Coverage Report

Created: 2024-09-19 09:45

/proc/self/cwd/external/boringssl/ssl/internal.h
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2
 * All rights reserved.
3
 *
4
 * This package is an SSL implementation written
5
 * by Eric Young (eay@cryptsoft.com).
6
 * The implementation was written so as to conform with Netscapes SSL.
7
 *
8
 * This library is free for commercial and non-commercial use as long as
9
 * the following conditions are aheared to.  The following conditions
10
 * apply to all code found in this distribution, be it the RC4, RSA,
11
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12
 * included with this distribution is covered by the same copyright terms
13
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14
 *
15
 * Copyright remains Eric Young's, and as such any Copyright notices in
16
 * the code are not to be removed.
17
 * If this package is used in a product, Eric Young should be given attribution
18
 * as the author of the parts of the library used.
19
 * This can be in the form of a textual message at program startup or
20
 * in documentation (online or textual) provided with the package.
21
 *
22
 * Redistribution and use in source and binary forms, with or without
23
 * modification, are permitted provided that the following conditions
24
 * are met:
25
 * 1. Redistributions of source code must retain the copyright
26
 *    notice, this list of conditions and the following disclaimer.
27
 * 2. Redistributions in binary form must reproduce the above copyright
28
 *    notice, this list of conditions and the following disclaimer in the
29
 *    documentation and/or other materials provided with the distribution.
30
 * 3. All advertising materials mentioning features or use of this software
31
 *    must display the following acknowledgement:
32
 *    "This product includes cryptographic software written by
33
 *     Eric Young (eay@cryptsoft.com)"
34
 *    The word 'cryptographic' can be left out if the rouines from the library
35
 *    being used are not cryptographic related :-).
36
 * 4. If you include any Windows specific code (or a derivative thereof) from
37
 *    the apps directory (application code) you must include an acknowledgement:
38
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39
 *
40
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50
 * SUCH DAMAGE.
51
 *
52
 * The licence and distribution terms for any publically available version or
53
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
54
 * copied and put under another distribution licence
55
 * [including the GNU Public Licence.]
56
 */
57
/* ====================================================================
58
 * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
59
 *
60
 * Redistribution and use in source and binary forms, with or without
61
 * modification, are permitted provided that the following conditions
62
 * are met:
63
 *
64
 * 1. Redistributions of source code must retain the above copyright
65
 *    notice, this list of conditions and the following disclaimer.
66
 *
67
 * 2. Redistributions in binary form must reproduce the above copyright
68
 *    notice, this list of conditions and the following disclaimer in
69
 *    the documentation and/or other materials provided with the
70
 *    distribution.
71
 *
72
 * 3. All advertising materials mentioning features or use of this
73
 *    software must display the following acknowledgment:
74
 *    "This product includes software developed by the OpenSSL Project
75
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76
 *
77
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78
 *    endorse or promote products derived from this software without
79
 *    prior written permission. For written permission, please contact
80
 *    openssl-core@openssl.org.
81
 *
82
 * 5. Products derived from this software may not be called "OpenSSL"
83
 *    nor may "OpenSSL" appear in their names without prior written
84
 *    permission of the OpenSSL Project.
85
 *
86
 * 6. Redistributions of any form whatsoever must retain the following
87
 *    acknowledgment:
88
 *    "This product includes software developed by the OpenSSL Project
89
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90
 *
91
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102
 * OF THE POSSIBILITY OF SUCH DAMAGE.
103
 * ====================================================================
104
 *
105
 * This product includes cryptographic software written by Eric Young
106
 * (eay@cryptsoft.com).  This product includes software written by Tim
107
 * Hudson (tjh@cryptsoft.com).
108
 *
109
 */
110
/* ====================================================================
111
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112
 * ECC cipher suite support in OpenSSL originally developed by
113
 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
114
 */
115
/* ====================================================================
116
 * Copyright 2005 Nokia. All rights reserved.
117
 *
118
 * The portions of the attached software ("Contribution") is developed by
119
 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
120
 * license.
121
 *
122
 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
123
 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
124
 * support (see RFC 4279) to OpenSSL.
125
 *
126
 * No patent licenses or other rights except those expressly stated in
127
 * the OpenSSL open source license shall be deemed granted or received
128
 * expressly, by implication, estoppel, or otherwise.
129
 *
130
 * No assurances are provided by Nokia that the Contribution does not
131
 * infringe the patent or other intellectual property rights of any third
132
 * party or that the license provides you with all the necessary rights
133
 * to make use of the Contribution.
134
 *
135
 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
136
 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
137
 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
138
 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
139
 * OTHERWISE.
140
 */
141
142
#ifndef OPENSSL_HEADER_SSL_INTERNAL_H
143
#define OPENSSL_HEADER_SSL_INTERNAL_H
144
145
#include <openssl/base.h>
146
147
#include <stdlib.h>
148
149
#include <algorithm>
150
#include <bitset>
151
#include <initializer_list>
152
#include <limits>
153
#include <new>
154
#include <type_traits>
155
#include <utility>
156
157
#include <openssl/aead.h>
158
#include <openssl/curve25519.h>
159
#include <openssl/err.h>
160
#include <openssl/hpke.h>
161
#include <openssl/lhash.h>
162
#include <openssl/mem.h>
163
#include <openssl/span.h>
164
#include <openssl/ssl.h>
165
#include <openssl/stack.h>
166
167
#include "../crypto/err/internal.h"
168
#include "../crypto/internal.h"
169
#include "../crypto/lhash/internal.h"
170
171
172
#if defined(OPENSSL_WINDOWS)
173
// Windows defines struct timeval in winsock2.h.
174
OPENSSL_MSVC_PRAGMA(warning(push, 3))
175
#include <winsock2.h>
176
OPENSSL_MSVC_PRAGMA(warning(pop))
177
#else
178
#include <sys/time.h>
179
#endif
180
181
182
BSSL_NAMESPACE_BEGIN
183
184
struct SSL_CONFIG;
185
struct SSL_HANDSHAKE;
186
struct SSL_PROTOCOL_METHOD;
187
struct SSL_X509_METHOD;
188
189
// C++ utilities.
190
191
// New behaves like |new| but uses |OPENSSL_malloc| for memory allocation. It
192
// returns nullptr on allocation error. It only implements single-object
193
// allocation and not new T[n].
194
//
195
// Note: unlike |new|, this does not support non-public constructors.
196
template <typename T, typename... Args>
197
465
T *New(Args &&... args) {
198
465
  void *t = OPENSSL_malloc(sizeof(T));
199
465
  if (t == nullptr) {
200
0
    return nullptr;
201
0
  }
202
465
  return new (t) T(std::forward<Args>(args)...);
203
465
}
Unexecuted instantiation: bssl::ECHConfig* bssl::New<bssl::ECHConfig, bssl::ECHConfig>(bssl::ECHConfig&&)
Unexecuted instantiation: ssl_ech_keys_st* bssl::New<ssl_ech_keys_st>()
Unexecuted instantiation: bssl::ECHServerConfig* bssl::New<bssl::ECHServerConfig>()
bssl::SSLCipherPreferenceList* bssl::New<bssl::SSLCipherPreferenceList>()
Line
Count
Source
197
148
T *New(Args &&... args) {
198
148
  void *t = OPENSSL_malloc(sizeof(T));
199
148
  if (t == nullptr) {
200
0
    return nullptr;
201
0
  }
202
148
  return new (t) T(std::forward<Args>(args)...);
203
148
}
Unexecuted instantiation: bssl::SSL_HANDSHAKE_HINTS* bssl::New<bssl::SSL_HANDSHAKE_HINTS>()
bssl::SSL_HANDSHAKE* bssl::New<bssl::SSL_HANDSHAKE, ssl_st*&>(ssl_st*&)
Line
Count
Source
197
10
T *New(Args &&... args) {
198
10
  void *t = OPENSSL_malloc(sizeof(T));
199
10
  if (t == nullptr) {
200
0
    return nullptr;
201
0
  }
202
10
  return new (t) T(std::forward<Args>(args)...);
203
10
}
bssl::SSLAEADContext* bssl::New<bssl::SSLAEADContext, int, bool&, decltype(nullptr)>(int&&, bool&, decltype(nullptr)&&)
Line
Count
Source
197
20
T *New(Args &&... args) {
198
20
  void *t = OPENSSL_malloc(sizeof(T));
199
20
  if (t == nullptr) {
200
0
    return nullptr;
201
0
  }
202
20
  return new (t) T(std::forward<Args>(args)...);
203
20
}
Unexecuted instantiation: bssl::SSLAEADContext* bssl::New<bssl::SSLAEADContext, unsigned short&, bool&, ssl_cipher_st const*&>(unsigned short&, bool&, ssl_cipher_st const*&)
Unexecuted instantiation: bssl::SSLAEADContext* bssl::New<bssl::SSLAEADContext, unsigned short&, bool, ssl_cipher_st const*&>(unsigned short&, bool&&, ssl_cipher_st const*&)
ssl_credential_st* bssl::New<ssl_credential_st, bssl::SSLCredentialType>(bssl::SSLCredentialType&&)
Line
Count
Source
197
85
T *New(Args &&... args) {
198
85
  void *t = OPENSSL_malloc(sizeof(T));
199
85
  if (t == nullptr) {
200
0
    return nullptr;
201
0
  }
202
85
  return new (t) T(std::forward<Args>(args)...);
203
85
}
bssl::CERT* bssl::New<bssl::CERT, bssl::SSL_X509_METHOD const*&>(bssl::SSL_X509_METHOD const*&)
Line
Count
Source
197
10
T *New(Args &&... args) {
198
10
  void *t = OPENSSL_malloc(sizeof(T));
199
10
  if (t == nullptr) {
200
0
    return nullptr;
201
0
  }
202
10
  return new (t) T(std::forward<Args>(args)...);
203
10
}
ssl_credential_st* bssl::New<ssl_credential_st, bssl::SSLCredentialType const&>(bssl::SSLCredentialType const&)
Line
Count
Source
197
10
T *New(Args &&... args) {
198
10
  void *t = OPENSSL_malloc(sizeof(T));
199
10
  if (t == nullptr) {
200
0
    return nullptr;
201
0
  }
202
10
  return new (t) T(std::forward<Args>(args)...);
203
10
}
ssl_key_share.cc:bssl::(anonymous namespace)::ECKeyShare* bssl::New<bssl::(anonymous namespace)::ECKeyShare, ec_group_st const*, int>(ec_group_st const*&&, int&&)
Line
Count
Source
197
2
T *New(Args &&... args) {
198
2
  void *t = OPENSSL_malloc(sizeof(T));
199
2
  if (t == nullptr) {
200
0
    return nullptr;
201
0
  }
202
2
  return new (t) T(std::forward<Args>(args)...);
203
2
}
Unexecuted instantiation: ssl_key_share.cc:bssl::(anonymous namespace)::X25519KeyShare* bssl::New<bssl::(anonymous namespace)::X25519KeyShare>()
Unexecuted instantiation: ssl_key_share.cc:bssl::(anonymous namespace)::X25519Kyber768KeyShare* bssl::New<bssl::(anonymous namespace)::X25519Kyber768KeyShare>()
ssl_ctx_st* bssl::New<ssl_ctx_st, ssl_method_st const*&>(ssl_method_st const*&)
Line
Count
Source
197
75
T *New(Args &&... args) {
198
75
  void *t = OPENSSL_malloc(sizeof(T));
199
75
  if (t == nullptr) {
200
0
    return nullptr;
201
0
  }
202
75
  return new (t) T(std::forward<Args>(args)...);
203
75
}
bssl::CERT* bssl::New<bssl::CERT, bssl::SSL_X509_METHOD const* const&>(bssl::SSL_X509_METHOD const* const&)
Line
Count
Source
197
75
T *New(Args &&... args) {
198
75
  void *t = OPENSSL_malloc(sizeof(T));
199
75
  if (t == nullptr) {
200
0
    return nullptr;
201
0
  }
202
75
  return new (t) T(std::forward<Args>(args)...);
203
75
}
ssl_st* bssl::New<ssl_st, ssl_ctx_st*&>(ssl_ctx_st*&)
Line
Count
Source
197
10
T *New(Args &&... args) {
198
10
  void *t = OPENSSL_malloc(sizeof(T));
199
10
  if (t == nullptr) {
200
0
    return nullptr;
201
0
  }
202
10
  return new (t) T(std::forward<Args>(args)...);
203
10
}
bssl::SSL_CONFIG* bssl::New<bssl::SSL_CONFIG, ssl_st*>(ssl_st*&&)
Line
Count
Source
197
10
T *New(Args &&... args) {
198
10
  void *t = OPENSSL_malloc(sizeof(T));
199
10
  if (t == nullptr) {
200
0
    return nullptr;
201
0
  }
202
10
  return new (t) T(std::forward<Args>(args)...);
203
10
}
Unexecuted instantiation: bssl::TicketKey* bssl::New<bssl::TicketKey>()
Unexecuted instantiation: bssl::hm_fragment* bssl::New<bssl::hm_fragment>()
Unexecuted instantiation: bssl::DTLS1_STATE* bssl::New<bssl::DTLS1_STATE>()
bssl::SSL3_STATE* bssl::New<bssl::SSL3_STATE>()
Line
Count
Source
197
10
T *New(Args &&... args) {
198
10
  void *t = OPENSSL_malloc(sizeof(T));
199
10
  if (t == nullptr) {
200
0
    return nullptr;
201
0
  }
202
10
  return new (t) T(std::forward<Args>(args)...);
203
10
}
Unexecuted instantiation: ssl_session_st* bssl::New<ssl_session_st, bssl::SSL_X509_METHOD const*&>(bssl::SSL_X509_METHOD const*&)
204
205
// Delete behaves like |delete| but uses |OPENSSL_free| to release memory.
206
//
207
// Note: unlike |delete| this does not support non-public destructors.
208
template <typename T>
209
295
void Delete(T *t) {
210
295
  if (t != nullptr) {
211
295
    t->~T();
212
295
    OPENSSL_free(t);
213
295
  }
214
295
}
Unexecuted instantiation: void bssl::Delete<bssl::ECHConfig>(bssl::ECHConfig*)
Unexecuted instantiation: void bssl::Delete<bssl::ECHServerConfig>(bssl::ECHServerConfig*)
void bssl::Delete<bssl::SSLKeyShare>(bssl::SSLKeyShare*)
Line
Count
Source
209
2
void Delete(T *t) {
210
2
  if (t != nullptr) {
211
2
    t->~T();
212
2
    OPENSSL_free(t);
213
2
  }
214
2
}
void bssl::Delete<bssl::SSLCipherPreferenceList>(bssl::SSLCipherPreferenceList*)
Line
Count
Source
209
148
void Delete(T *t) {
210
148
  if (t != nullptr) {
211
148
    t->~T();
212
148
    OPENSSL_free(t);
213
148
  }
214
148
}
void bssl::Delete<bssl::SSL_HANDSHAKE>(bssl::SSL_HANDSHAKE*)
Line
Count
Source
209
10
void Delete(T *t) {
210
10
  if (t != nullptr) {
211
10
    t->~T();
212
10
    OPENSSL_free(t);
213
10
  }
214
10
}
Unexecuted instantiation: void bssl::Delete<bssl::SSL_HANDSHAKE_HINTS>(bssl::SSL_HANDSHAKE_HINTS*)
void bssl::Delete<bssl::SSLAEADContext>(bssl::SSLAEADContext*)
Line
Count
Source
209
20
void Delete(T *t) {
210
20
  if (t != nullptr) {
211
20
    t->~T();
212
20
    OPENSSL_free(t);
213
20
  }
214
20
}
void bssl::Delete<bssl::CERT>(bssl::CERT*)
Line
Count
Source
209
85
void Delete(T *t) {
210
85
  if (t != nullptr) {
211
85
    t->~T();
212
85
    OPENSSL_free(t);
213
85
  }
214
85
}
Unexecuted instantiation: ssl_key_share.cc:void bssl::Delete<bssl::(anonymous namespace)::ECKeyShare>(bssl::(anonymous namespace)::ECKeyShare*)
Unexecuted instantiation: ssl_key_share.cc:void bssl::Delete<bssl::(anonymous namespace)::X25519KeyShare>(bssl::(anonymous namespace)::X25519KeyShare*)
Unexecuted instantiation: ssl_key_share.cc:void bssl::Delete<bssl::(anonymous namespace)::X25519Kyber768KeyShare>(bssl::(anonymous namespace)::X25519Kyber768KeyShare*)
void bssl::Delete<bssl::SSL_CONFIG>(bssl::SSL_CONFIG*)
Line
Count
Source
209
10
void Delete(T *t) {
210
10
  if (t != nullptr) {
211
10
    t->~T();
212
10
    OPENSSL_free(t);
213
10
  }
214
10
}
void bssl::Delete<ssl_st>(ssl_st*)
Line
Count
Source
209
10
void Delete(T *t) {
210
10
  if (t != nullptr) {
211
10
    t->~T();
212
10
    OPENSSL_free(t);
213
10
  }
214
10
}
Unexecuted instantiation: void bssl::Delete<bssl::TicketKey>(bssl::TicketKey*)
Unexecuted instantiation: void bssl::Delete<bssl::hm_fragment>(bssl::hm_fragment*)
Unexecuted instantiation: void bssl::Delete<bssl::DTLS1_STATE>(bssl::DTLS1_STATE*)
void bssl::Delete<bssl::SSL3_STATE>(bssl::SSL3_STATE*)
Line
Count
Source
209
10
void Delete(T *t) {
210
10
  if (t != nullptr) {
211
10
    t->~T();
212
10
    OPENSSL_free(t);
213
10
  }
214
10
}
215
216
// All types with kAllowUniquePtr set may be used with UniquePtr. Other types
217
// may be C structs which require a |BORINGSSL_MAKE_DELETER| registration.
218
namespace internal {
219
template <typename T>
220
struct DeleterImpl<T, std::enable_if_t<T::kAllowUniquePtr>> {
221
275
  static void Free(T *t) { Delete(t); }
Unexecuted instantiation: bssl::internal::DeleterImpl<bssl::ECHConfig, void>::Free(bssl::ECHConfig*)
Unexecuted instantiation: bssl::internal::DeleterImpl<bssl::ECHServerConfig, void>::Free(bssl::ECHServerConfig*)
bssl::internal::DeleterImpl<bssl::SSLKeyShare, void>::Free(bssl::SSLKeyShare*)
Line
Count
Source
221
2
  static void Free(T *t) { Delete(t); }
bssl::internal::DeleterImpl<bssl::SSLCipherPreferenceList, void>::Free(bssl::SSLCipherPreferenceList*)
Line
Count
Source
221
148
  static void Free(T *t) { Delete(t); }
bssl::internal::DeleterImpl<bssl::SSL_HANDSHAKE, void>::Free(bssl::SSL_HANDSHAKE*)
Line
Count
Source
221
10
  static void Free(T *t) { Delete(t); }
Unexecuted instantiation: bssl::internal::DeleterImpl<bssl::SSL_HANDSHAKE_HINTS, void>::Free(bssl::SSL_HANDSHAKE_HINTS*)
bssl::internal::DeleterImpl<bssl::SSLAEADContext, void>::Free(bssl::SSLAEADContext*)
Line
Count
Source
221
20
  static void Free(T *t) { Delete(t); }
bssl::internal::DeleterImpl<bssl::CERT, void>::Free(bssl::CERT*)
Line
Count
Source
221
85
  static void Free(T *t) { Delete(t); }
Unexecuted instantiation: ssl_key_share.cc:bssl::internal::DeleterImpl<bssl::(anonymous namespace)::ECKeyShare, void>::Free(bssl::(anonymous namespace)::ECKeyShare*)
Unexecuted instantiation: ssl_key_share.cc:bssl::internal::DeleterImpl<bssl::(anonymous namespace)::X25519KeyShare, void>::Free(bssl::(anonymous namespace)::X25519KeyShare*)
Unexecuted instantiation: ssl_key_share.cc:bssl::internal::DeleterImpl<bssl::(anonymous namespace)::X25519Kyber768KeyShare, void>::Free(bssl::(anonymous namespace)::X25519Kyber768KeyShare*)
bssl::internal::DeleterImpl<bssl::SSL_CONFIG, void>::Free(bssl::SSL_CONFIG*)
Line
Count
Source
221
10
  static void Free(T *t) { Delete(t); }
Unexecuted instantiation: bssl::internal::DeleterImpl<bssl::TicketKey, void>::Free(bssl::TicketKey*)
Unexecuted instantiation: bssl::internal::DeleterImpl<bssl::hm_fragment, void>::Free(bssl::hm_fragment*)
Unexecuted instantiation: bssl::internal::DeleterImpl<bssl::DTLS1_STATE, void>::Free(bssl::DTLS1_STATE*)
Unexecuted instantiation: bssl::internal::DeleterImpl<bssl::SSL3_STATE, void>::Free(bssl::SSL3_STATE*)
222
};
223
}  // namespace internal
224
225
// MakeUnique behaves like |std::make_unique| but returns nullptr on allocation
226
// error.
227
template <typename T, typename... Args>
228
465
UniquePtr<T> MakeUnique(Args &&... args) {
229
465
  return UniquePtr<T>(New<T>(std::forward<Args>(args)...));
230
465
}
Unexecuted instantiation: std::__1::unique_ptr<bssl::ECHConfig, bssl::internal::Deleter> bssl::MakeUnique<bssl::ECHConfig, bssl::ECHConfig>(bssl::ECHConfig&&)
Unexecuted instantiation: std::__1::unique_ptr<bssl::ECHServerConfig, bssl::internal::Deleter> bssl::MakeUnique<bssl::ECHServerConfig>()
std::__1::unique_ptr<bssl::SSLCipherPreferenceList, bssl::internal::Deleter> bssl::MakeUnique<bssl::SSLCipherPreferenceList>()
Line
Count
Source
228
148
UniquePtr<T> MakeUnique(Args &&... args) {
229
148
  return UniquePtr<T>(New<T>(std::forward<Args>(args)...));
230
148
}
Unexecuted instantiation: std::__1::unique_ptr<bssl::SSL_HANDSHAKE_HINTS, bssl::internal::Deleter> bssl::MakeUnique<bssl::SSL_HANDSHAKE_HINTS>()
std::__1::unique_ptr<bssl::SSL_HANDSHAKE, bssl::internal::Deleter> bssl::MakeUnique<bssl::SSL_HANDSHAKE, ssl_st*&>(ssl_st*&)
Line
Count
Source
228
10
UniquePtr<T> MakeUnique(Args &&... args) {
229
10
  return UniquePtr<T>(New<T>(std::forward<Args>(args)...));
230
10
}
std::__1::unique_ptr<bssl::SSLAEADContext, bssl::internal::Deleter> bssl::MakeUnique<bssl::SSLAEADContext, int, bool&, decltype(nullptr)>(int&&, bool&, decltype(nullptr)&&)
Line
Count
Source
228
20
UniquePtr<T> MakeUnique(Args &&... args) {
229
20
  return UniquePtr<T>(New<T>(std::forward<Args>(args)...));
230
20
}
Unexecuted instantiation: std::__1::unique_ptr<bssl::SSLAEADContext, bssl::internal::Deleter> bssl::MakeUnique<bssl::SSLAEADContext, unsigned short&, bool&, ssl_cipher_st const*&>(unsigned short&, bool&, ssl_cipher_st const*&)
Unexecuted instantiation: std::__1::unique_ptr<bssl::SSLAEADContext, bssl::internal::Deleter> bssl::MakeUnique<bssl::SSLAEADContext, unsigned short&, bool, ssl_cipher_st const*&>(unsigned short&, bool&&, ssl_cipher_st const*&)
std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter> bssl::MakeUnique<ssl_credential_st, bssl::SSLCredentialType>(bssl::SSLCredentialType&&)
Line
Count
Source
228
85
UniquePtr<T> MakeUnique(Args &&... args) {
229
85
  return UniquePtr<T>(New<T>(std::forward<Args>(args)...));
230
85
}
std::__1::unique_ptr<bssl::CERT, bssl::internal::Deleter> bssl::MakeUnique<bssl::CERT, bssl::SSL_X509_METHOD const*&>(bssl::SSL_X509_METHOD const*&)
Line
Count
Source
228
10
UniquePtr<T> MakeUnique(Args &&... args) {
229
10
  return UniquePtr<T>(New<T>(std::forward<Args>(args)...));
230
10
}
std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter> bssl::MakeUnique<ssl_credential_st, bssl::SSLCredentialType const&>(bssl::SSLCredentialType const&)
Line
Count
Source
228
10
UniquePtr<T> MakeUnique(Args &&... args) {
229
10
  return UniquePtr<T>(New<T>(std::forward<Args>(args)...));
230
10
}
ssl_key_share.cc:std::__1::unique_ptr<bssl::(anonymous namespace)::ECKeyShare, bssl::internal::Deleter> bssl::MakeUnique<bssl::(anonymous namespace)::ECKeyShare, ec_group_st const*, int>(ec_group_st const*&&, int&&)
Line
Count
Source
228
2
UniquePtr<T> MakeUnique(Args &&... args) {
229
2
  return UniquePtr<T>(New<T>(std::forward<Args>(args)...));
230
2
}
Unexecuted instantiation: ssl_key_share.cc:std::__1::unique_ptr<bssl::(anonymous namespace)::X25519KeyShare, bssl::internal::Deleter> bssl::MakeUnique<bssl::(anonymous namespace)::X25519KeyShare>()
Unexecuted instantiation: ssl_key_share.cc:std::__1::unique_ptr<bssl::(anonymous namespace)::X25519Kyber768KeyShare, bssl::internal::Deleter> bssl::MakeUnique<bssl::(anonymous namespace)::X25519Kyber768KeyShare>()
std::__1::unique_ptr<ssl_ctx_st, bssl::internal::Deleter> bssl::MakeUnique<ssl_ctx_st, ssl_method_st const*&>(ssl_method_st const*&)
Line
Count
Source
228
75
UniquePtr<T> MakeUnique(Args &&... args) {
229
75
  return UniquePtr<T>(New<T>(std::forward<Args>(args)...));
230
75
}
std::__1::unique_ptr<bssl::CERT, bssl::internal::Deleter> bssl::MakeUnique<bssl::CERT, bssl::SSL_X509_METHOD const* const&>(bssl::SSL_X509_METHOD const* const&)
Line
Count
Source
228
75
UniquePtr<T> MakeUnique(Args &&... args) {
229
75
  return UniquePtr<T>(New<T>(std::forward<Args>(args)...));
230
75
}
std::__1::unique_ptr<ssl_st, bssl::internal::Deleter> bssl::MakeUnique<ssl_st, ssl_ctx_st*&>(ssl_ctx_st*&)
Line
Count
Source
228
10
UniquePtr<T> MakeUnique(Args &&... args) {
229
10
  return UniquePtr<T>(New<T>(std::forward<Args>(args)...));
230
10
}
std::__1::unique_ptr<bssl::SSL_CONFIG, bssl::internal::Deleter> bssl::MakeUnique<bssl::SSL_CONFIG, ssl_st*>(ssl_st*&&)
Line
Count
Source
228
10
UniquePtr<T> MakeUnique(Args &&... args) {
229
10
  return UniquePtr<T>(New<T>(std::forward<Args>(args)...));
230
10
}
Unexecuted instantiation: std::__1::unique_ptr<bssl::TicketKey, bssl::internal::Deleter> bssl::MakeUnique<bssl::TicketKey>()
Unexecuted instantiation: std::__1::unique_ptr<bssl::hm_fragment, bssl::internal::Deleter> bssl::MakeUnique<bssl::hm_fragment>()
Unexecuted instantiation: std::__1::unique_ptr<bssl::DTLS1_STATE, bssl::internal::Deleter> bssl::MakeUnique<bssl::DTLS1_STATE>()
std::__1::unique_ptr<bssl::SSL3_STATE, bssl::internal::Deleter> bssl::MakeUnique<bssl::SSL3_STATE>()
Line
Count
Source
228
10
UniquePtr<T> MakeUnique(Args &&... args) {
229
10
  return UniquePtr<T>(New<T>(std::forward<Args>(args)...));
230
10
}
Unexecuted instantiation: std::__1::unique_ptr<ssl_session_st, bssl::internal::Deleter> bssl::MakeUnique<ssl_session_st, bssl::SSL_X509_METHOD const*&>(bssl::SSL_X509_METHOD const*&)
231
232
// Array<T> is an owning array of elements of |T|.
