unistd.h>
78
#endif
79
80
#include "internal.h"
81
82
83
12.6M
#define OPENSSL_MALLOC_PREFIX 8
84
static_assert(OPENSSL_MALLOC_PREFIX >= sizeof(size_t), "size_t too large");
85
86
#if defined(OPENSSL_ASAN)
87
void __asan_poison_memory_region(const volatile void *addr, size_t size);
88
void __asan_unpoison_memory_region(const volatile void *addr, size_t size);
89
#else
90
1.84M
static void __asan_poison_memory_region(const void *addr, size_t size) {}
91
1.82M
static void __asan_unpoison_memory_region(const void *addr, size_t size) {}
92
#endif
93
94
// Windows doesn't really support weak symbols as of May 2019, and Clang on
95
// Windows will emit strong symbols instead. See
96
// https://bugs.llvm.org/show_bug.cgi?id=37598
97
#if defined(__ELF__) && defined(__GNUC__)
98
#define WEAK_SYMBOL_FUNC(rettype, name, args) \
99
  rettype name args __attribute__((weak));
100
#else
101
#define WEAK_SYMBOL_FUNC(rettype, name, args) static rettype(*name) args = NULL;
102
#endif
103
104
// sdallocx is a sized |free| function. By passing the size (which we happen to
105
// always know in BoringSSL), the malloc implementation can save work. We cannot
106
// depend on |sdallocx| being available, however, so it's a weak symbol.
107
//
108
// This will always be safe, but will only be overridden if the malloc
109
// implementation is statically linked with BoringSSL. So, if |sdallocx| is
110
// provided in, say, libc.so, we still won't use it because that's dynamically
111
// linked. This isn't an ideal result, but its helps in some cases.
112
WEAK_SYMBOL_FUNC(void, sdallocx, (void *ptr, size_t size, int flags));
113
114
// The following three functions can be defined to override default heap
115
// allocation and freeing. If defined, it is the responsibility of
116
// |OPENSSL_memory_free| to zero out the memory before returning it to the
117
// system. |OPENSSL_memory_free| will not be passed NULL pointers.
118
//
119
// WARNING: These functions are called on every allocation and free in
120
// BoringSSL across the entire process. They may be called by any code in the
121
// process which calls BoringSSL, including in process initializers and thread
122
// destructors. When called, BoringSSL may hold pthreads locks. Any other code
123
// in the process which, directly or indirectly, calls BoringSSL may be on the
124
// call stack and may itself be using arbitrary synchronization primitives.
125
//
126
// As a result, these functions may not have the usual programming environment
127
// available to most C or C++ code. In particular, they may not call into
128
// BoringSSL, or any library which depends on BoringSSL. Any synchronization
129
// primitives used must tolerate every other synchronization primitive linked
130
// into the process, including pthreads locks. Failing to meet these constraints
131
// may result in deadlocks, crashes, or memory corruption.
132
WEAK_SYMBOL_FUNC(void *, OPENSSL_memory_alloc, (size_t size));
133
WEAK_SYMBOL_FUNC(void, OPENSSL_memory_free, (void *ptr));
134
WEAK_SYMBOL_FUNC(size_t, OPENSSL_memory_get_size, (void *ptr));
135
136
#if defined(BORINGSSL_MALLOC_FAILURE_TESTING)
137
static CRYPTO_MUTEX malloc_failure_lock = CRYPTO_MUTEX_INIT;
138
static uint64_t current_malloc_count = 0;
139
static uint64_t malloc_number_to_fail = 0;
140
static int malloc_failure_enabled = 0, break_on_malloc_fail = 0,
141
           any_malloc_failed = 0, disable_malloc_failures = 0;
142
143
static void malloc_exit_handler(void) {
144
  CRYPTO_MUTEX_lock_read(&malloc_failure_lock);
145
  if (any_malloc_failed) {
146
    // Signal to the test driver that some allocation failed, so it knows to
147
    // increment the counter and continue.