233
template <typename T>
234
class Array {
235
 public:
236
  // Array's default constructor creates an empty array.
237
1.10k
  Array() {}
bssl::Array<unsigned char>::Array()
Line
Count
Source
237
267
  Array() {}
Unexecuted instantiation: bssl::Array<std::__1::unique_ptr<bssl::ECHServerConfig, bssl::internal::Deleter> >::Array()
bssl::Array<unsigned short>::Array()
Line
Count
Source
237
368
  Array() {}
Unexecuted instantiation: bssl::Array<ssl_credential_st*>::Array()
bssl::Array<std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter> >::Array()
Line
Count
Source
237
85
  Array() {}
Unexecuted instantiation: bssl::Array<int>::Array()
bssl::Array<bool>::Array()
Line
Count
Source
237
296
  Array() {}
bssl::Array<bssl::CertCompressionAlg>::Array()
Line
Count
Source
237
75
  Array() {}
bssl::Array<bssl::ALPSConfig>::Array()
Line
Count
Source
237
10
  Array() {}
238
  Array(const Array &) = delete;
239
2
  Array(Array &&other) { *this = std::move(other); }
240
241
1.10k
  ~Array() { Reset(); }
bssl::Array<unsigned char>::~Array()
Line
Count
Source
241
269
  ~Array() { Reset(); }
Unexecuted instantiation: bssl::Array<std::__1::unique_ptr<bssl::ECHServerConfig, bssl::internal::Deleter> >::~Array()
bssl::Array<unsigned short>::~Array()
Line
Count
Source
241
368
  ~Array() { Reset(); }
Unexecuted instantiation: bssl::Array<ssl_credential_st*>::~Array()
bssl::Array<std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter> >::~Array()
Line
Count
Source
241
85
  ~Array() { Reset(); }
Unexecuted instantiation: bssl::Array<int>::~Array()
bssl::Array<bool>::~Array()
Line
Count
Source
241
296
  ~Array() { Reset(); }
bssl::Array<bssl::CertCompressionAlg>::~Array()
Line
Count
Source
241
75
  ~Array() { Reset(); }
bssl::Array<bssl::ALPSConfig>::~Array()
Line
Count
Source
241
10
  ~Array() { Reset(); }
242
243
  Array &operator=(const Array &) = delete;
244
75
  Array &operator=(Array &&other) {
245
75
    Reset();
246
75
    other.Release(&data_, &size_);
247
75
    return *this;
248
75
  }
bssl::Array<unsigned char>::operator=(bssl::Array<unsigned char>&&)
Line
Count
Source
244
2
  Array &operator=(Array &&other) {
245
2
    Reset();
246
2
    other.Release(&data_, &size_);
247
2
    return *this;
248
2
  }
Unexecuted instantiation: bssl::Array<std::__1::unique_ptr<bssl::ECHServerConfig, bssl::internal::Deleter> >::operator=(bssl::Array<std::__1::unique_ptr<bssl::ECHServerConfig, bssl::internal::Deleter> >&&)
bssl::Array<unsigned short>::operator=(bssl::Array<unsigned short>&&)
Line
Count
Source
244
73
  Array &operator=(Array &&other) {
245
73
    Reset();
246
73
    other.Release(&data_, &size_);
247
73
    return *this;
248
73
  }
Unexecuted instantiation: bssl::Array<std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter> >::operator=(bssl::Array<std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter> >&&)
Unexecuted instantiation: bssl::Array<bssl::ALPSConfig>::operator=(bssl::Array<bssl::ALPSConfig>&&)
Unexecuted instantiation: bssl::Array<bssl::CertCompressionAlg>::operator=(bssl::Array<bssl::CertCompressionAlg>&&)
249
250
200
  const T *data() const { return data_; }
bssl::Array<unsigned char>::data() const
Line
Count
Source
250
18
  const T *data() const { return data_; }
Unexecuted instantiation: bssl::Array<std::__1::unique_ptr<bssl::ECHServerConfig, bssl::internal::Deleter> >::data() const
bssl::Array<unsigned short>::data() const
Line
Count
Source
250
34
  const T *data() const { return data_; }
bssl::Array<bool>::data() const
Line
Count
Source
250
148
  const T *data() const { return data_; }
251
26
  T *data() { return data_; }
bssl::Array<unsigned char>::data()
Line
Count
Source
251
2
  T *data() { return data_; }
Unexecuted instantiation: bssl::Array<std::__1::unique_ptr<bssl::ECHServerConfig, bssl::internal::Deleter> >::data()
Unexecuted instantiation: bssl::Array<unsigned short>::data()
bssl::Array<bssl::CertCompressionAlg>::data()
Line
Count
Source
251
4
  T *data() { return data_; }
Unexecuted instantiation: bssl::Array<bssl::ALPSConfig>::data()
bssl::Array<std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter> >::data()
Line
Count
Source
251
20
  T *data() { return data_; }
Unexecuted instantiation: bssl::Array<int>::data()
252
202
  size_t size() const { return size_; }
bssl::Array<unsigned char>::size() const
Line
Count
Source
252
20
  size_t size() const { return size_; }
Unexecuted instantiation: bssl::Array<std::__1::unique_ptr<bssl::ECHServerConfig, bssl::internal::Deleter> >::size() const
bssl::Array<unsigned short>::size() const
Line
Count
Source
252
34
  size_t size() const { return size_; }
Unexecuted instantiation: bssl::Array<std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter> >::size() const
bssl::Array<bool>::size() const
Line
Count
Source
252
148
  size_t size() const { return size_; }
Unexecuted instantiation: bssl::Array<bssl::ALPSConfig>::size() const
Unexecuted instantiation: bssl::Array<bssl::CertCompressionAlg>::size() const
253
76
  bool empty() const { return size_ == 0; }
bssl::Array<unsigned char>::empty() const
Line
Count
Source
253
70
  bool empty() const { return size_ == 0; }
bssl::Array<unsigned short>::empty() const
Line
Count
Source
253
6
  bool empty() const { return size_ == 0; }
Unexecuted instantiation: bssl::Array<ssl_credential_st*>::empty() const
254
255
0
  const T &operator[](size_t i) const { return data_[i]; }
256
1.79k
  T &operator[](size_t i) { return data_[i]; }
Unexecuted instantiation: bssl::Array<std::__1::unique_ptr<bssl::ECHServerConfig, bssl::internal::Deleter> >::operator[](unsigned long)
bssl::Array<unsigned short>::operator[](unsigned long)
Line
Count
Source
256
73
  T &operator[](size_t i) { return data_[i]; }
Unexecuted instantiation: bssl::Array<unsigned char>::operator[](unsigned long)
Unexecuted instantiation: bssl::Array<std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter> >::operator[](unsigned long)
Unexecuted instantiation: bssl::Array<int>::operator[](unsigned long)
bssl::Array<bool>::operator[](unsigned long)
Line
Count
Source
256
1.71k
  T &operator[](size_t i) { return data_[i]; }
Unexecuted instantiation: bssl::Array<ssl_credential_st*>::operator[](unsigned long)
Unexecuted instantiation: bssl::Array<bssl::ALPSConfig>::operator[](unsigned long)
Unexecuted instantiation: bssl::Array<bssl::CertCompressionAlg>::operator[](unsigned long)
257
258
0
  T *begin() { return data_; }
Unexecuted instantiation: bssl::Array<unsigned short>::begin()
Unexecuted instantiation: bssl::Array<ssl_credential_st*>::begin()
Unexecuted instantiation: bssl::Array<unsigned char>::begin()
259
  const T *begin() const { return data_; }
260
0
  T *end() { return data_ + size_; }
Unexecuted instantiation: bssl::Array<unsigned short>::end()
Unexecuted instantiation: bssl::Array<ssl_credential_st*>::end()
Unexecuted instantiation: bssl::Array<unsigned char>::end()
261
  const T *end() const { return data_ + size_; }
262
263
1.66k
  void Reset() { Reset(nullptr, 0); }
bssl::Array<unsigned char>::Reset()
Line
Count
Source
263
356
  void Reset() { Reset(nullptr, 0); }
Unexecuted instantiation: bssl::Array<std::__1::unique_ptr<bssl::ECHServerConfig, bssl::internal::Deleter> >::Reset()
bssl::Array<unsigned short>::Reset()
Line
Count
Source
263
544
  void Reset() { Reset(nullptr, 0); }
bssl::Array<bssl::ALPSConfig>::Reset()
Line
Count
Source
263
10
  void Reset() { Reset(nullptr, 0); }
Unexecuted instantiation: bssl::Array<ssl_credential_st*>::Reset()
bssl::Array<std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter> >::Reset()
Line
Count
Source
263
85
  void Reset() { Reset(nullptr, 0); }
Unexecuted instantiation: bssl::Array<int>::Reset()
bssl::Array<bool>::Reset()
Line
Count
Source
263
592
  void Reset() { Reset(nullptr, 0); }
bssl::Array<bssl::CertCompressionAlg>::Reset()
Line
Count
Source
263
75
  void Reset() { Reset(nullptr, 0); }
264
265
  // Reset releases the current contents of the array and takes ownership of the
266
  // raw pointer supplied by the caller.
267
1.66k
  void Reset(T *new_data, size_t new_size) {
268
6.41k
    for (size_t i = 0; i < size_; i++) {
269
4.74k
      data_[i].~T();
270
4.74k
    }
271
1.66k
    OPENSSL_free(data_);
272
1.66k
    data_ = new_data;
273
1.66k
    size_ = new_size;
274
1.66k
  }
bssl::Array<unsigned char>::Reset(unsigned char*, unsigned long)
Line
Count
Source
267
360
  void Reset(T *new_data, size_t new_size) {
268
1.48k
    for (size_t i = 0; i < size_; i++) {
269
1.12k
      data_[i].~T();
270
1.12k
    }
271
360
    OPENSSL_free(data_);
272
360
    data_ = new_data;
273
360
    size_ = new_size;
274
360
  }
Unexecuted instantiation: bssl::Array<std::__1::unique_ptr<bssl::ECHServerConfig, bssl::internal::Deleter> >::Reset(std::__1::unique_ptr<bssl::ECHServerConfig, bssl::internal::Deleter>*, unsigned long)
bssl::Array<unsigned short>::Reset(unsigned short*, unsigned long)
Line
Count
Source
267
544
  void Reset(T *new_data, size_t new_size) {
268
619
    for (size_t i = 0; i < size_; i++) {
269
75
      data_[i].~T();
270
75
    }
271
544
    OPENSSL_free(data_);
272
544
    data_ = new_data;
273
544
    size_ = new_size;
274
544
  }
bssl::Array<bssl::ALPSConfig>::Reset(bssl::ALPSConfig*, unsigned long)
Line
Count
Source
267
10
  void Reset(T *new_data, size_t new_size) {
268
10
    for (size_t i = 0; i < size_; i++) {
269
0
      data_[i].~T();
270
0
    }
271
10
    OPENSSL_free(data_);
272
10
    data_ = new_data;
273
10
    size_ = new_size;
274
10
  }
Unexecuted instantiation: bssl::Array<ssl_credential_st*>::Reset(ssl_credential_st**, unsigned long)
bssl::Array<std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter> >::Reset(std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter>*, unsigned long)
Line
Count
Source
267
85
  void Reset(T *new_data, size_t new_size) {
268
85
    for (size_t i = 0; i < size_; i++) {
269
0
      data_[i].~T();
270
0
    }
271
85
    OPENSSL_free(data_);
272
85
    data_ = new_data;
273
85
    size_ = new_size;
274
85
  }
Unexecuted instantiation: bssl::Array<int>::Reset(int*, unsigned long)
bssl::Array<bool>::Reset(bool*, unsigned long)
Line
Count
Source
267
592
  void Reset(T *new_data, size_t new_size) {
268
4.14k
    for (size_t i = 0; i < size_; i++) {
269
3.55k
      data_[i].~T();
270
3.55k
    }
271
592
    OPENSSL_free(data_);
272
592
    data_ = new_data;
273
592
    size_ = new_size;
274
592
  }
bssl::Array<bssl::CertCompressionAlg>::Reset(bssl::CertCompressionAlg*, unsigned long)
Line
Count
Source
267
75
  void Reset(T *new_data, size_t new_size) {
268
75
    for (size_t i = 0; i < size_; i++) {
269
0
      data_[i].~T();
270
0
    }
271
75
    OPENSSL_free(data_);
272
75
    data_ = new_data;
273
75
    size_ = new_size;
274
75
  }
275
276
  // Release releases ownership of the array to a raw pointer supplied by the
277
  // caller.
278
223
  void Release(T **out, size_t *out_size) {
279
223
    *out = data_;
280
223
    *out_size = size_;
281
223
    data_ = nullptr;
282
223
    size_ = 0;
283
223
  }
bssl::Array<unsigned char>::Release(unsigned char**, unsigned long*)
Line
Count
Source
278
2
  void Release(T **out, size_t *out_size) {
279
2
    *out = data_;
280
2
    *out_size = size_;
281
2
    data_ = nullptr;
282
2
    size_ = 0;
283
2
  }
Unexecuted instantiation: bssl::Array<std::__1::unique_ptr<bssl::ECHServerConfig, bssl::internal::Deleter> >::Release(std::__1::unique_ptr<bssl::ECHServerConfig, bssl::internal::Deleter>**, unsigned long*)
bssl::Array<unsigned short>::Release(unsigned short**, unsigned long*)
Line
Count
Source
278
73
  void Release(T **out, size_t *out_size) {
279
73
    *out = data_;
280
73
    *out_size = size_;
281
73
    data_ = nullptr;
282
73
    size_ = 0;
283
73
  }
Unexecuted instantiation: bssl::Array<std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter> >::Release(std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter>**, unsigned long*)
bssl::Array<bool>::Release(bool**, unsigned long*)
Line
Count
Source
278
148
  void Release(T **out, size_t *out_size) {
279
148
    *out = data_;
280
148
    *out_size = size_;
281
148
    data_ = nullptr;
282
148
    size_ = 0;
283
148
  }
Unexecuted instantiation: bssl::Array<bssl::ALPSConfig>::Release(bssl::ALPSConfig**, unsigned long*)
Unexecuted instantiation: bssl::Array<bssl::CertCompressionAlg>::Release(bssl::CertCompressionAlg**, unsigned long*)
284
285
  // Init replaces the array with a newly-allocated array of |new_size|
286
  // default-constructed copies of |T|. It returns true on success and false on
287
  // error.
288
  //
289
  // Note that if |T| is a primitive type like |uint8_t|, it is uninitialized.
290
482
  bool Init(size_t new_size) {
291
482
    Reset();
292
482
    if (new_size == 0) {
293
36
      return true;
294
36
    }
295
296
446
    if (new_size > std::numeric_limits<size_t>::max() / sizeof(T)) {
297
0
      OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
298
0
      return false;
299
0
    }
300
446
    data_ = reinterpret_cast<T *>(OPENSSL_malloc(new_size * sizeof(T)));
301
446
    if (data_ == nullptr) {
302
0
      return false;
303
0
    }
304
446
    size_ = new_size;
305
6.01k
    for (size_t i = 0; i < size_; i++) {
306
5.56k
      new (&data_[i]) T;
307
5.56k
    }
308
446
    return true;
309
446
  }
bssl::Array<unsigned char>::Init(unsigned long)
Line
Count
Source
290
83
  bool Init(size_t new_size) {
291
83
    Reset();
292
83
    if (new_size == 0) {
293
8
      return true;
294
8
    }
295
296
75
    if (new_size > std::numeric_limits<size_t>::max() / sizeof(T)) {
297
0
      OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
298
0
      return false;
299
0
    }
300
75
    data_ = reinterpret_cast<T *>(OPENSSL_malloc(new_size * sizeof(T)));
301
75
    if (data_ == nullptr) {
302
0
      return false;
303
0
    }
304
75
    size_ = new_size;
305
300
    for (size_t i = 0; i < size_; i++) {
306
225
      new (&data_[i]) T;
307
225
    }
308
75
    return true;
309
75
  }
Unexecuted instantiation: bssl::Array<std::__1::unique_ptr<bssl::ECHServerConfig, bssl::internal::Deleter> >::Init(unsigned long)
bssl::Array<unsigned short>::Init(unsigned long)
Line
Count
Source
290
103
  bool Init(size_t new_size) {
291
103
    Reset();
292
103
    if (new_size == 0) {
293
28
      return true;
294
28
    }
295
296
75
    if (new_size > std::numeric_limits<size_t>::max() / sizeof(T)) {
297
0
      OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
298
0
      return false;
299
0
    }
300
75
    data_ = reinterpret_cast<T *>(OPENSSL_malloc(new_size * sizeof(T)));
301
75
    if (data_ == nullptr) {
302
0
      return false;
303
0
    }
304
75
    size_ = new_size;
305
150
    for (size_t i = 0; i < size_; i++) {
306
75
      new (&data_[i]) T;
307
75
    }
308
75
    return true;
309
75
  }
Unexecuted instantiation: bssl::Array<std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter> >::Init(unsigned long)
Unexecuted instantiation: bssl::Array<int>::Init(unsigned long)
bssl::Array<bool>::Init(unsigned long)
Line
Count
Source
290
296
  bool Init(size_t new_size) {
291
296
    Reset();
292
296
    if (new_size == 0) {
293
0
      return true;
294
0
    }
295
296
296
    if (new_size > std::numeric_limits<size_t>::max() / sizeof(T)) {
297
0
      OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
298
0
      return false;
299
0
    }
300
296
    data_ = reinterpret_cast<T *>(OPENSSL_malloc(new_size * sizeof(T)));
301
296
    if (data_ == nullptr) {
302
0
      return false;
303
0
    }
304
296
    size_ = new_size;
305
5.56k
    for (size_t i = 0; i < size_; i++) {
306
5.26k
      new (&data_[i]) T;
307
5.26k
    }
308
296
    return true;
309
296
  }
Unexecuted instantiation: bssl::Array<ssl_credential_st*>::Init(unsigned long)
Unexecuted instantiation: bssl::Array<bssl::ALPSConfig>::Init(unsigned long)
Unexecuted instantiation: bssl::Array<bssl::CertCompressionAlg>::Init(unsigned long)
310
311
  // CopyFrom replaces the array with a newly-allocated copy of |in|. It returns
312
  // true on success and false on error.
313
261
  bool CopyFrom(Span<const T> in) {
314
261
    if (!Init(in.size())) {
315
0
      return false;
316
0
    }
317
261
    std::copy(in.begin(), in.end(), data_);
318
261
    return true;
319
261
  }
bssl::Array<unsigned char>::CopyFrom(bssl::Span<unsigned char const>)
Line
Count
Source
313
83
  bool CopyFrom(Span<const T> in) {
314
83
    if (!Init(in.size())) {
315
0
      return false;
316
0
    }
317
83
    std::copy(in.begin(), in.end(), data_);
318
83
    return true;
319
83
  }
bssl::Array<bool>::CopyFrom(bssl::Span<bool const>)
Line
Count
Source
313
148
  bool CopyFrom(Span<const T> in) {
314
148
    if (!Init(in.size())) {
315
0
      return false;
316
0
    }
317
148
    std::copy(in.begin(), in.end(), data_);
318
148
    return true;
319
148
  }
bssl::Array<unsigned short>::CopyFrom(bssl::Span<unsigned short const>)
Line
Count
Source
313
30
  bool CopyFrom(Span<const T> in) {
314
30
    if (!Init(in.size())) {
315
0
      return false;
316
0
    }
317
30
    std::copy(in.begin(), in.end(), data_);
318
30
    return true;
319
30
  }
320
321
  // Shrink shrinks the stored size of the array to |new_size|. It crashes if
322
  // the new size is larger. Note this does not shrink the allocation itself.
323
0
  void Shrink(size_t new_size) {
324
0
    if (new_size > size_) {
325
0
      abort();
326
0
    }
327
0
    for (size_t i = new_size; i < size_; i++) {
328
0
      data_[i].~T();
329
0
    }
330
0
    size_ = new_size;
331
0
  }
Unexecuted instantiation: bssl::Array<unsigned char>::Shrink(unsigned long)
Unexecuted instantiation: bssl::Array<unsigned short>::Shrink(unsigned long)
332
333
 private:
334
  T *data_ = nullptr;
335
  size_t size_ = 0;
336
};
337
338
// GrowableArray<T> is an array that owns elements of |T|, backed by an
339
// Array<T>. When necessary, pushing will automatically trigger a resize.
340
//
341
// Note, for simplicity, this class currently differs from |std::vector| in that
342
// |T| must be efficiently default-constructible. Allocated elements beyond the
343
// end of the array are constructed and destructed.
344
template <typename T>
345
class GrowableArray {
346
 public:
347
170
  GrowableArray() = default;
Unexecuted instantiation: bssl::GrowableArray<std::__1::unique_ptr<bssl::ECHServerConfig, bssl::internal::Deleter> >::GrowableArray()
bssl::GrowableArray<std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter> >::GrowableArray()
Line
Count
Source
347
85
  GrowableArray() = default;
bssl::GrowableArray<bssl::CertCompressionAlg>::GrowableArray()
Line
Count
Source
347
75
  GrowableArray() = default;
bssl::GrowableArray<bssl::ALPSConfig>::GrowableArray()
Line
Count
Source
347
10
  GrowableArray() = default;
348
  GrowableArray(const GrowableArray &) = delete;
349
  GrowableArray(GrowableArray &&other) { *this = std::move(other); }
350
170
  ~GrowableArray() {}
Unexecuted instantiation: bssl::GrowableArray<std::__1::unique_ptr<bssl::ECHServerConfig, bssl::internal::Deleter> >::~GrowableArray()
bssl::GrowableArray<std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter> >::~GrowableArray()
Line
Count
Source
350
85
  ~GrowableArray() {}
bssl::GrowableArray<bssl::CertCompressionAlg>::~GrowableArray()
Line
Count
Source
350
75
  ~GrowableArray() {}
bssl::GrowableArray<bssl::ALPSConfig>::~GrowableArray()
Line
Count
Source
350
10
  ~GrowableArray() {}
351
352
  GrowableArray &operator=(const GrowableArray &) = delete;
353
  GrowableArray &operator=(GrowableArray &&other) {
354
    size_ = other.size_;
355
    other.size_ = 0;
356
    array_ = std::move(other.array_);
357
    return *this;
358
  }
359
360
  const T *data() const { return array_.data(); }
361
  T *data() { return array_.data(); }
362
0
  size_t size() const { return size_; }
Unexecuted instantiation: bssl::GrowableArray<bssl::CertCompressionAlg>::size() const
Unexecuted instantiation: bssl::GrowableArray<std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter> >::size() const
363
4
  bool empty() const { return size_ == 0; }
bssl::GrowableArray<bssl::ALPSConfig>::empty() const
Line
Count
Source
363
4
  bool empty() const { return size_ == 0; }
Unexecuted instantiation: bssl::GrowableArray<std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter> >::empty() const
364
365
0
  const T &operator[](size_t i) const { return array_[i]; }
366
0
  T &operator[](size_t i) { return array_[i]; }
367
368
12
  T *begin() { return array_.data(); }
Unexecuted instantiation: bssl::GrowableArray<std::__1::unique_ptr<bssl::ECHServerConfig, bssl::internal::Deleter> >::begin()
bssl::GrowableArray<bssl::CertCompressionAlg>::begin()
Line
Count
Source
368
2
  T *begin() { return array_.data(); }
Unexecuted instantiation: bssl::GrowableArray<bssl::ALPSConfig>::begin()
bssl::GrowableArray<std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter> >::begin()
Line
Count
Source
368
10
  T *begin() { return array_.data(); }
369
0
  const T *begin() const { return array_.data(); }
370
12
  T *end() { return array_.data() + size_; }
Unexecuted instantiation: bssl::GrowableArray<std::__1::unique_ptr<bssl::ECHServerConfig, bssl::internal::Deleter> >::end()
bssl::GrowableArray<bssl::CertCompressionAlg>::end()
Line
Count
Source
370
2
  T *end() { return array_.data() + size_; }
Unexecuted instantiation: bssl::GrowableArray<bssl::ALPSConfig>::end()
bssl::GrowableArray<std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter> >::end()
Line
Count
Source
370
10
  T *end() { return array_.data() + size_; }
371
0
  const T *end() const { return array_.data() + size_; }
372
373
0
  void clear() {
374
0
    size_ = 0;
375
0
    array_.Reset();
376
0
  }
Unexecuted instantiation: bssl::GrowableArray<bssl::ALPSConfig>::clear()
Unexecuted instantiation: bssl::GrowableArray<std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter> >::clear()
377
378
  // Push adds |elem| at the end of the internal array, growing if necessary. It
379
  // returns false when allocation fails.
380
0
  bool Push(T elem) {
381
0
    if (!MaybeGrow()) {
382
0
      return false;
383
0
    }
384
0
    array_[size_] = std::move(elem);
385
0
    size_++;
386
0
    return true;
387
0
  }
Unexecuted instantiation: bssl::GrowableArray<std::__1::unique_ptr<bssl::ECHServerConfig, bssl::internal::Deleter> >::Push(std::__1::unique_ptr<bssl::ECHServerConfig, bssl::internal::Deleter>)
Unexecuted instantiation: bssl::GrowableArray<std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter> >::Push(std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter>)
Unexecuted instantiation: bssl::GrowableArray<bssl::ALPSConfig>::Push(bssl::ALPSConfig)
Unexecuted instantiation: bssl::GrowableArray<bssl::CertCompressionAlg>::Push(bssl::CertCompressionAlg)
388
389
  // CopyFrom replaces the contents of the array with a copy of |in|. It returns
390
  // true on success and false on allocation error.
391
  bool CopyFrom(Span<const T> in) {
392
    if (!array_.CopyFrom(in)) {
393
      return false;
394
    }
395
    size_ = in.size();
396
    return true;
397
  }
398
399
 private:
400
  // If there is no room for one more element, creates a new backing array with
401
  // double the size of the old one and copies elements over.
402
0
  bool MaybeGrow() {
403
0
    if (array_.size() == 0) {
404
0
      return array_.Init(kDefaultSize);
405
0
    }
406
    // No need to grow if we have room for one more T.
407
0
    if (size_ < array_.size()) {
408
0
      return true;
409
0
    }
410
    // Double the array's size if it's safe to do so.
411
0
    if (array_.size() > std::numeric_limits<size_t>::max() / 2) {
412
0
      OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
413
0
      return false;
414
0
    }
415
0
    Array<T> new_array;
416
0
    if (!new_array.Init(array_.size() * 2)) {
417
0
      return false;
418
0
    }
419
0
    for (size_t i = 0; i < array_.size(); i++) {
420
0
      new_array[i] = std::move(array_[i]);
421
0
    }
422
0
    array_ = std::move(new_array);
423
424
0
    return true;
425
0
  }
Unexecuted instantiation: bssl::GrowableArray<std::__1::unique_ptr<bssl::ECHServerConfig, bssl::internal::Deleter> >::MaybeGrow()
Unexecuted instantiation: bssl::GrowableArray<std::__1::unique_ptr<ssl_credential_st, bssl::internal::Deleter> >::MaybeGrow()
Unexecuted instantiation: bssl::GrowableArray<bssl::ALPSConfig>::MaybeGrow()
Unexecuted instantiation: bssl::GrowableArray<bssl::CertCompressionAlg>::MaybeGrow()
426
427
  // |size_| is the number of elements stored in this GrowableArray.
428
  size_t size_ = 0;
429
  // |array_| is the backing array. Note that |array_.size()| is this
430
  // GrowableArray's current capacity and that |size_ <= array_.size()|.
431
  Array<T> array_;
432
  // |kDefaultSize| is the default initial size of the backing array.
433
  static constexpr size_t kDefaultSize = 16;
434
};
435
436
// CBBFinishArray behaves like |CBB_finish| but stores the result in an Array.
437
OPENSSL_EXPORT bool CBBFinishArray(CBB *cbb, Array<uint8_t> *out);
438
439
// GetAllNames helps to implement |*_get_all_*_names| style functions. It
440
// writes at most |max_out| string pointers to |out| and returns the number that
441
// it would have liked to have written. The strings written consist of
442
// |fixed_names_len| strings from |fixed_names| followed by |objects_len|
443
// strings taken by projecting |objects| through |name|.
444
template <typename T, typename Name>
445
inline size_t GetAllNames(const char **out, size_t max_out,
446
                          Span<const char *const> fixed_names, Name(T::*name),
447
0
                          Span<const T> objects) {
448
0
  auto span = bssl::MakeSpan(out, max_out);
449
0
  for (size_t i = 0; !span.empty() && i < fixed_names.size(); i++) {
450
0
    span[0] = fixed_names[i];
451
0
    span = span.subspan(1);
452
0
  }
453
0
  span = span.subspan(0, objects.size());
454
0
  for (size_t i = 0; i < span.size(); i++) {
455
0
    span[i] = objects[i].*name;
456
0
  }
457
0
  return fixed_names.size() + objects.size();
458
0
}
Unexecuted instantiation: unsigned long bssl::GetAllNames<ssl_cipher_st, char const*>(char const**, unsigned long, bssl::Span<char const* const>, char const* ssl_cipher_st::*, bssl::Span<ssl_cipher_st const>)
Unexecuted instantiation: unsigned long bssl::GetAllNames<bssl::NamedGroup, char const [32]>(char const**, unsigned long, bssl::Span<char const* const>, char const (bssl::NamedGroup::*) [32], bssl::Span<bssl::NamedGroup const>)
Unexecuted instantiation: unsigned long bssl::GetAllNames<SignatureAlgorithmName, char const [23]>(char const**, unsigned long, bssl::Span<char const* const>, char const (SignatureAlgorithmName::*) [23], bssl::Span<SignatureAlgorithmName const>)
Unexecuted instantiation: unsigned long bssl::GetAllNames<bssl::VersionInfo, char const*>(char const**, unsigned long, bssl::Span<char const* const>, char const* bssl::VersionInfo::*, bssl::Span<bssl::VersionInfo const>)
459
460
// RefCounted is a common base for ref-counted types. This is an instance of the
461
// C++ curiously-recurring template pattern, so a type Foo must subclass
462
// RefCounted<Foo>. It additionally must friend RefCounted<Foo> to allow calling
463
// the destructor.
464
template <typename Derived>
465
class RefCounted {
466
 public:
467
  RefCounted(const RefCounted &) = delete;
468
  RefCounted &operator=(const RefCounted &) = delete;
469
470
  // These methods are intentionally named differently from `bssl::UpRef` to
471
  // avoid a collision. Only the implementations of `FOO_up_ref` and `FOO_free`
472
  // should call these.
473
20
  void UpRefInternal() { CRYPTO_refcount_inc(&references_); }
Unexecuted instantiation: bssl::RefCounted<ssl_ech_keys_st>::UpRefInternal()
Unexecuted instantiation: bssl::RefCounted<ssl_credential_st>::UpRefInternal()
bssl::RefCounted<ssl_ctx_st>::UpRefInternal()
Line
Count
Source
473
20
  void UpRefInternal() { CRYPTO_refcount_inc(&references_); }
Unexecuted instantiation: bssl::RefCounted<ssl_session_st>::UpRefInternal()
474
190
  void DecRefInternal() {
475
190
    if (CRYPTO_refcount_dec_and_test_zero(&references_)) {
476
170
      Derived *d = static_cast<Derived *>(this);
477
170
      d->~Derived();
478
170
      OPENSSL_free(d);
479
170
    }
480
190
  }
Unexecuted instantiation: bssl::RefCounted<ssl_ech_keys_st>::DecRefInternal()
bssl::RefCounted<ssl_credential_st>::DecRefInternal()
Line
Count
Source
474
95
  void DecRefInternal() {
475
95
    if (CRYPTO_refcount_dec_and_test_zero(&references_)) {
476
95
      Derived *d = static_cast<Derived *>(this);
477
95
      d->~Derived();
478
95
      OPENSSL_free(d);
479
95
    }
480
95
  }
bssl::RefCounted<ssl_ctx_st>::DecRefInternal()
Line
Count
Source
474
95
  void DecRefInternal() {
475
95
    if (CRYPTO_refcount_dec_and_test_zero(&references_)) {
476
75
      Derived *d = static_cast<Derived *>(this);
477
75
      d->~Derived();
478
75
      OPENSSL_free(d);
479
75
    }
480
95
  }
Unexecuted instantiation: bssl::RefCounted<ssl_session_st>::DecRefInternal()
481
482
 protected:
483
  // Ensure that only `Derived`, which must inherit from `RefCounted<Derived>`,
484
  // can call the constructor. This catches bugs where someone inherited from
485
  // the wrong base.
486
  class CheckSubClass {
487
   private:
488
    friend Derived;
489
    CheckSubClass() = default;
490
  };
491
170
  RefCounted(CheckSubClass) {
492
170
    static_assert(std::is_base_of<RefCounted, Derived>::value,
493
170
                  "Derived must subclass RefCounted<Derived>");
494
170
  }
Unexecuted instantiation: bssl::RefCounted<ssl_ech_keys_st>::RefCounted(bssl::RefCounted<ssl_ech_keys_st>::CheckSubClass)
bssl::RefCounted<ssl_credential_st>::RefCounted(bssl::RefCounted<ssl_credential_st>::CheckSubClass)
Line
Count
Source
491
95
  RefCounted(CheckSubClass) {
492
95
    static_assert(std::is_base_of<RefCounted, Derived>::value,
493
95
                  "Derived must subclass RefCounted<Derived>");
494
95
  }
bssl::RefCounted<ssl_ctx_st>::RefCounted(bssl::RefCounted<ssl_ctx_st>::CheckSubClass)
Line
Count
Source
491
75
  RefCounted(CheckSubClass) {
492
75
    static_assert(std::is_base_of<RefCounted, Derived>::value,
493
75
                  "Derived must subclass RefCounted<Derived>");
494
75
  }
Unexecuted instantiation: bssl::RefCounted<ssl_session_st>::RefCounted(bssl::RefCounted<ssl_session_st>::CheckSubClass)
495
496
  ~RefCounted() = default;
497
498
 private:
499
  CRYPTO_refcount_t references_ = 1;
500
};
501
502
503
// Protocol versions.
504
//
505
// Due to DTLS's historical wire version differences, we maintain two notions of
506
// version.
507
//
508
// The "version" or "wire version" is the actual 16-bit value that appears on
509
// the wire. It uniquely identifies a version and is also used at API
510
// boundaries. The set of supported versions differs between TLS and DTLS. Wire
511
// versions are opaque values and may not be compared numerically.
512
//
513
// The "protocol version" identifies the high-level handshake variant being
514
// used. DTLS versions map to the corresponding TLS versions. Protocol versions
515
// are sequential and may be compared numerically.
516
517
// ssl_protocol_version_from_wire sets |*out| to the protocol version
518
// corresponding to wire version |version| and returns true. If |version| is not
519
// a valid TLS or DTLS version, it returns false.
520
//
521
// Note this simultaneously handles both DTLS and TLS. Use one of the
522
// higher-level functions below for most operations.
523
bool ssl_protocol_version_from_wire(uint16_t *out, uint16_t version);
524
525
// ssl_get_version_range sets |*out_min_version| and |*out_max_version| to the
526
// minimum and maximum enabled protocol versions, respectively.
527
bool ssl_get_version_range(const SSL_HANDSHAKE *hs, uint16_t *out_min_version,
528
                           uint16_t *out_max_version);
529
530
// ssl_supports_version returns whether |hs| supports |version|.
531
bool ssl_supports_version(const SSL_HANDSHAKE *hs, uint16_t version);
532
533
// ssl_method_supports_version returns whether |method| supports |version|.
534
bool ssl_method_supports_version(const SSL_PROTOCOL_METHOD *method,
535
                                 uint16_t version);
536
537
// ssl_add_supported_versions writes the supported versions of |hs| to |cbb|, in
538
// decreasing preference order. The version list is filtered to those whose
539
// protocol version is at least |extra_min_version|.
540
bool ssl_add_supported_versions(const SSL_HANDSHAKE *hs, CBB *cbb,
541
                                uint16_t extra_min_version);
542
543
// ssl_negotiate_version negotiates a common version based on |hs|'s preferences
544
// and the peer preference list in |peer_versions|. On success, it returns true
545
// and sets |*out_version| to the selected version. Otherwise, it returns false
546
// and sets |*out_alert| to an alert to send.
547
bool ssl_negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert,
548
                           uint16_t *out_version, const CBS *peer_versions);
549
550
// ssl_protocol_version returns |ssl|'s protocol version. It is an error to
551
// call this function before the version is determined.
552
uint16_t ssl_protocol_version(const SSL *ssl);
553
554
// Cipher suites.
555
556
BSSL_NAMESPACE_END
557
558
struct ssl_cipher_st {
559
  // name is the OpenSSL name for the cipher.
560
  const char *name;
561
  // standard_name is the IETF name for the cipher.
562
  const char *standard_name;
563
  // id is the cipher suite value bitwise OR-d with 0x03000000.
564
  uint32_t id;
565
566
  // algorithm_* determine the cipher suite. See constants below for the values.
567
  uint32_t algorithm_mkey;
568
  uint32_t algorithm_auth;
569
  uint32_t algorithm_enc;
570
  uint32_t algorithm_mac;
571
  uint32_t algorithm_prf;
572
};
573
574
BSSL_NAMESPACE_BEGIN
575
576
// Bits for |algorithm_mkey| (key exchange algorithm).
577
0
#define SSL_kRSA 0x00000001u
578
0
#define SSL_kECDHE 0x00000002u
579
// SSL_kPSK is only set for plain PSK, not ECDHE_PSK.
580
2
#define SSL_kPSK 0x00000004u
581
32
#define SSL_kGENERIC 0x00000008u
582
583
// Bits for |algorithm_auth| (server authentication).
584
0
#define SSL_aRSA_SIGN 0x00000001u
585
0
#define SSL_aRSA_DECRYPT 0x00000002u
586
0
#define SSL_aECDSA 0x00000004u
587
// SSL_aPSK is set for both PSK and ECDHE_PSK.
588
2
#define SSL_aPSK 0x00000008u
589
16
#define SSL_aGENERIC 0x00000010u
590
591
0
#define SSL_aCERT (SSL_aRSA_SIGN | SSL_aRSA_DECRYPT | SSL_aECDSA)
592
593
// Bits for |algorithm_enc| (symmetric encryption).
594
1.50k
#define SSL_3DES 0x00000001u
595
0
#define SSL_AES128 0x00000002u
596
0
#define SSL_AES256 0x00000004u
597
0
#define SSL_AES128GCM 0x00000008u
598
0
#define SSL_AES256GCM 0x00000010u
599
0
#define SSL_CHACHA20POLY1305 0x00000020u
600
601
#define SSL_AES (SSL_AES128 | SSL_AES256 | SSL_AES128GCM | SSL_AES256GCM)
602
603
// Bits for |algorithm_mac| (symmetric authentication).
604
0
#define SSL_SHA1 0x00000001u
605
0
#define SSL_SHA256 0x00000002u
606
// SSL_AEAD is set for all AEADs.
607
0
#define SSL_AEAD 0x00000004u
608
609
// Bits for |algorithm_prf| (handshake digest).
610
8
#define SSL_HANDSHAKE_MAC_DEFAULT 0x1
611
0
#define SSL_HANDSHAKE_MAC_SHA256 0x2
612
0
#define SSL_HANDSHAKE_MAC_SHA384 0x4
613
614
// SSL_MAX_MD_SIZE is size of the largest hash function used in TLS, SHA-384.
615
0
#define SSL_MAX_MD_SIZE 48
616
617
// An SSLCipherPreferenceList contains a list of SSL_CIPHERs with equal-
618
// preference groups. For TLS clients, the groups are moot because the server
619
// picks the cipher and groups cannot be expressed on the wire. However, for
620
// servers, the equal-preference groups allow the client's preferences to be
621
// partially respected. (This only has an effect with
622
// SSL_OP_CIPHER_SERVER_PREFERENCE).
623
//
624
// The equal-preference groups are expressed by grouping SSL_CIPHERs together.
625
// All elements of a group have the same priority: no ordering is expressed
626
// within a group.
627
//
628
// The values in |ciphers| are in one-to-one correspondence with
629
// |in_group_flags|. (That is, sk_SSL_CIPHER_num(ciphers) is the number of
630
// bytes in |in_group_flags|.) The bytes in |in_group_flags| are either 1, to
631
// indicate that the corresponding SSL_CIPHER is not the last element of a
632
// group, or 0 to indicate that it is.
633
//
634
// For example, if |in_group_flags| contains all zeros then that indicates a
635
// traditional, fully-ordered preference. Every SSL_CIPHER is the last element
636
// of the group (i.e. they are all in a one-element group).
637
//
638
// For a more complex example, consider:
639
//   ciphers:        A  B  C  D  E  F
640
//   in_group_flags: 1  1  0  0  1  0
641
//
642
// That would express the following, order:
643
//
644
//    A         E
645
//    B -> D -> F
646
//    C
647
struct SSLCipherPreferenceList {
648
  static constexpr bool kAllowUniquePtr = true;
649
650
148
  SSLCipherPreferenceList() = default;
651
  ~SSLCipherPreferenceList();
652
653
  bool Init(UniquePtr<STACK_OF(SSL_CIPHER)> ciphers,
654
            Span<const bool> in_group_flags);
655
  bool Init(const SSLCipherPreferenceList &);
656
657
  void Remove(const SSL_CIPHER *cipher);
658
659
  UniquePtr<STACK_OF(SSL_CIPHER)> ciphers;
660
  bool *in_group_flags = nullptr;
661
};
662
663
// AllCiphers returns an array of all supported ciphers, sorted by id.
664
Span<const SSL_CIPHER> AllCiphers();
665
666
// ssl_cipher_get_evp_aead sets |*out_aead| to point to the correct EVP_AEAD
667
// object for |cipher| protocol version |version|. It sets |*out_mac_secret_len|
668
// and |*out_fixed_iv_len| to the MAC key length and fixed IV length,
669
// respectively. The MAC key length is zero except for legacy block and stream
670
// ciphers. It returns true on success and false on error.
671
bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead,
672
                             size_t *out_mac_secret_len,
673
                             size_t *out_fixed_iv_len, const SSL_CIPHER *cipher,
674
                             uint16_t version, bool is_dtls);
675
676
// ssl_get_handshake_digest returns the |EVP_MD| corresponding to |version| and
677
// |cipher|.
678
const EVP_MD *ssl_get_handshake_digest(uint16_t version,
679
                                       const SSL_CIPHER *cipher);
680
681
// ssl_create_cipher_list evaluates |rule_str|. It sets |*out_cipher_list| to a
682
// newly-allocated |SSLCipherPreferenceList| containing the result. It returns
683
// true on success and false on failure. If |strict| is true, nonsense will be
684
// rejected. If false, nonsense will be silently ignored. An empty result is
685
// considered an error regardless of |strict|. |has_aes_hw| indicates if the
686
// list should be ordered based on having support for AES in hardware or not.
687
bool ssl_create_cipher_list(UniquePtr<SSLCipherPreferenceList> *out_cipher_list,
688
                            const bool has_aes_hw, const char *rule_str,
689
                            bool strict);
690
691
// ssl_cipher_auth_mask_for_key returns the mask of cipher |algorithm_auth|
692
// values suitable for use with |key| in TLS 1.2 and below. |sign_ok| indicates
693
// whether |key| may be used for signing.
694
uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key, bool sign_ok);
695
696
// ssl_cipher_uses_certificate_auth returns whether |cipher| authenticates the
697
// server and, optionally, the client with a certificate.
698
bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher);
699
700
// ssl_cipher_requires_server_key_exchange returns whether |cipher| requires a
701
// ServerKeyExchange message.
702
//
703
// This function may return false while still allowing |cipher| an optional
704
// ServerKeyExchange. This is the case for plain PSK ciphers.
705
bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher);
706
707
// ssl_cipher_get_record_split_len, for TLS 1.0 CBC mode ciphers, returns the
708
// length of an encrypted 1-byte record, for use in record-splitting. Otherwise
709
// it returns zero.
710
size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher);
711
712
// ssl_choose_tls13_cipher returns an |SSL_CIPHER| corresponding with the best
713
// available from |cipher_suites| compatible with |version| and |policy|. It
714
// returns NULL if there isn't a compatible cipher. |has_aes_hw| indicates if
715
// the choice should be made as if support for AES in hardware is available.
716
const SSL_CIPHER *ssl_choose_tls13_cipher(CBS cipher_suites, bool has_aes_hw,
717
                                          uint16_t version,
718
                                          enum ssl_compliance_policy_t policy);
719
720
// ssl_tls13_cipher_meets_policy returns true if |cipher_id| is acceptable given
721
// |policy|.
722
bool ssl_tls13_cipher_meets_policy(uint16_t cipher_id,
723
                                   enum ssl_compliance_policy_t policy);
724
725
// ssl_cipher_is_deprecated returns true if |cipher| is deprecated.
726
OPENSSL_EXPORT bool ssl_cipher_is_deprecated(const SSL_CIPHER *cipher);
727
728
729
// Transcript layer.
730
731
// SSLTranscript maintains the handshake transcript as a combination of a
732
// buffer and running hash.
733
class SSLTranscript {
734
 public:
735
  SSLTranscript();
736
  ~SSLTranscript();
737
738
  SSLTranscript(SSLTranscript &&other) = default;
739
0
  SSLTranscript &operator=(SSLTranscript &&other) = default;
740
741
  // Init initializes the handshake transcript. If called on an existing
742
  // transcript, it resets the transcript and hash. It returns true on success
743
  // and false on failure.
744
  bool Init();
745
746
  // InitHash initializes the handshake hash based on the PRF and contents of
747
  // the handshake transcript. Subsequent calls to |Update| will update the
748
  // rolling hash. It returns one on success and zero on failure. It is an error
749
  // to call this function after the handshake buffer is released. This may be
750
  // called multiple times to change the hash function.
751
  bool InitHash(uint16_t version, const SSL_CIPHER *cipher);
752
753
  // UpdateForHelloRetryRequest resets the rolling hash with the
754
  // HelloRetryRequest construction. It returns true on success and false on
755
  // failure. It is an error to call this function before the handshake buffer
756
  // is released.
757
  bool UpdateForHelloRetryRequest();
758
759
  // CopyToHashContext initializes |ctx| with |digest| and the data thus far in
760
  // the transcript. It returns true on success and false on failure. If the
761
  // handshake buffer is still present, |digest| may be any supported digest.
762
  // Otherwise, |digest| must match the transcript hash.
763
  bool CopyToHashContext(EVP_MD_CTX *ctx, const EVP_MD *digest) const;
764
765
0
  Span<const uint8_t> buffer() const {
766
0
    return MakeConstSpan(reinterpret_cast<const uint8_t *>(buffer_->data),
767
0
                         buffer_->length);
768
0
  }
769
770
  // FreeBuffer releases the handshake buffer. Subsequent calls to
771
  // |Update| will not update the handshake buffer.
772
  void FreeBuffer();
773
774
  // DigestLen returns the length of the PRF hash.
775
  size_t DigestLen() const;
776
777
  // Digest returns the PRF hash. For TLS 1.1 and below, this is
778
  // |EVP_md5_sha1|.
779
  const EVP_MD *Digest() const;
780
781
  // Update adds |in| to the handshake buffer and handshake hash, whichever is
782
  // enabled. It returns true on success and false on failure.
783
  bool Update(Span<const uint8_t> in);
784
785
  // GetHash writes the handshake hash to |out| which must have room for at
786
  // least |DigestLen| bytes. On success, it returns true and sets |*out_len| to
787
  // the number of bytes written. Otherwise, it returns false.
788
  bool GetHash(uint8_t *out, size_t *out_len) const;
789
790
  // GetFinishedMAC computes the MAC for the Finished message into the bytes
791
  // pointed by |out| and writes the number of bytes to |*out_len|. |out| must
792
  // have room for |EVP_MAX_MD_SIZE| bytes. It returns true on success and false
793
  // on failure.
794
  bool GetFinishedMAC(uint8_t *out, size_t *out_len, const SSL_SESSION *session,
795
                      bool from_server) const;
796
797
 private:
798
  // buffer_, if non-null, contains the handshake transcript.
799
  UniquePtr<BUF_MEM> buffer_;
800
  // hash, if initialized with an |EVP_MD|, maintains the handshake hash.
801
  ScopedEVP_MD_CTX hash_;
802
};
803
804
// tls1_prf computes the PRF function for |ssl|. It fills |out|, using |secret|
805
// as the secret and |label| as the label. |seed1| and |seed2| are concatenated
806
// to form the seed parameter. It returns true on success and false on failure.
807
bool tls1_prf(const EVP_MD *digest, Span<uint8_t> out,
808
              Span<const uint8_t> secret, Span<const char> label,
809
              Span<const uint8_t> seed1, Span<const uint8_t> seed2);
810
811
812
// Encryption layer.
813
814
// SSLAEADContext contains information about an AEAD that is being used to
815
// encrypt an SSL connection.
816
class SSLAEADContext {
817
 public:
818
  SSLAEADContext(uint16_t version, bool is_dtls, const SSL_CIPHER *cipher);
819
  ~SSLAEADContext();
820
  static constexpr bool kAllowUniquePtr = true;
821
822
  SSLAEADContext(const SSLAEADContext &&) = delete;
823
  SSLAEADContext &operator=(const SSLAEADContext &&) = delete;
824
825
  // CreateNullCipher creates an |SSLAEADContext| for the null cipher.
826
  static UniquePtr<SSLAEADContext> CreateNullCipher(bool is_dtls);
827
828
  // Create creates an |SSLAEADContext| using the supplied key material. It
829
  // returns nullptr on error. Only one of |Open| or |Seal| may be used with the
830
  // resulting object, depending on |direction|. |version| is the normalized
831
  // protocol version, so DTLS 1.0 is represented as 0x0301, not 0xffef.
832
  static UniquePtr<SSLAEADContext> Create(enum evp_aead_direction_t direction,
833
                                          uint16_t version, bool is_dtls,
834
                                          const SSL_CIPHER *cipher,
835
                                          Span<const uint8_t> enc_key,
836
                                          Span<const uint8_t> mac_key,
837
                                          Span<const uint8_t> fixed_iv);
838
839
  // CreatePlaceholderForQUIC creates a placeholder |SSLAEADContext| for the
840
  // given cipher and version. The resulting object can be queried for various
841
  // properties but cannot encrypt or decrypt data.
842
  static UniquePtr<SSLAEADContext> CreatePlaceholderForQUIC(
843
      uint16_t version, const SSL_CIPHER *cipher);
844
845
  // SetVersionIfNullCipher sets the version the SSLAEADContext for the null
846
  // cipher, to make version-specific determinations in the record layer prior
847
  // to a cipher being selected.