148
    _exit(88);
149
  }
150
  CRYPTO_MUTEX_unlock_read(&malloc_failure_lock);
151
}
152
153
static void init_malloc_failure(void) {
154
  const char *env = getenv("MALLOC_NUMBER_TO_FAIL");
155
  if (env != NULL && env[0] != 0) {
156
    char *endptr;
157
    malloc_number_to_fail = strtoull(env, &endptr, 10);
158
    if (*endptr == 0) {
159
      malloc_failure_enabled = 1;
160
      atexit(malloc_exit_handler);
161
    }
162
  }
163
  break_on_malloc_fail = getenv("MALLOC_BREAK_ON_FAIL") != NULL;
164
}
165
166
// should_fail_allocation returns one if the current allocation should fail and
167
// zero otherwise.
168
static int should_fail_allocation() {
169
  static CRYPTO_once_t once = CRYPTO_ONCE_INIT;
170
  CRYPTO_once(&once, init_malloc_failure);
171
  if (!malloc_failure_enabled || disable_malloc_failures) {
172
    return 0;
173
  }
174
175
  // We lock just so multi-threaded tests are still correct, but we won't test
176
  // every malloc exhaustively.
177
  CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
178
  int should_fail = current_malloc_count == malloc_number_to_fail;
179
  current_malloc_count++;
180
  any_malloc_failed = any_malloc_failed || should_fail;
181
  CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
182
183
  if (should_fail && break_on_malloc_fail) {
184
    raise(SIGTRAP);
185
  }
186
  if (should_fail) {
187
    errno = ENOMEM;
188
  }
189
  return should_fail;
190
}
191
192
void OPENSSL_reset_malloc_counter_for_testing(void) {
193
  CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
194
  current_malloc_count = 0;
195
  CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
196
}
197
198
void OPENSSL_disable_malloc_failures_for_testing(void) {
199
  CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
200
  BSSL_CHECK(!disable_malloc_failures);
201
  disable_malloc_failures = 1;
202
  CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
203
}
204
205
void OPENSSL_enable_malloc_failures_for_testing(void) {
206
  CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
207
  BSSL_CHECK(disable_malloc_failures);
208
  disable_malloc_failures = 0;
209
  CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
210
}
211
212
#else
213
1.78M
static int should_fail_allocation(void) { return 0; }
214
#endif
215
216
1.78M
void *OPENSSL_malloc(size_t size) {
217
1.78M
  if (should_fail_allocation()) {
218
0
    goto err;
219
0
  }
220
221
1.78M
  if (OPENSSL_memory_alloc != NULL) {
222
0
    assert(OPENSSL_memory_free != NULL);
223
0
    assert(OPENSSL_memory_get_size != NULL);
224
0
    void *ptr = OPENSSL_memory_alloc(size);
225
0
    if (ptr == NULL && size != 0) {
226
0
      goto err;
227
0
    }
228
0
    return ptr;
229
0
  }
230
231
1.78M
  if (size + OPENSSL_MALLOC_PREFIX < size) {
232
0
    goto err;
233
0
  }
234
235
1.78M
  void *ptr = malloc(size + OPENSSL_MALLOC_PREFIX);
236
1.78M
  if (ptr == NULL) {
237
0
    goto err;
238
0
  }
239
240
1.78M
  *(size_t *)ptr = size;
241
242
1.78M
  __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
243
1.78M
  return ((uint8_t *)ptr) + OPENSSL_MALLOC_PREFIX;
244
245
0
 err:
246
  // This only works because ERR does not call OPENSSL_malloc.
247
0
  OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
248
0
  return NULL;
249
1.78M
}
250
251
846k
void *OPENSSL_zalloc(size_t size) {
252
846k
  void *ret = OPENSSL_malloc(size);
253
846k
  if (ret != NULL) {
254
846k
    OPENSSL_memset(ret, 0, size);
255
846k
  }
256
846k
  return ret;
257
846k
}
258
259
413k
void *OPENSSL_calloc(size_t num, size_t size) {
260
413k
  if (size != 0 && num > SIZE_MAX / size) {
261
0
    OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW);
262
0
    return NULL;
263
0
  }
264
265
413k
  return OPENSSL_zalloc(num * size);
266
413k
}
267
268
2.63M
void OPENSSL_free(void *orig_ptr) {
269
2.63M
  if (orig_ptr == NULL) {
270
868k
    return;
271
868k
  }
272
273
1.77M
  if (OPENSSL_memory_free != NULL) {
274
0
    OPENSSL_memory_free(orig_ptr);
275
0
    return;
276
0
  }
277
278
1.77M
  void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
279
1.77M
  __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
280
281
1.77M
  size_t size = *(size_t *)ptr;
282
1.77M
  OPENSSL_cleanse(ptr, size + OPENSSL_MALLOC_PREFIX);
283
284
// ASan knows to intercept malloc and free, but not sdallocx.