848
  void SetVersionIfNullCipher(uint16_t version);
849
850
  // ProtocolVersion returns the protocol version associated with this
851
  // SSLAEADContext. It can only be called once |version_| has been set to a
852
  // valid value.
853
  uint16_t ProtocolVersion() const;
854
855
  // RecordVersion returns the record version that should be used with this
856
  // SSLAEADContext for record construction and crypto.
857
  uint16_t RecordVersion() const;
858
859
0
  const SSL_CIPHER *cipher() const { return cipher_; }
860
861
  // is_null_cipher returns true if this is the null cipher.
862
24
  bool is_null_cipher() const { return !cipher_; }
863
864
  // ExplicitNonceLen returns the length of the explicit nonce.
865
  size_t ExplicitNonceLen() const;
866
867
  // MaxOverhead returns the maximum overhead of calling |Seal|.
868
  size_t MaxOverhead() const;
869
870
  // SuffixLen calculates the suffix length written by |SealScatter| and writes
871
  // it to |*out_suffix_len|. It returns true on success and false on error.
872
  // |in_len| and |extra_in_len| should equal the argument of the same names
873
  // passed to |SealScatter|.
874
  bool SuffixLen(size_t *out_suffix_len, size_t in_len,
875
                 size_t extra_in_len) const;
876
877
  // CiphertextLen calculates the total ciphertext length written by
878
  // |SealScatter| and writes it to |*out_len|. It returns true on success and
879
  // false on error. |in_len| and |extra_in_len| should equal the argument of
880
  // the same names passed to |SealScatter|.
881
  bool CiphertextLen(size_t *out_len, size_t in_len, size_t extra_in_len) const;
882
883
  // Open authenticates and decrypts |in| in-place. On success, it sets |*out|
884
  // to the plaintext in |in| and returns true.  Otherwise, it returns
885
  // false. The output will always be |ExplicitNonceLen| bytes ahead of |in|.
886
  bool Open(Span<uint8_t> *out, uint8_t type, uint16_t record_version,
887
            uint64_t seqnum, Span<const uint8_t> header, Span<uint8_t> in);
888
889
  // Seal encrypts and authenticates |in_len| bytes from |in| and writes the
890
  // result to |out|. It returns true on success and false on error.
891
  //
892
  // If |in| and |out| alias then |out| + |ExplicitNonceLen| must be == |in|.
893
  bool Seal(uint8_t *out, size_t *out_len, size_t max_out, uint8_t type,
894
            uint16_t record_version, uint64_t seqnum,
895
            Span<const uint8_t> header, const uint8_t *in, size_t in_len);
896
897
  // SealScatter encrypts and authenticates |in_len| bytes from |in| and splits
898
  // the result between |out_prefix|, |out| and |out_suffix|. It returns one on
899
  // success and zero on error.
900
  //
901
  // On successful return, exactly |ExplicitNonceLen| bytes are written to
902
  // |out_prefix|, |in_len| bytes to |out|, and |SuffixLen| bytes to
903
  // |out_suffix|.
904
  //
905
  // |extra_in| may point to an additional plaintext buffer. If present,
906
  // |extra_in_len| additional bytes are encrypted and authenticated, and the
907
  // ciphertext is written to the beginning of |out_suffix|. |SuffixLen| should
908
  // be used to size |out_suffix| accordingly.
909
  //
910
  // If |in| and |out| alias then |out| must be == |in|. Other arguments may not
911
  // alias anything.
912
  bool SealScatter(uint8_t *out_prefix, uint8_t *out, uint8_t *out_suffix,
913
                   uint8_t type, uint16_t record_version, uint64_t seqnum,
914
                   Span<const uint8_t> header, const uint8_t *in, size_t in_len,
915
                   const uint8_t *extra_in, size_t extra_in_len);
916
917
  bool GetIV(const uint8_t **out_iv, size_t *out_iv_len) const;
918
919
 private:
920
  // GetAdditionalData returns the additional data, writing into |storage| if
921
  // necessary.
922
  Span<const uint8_t> GetAdditionalData(uint8_t storage[13], uint8_t type,
923
                                        uint16_t record_version,
924
                                        uint64_t seqnum, size_t plaintext_len,
925
                                        Span<const uint8_t> header);
926
927
  const SSL_CIPHER *cipher_;
928
  ScopedEVP_AEAD_CTX ctx_;
929
  // fixed_nonce_ contains any bytes of the nonce that are fixed for all
930
  // records.
931
  uint8_t fixed_nonce_[12];
932
  uint8_t fixed_nonce_len_ = 0, variable_nonce_len_ = 0;
933
  // version_ is the wire version that should be used with this AEAD.
934
  uint16_t version_;
935
  // is_dtls_ is whether DTLS is being used with this AEAD.
936
  bool is_dtls_;
937
  // variable_nonce_included_in_record_ is true if the variable nonce
938
  // for a record is included as a prefix before the ciphertext.
939
  bool variable_nonce_included_in_record_ : 1;
940
  // random_variable_nonce_ is true if the variable nonce is
941
  // randomly generated, rather than derived from the sequence
942
  // number.
943
  bool random_variable_nonce_ : 1;
944
  // xor_fixed_nonce_ is true if the fixed nonce should be XOR'd into the
945
  // variable nonce rather than prepended.
946
  bool xor_fixed_nonce_ : 1;
947
  // omit_length_in_ad_ is true if the length should be omitted in the
948
  // AEAD's ad parameter.
949
  bool omit_length_in_ad_ : 1;
950
  // ad_is_header_ is true if the AEAD's ad parameter is the record header.
951
  bool ad_is_header_ : 1;
952
};
953
954
955
// DTLS replay bitmap.
956
957
// DTLS1_BITMAP maintains a sliding window of 64 sequence numbers to detect
958
// replayed packets. It should be initialized by zeroing every field.
959
struct DTLS1_BITMAP {
960
  // map is a bitset of sequence numbers that have been seen. Bit i corresponds
961
  // to |max_seq_num - i|.
962
  std::bitset<256> map;
963
  // max_seq_num is the largest sequence number seen so far as a 64-bit
964
  // integer.
965
  uint64_t max_seq_num = 0;
966
};
967
968
969
// Record layer.
970
971
// ssl_record_prefix_len returns the length of the prefix before the ciphertext
972
// of a record for |ssl|.
973
//
974
// TODO(davidben): Expose this as part of public API once the high-level
975
// buffer-free APIs are available.
976
size_t ssl_record_prefix_len(const SSL *ssl);
977
978
enum ssl_open_record_t {
979
  ssl_open_record_success,
980
  ssl_open_record_discard,
981
  ssl_open_record_partial,
982
  ssl_open_record_close_notify,
983
  ssl_open_record_error,
984
};
985
986
// tls_open_record decrypts a record from |in| in-place.
987
//
988
// If the input did not contain a complete record, it returns
989
// |ssl_open_record_partial|. It sets |*out_consumed| to the total number of
990
// bytes necessary. It is guaranteed that a successful call to |tls_open_record|
991
// will consume at least that many bytes.
992
//
993
// Otherwise, it sets |*out_consumed| to the number of bytes of input
994
// consumed. Note that input may be consumed on all return codes if a record was
995
// decrypted.
996
//
997
// On success, it returns |ssl_open_record_success|. It sets |*out_type| to the
998
// record type and |*out| to the record body in |in|. Note that |*out| may be
999
// empty.
1000
//
1001
// If a record was successfully processed but should be discarded, it returns
1002
// |ssl_open_record_discard|.
1003
//
1004
// If a record was successfully processed but is a close_notify, it returns
1005
// |ssl_open_record_close_notify|.
1006
//
1007
// On failure or fatal alert, it returns |ssl_open_record_error| and sets
1008
// |*out_alert| to an alert to emit, or zero if no alert should be emitted.
1009
enum ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type,
1010
                                       Span<uint8_t> *out, size_t *out_consumed,
1011
                                       uint8_t *out_alert, Span<uint8_t> in);
1012
1013
// dtls_open_record implements |tls_open_record| for DTLS. It only returns
1014
// |ssl_open_record_partial| if |in| was empty and sets |*out_consumed| to
1015
// zero. The caller should read one packet and try again.
1016
enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type,
1017
                                        Span<uint8_t> *out,
1018
                                        size_t *out_consumed,
1019
                                        uint8_t *out_alert, Span<uint8_t> in);
1020
1021
// ssl_seal_align_prefix_len returns the length of the prefix before the start
1022
// of the bulk of the ciphertext when sealing a record with |ssl|. Callers may
1023
// use this to align buffers.
1024
//
1025
// Note when TLS 1.0 CBC record-splitting is enabled, this includes the one byte
1026
// record and is the offset into second record's ciphertext. Thus sealing a
1027
// small record may result in a smaller output than this value.
1028
//
1029
// TODO(davidben): Is this alignment valuable? Record-splitting makes this a
1030
// mess.
1031
size_t ssl_seal_align_prefix_len(const SSL *ssl);
1032
1033
// tls_seal_record seals a new record of type |type| and body |in| and writes it
1034
// to |out|. At most |max_out| bytes will be written. It returns true on success
1035
// and false on error. If enabled, |tls_seal_record| implements TLS 1.0 CBC
1036
// 1/n-1 record splitting and may write two records concatenated.
1037
//
1038
// For a large record, the bulk of the ciphertext will begin
1039
// |ssl_seal_align_prefix_len| bytes into out. Aligning |out| appropriately may
1040
// improve performance. It writes at most |in_len| + |SSL_max_seal_overhead|
1041
// bytes to |out|.
1042
//
1043
// |in| and |out| may not alias.
1044
bool tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
1045
                     uint8_t type, const uint8_t *in, size_t in_len);
1046
1047
enum dtls1_use_epoch_t {
1048
  dtls1_use_previous_epoch,
1049
  dtls1_use_current_epoch,
1050
};
1051
1052
// dtls_max_seal_overhead returns the maximum overhead, in bytes, of sealing a
1053
// record.
1054
size_t dtls_max_seal_overhead(const SSL *ssl, enum dtls1_use_epoch_t use_epoch);
1055
1056
// dtls_seal_prefix_len returns the number of bytes of prefix to reserve in
1057
// front of the plaintext when sealing a record in-place.
1058
size_t dtls_seal_prefix_len(const SSL *ssl, enum dtls1_use_epoch_t use_epoch);
1059
1060
// dtls_seal_record implements |tls_seal_record| for DTLS. |use_epoch| selects
1061
// which epoch's cipher state to use. Unlike |tls_seal_record|, |in| and |out|
1062
// may alias but, if they do, |in| must be exactly |dtls_seal_prefix_len| bytes
1063
// ahead of |out|.
1064
bool dtls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
1065
                      uint8_t type, const uint8_t *in, size_t in_len,
1066
                      enum dtls1_use_epoch_t use_epoch);
1067
1068
// ssl_process_alert processes |in| as an alert and updates |ssl|'s shutdown
1069
// state. It returns one of |ssl_open_record_discard|, |ssl_open_record_error|,
1070
// |ssl_open_record_close_notify|, or |ssl_open_record_fatal_alert| as
1071
// appropriate.
1072
enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert,
1073
                                         Span<const uint8_t> in);
1074
1075
1076
// Private key operations.
1077
1078
// ssl_private_key_* perform the corresponding operation on
1079
// |SSL_PRIVATE_KEY_METHOD|. If there is a custom private key configured, they
1080
// call the corresponding function or |complete| depending on whether there is a
1081
// pending operation. Otherwise, they implement the operation with
1082
// |EVP_PKEY|.
1083
1084
enum ssl_private_key_result_t ssl_private_key_sign(
1085
    SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out,
1086
    uint16_t sigalg, Span<const uint8_t> in);
1087
1088
enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs,
1089
                                                      uint8_t *out,
1090
                                                      size_t *out_len,
1091
                                                      size_t max_out,
1092
                                                      Span<const uint8_t> in);
1093
1094
// ssl_pkey_supports_algorithm returns whether |pkey| may be used to sign
1095
// |sigalg|.
1096
bool ssl_pkey_supports_algorithm(const SSL *ssl, EVP_PKEY *pkey,
1097
                                 uint16_t sigalg);
1098
1099
// ssl_public_key_verify verifies that the |signature| is valid for the public
1100
// key |pkey| and input |in|, using the signature algorithm |sigalg|.
1101
bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature,
1102
                           uint16_t sigalg, EVP_PKEY *pkey,
1103
                           Span<const uint8_t> in);
1104
1105
1106
// Key shares.
1107
1108
// SSLKeyShare abstracts over KEM-like constructions, for use with TLS 1.2 ECDHE
1109
// cipher suites and the TLS 1.3 key_share extension.
1110
//
1111
// TODO(davidben): This class is named SSLKeyShare after the TLS 1.3 key_share
1112
// extension, but it really implements a KEM abstraction. Additionally, we use
1113
// the same type for Encap, which is a one-off, stateless operation, as Generate
1114
// and Decap. Slightly tidier would be for Generate to return a new SSLKEMKey
1115
// (or we introduce EVP_KEM and EVP_KEM_KEY), with a Decap method, and for Encap
1116
// to be static function.
1117
class SSLKeyShare {
1118
 public:
1119
2
  virtual ~SSLKeyShare() {}
1120
  static constexpr bool kAllowUniquePtr = true;
1121
1122
  // Create returns a SSLKeyShare instance for use with group |group_id| or
1123
  // nullptr on error.
1124
  static UniquePtr<SSLKeyShare> Create(uint16_t group_id);
1125
1126
  // GroupID returns the group ID.
1127
  virtual uint16_t GroupID() const = 0;
1128
1129
  // Generate generates a keypair and writes the public key to |out_public_key|.
1130
  // It returns true on success and false on error.
1131
  virtual bool Generate(CBB *out_public_key) = 0;
1132
1133
  // Encap generates an ephemeral, symmetric secret and encapsulates it with
1134
  // |peer_key|. On success, it returns true, writes the encapsulated secret to
1135
  // |out_ciphertext|, and sets |*out_secret| to the shared secret. On failure,
1136
  // it returns false and sets |*out_alert| to an alert to send to the peer.
1137
  virtual bool Encap(CBB *out_ciphertext, Array<uint8_t> *out_secret,
1138
                     uint8_t *out_alert,
1139
                     Span<const uint8_t> peer_key) = 0;
1140
1141
  // Decap decapsulates the symmetric secret in |ciphertext|. On success, it
1142
  // returns true and sets |*out_secret| to the shared secret. On failure, it
1143
  // returns false and sets |*out_alert| to an alert to send to the peer.
1144
  virtual bool Decap(Array<uint8_t> *out_secret, uint8_t *out_alert,
1145
                     Span<const uint8_t> ciphertext) = 0;
1146
1147
  // SerializePrivateKey writes the private key to |out|, returning true if
1148
  // successful and false otherwise. It should be called after |Generate|.
1149
0
  virtual bool SerializePrivateKey(CBB *out) { return false; }
1150
1151
  // DeserializePrivateKey initializes the state of the key exchange from |in|,
1152
  // returning true if successful and false otherwise.
1153
0
  virtual bool DeserializePrivateKey(CBS *in) { return false; }
1154
};
1155
1156
struct NamedGroup {
1157
  int nid;
1158
  uint16_t group_id;
1159
  const char name[32], alias[32];
1160
};
1161
1162
// NamedGroups returns all supported groups.
1163
Span<const NamedGroup> NamedGroups();
1164
1165
// ssl_nid_to_group_id looks up the group corresponding to |nid|. On success, it
1166
// sets |*out_group_id| to the group ID and returns true. Otherwise, it returns
1167
// false.
1168
bool ssl_nid_to_group_id(uint16_t *out_group_id, int nid);
1169
1170
// ssl_name_to_group_id looks up the group corresponding to the |name| string of
1171
// length |len|. On success, it sets |*out_group_id| to the group ID and returns
1172
// true. Otherwise, it returns false.
1173
bool ssl_name_to_group_id(uint16_t *out_group_id, const char *name, size_t len);
1174
1175
// ssl_group_id_to_nid returns the NID corresponding to |group_id| or
1176
// |NID_undef| if unknown.
1177
int ssl_group_id_to_nid(uint16_t group_id);
1178
1179
1180
// Handshake messages.
1181
1182
struct SSLMessage {
1183
  bool is_v2_hello;
1184
  uint8_t type;
1185
  CBS body;
1186
  // raw is the entire serialized handshake message, including the TLS or DTLS
1187
  // message header.
1188
  CBS raw;
1189
};
1190
1191
// SSL_MAX_HANDSHAKE_FLIGHT is the number of messages, including
1192
// ChangeCipherSpec, in the longest handshake flight. Currently this is the
1193
// client's second leg in a full handshake when client certificates, NPN, and
1194
// Channel ID, are all enabled.
1195
0
#define SSL_MAX_HANDSHAKE_FLIGHT 7
1196
1197
extern const uint8_t kHelloRetryRequest[SSL3_RANDOM_SIZE];
1198
extern const uint8_t kTLS12DowngradeRandom[8];
1199
extern const uint8_t kTLS13DowngradeRandom[8];
1200
extern const uint8_t kJDK11DowngradeRandom[8];
1201
1202
// ssl_max_handshake_message_len returns the maximum number of bytes permitted
1203
// in a handshake message for |ssl|.
1204
size_t ssl_max_handshake_message_len(const SSL *ssl);
1205
1206
// tls_can_accept_handshake_data returns whether |ssl| is able to accept more
1207
// data into handshake buffer.
1208
bool tls_can_accept_handshake_data(const SSL *ssl, uint8_t *out_alert);
1209
1210
// tls_has_unprocessed_handshake_data returns whether there is buffered
1211
// handshake data that has not been consumed by |get_message|.
1212
bool tls_has_unprocessed_handshake_data(const SSL *ssl);
1213
1214
// tls_append_handshake_data appends |data| to the handshake buffer. It returns
1215
// true on success and false on allocation failure.
1216
bool tls_append_handshake_data(SSL *ssl, Span<const uint8_t> data);
1217
1218
// dtls_has_unprocessed_handshake_data behaves like
1219
// |tls_has_unprocessed_handshake_data| for DTLS.
1220
bool dtls_has_unprocessed_handshake_data(const SSL *ssl);
1221
1222
// tls_flush_pending_hs_data flushes any handshake plaintext data.
1223
bool tls_flush_pending_hs_data(SSL *ssl);
1224
1225
struct DTLS_OUTGOING_MESSAGE {
1226
0
  DTLS_OUTGOING_MESSAGE() {}
1227
  DTLS_OUTGOING_MESSAGE(const DTLS_OUTGOING_MESSAGE &) = delete;
1228
  DTLS_OUTGOING_MESSAGE &operator=(const DTLS_OUTGOING_MESSAGE &) = delete;
1229
1230
  void Clear();
1231
1232
  Array<uint8_t> data;
1233
  uint16_t epoch = 0;
1234
  bool is_ccs = false;
1235
};
1236
1237
// dtls_clear_outgoing_messages releases all buffered outgoing messages.
1238
void dtls_clear_outgoing_messages(SSL *ssl);
1239
1240
1241
// Callbacks.
1242
1243
// ssl_do_info_callback calls |ssl|'s info callback, if set.
1244
void ssl_do_info_callback(const SSL *ssl, int type, int value);
1245
1246
// ssl_do_msg_callback calls |ssl|'s message callback, if set.
1247
void ssl_do_msg_callback(const SSL *ssl, int is_write, int content_type,
1248
                         Span<const uint8_t> in);
1249
1250
1251
// Transport buffers.
1252
1253
class SSLBuffer {
1254
 public:
1255
20
  SSLBuffer() {}
1256
20
  ~SSLBuffer() { Clear(); }
1257
1258
  SSLBuffer(const SSLBuffer &) = delete;
1259
  SSLBuffer &operator=(const SSLBuffer &) = delete;
1260
1261
4
  uint8_t *data() { return buf_ + offset_; }
1262
8
  size_t size() const { return size_; }
1263
2
  bool empty() const { return size_ == 0; }
1264
2
  size_t cap() const { return cap_; }
1265
1266
2
  Span<uint8_t> span() { return MakeSpan(data(), size()); }
1267
1268
0
  Span<uint8_t> remaining() {
1269
0
    return MakeSpan(data() + size(), cap() - size());
1270
0
  }
1271
1272
  // Clear releases the buffer.
1273
  void Clear();
1274
1275
  // EnsureCap ensures the buffer has capacity at least |new_cap|, aligned such
1276
  // that data written after |header_len| is aligned to a
1277
  // |SSL3_ALIGN_PAYLOAD|-byte boundary. It returns true on success and false
1278
  // on error.
1279
  bool EnsureCap(size_t header_len, size_t new_cap);
1280
1281
  // DidWrite extends the buffer by |len|. The caller must have filled in to
1282
  // this point.
1283
  void DidWrite(size_t len);
1284
1285
  // Consume consumes |len| bytes from the front of the buffer.  The memory
1286
  // consumed will remain valid until the next call to |DiscardConsumed| or
1287
  // |Clear|.
1288
  void Consume(size_t len);
1289
1290
  // DiscardConsumed discards the consumed bytes from the buffer. If the buffer
1291
  // is now empty, it releases memory used by it.
1292
  void DiscardConsumed();
1293
1294
 private:
1295
  // buf_ is the memory allocated for this buffer.
1296
  uint8_t *buf_ = nullptr;
1297
  // offset_ is the offset into |buf_| which the buffer contents start at.
1298
  uint16_t offset_ = 0;
1299
  // size_ is the size of the buffer contents from |buf_| + |offset_|.
1300
  uint16_t size_ = 0;
1301
  // cap_ is how much memory beyond |buf_| + |offset_| is available.
1302
  uint16_t cap_ = 0;
1303
  // inline_buf_ is a static buffer for short reads.
1304
  uint8_t inline_buf_[SSL3_RT_HEADER_LENGTH];
1305
  // buf_allocated_ is true if |buf_| points to allocated data and must be freed
1306
  // or false if it points into |inline_buf_|.
1307
  bool buf_allocated_ = false;
1308
};
1309
1310
// ssl_read_buffer_extend_to extends the read buffer to the desired length. For
1311
// TLS, it reads to the end of the buffer until the buffer is |len| bytes
1312
// long. For DTLS, it reads a new packet and ignores |len|. It returns one on
1313
// success, zero on EOF, and a negative number on error.
1314
//
1315
// It is an error to call |ssl_read_buffer_extend_to| in DTLS when the buffer is
1316
// non-empty.
1317
int ssl_read_buffer_extend_to(SSL *ssl, size_t len);
1318
1319
// ssl_handle_open_record handles the result of passing |ssl->s3->read_buffer|
1320
// to a record-processing function. If |ret| is a success or if the caller
1321
// should retry, it returns one and sets |*out_retry|. Otherwise, it returns <=
1322
// 0.
1323
int ssl_handle_open_record(SSL *ssl, bool *out_retry, ssl_open_record_t ret,
1324
                           size_t consumed, uint8_t alert);
1325
1326
// ssl_write_buffer_flush flushes the write buffer to the transport. It returns
1327
// one on success and <= 0 on error. For DTLS, whether or not the write
1328
// succeeds, the write buffer will be cleared.
1329
int ssl_write_buffer_flush(SSL *ssl);
1330
1331
1332
// Certificate functions.
1333
1334
// ssl_parse_cert_chain parses a certificate list from |cbs| in the format used
1335
// by a TLS Certificate message. On success, it advances |cbs| and returns
1336
// true. Otherwise, it returns false and sets |*out_alert| to an alert to send
1337
// to the peer.
1338
//
1339
// If the list is non-empty then |*out_chain| and |*out_pubkey| will be set to
1340
// the certificate chain and the leaf certificate's public key
1341
// respectively. Otherwise, both will be set to nullptr.
1342
//
1343
// If the list is non-empty and |out_leaf_sha256| is non-NULL, it writes the
1344
// SHA-256 hash of the leaf to |out_leaf_sha256|.
1345
bool ssl_parse_cert_chain(uint8_t *out_alert,
1346
                          UniquePtr<STACK_OF(CRYPTO_BUFFER)> *out_chain,
1347
                          UniquePtr<EVP_PKEY> *out_pubkey,
1348
                          uint8_t *out_leaf_sha256, CBS *cbs,
1349
                          CRYPTO_BUFFER_POOL *pool);
1350
1351
enum ssl_key_usage_t {
1352
  key_usage_digital_signature = 0,
1353
  key_usage_encipherment = 2,
1354
};
1355
1356
// ssl_cert_check_key_usage parses the DER-encoded, X.509 certificate in |in|
1357
// and returns true if doesn't specify a key usage or, if it does, if it
1358
// includes |bit|. Otherwise it pushes to the error queue and returns false.
1359
OPENSSL_EXPORT bool ssl_cert_check_key_usage(const CBS *in,
1360
                                             enum ssl_key_usage_t bit);
1361
1362
// ssl_cert_parse_pubkey extracts the public key from the DER-encoded, X.509
1363
// certificate in |in|. It returns an allocated |EVP_PKEY| or else returns
1364
// nullptr and pushes to the error queue.
1365
UniquePtr<EVP_PKEY> ssl_cert_parse_pubkey(const CBS *in);
1366
1367
// ssl_parse_client_CA_list parses a CA list from |cbs| in the format used by a
1368
// TLS CertificateRequest message. On success, it returns a newly-allocated
1369
// |CRYPTO_BUFFER| list and advances |cbs|. Otherwise, it returns nullptr and
1370
// sets |*out_alert| to an alert to send to the peer.
1371
UniquePtr<STACK_OF(CRYPTO_BUFFER)> ssl_parse_client_CA_list(SSL *ssl,
1372
                                                            uint8_t *out_alert,
1373
                                                            CBS *cbs);
1374
1375
// ssl_has_client_CAs returns there are configured CAs.
1376
bool ssl_has_client_CAs(const SSL_CONFIG *cfg);
1377
1378
// ssl_add_client_CA_list adds the configured CA list to |cbb| in the format
1379
// used by a TLS CertificateRequest message. It returns true on success and
1380
// false on error.
1381
bool ssl_add_client_CA_list(SSL_HANDSHAKE *hs, CBB *cbb);
1382
1383
// ssl_check_leaf_certificate returns one if |pkey| and |leaf| are suitable as
1384
// a server's leaf certificate for |hs|. Otherwise, it returns zero and pushes
1385
// an error on the error queue.
1386
bool ssl_check_leaf_certificate(SSL_HANDSHAKE *hs, EVP_PKEY *pkey,
1387
                               const CRYPTO_BUFFER *leaf);
1388
1389
1390
// TLS 1.3 key derivation.
1391
1392
// tls13_init_key_schedule initializes the handshake hash and key derivation
1393
// state, and incorporates the PSK. The cipher suite and PRF hash must have been
1394
// selected at this point. It returns true on success and false on error.
1395
bool tls13_init_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> psk);
1396
1397
// tls13_init_early_key_schedule initializes the handshake hash and key
1398
// derivation state from |session| for use with 0-RTT. It returns one on success
1399
// and zero on error.
1400
bool tls13_init_early_key_schedule(SSL_HANDSHAKE *hs,
1401
                                   const SSL_SESSION *session);
1402
1403
// tls13_advance_key_schedule incorporates |in| into the key schedule with
1404
// HKDF-Extract. It returns true on success and false on error.
1405
bool tls13_advance_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> in);
1406
1407
// tls13_set_traffic_key sets the read or write traffic keys to
1408
// |traffic_secret|. The version and cipher suite are determined from |session|.
1409
// It returns true on success and false on error.
1410
bool tls13_set_traffic_key(SSL *ssl, enum ssl_encryption_level_t level,
1411
                           enum evp_aead_direction_t direction,
1412
                           const SSL_SESSION *session,
1413
                           Span<const uint8_t> traffic_secret);
1414
1415
// tls13_derive_early_secret derives the early traffic secret. It returns true
1416
// on success and false on error.
1417
bool tls13_derive_early_secret(SSL_HANDSHAKE *hs);
1418
1419
// tls13_derive_handshake_secrets derives the handshake traffic secret. It
1420
// returns true on success and false on error.
1421
bool tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs);
1422
1423
// tls13_rotate_traffic_key derives the next read or write traffic secret. It
1424
// returns true on success and false on error.
1425
bool tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction);
1426
1427
// tls13_derive_application_secrets derives the initial application data traffic
1428
// and exporter secrets based on the handshake transcripts and |master_secret|.
1429
// It returns true on success and false on error.
1430
bool tls13_derive_application_secrets(SSL_HANDSHAKE *hs);
1431
1432
// tls13_derive_resumption_secret derives the |resumption_secret|.
1433
bool tls13_derive_resumption_secret(SSL_HANDSHAKE *hs);
1434
1435
// tls13_export_keying_material provides an exporter interface to use the
1436
// |exporter_secret|.
1437
bool tls13_export_keying_material(SSL *ssl, Span<uint8_t> out,
1438
                                  Span<const uint8_t> secret,
1439
                                  Span<const char> label,
1440
                                  Span<const uint8_t> context);
1441
1442
// tls13_finished_mac calculates the MAC of the handshake transcript to verify
1443
// the integrity of the Finished message, and stores the result in |out| and
1444
// length in |out_len|. |is_server| is true if this is for the Server Finished
1445
// and false for the Client Finished.
1446
bool tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len,
1447
                        bool is_server);
1448
1449
// tls13_derive_session_psk calculates the PSK for this session based on the
1450
// resumption master secret and |nonce|. It returns true on success, and false
1451
// on failure.
1452
bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce);
1453
1454
// tls13_write_psk_binder calculates the PSK binder value over |transcript| and
1455
// |msg|, and replaces the last bytes of |msg| with the resulting value. It
1456
// returns true on success, and false on failure. If |out_binder_len| is
1457
// non-NULL, it sets |*out_binder_len| to the length of the value computed.
1458
bool tls13_write_psk_binder(const SSL_HANDSHAKE *hs,
1459
                            const SSLTranscript &transcript, Span<uint8_t> msg,
1460
                            size_t *out_binder_len);
1461
1462
// tls13_verify_psk_binder verifies that the handshake transcript, truncated up
1463
// to the binders has a valid signature using the value of |session|'s
1464
// resumption secret. It returns true on success, and false on failure.
1465
bool tls13_verify_psk_binder(const SSL_HANDSHAKE *hs,
1466
                             const SSL_SESSION *session, const SSLMessage &msg,
1467
                             CBS *binders);
1468
1469
1470
// Encrypted ClientHello.
1471
1472
struct ECHConfig {
1473
  static constexpr bool kAllowUniquePtr = true;
1474
  // raw contains the serialized ECHConfig.
1475
  Array<uint8_t> raw;
1476
  // The following fields alias into |raw|.
1477
  Span<const uint8_t> public_key;
1478
  Span<const uint8_t> public_name;
1479
  Span<const uint8_t> cipher_suites;
1480
  uint16_t kem_id = 0;
1481
  uint8_t maximum_name_length = 0;
1482
  uint8_t config_id = 0;
1483
};
1484
1485
class ECHServerConfig {
1486
 public:
1487
  static constexpr bool kAllowUniquePtr = true;
1488
0
  ECHServerConfig() = default;
1489
  ECHServerConfig(const ECHServerConfig &other) = delete;
1490
  ECHServerConfig &operator=(ECHServerConfig &&) = delete;
1491
1492
  // Init parses |ech_config| as an ECHConfig and saves a copy of |key|.
1493
  // It returns true on success and false on error.
1494
  bool Init(Span<const uint8_t> ech_config, const EVP_HPKE_KEY *key,
1495
            bool is_retry_config);
1496
1497
  // SetupContext sets up |ctx| for a new connection, given the specified
1498
  // HPKE ciphersuite and encapsulated KEM key. It returns true on success and
1499
  // false on error. This function may only be called on an initialized object.
1500
  bool SetupContext(EVP_HPKE_CTX *ctx, uint16_t kdf_id, uint16_t aead_id,
1501
                    Span<const uint8_t> enc) const;
1502
1503
0
  const ECHConfig &ech_config() const { return ech_config_; }
1504
0
  bool is_retry_config() const { return is_retry_config_; }
1505
1506
 private:
1507
  ECHConfig ech_config_;
1508
  ScopedEVP_HPKE_KEY key_;
1509
  bool is_retry_config_ = false;
1510
};
1511
1512
enum ssl_client_hello_type_t {
1513
  ssl_client_hello_unencrypted,
1514
  ssl_client_hello_inner,
1515
  ssl_client_hello_outer,
1516
};
1517
1518
// ECH_CLIENT_* are types for the ClientHello encrypted_client_hello extension.
1519
0
#define ECH_CLIENT_OUTER 0
1520
0
#define ECH_CLIENT_INNER 1
1521
1522
// ssl_decode_client_hello_inner recovers the full ClientHelloInner from the
1523
// EncodedClientHelloInner |encoded_client_hello_inner| by replacing its
1524
// outer_extensions extension with the referenced extensions from the
1525
// ClientHelloOuter |client_hello_outer|. If successful, it writes the recovered
1526
// ClientHelloInner to |out_client_hello_inner|. It returns true on success and
1527
// false on failure.
1528
//
1529
// This function is exported for fuzzing.
1530
OPENSSL_EXPORT bool ssl_decode_client_hello_inner(
1531
    SSL *ssl, uint8_t *out_alert, Array<uint8_t> *out_client_hello_inner,
1532
    Span<const uint8_t> encoded_client_hello_inner,
1533
    const SSL_CLIENT_HELLO *client_hello_outer);
1534
1535
// ssl_client_hello_decrypt attempts to decrypt and decode the |payload|. It
1536
// writes the result to |*out|. |payload| must point into |client_hello_outer|.
1537
// It returns true on success and false on error. On error, it sets
1538
// |*out_is_decrypt_error| to whether the failure was due to a bad ciphertext.
1539
bool ssl_client_hello_decrypt(SSL_HANDSHAKE *hs, uint8_t *out_alert,
1540
                              bool *out_is_decrypt_error, Array<uint8_t> *out,
1541
                              const SSL_CLIENT_HELLO *client_hello_outer,
1542
                              Span<const uint8_t> payload);
1543
1544
0
#define ECH_CONFIRMATION_SIGNAL_LEN 8
1545
1546
// ssl_ech_confirmation_signal_hello_offset returns the offset of the ECH
1547
// confirmation signal in a ServerHello message, including the handshake header.
1548
size_t ssl_ech_confirmation_signal_hello_offset(const SSL *ssl);
1549
1550
// ssl_ech_accept_confirmation computes the server's ECH acceptance signal,
1551
// writing it to |out|. The transcript portion is the concatenation of
1552
// |transcript| with |msg|. The |ECH_CONFIRMATION_SIGNAL_LEN| bytes from
1553
// |offset| in |msg| are replaced with zeros before hashing. This function
1554
// returns true on success, and false on failure.
1555
bool ssl_ech_accept_confirmation(const SSL_HANDSHAKE *hs, Span<uint8_t> out,
1556
                                 Span<const uint8_t> client_random,
1557
                                 const SSLTranscript &transcript, bool is_hrr,
1558
                                 Span<const uint8_t> msg, size_t offset);
1559
1560
// ssl_is_valid_ech_public_name returns true if |public_name| is a valid ECH
1561
// public name and false otherwise. It is exported for testing.
1562
OPENSSL_EXPORT bool ssl_is_valid_ech_public_name(
1563
    Span<const uint8_t> public_name);
1564
1565
// ssl_is_valid_ech_config_list returns true if |ech_config_list| is a valid
1566
// ECHConfigList structure and false otherwise.
1567
bool ssl_is_valid_ech_config_list(Span<const uint8_t> ech_config_list);
1568
1569
// ssl_select_ech_config selects an ECHConfig and associated parameters to offer
1570
// on the client and updates |hs|. It returns true on success, whether an
1571
// ECHConfig was found or not, and false on internal error. On success, the
1572
// encapsulated key is written to |out_enc| and |*out_enc_len| is set to the
1573
// number of bytes written. If the function did not select an ECHConfig, the
1574
// encapsulated key is the empty string.
1575
bool ssl_select_ech_config(SSL_HANDSHAKE *hs, Span<uint8_t> out_enc,
1576
                           size_t *out_enc_len);
1577
1578
// ssl_ech_extension_body_length returns the length of the body of a ClientHello
1579
// ECH extension that encrypts |in_len| bytes with |aead| and an 'enc' value of
1580
// length |enc_len|. The result does not include the four-byte extension header.
1581
size_t ssl_ech_extension_body_length(const EVP_HPKE_AEAD *aead, size_t enc_len,
1582
                                     size_t in_len);
1583
1584
// ssl_encrypt_client_hello constructs a new ClientHelloInner, adds it to the
1585
// inner transcript, and encrypts for inclusion in the ClientHelloOuter. |enc|
1586
// is the encapsulated key to include in the extension. It returns true on
1587
// success and false on error. If not offering ECH, |enc| is ignored and the
1588
// function will compute a GREASE ECH extension if necessary, and otherwise
1589
// return success while doing nothing.
1590
//
1591
// Encrypting the ClientHelloInner incorporates all extensions in the
1592
// ClientHelloOuter, so all other state necessary for |ssl_add_client_hello|
1593
// must already be computed.
1594
bool ssl_encrypt_client_hello(SSL_HANDSHAKE *hs, Span<const uint8_t> enc);
1595
1596
1597
// Credentials.
1598
1599
enum class SSLCredentialType {
1600
  kX509,
1601
  kDelegated,
1602
};
1603
1604
BSSL_NAMESPACE_END
1605
1606
// SSL_CREDENTIAL is exported to C, so it must be defined outside the namespace.
1607
struct ssl_credential_st : public bssl::RefCounted<ssl_credential_st> {
1608
  explicit ssl_credential_st(bssl::SSLCredentialType type);
1609
  ssl_credential_st(const ssl_credential_st &) = delete;
1610
  ssl_credential_st &operator=(const ssl_credential_st &) = delete;
1611
1612
  // Dup returns a copy of the credential, or nullptr on error. The |ex_data|
1613
  // values are not copied. This is only used on the default credential, whose
1614
  // |ex_data| is inaccessible.
1615
  bssl::UniquePtr<SSL_CREDENTIAL> Dup() const;
1616
1617
  // ClearCertAndKey erases any certificate and private key on the credential.
1618
  void ClearCertAndKey();
1619
1620
  // UsesX509 returns true if the credential type uses an X.509 certificate.
1621
  bool UsesX509() const;
1622
1623
  // UsesPrivateKey returns true if the credential type uses an asymmetric
1624
  // private key.
1625
  bool UsesPrivateKey() const;
1626
1627
  // IsComplete returns whether all required fields in the credential have been
1628
  // filled in.
1629
  bool IsComplete() const;
1630
1631
  // SetLeafCert sets the leaf certificate to |leaf|, leaving the remaining
1632
  // certificates unmodified. It returns true on success and false on error. If
1633
  // |discard_key_on_mismatch| is true and the private key is inconsistent with
1634
  // the new leaf certificate, it is silently discarded.
1635
  bool SetLeafCert(bssl::UniquePtr<CRYPTO_BUFFER> leaf,
1636
                   bool discard_key_on_mismatch);
1637
1638
  // ClearIntermediateCerts clears intermediate certificates in the certificate
1639
  // chain, while preserving the leaf.
1640
  void ClearIntermediateCerts();
1641
1642
  // AppendIntermediateCert appends |cert| to the certificate chain. If there is
1643
  // no leaf certificate configured, it leaves a placeholder null in |chain|. It
1644
  // returns one on success and zero on error.
1645
  bool AppendIntermediateCert(bssl::UniquePtr<CRYPTO_BUFFER> cert);
1646
1647
  // type is the credential type and determines which other fields apply.
1648
  bssl::SSLCredentialType type;
1649
1650
  // pubkey is the cached public key of the credential. Unlike |privkey|, it is
1651
  // always present and is extracted from the certificate, delegated credential,
1652
  // etc.
1653
  bssl::UniquePtr<EVP_PKEY> pubkey;
1654
1655
  // privkey is the private key of the credential. It may be omitted in favor of
1656
  // |key_method|.
1657
  bssl::UniquePtr<EVP_PKEY> privkey;
1658
1659
  // key_method, if non-null, is a set of callbacks to call for private key
1660
  // operations.
1661
  const SSL_PRIVATE_KEY_METHOD *key_method = nullptr;
1662
1663
  // sigalgs, if non-empty, is the set of signature algorithms supported by the
1664
  // private key in decreasing order of preference. If empty, the default list
1665
  // is used.
1666
  //
1667
  // In delegated credentials, this field is not configurable and is instead
1668
  // computed from the dc_cert_verify_algorithm field.
1669
  bssl::Array<uint16_t> sigalgs;
1670
1671
  // chain contains the certificate chain, with the leaf at the beginning. The
1672
  // first element of |chain| may be nullptr to indicate that the leaf
1673
  // certificate has not yet been set.
1674
  //   If |chain| != nullptr -> len(chain) >= 1
1675
  //   If |chain[0]| == nullptr -> len(chain) >= 2.
1676
  //   |chain[1..]| != nullptr
1677
  bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> chain;
1678
1679
  // dc is the DelegatedCredential structure, if this is a delegated credential.
1680
  bssl::UniquePtr<CRYPTO_BUFFER> dc;
1681
1682
  // dc_algorithm is the signature scheme of the signature over the delegated
1683
  // credential itself, made by the end-entity certificate's public key.
1684
  uint16_t dc_algorithm = 0;
1685
1686
  // Signed certificate timestamp list to be sent to the client, if requested
1687
  bssl::UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list;
1688
1689
  // OCSP response to be sent to the client, if requested.
1690
  bssl::UniquePtr<CRYPTO_BUFFER> ocsp_response;
1691
1692
  CRYPTO_EX_DATA ex_data;
1693
1694
 private:
1695
  friend RefCounted;
1696
  ~ssl_credential_st();
1697
};
1698
1699
BSSL_NAMESPACE_BEGIN
1700
1701
// ssl_get_credential_list computes |hs|'s credential list. On success, it
1702
// writes it to |*out| and returns true. Otherwise, it returns false. The
1703
// credential list may be empty, in which case this function will successfully
1704
// return an empty array.
1705
//
1706
// The pointers in the result are only valid until |hs| is next mutated.
1707
bool ssl_get_credential_list(SSL_HANDSHAKE *hs, Array<SSL_CREDENTIAL *> *out);
1708
1709
1710
// Handshake functions.
1711
1712
enum ssl_hs_wait_t {
1713
  ssl_hs_error,
1714
  ssl_hs_ok,
1715
  ssl_hs_read_server_hello,
1716
  ssl_hs_read_message,
1717
  ssl_hs_flush,
1718
  ssl_hs_certificate_selection_pending,
1719
  ssl_hs_handoff,
1720
  ssl_hs_handback,
1721
  ssl_hs_x509_lookup,
1722
  ssl_hs_private_key_operation,
1723
  ssl_hs_pending_session,
1724
  ssl_hs_pending_ticket,
1725
  ssl_hs_early_return,
1726
  ssl_hs_early_data_rejected,
1727
  ssl_hs_read_end_of_early_data,
1728
  ssl_hs_read_change_cipher_spec,
1729
  ssl_hs_certificate_verify,
1730
  ssl_hs_hints_ready,
1731
};
1732
1733
enum ssl_grease_index_t {
1734
  ssl_grease_cipher = 0,
1735
  ssl_grease_group,
1736
  ssl_grease_extension1,
1737
  ssl_grease_extension2,
1738
  ssl_grease_version,
1739
  ssl_grease_ticket_extension,
1740
  ssl_grease_ech_config_id,
1741
  ssl_grease_last_index = ssl_grease_ech_config_id,
1742
};
1743
1744
enum tls12_server_hs_state_t {
1745
  state12_start_accept = 0,
1746
  state12_read_client_hello,
1747
  state12_read_client_hello_after_ech,
1748
  state12_cert_callback,
1749
  state12_tls13,
1750
  state12_select_parameters,
1751
  state12_send_server_hello,
1752
  state12_send_server_certificate,
1753
  state12_send_server_key_exchange,
1754
  state12_send_server_hello_done,
1755
  state12_read_client_certificate,
1756
  state12_verify_client_certificate,
1757
  state12_read_client_key_exchange,
1758
  state12_read_client_certificate_verify,
1759
  state12_read_change_cipher_spec,
1760
  state12_process_change_cipher_spec,
1761
  state12_read_next_proto,
1762
  state12_read_channel_id,
1763
  state12_read_client_finished,
1764
  state12_send_server_finished,
1765
  state12_finish_server_handshake,
1766
  state12_done,
1767
};
1768
1769
enum tls13_server_hs_state_t {
1770
  state13_select_parameters = 0,
1771
  state13_select_session,
1772
  state13_send_hello_retry_request,
1773
  state13_read_second_client_hello,
1774
  state13_send_server_hello,
1775
  state13_send_server_certificate_verify,
1776
  state13_send_server_finished,
1777
  state13_send_half_rtt_ticket,
1778
  state13_read_second_client_flight,
1779
  state13_process_end_of_early_data,
1780
  state13_read_client_encrypted_extensions,
1781
  state13_read_client_certificate,
1782
  state13_read_client_certificate_verify,
1783
  state13_read_channel_id,
1784
  state13_read_client_finished,
1785
  state13_send_new_session_ticket,
1786
  state13_done,
1787
};
1788
1789
// handback_t lists the points in the state machine where a handback can occur.
1790
// These are the different points at which key material is no longer needed.
1791
enum handback_t {
1792
  handback_after_session_resumption = 0,
1793
  handback_after_ecdhe = 1,
1794
  handback_after_handshake = 2,
1795
  handback_tls13 = 3,
1796
  handback_max_value = handback_tls13,
1797
};
1798
1799
// SSL_HANDSHAKE_HINTS contains handshake hints for a connection. See
1800
// |SSL_request_handshake_hints| and related functions.
1801
struct SSL_HANDSHAKE_HINTS {
1802
  static constexpr bool kAllowUniquePtr = true;
1803
1804
  Array<uint8_t> server_random_tls12;
1805
  Array<uint8_t> server_random_tls13;
1806
1807
  uint16_t key_share_group_id = 0;
1808
  Array<uint8_t> key_share_ciphertext;
1809
  Array<uint8_t> key_share_secret;
1810
1811
  uint16_t signature_algorithm = 0;
1812
  Array<uint8_t> signature_input;
1813
  Array<uint8_t> signature_spki;
1814
  Array<uint8_t> signature;
1815
1816
  Array<uint8_t> decrypted_psk;
1817
  bool ignore_psk = false;
1818
1819
  uint16_t cert_compression_alg_id = 0;
1820
  Array<uint8_t> cert_compression_input;
1821
  Array<uint8_t> cert_compression_output;
1822
1823
  uint16_t ecdhe_group_id = 0;
1824
  Array<uint8_t> ecdhe_public_key;
1825
  Array<uint8_t> ecdhe_private_key;
1826
1827
  Array<uint8_t> decrypted_ticket;
1828
  bool renew_ticket = false;
1829
  bool ignore_ticket = false;
1830
};
1831
1832
struct SSL_HANDSHAKE {
1833
  explicit SSL_HANDSHAKE(SSL *ssl);
1834
  ~SSL_HANDSHAKE();
1835
  static constexpr bool kAllowUniquePtr = true;
1836
1837
  // ssl is a non-owning pointer to the parent |SSL| object.
1838
  SSL *ssl;
1839
1840
  // config is a non-owning pointer to the handshake configuration.
1841
  SSL_CONFIG *config;
1842
1843
  // wait contains the operation the handshake is currently blocking on or
1844
  // |ssl_hs_ok| if none.
1845
  enum ssl_hs_wait_t wait = ssl_hs_ok;
1846
1847
  // state is the internal state for the TLS 1.2 and below handshake. Its
1848
  // values depend on |do_handshake| but the starting state is always zero.
1849
  int state = 0;
1850
1851
  // tls13_state is the internal state for the TLS 1.3 handshake. Its values
1852
  // depend on |do_handshake| but the starting state is always zero.
1853
  int tls13_state = 0;
1854
1855
  // min_version is the minimum accepted protocol version, taking account both
1856
  // |SSL_OP_NO_*| and |SSL_CTX_set_min_proto_version| APIs.
1857
  uint16_t min_version = 0;
1858
1859
  // max_version is the maximum accepted protocol version, taking account both
1860
  // |SSL_OP_NO_*| and |SSL_CTX_set_max_proto_version| APIs.
1861
  uint16_t max_version = 0;
1862
1863
 private:
1864
  size_t hash_len_ = 0;
1865
  uint8_t secret_[SSL_MAX_MD_SIZE] = {0};
1866
  uint8_t early_traffic_secret_[SSL_MAX_MD_SIZE] = {0};
1867
  uint8_t client_handshake_secret_[SSL_MAX_MD_SIZE] = {0};
1868
  uint8_t server_handshake_secret_[SSL_MAX_MD_SIZE] = {0};
1869
  uint8_t client_traffic_secret_0_[SSL_MAX_MD_SIZE] = {0};
1870
  uint8_t server_traffic_secret_0_[SSL_MAX_MD_SIZE] = {0};
1871
  uint8_t expected_client_finished_[SSL_MAX_MD_SIZE] = {0};
1872
1873
 public:
1874
  void ResizeSecrets(size_t hash_len);
1875
1876
  // GetClientHello, on the server, returns either the normal ClientHello
1877
  // message or the ClientHelloInner if it has been serialized to
1878
  // |ech_client_hello_buf|. This function should only be called when the
1879
  // current message is a ClientHello. It returns true on success and false on
1880
  // error.
1881
  //
1882
  // Note that fields of the returned |out_msg| and |out_client_hello| point
1883
  // into a handshake-owned buffer, so their lifetimes should not exceed this
1884
  // SSL_HANDSHAKE.
1885
  bool GetClientHello(SSLMessage *out_msg, SSL_CLIENT_HELLO *out_client_hello);
1886
1887
0
  Span<uint8_t> secret() { return MakeSpan(secret_, hash_len_); }
1888
0
  Span<const uint8_t> secret() const {
1889
0
    return MakeConstSpan(secret_, hash_len_);
1890
0
  }
1891
0
  Span<uint8_t> early_traffic_secret() {
1892
0
    return MakeSpan(early_traffic_secret_, hash_len_);
1893
0
  }
1894
0
  Span<uint8_t> client_handshake_secret() {
1895
0
    return MakeSpan(client_handshake_secret_, hash_len_);
1896
0
  }
1897
0
  Span<uint8_t> server_handshake_secret() {
1898
0
    return MakeSpan(server_handshake_secret_, hash_len_);
1899
0
  }
1900
0
  Span<uint8_t> client_traffic_secret_0() {
1901
0
    return MakeSpan(client_traffic_secret_0_, hash_len_);
1902
0
  }
1903
0
  Span<uint8_t> server_traffic_secret_0() {
1904
0
    return MakeSpan(server_traffic_secret_0_, hash_len_);
1905
0
  }
1906
0
  Span<uint8_t> expected_client_finished() {
1907
0
    return MakeSpan(expected_client_finished_, hash_len_);
1908
0
  }
1909
1910
  union {
1911
    // sent is a bitset where the bits correspond to elements of kExtensions
1912
    // in extensions.cc. Each bit is set if that extension was sent in a
1913
    // ClientHello. It's not used by servers.
1914
    uint32_t sent = 0;
1915
    // received is a bitset, like |sent|, but is used by servers to record
1916
    // which extensions were received from a client.
1917
    uint32_t received;
1918
  } extensions;
1919
1920
  // inner_extensions_sent, on clients that offer ECH, is |extensions.sent| for
1921
  // the ClientHelloInner.
1922
  uint32_t inner_extensions_sent = 0;
1923
1924
  // error, if |wait| is |ssl_hs_error|, is the error the handshake failed on.
1925
  UniquePtr<ERR_SAVE_STATE> error;
1926
1927
  // key_shares are the current key exchange instances. The second is only used
1928
  // as a client if we believe that we should offer two key shares in a
1929
  // ClientHello.
1930
  UniquePtr<SSLKeyShare> key_shares[2];
1931
1932
  // transcript is the current handshake transcript.
1933
  SSLTranscript transcript;
1934
1935
  // inner_transcript, on the client, is the handshake transcript for the
1936
  // ClientHelloInner handshake. It is moved to |transcript| if the server
1937
  // accepts ECH.
1938
  SSLTranscript inner_transcript;
1939
1940
  // inner_client_random is the ClientHello random value used with
1941
  // ClientHelloInner.