285
#if defined(OPENSSL_ASAN)
286
  (void)sdallocx;
287
  free(ptr);
288
#else
289
1.77M
  if (sdallocx) {
290
0
    sdallocx(ptr, size + OPENSSL_MALLOC_PREFIX, 0 /* flags */);
291
1.77M
  } else {
292
1.77M
    free(ptr);
293
1.77M
  }
294
1.77M
#endif
295
1.77M
}
296
297
112k
void *OPENSSL_realloc(void *orig_ptr, size_t new_size) {
298
112k
  if (orig_ptr == NULL) {
299
55.9k
    return OPENSSL_malloc(new_size);
300
55.9k
  }
301
302
56.6k
  size_t old_size;
303
56.6k
  if (OPENSSL_memory_get_size != NULL) {
304
0
    old_size = OPENSSL_memory_get_size(orig_ptr);
305
56.6k
  } else {
306
56.6k
    void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
307
56.6k
    __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
308
56.6k
    old_size = *(size_t *)ptr;
309
56.6k
    __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
310
56.6k
  }
311
312
56.6k
  void *ret = OPENSSL_malloc(new_size);
313
56.6k
  if (ret == NULL) {
314
0
    return NULL;
315
0
  }
316
317
56.6k
  size_t to_copy = new_size;
318
56.6k
  if (old_size < to_copy) {
319
56.6k
    to_copy = old_size;
320
56.6k
  }
321
322
56.6k
  memcpy(ret, orig_ptr, to_copy);
323
56.6k
  OPENSSL_free(orig_ptr);
324
325
56.6k
  return ret;
326
56.6k
}
327
328
1.92M
void OPENSSL_cleanse(void *ptr, size_t len) {
329
#if defined(OPENSSL_WINDOWS)
330
  SecureZeroMemory(ptr, len);
331
#else
332
1.92M
  OPENSSL_memset(ptr, 0, len);
333
334
1.92M
#if !defined(OPENSSL_NO_ASM)
335
  /* As best as we can tell, this is sufficient to break any optimisations that
336
     might try to eliminate "superfluous" memsets. If there's an easy way to
337
     detect memset_s, it would be better to use that. */
338
1.92M
  __asm__ __volatile__("" : : "r"(ptr) : "memory");
339
1.92M
#endif
340
1.92M
#endif  // !OPENSSL_NO_ASM
341
1.92M
}
342
343
0
void OPENSSL_clear_free(void *ptr, size_t unused) { OPENSSL_free(ptr); }
344
345
0
int CRYPTO_secure_malloc_init(size_t size, size_t min_size) { return 0; }
346
347
0
int CRYPTO_secure_malloc_initialized(void) { return 0; }
348
349
0
size_t CRYPTO_secure_used(void) { return 0; }
350
351
0
void *OPENSSL_secure_malloc(size_t size) { return OPENSSL_malloc(size); }
352
353
0
void OPENSSL_secure_clear_free(void *ptr, size_t len) {
354
0
  OPENSSL_clear_free(ptr, len);
355
0
}
356
357
115
int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) {
358
115
  const uint8_t *a = in_a;
359
115
  const uint8_t *b = in_b;
360
115
  uint8_t x = 0;
361
362
2.10k
  for (size_t i = 0; i < len; i++) {
363
1.99k
    x |= a[i] ^ b[i];
364
1.99k
  }
365
366
115
  return x;
367
115
}
368
369
0
uint32_t OPENSSL_hash32(const void *ptr, size_t len) {
370
  // These are the FNV-1a parameters for 32 bits.
371
0
  static const uint32_t kPrime = 16777619u;
372
0
  static const uint32_t kOffsetBasis = 2166136261u;
373
374
0
  const uint8_t *in = ptr;
375
0
  uint32_t h = kOffsetBasis;
376
377
0
  for (size_t i = 0; i < len; i++) {
378
0
    h ^= in[i];
379
0
    h *= kPrime;
380
0
  }
381
382
0
  return h;
383
0
}
384
385
0
uint32_t OPENSSL_strhash(const char *s) { return OPENSSL_hash32(s, strlen(s)); }
386
387
0
size_t OPENSSL_strnlen(const char *s, size_t len) {
388
0
  for (size_t i = 0; i < len; i++) {
389
0
    if (s[i] == 0) {
390
0
      return i;
391
0
    }
392
0
  }
393
394
0
  return len;
395
0
}
396
397
1
char *OPENSSL_strdup(const char *s) {
398
1
  if (s == NULL) {
399
0
    return NULL;
400
0
  }
401
  // Copy the NUL terminator.
402
1
  return OPENSSL_memdup(s, strlen(s) + 1);
403
1
}
404
405
14.2k
int OPENSSL_isalpha(int c) {
406
14.2k
  return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
407
14.2k
}
408
409
9.13k
int OPENSSL_isdigit(int c) { return c >= '0' && c <= '9'; }
410
411
0
int OPENSSL_isxdigit(int c) {
412
0
  return OPENSSL_isdigit(c) || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F');
413
0
}
414
415
0
int OPENSSL_fromxdigit(uint8_t *out, int c) {
416
0
  if (OPENSSL_isdigit(c)) {
417
0
    *out = c - '0';
418
0
    return 1;
419
0
  }
420
0
  if ('a' <= c && c <= 'f') {
421
0
    *out = c - 'a' + 10;
422
0
    return 1;
423
0
  }
424
0
  if ('A' <= c && c <= 'F') {
425
0
    *out = c - 'A' + 10;
426
0
    return 1;
427
0
  }
428
0
  return 0;
429
0
}
430
431
14.2k
int OPENSSL_isalnum(int c) { return OPENSSL_isalpha(c) || OPENSSL_isdigit(c); }
432
433
14.4k
int OPENSSL_tolower(int c) {
434
14.4k
  if (c >= 'A' && c <= 'Z') {
435
3.98k
    return c + ('a' - 'A');
436
3.98k
  }
437
10.4k
  return c;
438
14.4k
}
439
440
19.5k
int OPENSSL_isspace(int c) {
441
19.5k
  return c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r' ||
442
19.5k
         c == ' ';
443
19.5k
}
444
445
0
int OPENSSL_strcasecmp(const char *a, const char *b) {
446
0
  for (size_t i = 0;; i++) {
447
0
    const int aa = OPENSSL_tolower(a[i]);
448
0
    const int bb = OPENSSL_tolower(b[i]);
449
450
0
    if (aa < bb) {
451
0
      return -1;
452
0
    } else if (aa > bb) {
453
0
      return 1;
454
0
    } else if (aa == 0) {
455
0
      return 0;
456
0
    }
457
0
  }
458
0
}
459
460
0
int OPENSSL_strncasecmp(const char *a, const char *b, size_t n) {
461
0
  for (size_t i = 0; i < n; i++) {
462
0
    const int aa = OPENSSL_tolower(a[i]);
463
0
    const int bb = OPENSSL_tolower(b[i]);
464
465
0
    if (aa < bb) {
466
0
      return -1;
467
0
    } else if (aa > bb) {
468
0
      return 1;
469
0
    } else if (aa == 0) {
470
0
      return 0;
471
0
    }
472
0
  }
473
474
0
  return 0;
475
0
}
476
477
0
int BIO_snprintf(char *buf, size_t n, const char *format, ...) {
478
0
  va_list args;
479
0
  va_start(args, format);
480
0
  int ret = BIO_vsnprintf(buf, n, format, args);
481
0
  va_end(args);
482
0
  return ret;
483
0
}
484
485
0
int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args) {
486
0
  return vsnprintf(buf, n, format, args);
487
0
}
488
489
int OPENSSL_vasprintf_internal(char **str, const char *format, va_list args,
490
0
                               int system_malloc) {
491
0
  void *(*allocate)(size_t) = system_malloc ? malloc : OPENSSL_malloc;
492
0
  void (*deallocate)(void *) = system_malloc ? free : OPENSSL_free;
493
0
  void *(*reallocate)(void *, size_t) =
494
0
      system_malloc ? realloc : OPENSSL_realloc;
495
0
  char *candidate = NULL;
496
0
  size_t candidate_len = 64;  // TODO(bbe) what's the best initial size?