1942
  uint8_t inner_client_random[SSL3_RANDOM_SIZE] = {0};
1943
1944
  // cookie is the value of the cookie in HelloRetryRequest, or empty if none
1945
  // was received.
1946
  Array<uint8_t> cookie;
1947
1948
  // dtls_cookie is the value of the cookie in DTLS HelloVerifyRequest. If
1949
  // empty, either none was received or HelloVerifyRequest contained an empty
1950
  // cookie.
1951
  Array<uint8_t> dtls_cookie;
1952
1953
  // ech_client_outer contains the outer ECH extension to send in the
1954
  // ClientHello, excluding the header and type byte.
1955
  Array<uint8_t> ech_client_outer;
1956
1957
  // ech_retry_configs, on the client, contains the retry configs from the
1958
  // server as a serialized ECHConfigList.
1959
  Array<uint8_t> ech_retry_configs;
1960
1961
  // ech_client_hello_buf, on the server, contains the bytes of the
1962
  // reconstructed ClientHelloInner message.
1963
  Array<uint8_t> ech_client_hello_buf;
1964
1965
  // key_share_bytes is the key_share extension that the client should send.
1966
  Array<uint8_t> key_share_bytes;
1967
1968
  // key_share_ciphertext, for servers, is encapsulated shared secret to be sent
1969
  // to the client in the TLS 1.3 key_share extension.
1970
  Array<uint8_t> key_share_ciphertext;
1971
1972
  // peer_sigalgs are the signature algorithms that the peer supports. These are
1973
  // taken from the contents of the signature algorithms extension for a server
1974
  // or from the CertificateRequest for a client.
1975
  Array<uint16_t> peer_sigalgs;
1976
1977
  // peer_supported_group_list contains the supported group IDs advertised by
1978
  // the peer. This is only set on the server's end. The server does not
1979
  // advertise this extension to the client.
1980
  Array<uint16_t> peer_supported_group_list;
1981
1982
  // peer_delegated_credential_sigalgs are the signature algorithms the peer
1983
  // supports with delegated credentials, or empty if the peer does not support
1984
  // delegated credentials.
1985
  Array<uint16_t> peer_delegated_credential_sigalgs;
1986
1987
  // peer_key is the peer's ECDH key for a TLS 1.2 client.
1988
  Array<uint8_t> peer_key;
1989
1990
  // extension_permutation is the permutation to apply to ClientHello
1991
  // extensions. It maps indices into the |kExtensions| table into other
1992
  // indices.
1993
  Array<uint8_t> extension_permutation;
1994
1995
  // cert_compression_alg_id, for a server, contains the negotiated certificate
1996
  // compression algorithm for this client. It is only valid if
1997
  // |cert_compression_negotiated| is true.
1998
  uint16_t cert_compression_alg_id;
1999
2000
  // ech_hpke_ctx is the HPKE context used in ECH. On the server, it is
2001
  // initialized if |ech_status| is |ssl_ech_accepted|. On the client, it is
2002
  // initialized if |selected_ech_config| is not nullptr.
2003
  ScopedEVP_HPKE_CTX ech_hpke_ctx;
2004
2005
  // server_params, in a TLS 1.2 server, stores the ServerKeyExchange
2006
  // parameters. It has client and server randoms prepended for signing
2007
  // convenience.
2008
  Array<uint8_t> server_params;
2009
2010
  // peer_psk_identity_hint, on the client, is the psk_identity_hint sent by the
2011
  // server when using a TLS 1.2 PSK key exchange.
2012
  UniquePtr<char> peer_psk_identity_hint;
2013
2014
  // ca_names, on the client, contains the list of CAs received in a
2015
  // CertificateRequest message.
2016
  UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names;
2017
2018
  // cached_x509_ca_names contains a cache of parsed versions of the elements of
2019
  // |ca_names|. This pointer is left non-owning so only
2020
  // |ssl_crypto_x509_method| needs to link against crypto/x509.
2021
  STACK_OF(X509_NAME) *cached_x509_ca_names = nullptr;
2022
2023
  // certificate_types, on the client, contains the set of certificate types
2024
  // received in a CertificateRequest message.
2025
  Array<uint8_t> certificate_types;
2026
2027
  // credential is the credential we are using for the handshake.
2028
  UniquePtr<SSL_CREDENTIAL> credential;
2029
2030
  // peer_pubkey is the public key parsed from the peer's leaf certificate.
2031
  UniquePtr<EVP_PKEY> peer_pubkey;
2032
2033
  // new_session is the new mutable session being established by the current
2034
  // handshake. It should not be cached.
2035
  UniquePtr<SSL_SESSION> new_session;
2036
2037
  // early_session is the session corresponding to the current 0-RTT state on
2038
  // the client if |in_early_data| is true.
2039
  UniquePtr<SSL_SESSION> early_session;
2040
2041
  // ssl_ech_keys, for servers, is the set of ECH keys to use with this
2042
  // handshake. This is copied from |SSL_CTX| to ensure consistent behavior as
2043
  // |SSL_CTX| rotates keys.
2044
  UniquePtr<SSL_ECH_KEYS> ech_keys;
2045
2046
  // selected_ech_config, for clients, is the ECHConfig the client uses to offer
2047
  // ECH, or nullptr if ECH is not being offered. If non-NULL, |ech_hpke_ctx|
2048
  // will be initialized.
2049
  UniquePtr<ECHConfig> selected_ech_config;
2050
2051
  // new_cipher is the cipher being negotiated in this handshake.
2052
  const SSL_CIPHER *new_cipher = nullptr;
2053
2054
  // key_block is the record-layer key block for TLS 1.2 and earlier.
2055
  Array<uint8_t> key_block;
2056
2057
  // hints contains the handshake hints for this connection. If
2058
  // |hints_requested| is true, this field is non-null and contains the pending
2059
  // hints to filled as the predicted handshake progresses. Otherwise, this
2060
  // field, if non-null, contains hints configured by the caller and will
2061
  // influence the handshake on match.
2062
  UniquePtr<SSL_HANDSHAKE_HINTS> hints;
2063
2064
  // ech_is_inner, on the server, indicates whether the ClientHello contained an
2065
  // inner ECH extension.
2066
  bool ech_is_inner : 1;
2067
2068
  // ech_authenticated_reject, on the client, indicates whether an ECH rejection
2069
  // handshake has been authenticated.
2070
  bool ech_authenticated_reject : 1;
2071
2072
  // scts_requested is true if the SCT extension is in the ClientHello.
2073
  bool scts_requested : 1;
2074
2075
  // handshake_finalized is true once the handshake has completed, at which
2076
  // point accessors should use the established state.
2077
  bool handshake_finalized : 1;
2078
2079
  // accept_psk_mode stores whether the client's PSK mode is compatible with our
2080
  // preferences.
2081
  bool accept_psk_mode : 1;
2082
2083
  // cert_request is true if a client certificate was requested.
2084
  bool cert_request : 1;
2085
2086
  // certificate_status_expected is true if OCSP stapling was negotiated and the
2087
  // server is expected to send a CertificateStatus message. (This is used on
2088
  // both the client and server sides.)
2089
  bool certificate_status_expected : 1;
2090
2091
  // ocsp_stapling_requested is true if a client requested OCSP stapling.
2092
  bool ocsp_stapling_requested : 1;
2093
2094
  // should_ack_sni is used by a server and indicates that the SNI extension
2095
  // should be echoed in the ServerHello.
2096
  bool should_ack_sni : 1;
2097
2098
  // in_false_start is true if there is a pending client handshake in False
2099
  // Start. The client may write data at this point.
2100
  bool in_false_start : 1;
2101
2102
  // in_early_data is true if there is a pending handshake that has progressed
2103
  // enough to send and receive early data.
2104
  bool in_early_data : 1;
2105
2106
  // early_data_offered is true if the client sent the early_data extension.
2107
  bool early_data_offered : 1;
2108
2109
  // can_early_read is true if application data may be read at this point in the
2110
  // handshake.
2111
  bool can_early_read : 1;
2112
2113
  // can_early_write is true if application data may be written at this point in
2114
  // the handshake.
2115
  bool can_early_write : 1;
2116
2117
  // next_proto_neg_seen is one of NPN was negotiated.
2118
  bool next_proto_neg_seen : 1;
2119
2120
  // ticket_expected is true if a TLS 1.2 NewSessionTicket message is to be sent
2121
  // or received.
2122
  bool ticket_expected : 1;
2123
2124
  // extended_master_secret is true if the extended master secret extension is
2125
  // negotiated in this handshake.
2126
  bool extended_master_secret : 1;
2127
2128
  // pending_private_key_op is true if there is a pending private key operation
2129
  // in progress.
2130
  bool pending_private_key_op : 1;
2131
2132
  // handback indicates that a server should pause the handshake after
2133
  // finishing operations that require private key material, in such a way that
2134
  // |SSL_get_error| returns |SSL_ERROR_HANDBACK|.  It is set by
2135
  // |SSL_apply_handoff|.
2136
  bool handback : 1;
2137
2138
  // hints_requested indicates the caller has requested handshake hints. Only
2139
  // the first round-trip of the handshake will complete, after which the
2140
  // |hints| structure can be serialized.
2141
  bool hints_requested : 1;
2142
2143
  // cert_compression_negotiated is true iff |cert_compression_alg_id| is valid.
2144
  bool cert_compression_negotiated : 1;
2145
2146
  // apply_jdk11_workaround is true if the peer is probably a JDK 11 client
2147
  // which implemented TLS 1.3 incorrectly.
2148
  bool apply_jdk11_workaround : 1;
2149
2150
  // can_release_private_key is true if the private key will no longer be used
2151
  // in this handshake.
2152
  bool can_release_private_key : 1;
2153
2154
  // channel_id_negotiated is true if Channel ID should be used in this
2155
  // handshake.
2156
  bool channel_id_negotiated : 1;
2157
2158
  // client_version is the value sent or received in the ClientHello version.
2159
  uint16_t client_version = 0;
2160
2161
  // early_data_read is the amount of early data that has been read by the
2162
  // record layer.
2163
  uint16_t early_data_read = 0;
2164
2165
  // early_data_written is the amount of early data that has been written by the
2166
  // record layer.
2167
  uint16_t early_data_written = 0;
2168
2169
  // signature_algorithm is the signature algorithm to be used in signing with
2170
  // the selected credential, or zero if not applicable or not yet selected.
2171
  uint16_t signature_algorithm = 0;
2172
2173
  // ech_config_id is the ECH config sent by the client.
2174
  uint8_t ech_config_id = 0;
2175
2176
  // session_id is the session ID in the ClientHello.
2177
  uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0};
2178
  uint8_t session_id_len = 0;
2179
2180
  // grease_seed is the entropy for GREASE values.
2181
  uint8_t grease_seed[ssl_grease_last_index + 1] = {0};
2182
};
2183
2184
// kMaxTickets is the maximum number of tickets to send immediately after the
2185
// handshake. We use a one-byte ticket nonce, and there is no point in sending
2186
// so many tickets.
2187
constexpr size_t kMaxTickets = 16;
2188
2189
UniquePtr<SSL_HANDSHAKE> ssl_handshake_new(SSL *ssl);
2190
2191
// ssl_check_message_type checks if |msg| has type |type|. If so it returns
2192
// one. Otherwise, it sends an alert and returns zero.
2193
bool ssl_check_message_type(SSL *ssl, const SSLMessage &msg, int type);
2194
2195
// ssl_run_handshake runs the TLS handshake. It returns one on success and <= 0
2196
// on error. It sets |out_early_return| to one if we've completed the handshake
2197
// early.
2198
int ssl_run_handshake(SSL_HANDSHAKE *hs, bool *out_early_return);
2199
2200
// The following are implementations of |do_handshake| for the client and
2201
// server.
2202
enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs);
2203
enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs);
2204
enum ssl_hs_wait_t tls13_client_handshake(SSL_HANDSHAKE *hs);
2205
enum ssl_hs_wait_t tls13_server_handshake(SSL_HANDSHAKE *hs);
2206
2207
// The following functions return human-readable representations of the TLS
2208
// handshake states for debugging.
2209
const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs);
2210
const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs);
2211
const char *tls13_client_handshake_state(SSL_HANDSHAKE *hs);
2212
const char *tls13_server_handshake_state(SSL_HANDSHAKE *hs);
2213
2214
// tls13_add_key_update queues a KeyUpdate message on |ssl|. The
2215
// |update_requested| argument must be one of |SSL_KEY_UPDATE_REQUESTED| or
2216
// |SSL_KEY_UPDATE_NOT_REQUESTED|.
2217
bool tls13_add_key_update(SSL *ssl, int update_requested);
2218
2219
// tls13_post_handshake processes a post-handshake message. It returns true on
2220
// success and false on failure.
2221
bool tls13_post_handshake(SSL *ssl, const SSLMessage &msg);
2222
2223
bool tls13_process_certificate(SSL_HANDSHAKE *hs, const SSLMessage &msg,
2224
                               bool allow_anonymous);
2225
bool tls13_process_certificate_verify(SSL_HANDSHAKE *hs, const SSLMessage &msg);
2226
2227
// tls13_process_finished processes |msg| as a Finished message from the
2228
// peer. If |use_saved_value| is true, the verify_data is compared against
2229
// |hs->expected_client_finished| rather than computed fresh.
2230
bool tls13_process_finished(SSL_HANDSHAKE *hs, const SSLMessage &msg,
2231
                            bool use_saved_value);
2232
2233
bool tls13_add_certificate(SSL_HANDSHAKE *hs);
2234
2235
// tls13_add_certificate_verify adds a TLS 1.3 CertificateVerify message to the
2236
// handshake. If it returns |ssl_private_key_retry|, it should be called again
2237
// to retry when the signing operation is completed.
2238
enum ssl_private_key_result_t tls13_add_certificate_verify(SSL_HANDSHAKE *hs);
2239
2240
bool tls13_add_finished(SSL_HANDSHAKE *hs);
2241
bool tls13_process_new_session_ticket(SSL *ssl, const SSLMessage &msg);
2242
bssl::UniquePtr<SSL_SESSION> tls13_create_session_with_ticket(SSL *ssl,
2243
                                                              CBS *body);
2244
2245
// ssl_setup_extension_permutation computes a ClientHello extension permutation
2246
// for |hs|, if applicable. It returns true on success and false on error.
2247
bool ssl_setup_extension_permutation(SSL_HANDSHAKE *hs);
2248
2249
// ssl_setup_key_shares computes client key shares and saves them in |hs|. It
2250
// returns true on success and false on failure. If |override_group_id| is zero,
2251
// it offers the default groups, including GREASE. If it is non-zero, it offers
2252
// a single key share of the specified group.
2253
bool ssl_setup_key_shares(SSL_HANDSHAKE *hs, uint16_t override_group_id);
2254
2255
bool ssl_ext_key_share_parse_serverhello(SSL_HANDSHAKE *hs,
2256
                                         Array<uint8_t> *out_secret,
2257
                                         uint8_t *out_alert, CBS *contents);
2258
bool ssl_ext_key_share_parse_clienthello(SSL_HANDSHAKE *hs, bool *out_found,
2259
                                         Span<const uint8_t> *out_peer_key,
2260
                                         uint8_t *out_alert,
2261
                                         const SSL_CLIENT_HELLO *client_hello);
2262
bool ssl_ext_key_share_add_serverhello(SSL_HANDSHAKE *hs, CBB *out);
2263
2264
bool ssl_ext_pre_shared_key_parse_serverhello(SSL_HANDSHAKE *hs,
2265
                                              uint8_t *out_alert,
2266
                                              CBS *contents);
2267
bool ssl_ext_pre_shared_key_parse_clienthello(
2268
    SSL_HANDSHAKE *hs, CBS *out_ticket, CBS *out_binders,
2269
    uint32_t *out_obfuscated_ticket_age, uint8_t *out_alert,
2270
    const SSL_CLIENT_HELLO *client_hello, CBS *contents);
2271
bool ssl_ext_pre_shared_key_add_serverhello(SSL_HANDSHAKE *hs, CBB *out);
2272
2273
// ssl_is_sct_list_valid does a shallow parse of the SCT list in |contents| and
2274
// returns whether it's valid.
2275
bool ssl_is_sct_list_valid(const CBS *contents);
2276
2277
// ssl_write_client_hello_without_extensions writes a ClientHello to |out|,
2278
// up to the extensions field. |type| determines the type of ClientHello to
2279
// write. If |omit_session_id| is true, the session ID is empty.
2280
bool ssl_write_client_hello_without_extensions(const SSL_HANDSHAKE *hs,
2281
                                               CBB *cbb,
2282
                                               ssl_client_hello_type_t type,
2283
                                               bool empty_session_id);
2284
2285
// ssl_add_client_hello constructs a ClientHello and adds it to the outgoing
2286
// flight. It returns true on success and false on error.
2287
bool ssl_add_client_hello(SSL_HANDSHAKE *hs);
2288
2289
struct ParsedServerHello {
2290
  CBS raw;
2291
  uint16_t legacy_version = 0;
2292
  CBS random;
2293
  CBS session_id;
2294
  uint16_t cipher_suite = 0;
2295
  uint8_t compression_method = 0;
2296
  CBS extensions;
2297
};
2298
2299
// ssl_parse_server_hello parses |msg| as a ServerHello. On success, it writes
2300
// the result to |*out| and returns true. Otherwise, it returns false and sets
2301
// |*out_alert| to an alert to send to the peer.
2302
bool ssl_parse_server_hello(ParsedServerHello *out, uint8_t *out_alert,
2303
                            const SSLMessage &msg);
2304
2305
enum ssl_cert_verify_context_t {
2306
  ssl_cert_verify_server,
2307
  ssl_cert_verify_client,
2308
  ssl_cert_verify_channel_id,
2309
};
2310
2311
// tls13_get_cert_verify_signature_input generates the message to be signed for
2312
// TLS 1.3's CertificateVerify message. |cert_verify_context| determines the
2313
// type of signature. It sets |*out| to a newly allocated buffer containing the
2314
// result. This function returns true on success and false on failure.
2315
bool tls13_get_cert_verify_signature_input(
2316
    SSL_HANDSHAKE *hs, Array<uint8_t> *out,
2317
    enum ssl_cert_verify_context_t cert_verify_context);
2318
2319
// ssl_is_valid_alpn_list returns whether |in| is a valid ALPN protocol list.
2320
bool ssl_is_valid_alpn_list(Span<const uint8_t> in);
2321
2322
// ssl_is_alpn_protocol_allowed returns whether |protocol| is a valid server
2323
// selection for |hs->ssl|'s client preferences.
2324
bool ssl_is_alpn_protocol_allowed(const SSL_HANDSHAKE *hs,
2325
                                  Span<const uint8_t> protocol);
2326
2327
// ssl_negotiate_alpn negotiates the ALPN extension, if applicable. It returns
2328
// true on successful negotiation or if nothing was negotiated. It returns false
2329
// and sets |*out_alert| to an alert on error.
2330
bool ssl_negotiate_alpn(SSL_HANDSHAKE *hs, uint8_t *out_alert,
2331
                        const SSL_CLIENT_HELLO *client_hello);
2332
2333
// ssl_get_local_application_settings looks up the configured ALPS value for
2334
// |protocol|. If found, it sets |*out_settings| to the value and returns true.
2335
// Otherwise, it returns false.
2336
bool ssl_get_local_application_settings(const SSL_HANDSHAKE *hs,
2337
                                        Span<const uint8_t> *out_settings,
2338
                                        Span<const uint8_t> protocol);
2339
2340
// ssl_negotiate_alps negotiates the ALPS extension, if applicable. It returns
2341
// true on successful negotiation or if nothing was negotiated. It returns false
2342
// and sets |*out_alert| to an alert on error.
2343
bool ssl_negotiate_alps(SSL_HANDSHAKE *hs, uint8_t *out_alert,
2344
                        const SSL_CLIENT_HELLO *client_hello);
2345
2346
struct SSLExtension {
2347
  SSLExtension(uint16_t type_arg, bool allowed_arg = true)
2348
0
      : type(type_arg), allowed(allowed_arg), present(false) {
2349
0
    CBS_init(&data, nullptr, 0);
2350
0
  }
2351
2352
  uint16_t type;
2353
  bool allowed;
2354
  bool present;
2355
  CBS data;
2356
};
2357
2358
// ssl_parse_extensions parses a TLS extensions block out of |cbs| and advances
2359
// it. It writes the parsed extensions to pointers in |extensions|. On success,
2360
// it fills in the |present| and |data| fields and returns true. Otherwise, it
2361
// sets |*out_alert| to an alert to send and returns false. Unknown extensions
2362
// are rejected unless |ignore_unknown| is true.
2363
bool ssl_parse_extensions(const CBS *cbs, uint8_t *out_alert,
2364
                          std::initializer_list<SSLExtension *> extensions,
2365
                          bool ignore_unknown);
2366
2367
// ssl_verify_peer_cert verifies the peer certificate for |hs|.
2368
enum ssl_verify_result_t ssl_verify_peer_cert(SSL_HANDSHAKE *hs);
2369
// ssl_reverify_peer_cert verifies the peer certificate for |hs| when resuming a
2370
// session.
2371
enum ssl_verify_result_t ssl_reverify_peer_cert(SSL_HANDSHAKE *hs,
2372
                                                bool send_alert);
2373
2374
enum ssl_hs_wait_t ssl_get_finished(SSL_HANDSHAKE *hs);
2375
2376
// ssl_send_finished adds a Finished message to the current flight of messages.
2377
// It returns true on success and false on error.
2378
bool ssl_send_finished(SSL_HANDSHAKE *hs);
2379
2380
// ssl_send_tls12_certificate adds a TLS 1.2 Certificate message to the current
2381
// flight of messages. It returns true on success and false on error.
2382
bool ssl_send_tls12_certificate(SSL_HANDSHAKE *hs);
2383
2384
// ssl_handshake_session returns the |SSL_SESSION| corresponding to the current
2385
// handshake. Note, in TLS 1.2 resumptions, this session is immutable.
2386
const SSL_SESSION *ssl_handshake_session(const SSL_HANDSHAKE *hs);
2387
2388
// ssl_done_writing_client_hello is called after the last ClientHello is written
2389
// by |hs|. It releases some memory that is no longer needed.
2390
void ssl_done_writing_client_hello(SSL_HANDSHAKE *hs);
2391
2392
2393
// SSLKEYLOGFILE functions.
2394
2395
// ssl_log_secret logs |secret| with label |label|, if logging is enabled for
2396
// |ssl|. It returns true on success and false on failure.
2397
bool ssl_log_secret(const SSL *ssl, const char *label,
2398
                    Span<const uint8_t> secret);
2399
2400
2401
// ClientHello functions.
2402
2403
// ssl_client_hello_init parses |body| as a ClientHello message, excluding the
2404
// message header, and writes the result to |*out|. It returns true on success
2405
// and false on error. This function is exported for testing.
2406
OPENSSL_EXPORT bool ssl_client_hello_init(const SSL *ssl, SSL_CLIENT_HELLO *out,
2407
                                          Span<const uint8_t> body);
2408
2409
bool ssl_parse_client_hello_with_trailing_data(const SSL *ssl, CBS *cbs,
2410
                                               SSL_CLIENT_HELLO *out);
2411
2412
bool ssl_client_hello_get_extension(const SSL_CLIENT_HELLO *client_hello,
2413
                                    CBS *out, uint16_t extension_type);
2414
2415
bool ssl_client_cipher_list_contains_cipher(
2416
    const SSL_CLIENT_HELLO *client_hello, uint16_t id);
2417
2418
2419
// GREASE.
2420
2421
// ssl_get_grease_value returns a GREASE value for |hs|. For a given
2422
// connection, the values for each index will be deterministic. This allows the
2423
// same ClientHello be sent twice for a HelloRetryRequest or the same group be
2424
// advertised in both supported_groups and key_shares.
2425
uint16_t ssl_get_grease_value(const SSL_HANDSHAKE *hs,
2426
                              enum ssl_grease_index_t index);
2427
2428
2429
// Signature algorithms.
2430
2431
// tls1_parse_peer_sigalgs parses |sigalgs| as the list of peer signature
2432
// algorithms and saves them on |hs|. It returns true on success and false on
2433
// error.
2434
bool tls1_parse_peer_sigalgs(SSL_HANDSHAKE *hs, const CBS *sigalgs);
2435
2436
// tls1_get_legacy_signature_algorithm sets |*out| to the signature algorithm
2437
// that should be used with |pkey| in TLS 1.1 and earlier. It returns true on
2438
// success and false if |pkey| may not be used at those versions.
2439
bool tls1_get_legacy_signature_algorithm(uint16_t *out, const EVP_PKEY *pkey);
2440
2441
// tls1_choose_signature_algorithm sets |*out| to a signature algorithm for use
2442
// with |cred| based on the peer's preferences and the algorithms supported. It
2443
// returns true on success and false on error.
2444
bool tls1_choose_signature_algorithm(SSL_HANDSHAKE *hs,
2445
                                     const SSL_CREDENTIAL *cred, uint16_t *out);
2446
2447
// tls12_add_verify_sigalgs adds the signature algorithms acceptable for the
2448
// peer signature to |out|. It returns true on success and false on error.
2449
bool tls12_add_verify_sigalgs(const SSL_HANDSHAKE *hs, CBB *out);
2450
2451
// tls12_check_peer_sigalg checks if |sigalg| is acceptable for the peer
2452
// signature. It returns true on success and false on error, setting
2453
// |*out_alert| to an alert to send.
2454
bool tls12_check_peer_sigalg(const SSL_HANDSHAKE *hs, uint8_t *out_alert,
2455
                             uint16_t sigalg);
2456
2457
2458
// Underdocumented functions.
2459
//
2460
// Functions below here haven't been touched up and may be underdocumented.
2461
2462
0
#define TLSEXT_CHANNEL_ID_SIZE 128
2463
2464
// From RFC 4492, used in encoding the curve type in ECParameters
2465
0
#define NAMED_CURVE_TYPE 3
2466
2467
struct CERT {
2468
  static constexpr bool kAllowUniquePtr = true;
2469
2470
  explicit CERT(const SSL_X509_METHOD *x509_method);
2471
  ~CERT();
2472
2473
75
  bool is_valid() const { return default_credential != nullptr; }
2474
2475
  // credentials is the list of credentials to select between. Elements of this
2476
  // array immutable.
2477
  GrowableArray<UniquePtr<SSL_CREDENTIAL>> credentials;
2478
2479
  // default_credential is the credential configured by the legacy,
2480
  // non-credential-based APIs. If IsComplete() returns true, it is appended to
2481
  // the list of credentials.
2482
  UniquePtr<SSL_CREDENTIAL> default_credential;
2483
2484
  // x509_method contains pointers to functions that might deal with |X509|
2485
  // compatibility, or might be a no-op, depending on the application.
2486
  const SSL_X509_METHOD *x509_method = nullptr;
2487
2488
  // x509_chain may contain a parsed copy of |chain[1..]| from the default
2489
  // credential. This is only used as a cache in order to implement “get0”
2490
  // functions that return a non-owning pointer to the certificate chain.
2491
  STACK_OF(X509) *x509_chain = nullptr;
2492
2493
  // x509_leaf may contain a parsed copy of the first element of |chain| from
2494
  // the default credential. This is only used as a cache in order to implement
2495
  // “get0” functions that return a non-owning pointer to the certificate chain.
2496
  X509 *x509_leaf = nullptr;
2497
2498
  // x509_stash contains the last |X509| object append to the default
2499
  // credential's chain. This is a workaround for some third-party code that
2500
  // continue to use an |X509| object even after passing ownership with an
2501
  // “add0” function.
2502
  X509 *x509_stash = nullptr;
2503
2504
  // Certificate setup callback: if set is called whenever a
2505
  // certificate may be required (client or server). the callback
2506
  // can then examine any appropriate parameters and setup any
2507
  // certificates required. This allows advanced applications
2508
  // to select certificates on the fly: for example based on
2509
  // supported signature algorithms or curves.
2510
  int (*cert_cb)(SSL *ssl, void *arg) = nullptr;
2511
  void *cert_cb_arg = nullptr;
2512
2513
  // Optional X509_STORE for certificate validation. If NULL the parent SSL_CTX
2514
  // store is used instead.
2515
  X509_STORE *verify_store = nullptr;
2516
2517
  // sid_ctx partitions the session space within a shared session cache or
2518
  // ticket key. Only sessions with a matching value will be accepted.
2519
  uint8_t sid_ctx_length = 0;
2520
  uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0};
2521
};
2522
2523
// |SSL_PROTOCOL_METHOD| abstracts between TLS and DTLS.
2524
struct SSL_PROTOCOL_METHOD {
2525
  bool is_dtls;
2526
  bool (*ssl_new)(SSL *ssl);
2527
  void (*ssl_free)(SSL *ssl);
2528
  // get_message sets |*out| to the current handshake message and returns true
2529
  // if one has been received. It returns false if more input is needed.
2530
  bool (*get_message)(const SSL *ssl, SSLMessage *out);
2531
  // next_message is called to release the current handshake message.
2532
  void (*next_message)(SSL *ssl);
2533
  // has_unprocessed_handshake_data returns whether there is buffered
2534
  // handshake data that has not been consumed by |get_message|.
2535
  bool (*has_unprocessed_handshake_data)(const SSL *ssl);
2536
  // Use the |ssl_open_handshake| wrapper.
2537
  ssl_open_record_t (*open_handshake)(SSL *ssl, size_t *out_consumed,
2538
                                      uint8_t *out_alert, Span<uint8_t> in);
2539
  // Use the |ssl_open_change_cipher_spec| wrapper.
2540
  ssl_open_record_t (*open_change_cipher_spec)(SSL *ssl, size_t *out_consumed,
2541
                                               uint8_t *out_alert,
2542
                                               Span<uint8_t> in);
2543
  // Use the |ssl_open_app_data| wrapper.
2544
  ssl_open_record_t (*open_app_data)(SSL *ssl, Span<uint8_t> *out,
2545
                                     size_t *out_consumed, uint8_t *out_alert,
2546
                                     Span<uint8_t> in);
2547
  // write_app_data encrypts and writes |in| as application data. On success, it
2548
  // returns one and sets |*out_bytes_written| to the number of bytes of |in|
2549
  // written. Otherwise, it returns <= 0 and sets |*out_needs_handshake| to
2550
  // whether the operation failed because the caller needs to drive the
2551
  // handshake.
2552
  int (*write_app_data)(SSL *ssl, bool *out_needs_handshake,
2553
                        size_t *out_bytes_written, Span<const uint8_t> in);
2554
  int (*dispatch_alert)(SSL *ssl);
2555
  // init_message begins a new handshake message of type |type|. |cbb| is the
2556
  // root CBB to be passed into |finish_message|. |*body| is set to a child CBB
2557
  // the caller should write to. It returns true on success and false on error.
2558
  bool (*init_message)(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
2559
  // finish_message finishes a handshake message. It sets |*out_msg| to the
2560
  // serialized message. It returns true on success and false on error.
2561
  bool (*finish_message)(const SSL *ssl, CBB *cbb,
2562
                         bssl::Array<uint8_t> *out_msg);
2563
  // add_message adds a handshake message to the pending flight. It returns
2564
  // true on success and false on error.
2565
  bool (*add_message)(SSL *ssl, bssl::Array<uint8_t> msg);
2566
  // add_change_cipher_spec adds a ChangeCipherSpec record to the pending
2567
  // flight. It returns true on success and false on error.
2568
  bool (*add_change_cipher_spec)(SSL *ssl);
2569
  // flush_flight flushes the pending flight to the transport. It returns one on
2570
  // success and <= 0 on error.
2571
  int (*flush_flight)(SSL *ssl);
2572
  // on_handshake_complete is called when the handshake is complete.
2573
  void (*on_handshake_complete)(SSL *ssl);
2574
  // set_read_state sets |ssl|'s read cipher state and level to |aead_ctx| and
2575
  // |level|. In QUIC, |aead_ctx| is a placeholder object and |secret_for_quic|
2576
  // is the original secret. This function returns true on success and false on
2577
  // error.
2578
  bool (*set_read_state)(SSL *ssl, ssl_encryption_level_t level,
2579
                         UniquePtr<SSLAEADContext> aead_ctx,
2580
                         Span<const uint8_t> secret_for_quic);
2581
  // set_write_state sets |ssl|'s write cipher state and level to |aead_ctx| and
2582
  // |level|. In QUIC, |aead_ctx| is a placeholder object and |secret_for_quic|
2583
  // is the original secret. This function returns true on success and false on
2584
  // error.
2585
  bool (*set_write_state)(SSL *ssl, ssl_encryption_level_t level,
2586
                          UniquePtr<SSLAEADContext> aead_ctx,
2587
                          Span<const uint8_t> secret_for_quic);
2588
};
2589
2590
// The following wrappers call |open_*| but handle |read_shutdown| correctly.
2591
2592
// ssl_open_handshake processes a record from |in| for reading a handshake
2593
// message.
2594
ssl_open_record_t ssl_open_handshake(SSL *ssl, size_t *out_consumed,
2595
                                     uint8_t *out_alert, Span<uint8_t> in);
2596
2597
// ssl_open_change_cipher_spec processes a record from |in| for reading a
2598
// ChangeCipherSpec.
2599
ssl_open_record_t ssl_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
2600
                                              uint8_t *out_alert,
2601
                                              Span<uint8_t> in);
2602
2603
// ssl_open_app_data processes a record from |in| for reading application data.
2604
// On success, it returns |ssl_open_record_success| and sets |*out| to the
2605
// input. If it encounters a post-handshake message, it returns
2606
// |ssl_open_record_discard|. The caller should then retry, after processing any
2607
// messages received with |get_message|.
2608
ssl_open_record_t ssl_open_app_data(SSL *ssl, Span<uint8_t> *out,
2609
                                    size_t *out_consumed, uint8_t *out_alert,
2610
                                    Span<uint8_t> in);
2611
2612
struct SSL_X509_METHOD {
2613
  // check_client_CA_list returns one if |names| is a good list of X.509
2614
  // distinguished names and zero otherwise. This is used to ensure that we can
2615
  // reject unparsable values at handshake time when using crypto/x509.
2616
  bool (*check_client_CA_list)(STACK_OF(CRYPTO_BUFFER) *names);
2617
2618
  // cert_clear frees and NULLs all X509 certificate-related state.
2619
  void (*cert_clear)(CERT *cert);
2620
  // cert_free frees all X509-related state.
2621
  void (*cert_free)(CERT *cert);
2622
  // cert_flush_cached_chain drops any cached |X509|-based certificate chain
2623
  // from |cert|.
2624
  // cert_dup duplicates any needed fields from |cert| to |new_cert|.
2625
  void (*cert_dup)(CERT *new_cert, const CERT *cert);
2626
  void (*cert_flush_cached_chain)(CERT *cert);
2627
  // cert_flush_cached_chain drops any cached |X509|-based leaf certificate
2628
  // from |cert|.
2629
  void (*cert_flush_cached_leaf)(CERT *cert);
2630
2631
  // session_cache_objects fills out |sess->x509_peer| and |sess->x509_chain|
2632
  // from |sess->certs| and erases |sess->x509_chain_without_leaf|. It returns
2633
  // true on success or false on error.
2634
  bool (*session_cache_objects)(SSL_SESSION *session);
2635
  // session_dup duplicates any needed fields from |session| to |new_session|.
2636
  // It returns true on success or false on error.
2637
  bool (*session_dup)(SSL_SESSION *new_session, const SSL_SESSION *session);
2638
  // session_clear frees any X509-related state from |session|.
2639
  void (*session_clear)(SSL_SESSION *session);
2640
  // session_verify_cert_chain verifies the certificate chain in |session|,
2641
  // sets |session->verify_result| and returns true on success or false on
2642
  // error.
2643
  bool (*session_verify_cert_chain)(SSL_SESSION *session, SSL_HANDSHAKE *ssl,
2644
                                    uint8_t *out_alert);
2645
2646
  // hs_flush_cached_ca_names drops any cached |X509_NAME|s from |hs|.
2647
  void (*hs_flush_cached_ca_names)(SSL_HANDSHAKE *hs);
2648
  // ssl_new does any necessary initialisation of |hs|. It returns true on
2649
  // success or false on error.
2650
  bool (*ssl_new)(SSL_HANDSHAKE *hs);
2651
  // ssl_free frees anything created by |ssl_new|.
2652
  void (*ssl_config_free)(SSL_CONFIG *cfg);
2653
  // ssl_flush_cached_client_CA drops any cached |X509_NAME|s from |ssl|.
2654
  void (*ssl_flush_cached_client_CA)(SSL_CONFIG *cfg);
2655
  // ssl_auto_chain_if_needed runs the deprecated auto-chaining logic if
2656
  // necessary. On success, it updates |ssl|'s certificate configuration as
2657
  // needed and returns true. Otherwise, it returns false.
2658
  bool (*ssl_auto_chain_if_needed)(SSL_HANDSHAKE *hs);
2659
  // ssl_ctx_new does any necessary initialisation of |ctx|. It returns true on
2660
  // success or false on error.
2661
  bool (*ssl_ctx_new)(SSL_CTX *ctx);
2662
  // ssl_ctx_free frees anything created by |ssl_ctx_new|.
2663
  void (*ssl_ctx_free)(SSL_CTX *ctx);
2664
  // ssl_ctx_flush_cached_client_CA drops any cached |X509_NAME|s from |ctx|.
2665
  void (*ssl_ctx_flush_cached_client_CA)(SSL_CTX *ssl);
2666
};
2667
2668
// ssl_crypto_x509_method provides the |SSL_X509_METHOD| functions using
2669
// crypto/x509.
2670
extern const SSL_X509_METHOD ssl_crypto_x509_method;
2671
2672
// ssl_noop_x509_method provides the |SSL_X509_METHOD| functions that avoid
2673
// crypto/x509.
2674
extern const SSL_X509_METHOD ssl_noop_x509_method;
2675
2676
struct TicketKey {
2677
  static constexpr bool kAllowUniquePtr = true;
2678
2679
  uint8_t name[SSL_TICKET_KEY_NAME_LEN] = {0};
2680
  uint8_t hmac_key[16] = {0};
2681
  uint8_t aes_key[16] = {0};
2682
  // next_rotation_tv_sec is the time (in seconds from the epoch) when the
2683
  // current key should be superseded by a new key, or the time when a previous
2684
  // key should be dropped. If zero, then the key should not be automatically
2685
  // rotated.
2686
  uint64_t next_rotation_tv_sec = 0;
2687
};
2688
2689
struct CertCompressionAlg {
2690
  static constexpr bool kAllowUniquePtr = true;
2691
2692
  ssl_cert_compression_func_t compress = nullptr;
2693
  ssl_cert_decompression_func_t decompress = nullptr;
2694
  uint16_t alg_id = 0;
2695
};
2696
2697
BSSL_NAMESPACE_END
2698
2699
DEFINE_LHASH_OF(SSL_SESSION)
2700
2701
BSSL_NAMESPACE_BEGIN
2702
2703
// An ssl_shutdown_t describes the shutdown state of one end of the connection,
2704
// whether it is alive or has been shutdown via close_notify or fatal alert.
2705
enum ssl_shutdown_t {
2706
  ssl_shutdown_none = 0,
2707
  ssl_shutdown_close_notify = 1,
2708
  ssl_shutdown_error = 2,
2709
};
2710
2711
enum ssl_ech_status_t {
2712
  // ssl_ech_none indicates ECH was not offered, or we have not gotten far
2713
  // enough in the handshake to determine the status.
2714
  ssl_ech_none,
2715
  // ssl_ech_accepted indicates the server accepted ECH.
2716
  ssl_ech_accepted,
2717
  // ssl_ech_rejected indicates the server was offered ECH but rejected it.
2718
  ssl_ech_rejected,
2719
};
2720
2721
struct SSL3_STATE {
2722
  static constexpr bool kAllowUniquePtr = true;
2723
2724
  SSL3_STATE();
2725
  ~SSL3_STATE();
2726
2727
  uint64_t read_sequence = 0;
2728
  uint64_t write_sequence = 0;
2729
2730
  uint8_t server_random[SSL3_RANDOM_SIZE] = {0};
2731
  uint8_t client_random[SSL3_RANDOM_SIZE] = {0};
2732
2733
  // read_buffer holds data from the transport to be processed.
2734
  SSLBuffer read_buffer;
2735
  // write_buffer holds data to be written to the transport.
2736
  SSLBuffer write_buffer;
2737
2738
  // pending_app_data is the unconsumed application data. It points into
2739
  // |read_buffer|.
2740
  Span<uint8_t> pending_app_data;
2741
2742
  // unreported_bytes_written is the number of bytes successfully written to the
2743
  // transport, but not yet reported to the caller. The next |SSL_write| will
2744
  // skip this many bytes from the input. This is used if
2745
  // |SSL_MODE_ENABLE_PARTIAL_WRITE| is disabled, in which case |SSL_write| only
2746
  // reports bytes written when the full caller input is written.
2747
  size_t unreported_bytes_written = 0;
2748
2749
  // pending_write, if |has_pending_write| is true, is the caller-supplied data
2750
  // corresponding to the current pending write. This is used to check the
2751
  // caller retried with a compatible buffer.
2752
  Span<const uint8_t> pending_write;
2753
2754
  // pending_write_type, if |has_pending_write| is true, is the record type
2755
  // for the current pending write.
2756
  //
2757
  // TODO(davidben): Remove this when alerts are moved out of this write path.
2758
  uint8_t pending_write_type = 0;
2759
2760
  // read_shutdown is the shutdown state for the read half of the connection.
2761
  enum ssl_shutdown_t read_shutdown = ssl_shutdown_none;
2762
2763
  // write_shutdown is the shutdown state for the write half of the connection.
2764
  enum ssl_shutdown_t write_shutdown = ssl_shutdown_none;
2765
2766
  // read_error, if |read_shutdown| is |ssl_shutdown_error|, is the error for
2767
  // the receive half of the connection.
2768
  UniquePtr<ERR_SAVE_STATE> read_error;
2769
2770
  int total_renegotiations = 0;
2771
2772
  // This holds a variable that indicates what we were doing when a 0 or -1 is
2773
  // returned.  This is needed for non-blocking IO so we know what request
2774
  // needs re-doing when in SSL_accept or SSL_connect
2775
  int rwstate = SSL_ERROR_NONE;
2776
2777
  enum ssl_encryption_level_t read_level = ssl_encryption_initial;
2778
  enum ssl_encryption_level_t write_level = ssl_encryption_initial;
2779
2780
  // early_data_skipped is the amount of early data that has been skipped by the
2781
  // record layer.
2782
  uint16_t early_data_skipped = 0;
2783
2784
  // empty_record_count is the number of consecutive empty records received.
2785
  uint8_t empty_record_count = 0;
2786
2787
  // warning_alert_count is the number of consecutive warning alerts
2788
  // received.
2789
  uint8_t warning_alert_count = 0;
2790
2791
  // key_update_count is the number of consecutive KeyUpdates received.
2792
  uint8_t key_update_count = 0;
2793
2794
  // ech_status indicates whether ECH was accepted by the server.
2795
  ssl_ech_status_t ech_status = ssl_ech_none;
2796
2797
  // skip_early_data instructs the record layer to skip unexpected early data
2798
  // messages when 0RTT is rejected.
2799
  bool skip_early_data : 1;
2800
2801
  // have_version is true if the connection's final version is known. Otherwise
2802
  // the version has not been negotiated yet.
2803
  bool have_version : 1;
2804
2805
  // v2_hello_done is true if the peer's V2ClientHello, if any, has been handled
2806
  // and future messages should use the record layer.
2807
  bool v2_hello_done : 1;
2808
2809
  // is_v2_hello is true if the current handshake message was derived from a
2810
  // V2ClientHello rather than received from the peer directly.
2811
  bool is_v2_hello : 1;
2812
2813
  // has_message is true if the current handshake message has been returned
2814
  // at least once by |get_message| and false otherwise.
2815
  bool has_message : 1;
2816
2817
  // initial_handshake_complete is true if the initial handshake has
2818
  // completed.
2819
  bool initial_handshake_complete : 1;
2820
2821
  // session_reused indicates whether a session was resumed.
2822
  bool session_reused : 1;
2823
2824
  bool send_connection_binding : 1;
2825
2826
  // channel_id_valid is true if, on the server, the client has negotiated a
2827
  // Channel ID and the |channel_id| field is filled in.
2828
  bool channel_id_valid : 1;
2829
2830
  // key_update_pending is true if we have a KeyUpdate acknowledgment
2831
  // outstanding.
2832
  bool key_update_pending : 1;
2833
2834
  // early_data_accepted is true if early data was accepted by the server.
2835
  bool early_data_accepted : 1;
2836
2837
  // alert_dispatch is true there is an alert in |send_alert| to be sent.
2838
  bool alert_dispatch : 1;
2839
2840
  // renegotiate_pending is whether the read half of the channel is blocked on a
2841
  // HelloRequest.
2842
  bool renegotiate_pending : 1;
2843
2844
  // used_hello_retry_request is whether the handshake used a TLS 1.3
2845
  // HelloRetryRequest message.
2846
  bool used_hello_retry_request : 1;
2847
2848
  // was_key_usage_invalid is whether the handshake succeeded despite using a
2849
  // TLS mode which was incompatible with the leaf certificate's keyUsage
2850
  // extension.
2851
  bool was_key_usage_invalid : 1;
2852
2853
  // hs_buf is the buffer of handshake data to process.
2854
  UniquePtr<BUF_MEM> hs_buf;
2855
2856
  // pending_hs_data contains the pending handshake data that has not yet
2857
  // been encrypted to |pending_flight|. This allows packing the handshake into
2858
  // fewer records.
2859
  UniquePtr<BUF_MEM> pending_hs_data;
2860
2861
  // pending_flight is the pending outgoing flight. This is used to flush each
2862
  // handshake flight in a single write. |write_buffer| must be written out
2863
  // before this data.
2864
  UniquePtr<BUF_MEM> pending_flight;
2865
2866
  // pending_flight_offset is the number of bytes of |pending_flight| which have
2867
  // been successfully written.
2868
  uint32_t pending_flight_offset = 0;
2869
2870
  // ticket_age_skew is the difference, in seconds, between the client-sent
2871
  // ticket age and the server-computed value in TLS 1.3 server connections
2872
  // which resumed a session.
2873
  int32_t ticket_age_skew = 0;
2874
2875
  // ssl_early_data_reason stores details on why 0-RTT was accepted or rejected.
2876
  enum ssl_early_data_reason_t early_data_reason = ssl_early_data_unknown;
2877
2878
  // aead_read_ctx is the current read cipher state.
2879
  UniquePtr<SSLAEADContext> aead_read_ctx;
2880
2881
  // aead_write_ctx is the current write cipher state.
2882
  UniquePtr<SSLAEADContext> aead_write_ctx;
2883
2884
  // hs is the handshake state for the current handshake or NULL if there isn't
2885
  // one.
2886
  UniquePtr<SSL_HANDSHAKE> hs;
2887
2888
  uint8_t write_traffic_secret[SSL_MAX_MD_SIZE] = {0};
2889
  uint8_t read_traffic_secret[SSL_MAX_MD_SIZE] = {0};
2890
  uint8_t exporter_secret[SSL_MAX_MD_SIZE] = {0};
2891
  uint8_t write_traffic_secret_len = 0;
2892
  uint8_t read_traffic_secret_len = 0;
2893
  uint8_t exporter_secret_len = 0;
2894
2895
  // Connection binding to prevent renegotiation attacks
2896
  uint8_t previous_client_finished[12] = {0};
2897
  uint8_t previous_client_finished_len = 0;
2898
  uint8_t previous_server_finished_len = 0;
2899
  uint8_t previous_server_finished[12] = {0};
2900
2901
  uint8_t send_alert[2] = {0};
2902
2903
  // established_session is the session established by the connection. This
2904
  // session is only filled upon the completion of the handshake and is
2905
  // immutable.
2906
  UniquePtr<SSL_SESSION> established_session;
2907
2908
  // Next protocol negotiation. For the client, this is the protocol that we
2909
  // sent in NextProtocol and is set when handling ServerHello extensions.
2910
  //
2911
  // For a server, this is the client's selected_protocol from NextProtocol and
2912
  // is set when handling the NextProtocol message, before the Finished
2913
  // message.
2914
  Array<uint8_t> next_proto_negotiated;
2915
2916
  // ALPN information
2917
  // (we are in the process of transitioning from NPN to ALPN.)
2918
2919
  // In a server these point to the selected ALPN protocol after the
2920
  // ClientHello has been processed. In a client these contain the protocol
2921
  // that the server selected once the ServerHello has been processed.
2922
  Array<uint8_t> alpn_selected;
2923
2924
  // hostname, on the server, is the value of the SNI extension.
2925
  UniquePtr<char> hostname;
2926
2927
  // For a server:
2928
  //     If |channel_id_valid| is true, then this contains the
2929
  //     verified Channel ID from the client: a P256 point, (x,y), where
2930
  //     each are big-endian values.
2931
  uint8_t channel_id[64] = {0};
2932
2933
  // Contains the QUIC transport params received by the peer.
2934
  Array<uint8_t> peer_quic_transport_params;
2935
2936
  // srtp_profile is the selected SRTP protection profile for
2937
  // DTLS-SRTP.
2938
  const SRTP_PROTECTION_PROFILE *srtp_profile = nullptr;
2939
};
2940
2941
// lengths of messages
2942
0
#define DTLS1_RT_HEADER_LENGTH 13
2943
2944
0
#define DTLS1_HM_HEADER_LENGTH 12
2945
2946
#define DTLS1_CCS_HEADER_LENGTH 1
2947
2948
#define DTLS1_AL_HEADER_LENGTH 2
2949
2950
struct hm_header_st {
2951
  uint8_t type;
2952
  uint32_t msg_len;
2953
  uint16_t seq;
2954
  uint32_t frag_off;
2955
  uint32_t frag_len;
2956
};
2957
2958
// An hm_fragment is an incoming DTLS message, possibly not yet assembled.
2959
struct hm_fragment {
2960
  static constexpr bool kAllowUniquePtr = true;
2961
2962
0
  hm_fragment() {}
2963
  hm_fragment(const hm_fragment &) = delete;
2964
  hm_fragment &operator=(const hm_fragment &) = delete;
2965
2966
  ~hm_fragment();
2967
2968
  // type is the type of the message.
2969
  uint8_t type = 0;
2970
  // seq is the sequence number of this message.
2971
  uint16_t seq = 0;
2972
  // msg_len is the length of the message body.
2973
  uint32_t msg_len = 0;
2974
  // data is a pointer to the message, including message header. It has length
2975
  // |DTLS1_HM_HEADER_LENGTH| + |msg_len|.
2976
  uint8_t *data = nullptr;
2977
  // reassembly is a bitmask of |msg_len| bits corresponding to which parts of
2978
  // the message have been received. It is NULL if the message is complete.
2979
  uint8_t *reassembly = nullptr;
2980
};
2981
2982
struct OPENSSL_timeval {
2983
  uint64_t tv_sec;
2984
  uint32_t tv_usec;
2985
};
2986
2987
struct DTLS1_STATE {
2988
  static constexpr bool kAllowUniquePtr = true;
2989
2990
  DTLS1_STATE();
2991
  ~DTLS1_STATE();
2992
2993
  // has_change_cipher_spec is true if we have received a ChangeCipherSpec from
2994
  // the peer in this epoch.
2995
  bool has_change_cipher_spec : 1;
2996
2997
  // outgoing_messages_complete is true if |outgoing_messages| has been
2998
  // completed by an attempt to flush it. Future calls to |add_message| and
2999
  // |add_change_cipher_spec| will start a new flight.
3000
  bool outgoing_messages_complete : 1;
3001
3002
  // flight_has_reply is true if the current outgoing flight is complete and has
3003
  // processed at least one message. This is used to detect whether we or the
3004
  // peer sent the final flight.
3005
  bool flight_has_reply : 1;
3006
3007
  // The current data and handshake epoch.  This is initially undefined, and
3008
  // starts at zero once the initial handshake is completed.
3009
  uint16_t r_epoch = 0;
3010
  uint16_t w_epoch = 0;
3011
3012
  // records being received in the current epoch
3013
  DTLS1_BITMAP bitmap;
3014
3015
  uint16_t handshake_write_seq = 0;
3016
  uint16_t handshake_read_seq = 0;
3017
3018
  // save last sequence number for retransmissions
3019
  uint64_t last_write_sequence = 0;
3020
  UniquePtr<SSLAEADContext> last_aead_write_ctx;
3021
3022
  // incoming_messages is a ring buffer of incoming handshake messages that have
3023
  // yet to be processed. The front of the ring buffer is message number
3024
  // |handshake_read_seq|, at position |handshake_read_seq| %
3025
  // |SSL_MAX_HANDSHAKE_FLIGHT|.