497
498
0
  if ((candidate = allocate(candidate_len)) == NULL) {
499
0
    goto err;
500
0
  }
501
0
  va_list args_copy;
502
0
  va_copy(args_copy, args);
503
0
  int ret = vsnprintf(candidate, candidate_len, format, args_copy);
504
0
  va_end(args_copy);
505
0
  if (ret < 0) {
506
0
    goto err;
507
0
  }
508
0
  if ((size_t)ret >= candidate_len) {
509
    // Too big to fit in allocation.
510
0
    char *tmp;
511
512
0
    candidate_len = (size_t)ret + 1;
513
0
    if ((tmp = reallocate(candidate, candidate_len)) == NULL) {
514
0
      goto err;
515
0
    }
516
0
    candidate = tmp;
517
0
    ret = vsnprintf(candidate, candidate_len, format, args);
518
0
  }
519
  // At this point this should not happen unless vsnprintf is insane.
520
0
  if (ret < 0 || (size_t)ret >= candidate_len) {
521
0
    goto err;
522
0
  }
523
0
  *str = candidate;
524
0
  return ret;
525
526
0
 err:
527
0
  deallocate(candidate);
528
0
  *str = NULL;
529
0
  errno = ENOMEM;
530
0
  return -1;
531
0
}
532
533
0
int OPENSSL_vasprintf(char **str, const char *format, va_list args) {
534
0
  return OPENSSL_vasprintf_internal(str, format, args, /*system_malloc=*/0);
535
0
}
536
537
0
int OPENSSL_asprintf(char **str, const char *format, ...) {
538
0
  va_list args;
539
0
  va_start(args, format);
540
0
  int ret = OPENSSL_vasprintf(str, format, args);
541
0
  va_end(args);
542
0
  return ret;
543
0
}
544
545
0
char *OPENSSL_strndup(const char *str, size_t size) {
546
0
  size = OPENSSL_strnlen(str, size);
547
548
0
  size_t alloc_size = size + 1;
549
0
  if (alloc_size < size) {
550
    // overflow
551
0
    OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
552
0
    return NULL;
553
0
  }
554
0
  char *ret = OPENSSL_malloc(alloc_size);
555
0
  if (ret == NULL) {
556
0
    return NULL;
557
0
  }
558
559
0
  OPENSSL_memcpy(ret, str, size);
560
0
  ret[size] = '\0';
561
0
  return ret;
562
0
}
563
564
2
size_t OPENSSL_strlcpy(char *dst, const char *src, size_t dst_size) {
565
2
  size_t l = 0;
566
567
32
  for (; dst_size > 1 && *src; dst_size--) {
568
30
    *dst++ = *src++;
569
30
    l++;
570
30
  }
571
572
2
  if (dst_size) {
573
2
    *dst = 0;
574
2
  }
575
576
2
  return l + strlen(src);
577
2
}
578
579
2
size_t OPENSSL_strlcat(char *dst, const char *src, size_t dst_size) {
580
2
  size_t l = 0;
581
13
  for (; dst_size > 0 && *dst; dst_size--, dst++) {
582
11
    l++;
583
11
  }
584
2
  return l + OPENSSL_strlcpy(dst, src, dst_size);
585
2
}
586
587
3.33k
void *OPENSSL_memdup(const void *data, size_t size) {
588
3.33k
  if (size == 0) {
589
0
    return NULL;
590
0
  }
591
592
3.33k
  void *ret = OPENSSL_malloc(size);
593
3.33k
  if (ret == NULL) {
594
0
    return NULL;
595
0
  }
596
597
3.33k
  OPENSSL_memcpy(ret, data, size);
598
3.33k
  return ret;
599
3.33k
}
600
601
0
void *CRYPTO_malloc(size_t size, const char *file, int line) {
602
0
  return OPENSSL_malloc(size);
603
0
}
604
605
0
void *CRYPTO_realloc(void *ptr, size_t new_size, const char *file, int line) {
606
0
  return OPENSSL_realloc(ptr, new_size);
607
0
}
608
609
0
void CRYPTO_free(void *ptr, const char *file, int line) { OPENSSL_free(ptr); }