3026
  UniquePtr<hm_fragment> incoming_messages[SSL_MAX_HANDSHAKE_FLIGHT];
3027
3028
  // outgoing_messages is the queue of outgoing messages from the last handshake
3029
  // flight.
3030
  DTLS_OUTGOING_MESSAGE outgoing_messages[SSL_MAX_HANDSHAKE_FLIGHT];
3031
  uint8_t outgoing_messages_len = 0;
3032
3033
  // outgoing_written is the number of outgoing messages that have been
3034
  // written.
3035
  uint8_t outgoing_written = 0;
3036
  // outgoing_offset is the number of bytes of the next outgoing message have
3037
  // been written.
3038
  uint32_t outgoing_offset = 0;
3039
3040
  unsigned mtu = 0;  // max DTLS packet size
3041
3042
  // num_timeouts is the number of times the retransmit timer has fired since
3043
  // the last time it was reset.
3044
  unsigned num_timeouts = 0;
3045
3046
  // Indicates when the last handshake msg or heartbeat sent will
3047
  // timeout.
3048
  struct OPENSSL_timeval next_timeout = {0, 0};
3049
3050
  // timeout_duration_ms is the timeout duration in milliseconds.
3051
  unsigned timeout_duration_ms = 0;
3052
};
3053
3054
// An ALPSConfig is a pair of ALPN protocol and settings value to use with ALPS.
3055
struct ALPSConfig {
3056
  Array<uint8_t> protocol;
3057
  Array<uint8_t> settings;
3058
};
3059
3060
// SSL_CONFIG contains configuration bits that can be shed after the handshake
3061
// completes.  Objects of this type are not shared; they are unique to a
3062
// particular |SSL|.
3063
//
3064
// See SSL_shed_handshake_config() for more about the conditions under which
3065
// configuration can be shed.
3066
struct SSL_CONFIG {
3067
  static constexpr bool kAllowUniquePtr = true;
3068
3069
  explicit SSL_CONFIG(SSL *ssl_arg);
3070
  ~SSL_CONFIG();
3071
3072
  // ssl is a non-owning pointer to the parent |SSL| object.
3073
  SSL *const ssl = nullptr;
3074
3075
  // conf_max_version is the maximum acceptable version configured by
3076
  // |SSL_set_max_proto_version|. Note this version is not normalized in DTLS
3077
  // and is further constrained by |SSL_OP_NO_*|.
3078
  uint16_t conf_max_version = 0;
3079
3080
  // conf_min_version is the minimum acceptable version configured by
3081
  // |SSL_set_min_proto_version|. Note this version is not normalized in DTLS
3082
  // and is further constrained by |SSL_OP_NO_*|.
3083
  uint16_t conf_min_version = 0;
3084
3085
  X509_VERIFY_PARAM *param = nullptr;
3086
3087
  // crypto
3088
  UniquePtr<SSLCipherPreferenceList> cipher_list;
3089
3090
  // This is used to hold the local certificate used (i.e. the server
3091
  // certificate for a server or the client certificate for a client).
3092
  UniquePtr<CERT> cert;
3093
3094
  int (*verify_callback)(int ok,
3095
                         X509_STORE_CTX *ctx) =
3096
      nullptr;  // fail if callback returns 0
3097
3098
  enum ssl_verify_result_t (*custom_verify_callback)(
3099
      SSL *ssl, uint8_t *out_alert) = nullptr;
3100
  // Server-only: psk_identity_hint is the identity hint to send in
3101
  // PSK-based key exchanges.
3102
  UniquePtr<char> psk_identity_hint;
3103
3104
  unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity,
3105
                                  unsigned max_identity_len, uint8_t *psk,
3106
                                  unsigned max_psk_len) = nullptr;
3107
  unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk,
3108
                                  unsigned max_psk_len) = nullptr;
3109
3110
  // for server side, keep the list of CA_dn we can use
3111
  UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA;
3112
3113
  // cached_x509_client_CA is a cache of parsed versions of the elements of
3114
  // |client_CA|.
3115
  STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr;
3116
3117
  Array<uint16_t> supported_group_list;  // our list
3118
3119
  // channel_id_private is the client's Channel ID private key, or null if
3120
  // Channel ID should not be offered on this connection.
3121
  UniquePtr<EVP_PKEY> channel_id_private;
3122
3123
  // For a client, this contains the list of supported protocols in wire
3124
  // format.
3125
  Array<uint8_t> alpn_client_proto_list;
3126
3127
  // alps_configs contains the list of supported protocols to use with ALPS,
3128
  // along with their corresponding ALPS values.
3129
  GrowableArray<ALPSConfig> alps_configs;
3130
3131
  // Contains the QUIC transport params that this endpoint will send.
3132
  Array<uint8_t> quic_transport_params;
3133
3134
  // Contains the context used to decide whether to accept early data in QUIC.
3135
  Array<uint8_t> quic_early_data_context;
3136
3137
  // verify_sigalgs, if not empty, is the set of signature algorithms
3138
  // accepted from the peer in decreasing order of preference.
3139
  Array<uint16_t> verify_sigalgs;
3140
3141
  // srtp_profiles is the list of configured SRTP protection profiles for
3142
  // DTLS-SRTP.
3143
  UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles;
3144
3145
  // client_ech_config_list, if not empty, is a serialized ECHConfigList
3146
  // structure for the client to use when negotiating ECH.
3147
  Array<uint8_t> client_ech_config_list;
3148
3149
  // tls13_cipher_policy limits the set of ciphers that can be selected when
3150
  // negotiating a TLS 1.3 connection.
3151
  enum ssl_compliance_policy_t tls13_cipher_policy = ssl_compliance_policy_none;
3152
3153
  // verify_mode is a bitmask of |SSL_VERIFY_*| values.
3154
  uint8_t verify_mode = SSL_VERIFY_NONE;
3155
3156
  // ech_grease_enabled controls whether ECH GREASE may be sent in the
3157
  // ClientHello.
3158
  bool ech_grease_enabled : 1;
3159
3160
  // Enable signed certificate time stamps. Currently client only.
3161
  bool signed_cert_timestamps_enabled : 1;
3162
3163
  // ocsp_stapling_enabled is only used by client connections and indicates
3164
  // whether OCSP stapling will be requested.
3165
  bool ocsp_stapling_enabled : 1;
3166
3167
  // channel_id_enabled is copied from the |SSL_CTX|. For a server, it means
3168
  // that we'll accept Channel IDs from clients. It is ignored on the client.
3169
  bool channel_id_enabled : 1;
3170
3171
  // If enforce_rsa_key_usage is true, the handshake will fail if the
3172
  // keyUsage extension is present and incompatible with the TLS usage.
3173
  // This field is not read until after certificate verification.
3174
  bool enforce_rsa_key_usage : 1;
3175
3176
  // retain_only_sha256_of_client_certs is true if we should compute the SHA256
3177
  // hash of the peer's certificate and then discard it to save memory and
3178
  // session space. Only effective on the server side.
3179
  bool retain_only_sha256_of_client_certs : 1;
3180
3181
  // handoff indicates that a server should stop after receiving the
3182
  // ClientHello and pause the handshake in such a way that |SSL_get_error|
3183
  // returns |SSL_ERROR_HANDOFF|. This is copied in |SSL_new| from the |SSL_CTX|
3184
  // element of the same name and may be cleared if the handoff is declined.
3185
  bool handoff : 1;
3186
3187
  // shed_handshake_config indicates that the handshake config (this object!)
3188
  // should be freed after the handshake completes.
3189
  bool shed_handshake_config : 1;
3190
3191
  // jdk11_workaround is whether to disable TLS 1.3 for JDK 11 clients, as a
3192
  // workaround for https://bugs.openjdk.java.net/browse/JDK-8211806.
3193
  bool jdk11_workaround : 1;
3194
3195
  // QUIC drafts up to and including 32 used a different TLS extension
3196
  // codepoint to convey QUIC's transport parameters.
3197
  bool quic_use_legacy_codepoint : 1;
3198
3199
  // permute_extensions is whether to permute extensions when sending messages.
3200
  bool permute_extensions : 1;
3201
3202
  // aes_hw_override if set indicates we should override checking for aes
3203
  // hardware support, and use the value in aes_hw_override_value instead.
3204
  bool aes_hw_override : 1;
3205
3206
  // aes_hw_override_value is used for testing to indicate the support or lack
3207
  // of support for AES hw. The value is only considered if |aes_hw_override| is
3208
  // true.
3209
  bool aes_hw_override_value : 1;
3210
3211
  // alps_use_new_codepoint if set indicates we use new ALPS extension codepoint
3212
  // to negotiate and convey application settings.
3213
  bool alps_use_new_codepoint : 1;
3214
3215
  // check_client_certificate_type indicates whether the client, in TLS 1.2 and
3216
  // below, will check its certificate against the server's requested
3217
  // certificate types.
3218
  bool check_client_certificate_type : 1;
3219
3220
  // check_ecdsa_curve indicates whether the server, in TLS 1.2 and below, will
3221
  // check its certificate against the client's supported ECDSA curves.
3222
  bool check_ecdsa_curve : 1;
3223
};
3224
3225
// From RFC 8446, used in determining PSK modes.
3226
2
#define SSL_PSK_DHE_KE 0x1
3227
3228
// kMaxEarlyDataAccepted is the advertised number of plaintext bytes of early
3229
// data that will be accepted. This value should be slightly below
3230
// kMaxEarlyDataSkipped in tls_record.c, which is measured in ciphertext.
3231
static const size_t kMaxEarlyDataAccepted = 14336;
3232
3233
UniquePtr<CERT> ssl_cert_dup(CERT *cert);
3234
bool ssl_set_cert(CERT *cert, UniquePtr<CRYPTO_BUFFER> buffer);
3235
bool ssl_is_key_type_supported(int key_type);
3236
// ssl_compare_public_and_private_key returns true if |pubkey| is the public
3237
// counterpart to |privkey|. Otherwise it returns false and pushes a helpful
3238
// message on the error queue.
3239
bool ssl_compare_public_and_private_key(const EVP_PKEY *pubkey,
3240
                                       const EVP_PKEY *privkey);
3241
bool ssl_get_new_session(SSL_HANDSHAKE *hs);
3242
bool ssl_encrypt_ticket(SSL_HANDSHAKE *hs, CBB *out,
3243
                        const SSL_SESSION *session);
3244
bool ssl_ctx_rotate_ticket_encryption_key(SSL_CTX *ctx);
3245
3246
// ssl_session_new returns a newly-allocated blank |SSL_SESSION| or nullptr on
3247
// error.
3248
UniquePtr<SSL_SESSION> ssl_session_new(const SSL_X509_METHOD *x509_method);
3249
3250
// ssl_hash_session_id returns a hash of |session_id|, suitable for a hash table
3251
// keyed on session IDs.
3252
uint32_t ssl_hash_session_id(Span<const uint8_t> session_id);
3253
3254
// SSL_SESSION_parse parses an |SSL_SESSION| from |cbs| and advances |cbs| over
3255
// the parsed data.
3256
OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_parse(
3257
    CBS *cbs, const SSL_X509_METHOD *x509_method, CRYPTO_BUFFER_POOL *pool);
3258
3259
// ssl_session_serialize writes |in| to |cbb| as if it were serialising a
3260
// session for Session-ID resumption. It returns true on success and false on
3261
// error.
3262
OPENSSL_EXPORT bool ssl_session_serialize(const SSL_SESSION *in, CBB *cbb);
3263
3264
// ssl_session_is_context_valid returns whether |session|'s session ID context
3265
// matches the one set on |hs|.
3266
bool ssl_session_is_context_valid(const SSL_HANDSHAKE *hs,
3267
                                  const SSL_SESSION *session);
3268
3269
// ssl_session_is_time_valid returns true if |session| is still valid and false
3270
// if it has expired.
3271
bool ssl_session_is_time_valid(const SSL *ssl, const SSL_SESSION *session);
3272
3273
// ssl_session_is_resumable returns whether |session| is resumable for |hs|.
3274
bool ssl_session_is_resumable(const SSL_HANDSHAKE *hs,
3275
                              const SSL_SESSION *session);
3276
3277
// ssl_session_protocol_version returns the protocol version associated with
3278
// |session|. Note that despite the name, this is not the same as
3279
// |SSL_SESSION_get_protocol_version|. The latter is based on upstream's name.
3280
uint16_t ssl_session_protocol_version(const SSL_SESSION *session);
3281
3282
// ssl_session_get_digest returns the digest used in |session|.
3283
const EVP_MD *ssl_session_get_digest(const SSL_SESSION *session);
3284
3285
void ssl_set_session(SSL *ssl, SSL_SESSION *session);
3286
3287
// ssl_get_prev_session looks up the previous session based on |client_hello|.
3288
// On success, it sets |*out_session| to the session or nullptr if none was
3289
// found. If the session could not be looked up synchronously, it returns
3290
// |ssl_hs_pending_session| and should be called again. If a ticket could not be
3291
// decrypted immediately it returns |ssl_hs_pending_ticket| and should also
3292
// be called again. Otherwise, it returns |ssl_hs_error|.
3293
enum ssl_hs_wait_t ssl_get_prev_session(SSL_HANDSHAKE *hs,
3294
                                        UniquePtr<SSL_SESSION> *out_session,
3295
                                        bool *out_tickets_supported,
3296
                                        bool *out_renew_ticket,
3297
                                        const SSL_CLIENT_HELLO *client_hello);
3298
3299
// The following flags determine which parts of the session are duplicated.
3300
0
#define SSL_SESSION_DUP_AUTH_ONLY 0x0
3301
0
#define SSL_SESSION_INCLUDE_TICKET 0x1
3302
0
#define SSL_SESSION_INCLUDE_NONAUTH 0x2
3303
#define SSL_SESSION_DUP_ALL \
3304
0
  (SSL_SESSION_INCLUDE_TICKET | SSL_SESSION_INCLUDE_NONAUTH)
3305
3306
// SSL_SESSION_dup returns a newly-allocated |SSL_SESSION| with a copy of the
3307
// fields in |session| or nullptr on error. The new session is non-resumable and
3308
// must be explicitly marked resumable once it has been filled in.
3309
OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_dup(SSL_SESSION *session,
3310
                                                      int dup_flags);
3311
3312
// ssl_session_rebase_time updates |session|'s start time to the current time,
3313
// adjusting the timeout so the expiration time is unchanged.
3314
void ssl_session_rebase_time(SSL *ssl, SSL_SESSION *session);
3315
3316
// ssl_session_renew_timeout calls |ssl_session_rebase_time| and renews
3317
// |session|'s timeout to |timeout| (measured from the current time). The
3318
// renewal is clamped to the session's auth_timeout.
3319
void ssl_session_renew_timeout(SSL *ssl, SSL_SESSION *session,
3320
                               uint32_t timeout);
3321
3322
void ssl_update_cache(SSL *ssl);
3323
3324
void ssl_send_alert(SSL *ssl, int level, int desc);
3325
int ssl_send_alert_impl(SSL *ssl, int level, int desc);
3326
bool tls_get_message(const SSL *ssl, SSLMessage *out);
3327
ssl_open_record_t tls_open_handshake(SSL *ssl, size_t *out_consumed,
3328
                                     uint8_t *out_alert, Span<uint8_t> in);
3329
void tls_next_message(SSL *ssl);
3330
3331
int tls_dispatch_alert(SSL *ssl);
3332
ssl_open_record_t tls_open_app_data(SSL *ssl, Span<uint8_t> *out,
3333
                                    size_t *out_consumed, uint8_t *out_alert,
3334
                                    Span<uint8_t> in);
3335
ssl_open_record_t tls_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
3336
                                              uint8_t *out_alert,
3337
                                              Span<uint8_t> in);
3338
int tls_write_app_data(SSL *ssl, bool *out_needs_handshake,
3339
                       size_t *out_bytes_written, Span<const uint8_t> in);
3340
3341
bool tls_new(SSL *ssl);
3342
void tls_free(SSL *ssl);
3343
3344
bool tls_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
3345
bool tls_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg);
3346
bool tls_add_message(SSL *ssl, Array<uint8_t> msg);
3347
bool tls_add_change_cipher_spec(SSL *ssl);
3348
int tls_flush_flight(SSL *ssl);
3349
3350
bool dtls1_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
3351
bool dtls1_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg);
3352
bool dtls1_add_message(SSL *ssl, Array<uint8_t> msg);
3353
bool dtls1_add_change_cipher_spec(SSL *ssl);
3354
int dtls1_flush_flight(SSL *ssl);
3355
3356
// ssl_add_message_cbb finishes the handshake message in |cbb| and adds it to
3357
// the pending flight. It returns true on success and false on error.
3358
bool ssl_add_message_cbb(SSL *ssl, CBB *cbb);
3359
3360
// ssl_hash_message incorporates |msg| into the handshake hash. It returns true
3361
// on success and false on allocation failure.
3362
bool ssl_hash_message(SSL_HANDSHAKE *hs, const SSLMessage &msg);
3363
3364
ssl_open_record_t dtls1_open_app_data(SSL *ssl, Span<uint8_t> *out,
3365
                                      size_t *out_consumed, uint8_t *out_alert,
3366
                                      Span<uint8_t> in);
3367
ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
3368
                                                uint8_t *out_alert,
3369
                                                Span<uint8_t> in);
3370
3371
int dtls1_write_app_data(SSL *ssl, bool *out_needs_handshake,
3372
                         size_t *out_bytes_written, Span<const uint8_t> in);
3373
3374
// dtls1_write_record sends a record. It returns one on success and <= 0 on
3375
// error.
3376
int dtls1_write_record(SSL *ssl, int type, Span<const uint8_t> in,
3377
                       enum dtls1_use_epoch_t use_epoch);
3378
3379
int dtls1_retransmit_outgoing_messages(SSL *ssl);
3380
bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr,
3381
                          CBS *out_body);
3382
bool dtls1_check_timeout_num(SSL *ssl);
3383
3384
void dtls1_start_timer(SSL *ssl);
3385
void dtls1_stop_timer(SSL *ssl);
3386
bool dtls1_is_timer_expired(SSL *ssl);
3387
unsigned int dtls1_min_mtu(void);
3388
3389
bool dtls1_new(SSL *ssl);
3390
void dtls1_free(SSL *ssl);
3391
3392
bool dtls1_get_message(const SSL *ssl, SSLMessage *out);
3393
ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed,
3394
                                       uint8_t *out_alert, Span<uint8_t> in);
3395
void dtls1_next_message(SSL *ssl);
3396
int dtls1_dispatch_alert(SSL *ssl);
3397
3398
// tls1_configure_aead configures either the read or write direction AEAD (as
3399
// determined by |direction|) using the keys generated by the TLS KDF. The
3400
// |key_block_cache| argument is used to store the generated key block, if
3401
// empty. Otherwise it's assumed that the key block is already contained within
3402
// it. It returns true on success or false on error.
3403
bool tls1_configure_aead(SSL *ssl, evp_aead_direction_t direction,
3404
                         Array<uint8_t> *key_block_cache,
3405
                         const SSL_SESSION *session,
3406
                         Span<const uint8_t> iv_override);
3407
3408
bool tls1_change_cipher_state(SSL_HANDSHAKE *hs,
3409
                              evp_aead_direction_t direction);
3410
int tls1_generate_master_secret(SSL_HANDSHAKE *hs, uint8_t *out,
3411
                                Span<const uint8_t> premaster);
3412
3413
// tls1_get_grouplist returns the locally-configured group preference list.
3414
Span<const uint16_t> tls1_get_grouplist(const SSL_HANDSHAKE *ssl);
3415
3416
// tls1_check_group_id returns whether |group_id| is consistent with locally-
3417
// configured group preferences.
3418
bool tls1_check_group_id(const SSL_HANDSHAKE *ssl, uint16_t group_id);
3419
3420
// tls1_get_shared_group sets |*out_group_id| to the first preferred shared
3421
// group between client and server preferences and returns true. If none may be
3422
// found, it returns false.
3423
bool tls1_get_shared_group(SSL_HANDSHAKE *hs, uint16_t *out_group_id);
3424
3425
// ssl_add_clienthello_tlsext writes ClientHello extensions to |out| for |type|.
3426
// It returns true on success and false on failure. The |header_len| argument is
3427
// the length of the ClientHello written so far and is used to compute the
3428
// padding length. (It does not include the record header or handshake headers.)
3429
//
3430
// If |type| is |ssl_client_hello_inner|, this function also writes the
3431
// compressed extensions to |out_encoded|. Otherwise, |out_encoded| should be
3432
// nullptr.
3433
//
3434
// On success, the function sets |*out_needs_psk_binder| to whether the last
3435
// ClientHello extension was the pre_shared_key extension and needs a PSK binder
3436
// filled in. The caller should then update |out| and, if applicable,
3437
// |out_encoded| with the binder after completing the whole message.
3438
bool ssl_add_clienthello_tlsext(SSL_HANDSHAKE *hs, CBB *out, CBB *out_encoded,
3439
                                bool *out_needs_psk_binder,
3440
                                ssl_client_hello_type_t type,
3441
                                size_t header_len);
3442
3443
bool ssl_add_serverhello_tlsext(SSL_HANDSHAKE *hs, CBB *out);
3444
bool ssl_parse_clienthello_tlsext(SSL_HANDSHAKE *hs,
3445
                                  const SSL_CLIENT_HELLO *client_hello);
3446
bool ssl_parse_serverhello_tlsext(SSL_HANDSHAKE *hs, const CBS *extensions);
3447
3448
0
#define tlsext_tick_md EVP_sha256
3449
3450
// ssl_process_ticket processes a session ticket from the client. It returns
3451
// one of:
3452
//   |ssl_ticket_aead_success|: |*out_session| is set to the parsed session and
3453
//       |*out_renew_ticket| is set to whether the ticket should be renewed.
3454
//   |ssl_ticket_aead_ignore_ticket|: |*out_renew_ticket| is set to whether a
3455
//       fresh ticket should be sent, but the given ticket cannot be used.
3456
//   |ssl_ticket_aead_retry|: the ticket could not be immediately decrypted.
3457
//       Retry later.
3458
//   |ssl_ticket_aead_error|: an error occured that is fatal to the connection.
3459
enum ssl_ticket_aead_result_t ssl_process_ticket(
3460
    SSL_HANDSHAKE *hs, UniquePtr<SSL_SESSION> *out_session,
3461
    bool *out_renew_ticket, Span<const uint8_t> ticket,
3462
    Span<const uint8_t> session_id);
3463
3464
// tls1_verify_channel_id processes |msg| as a Channel ID message, and verifies
3465
// the signature. If the key is valid, it saves the Channel ID and returns true.
3466
// Otherwise, it returns false.
3467
bool tls1_verify_channel_id(SSL_HANDSHAKE *hs, const SSLMessage &msg);
3468
3469
// tls1_write_channel_id generates a Channel ID message and puts the output in
3470
// |cbb|. |ssl->channel_id_private| must already be set before calling.  This
3471
// function returns true on success and false on error.
3472
bool tls1_write_channel_id(SSL_HANDSHAKE *hs, CBB *cbb);
3473
3474
// tls1_channel_id_hash computes the hash to be signed by Channel ID and writes
3475
// it to |out|, which must contain at least |EVP_MAX_MD_SIZE| bytes. It returns
3476
// true on success and false on failure.
3477
bool tls1_channel_id_hash(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len);
3478
3479
// tls1_record_handshake_hashes_for_channel_id records the current handshake
3480
// hashes in |hs->new_session| so that Channel ID resumptions can sign that
3481
// data.
3482
bool tls1_record_handshake_hashes_for_channel_id(SSL_HANDSHAKE *hs);
3483
3484
// ssl_can_write returns whether |ssl| is allowed to write.
3485
bool ssl_can_write(const SSL *ssl);
3486
3487
// ssl_can_read returns wheter |ssl| is allowed to read.
3488
bool ssl_can_read(const SSL *ssl);
3489
3490
void ssl_get_current_time(const SSL *ssl, struct OPENSSL_timeval *out_clock);
3491
void ssl_ctx_get_current_time(const SSL_CTX *ctx,
3492
                              struct OPENSSL_timeval *out_clock);
3493
3494
// ssl_reset_error_state resets state for |SSL_get_error|.
3495
void ssl_reset_error_state(SSL *ssl);
3496
3497
// ssl_set_read_error sets |ssl|'s read half into an error state, saving the
3498
// current state of the error queue.
3499
void ssl_set_read_error(SSL *ssl);
3500
3501
BSSL_NAMESPACE_END
3502
3503
3504
// Opaque C types.
3505
//
3506
// The following types are exported to C code as public typedefs, so they must
3507
// be defined outside of the namespace.
3508
3509
// ssl_method_st backs the public |SSL_METHOD| type. It is a compatibility
3510
// structure to support the legacy version-locked methods.
3511
struct ssl_method_st {
3512
  // version, if non-zero, is the only protocol version acceptable to an
3513
  // SSL_CTX initialized from this method.
3514
  uint16_t version;
3515
  // method is the underlying SSL_PROTOCOL_METHOD that initializes the
3516
  // SSL_CTX.
3517
  const bssl::SSL_PROTOCOL_METHOD *method;
3518
  // x509_method contains pointers to functions that might deal with |X509|
3519
  // compatibility, or might be a no-op, depending on the application.
3520
  const bssl::SSL_X509_METHOD *x509_method;
3521
};
3522
3523
struct ssl_ctx_st : public bssl::RefCounted<ssl_ctx_st> {
3524
  explicit ssl_ctx_st(const SSL_METHOD *ssl_method);
3525
  ssl_ctx_st(const ssl_ctx_st &) = delete;
3526
  ssl_ctx_st &operator=(const ssl_ctx_st &) = delete;
3527
3528
  const bssl::SSL_PROTOCOL_METHOD *method = nullptr;
3529
  const bssl::SSL_X509_METHOD *x509_method = nullptr;
3530
3531
  // lock is used to protect various operations on this object.
3532
  CRYPTO_MUTEX lock;
3533
3534
  // conf_max_version is the maximum acceptable protocol version configured by
3535
  // |SSL_CTX_set_max_proto_version|. Note this version is normalized in DTLS
3536
  // and is further constrainted by |SSL_OP_NO_*|.
3537
  uint16_t conf_max_version = 0;
3538
3539
  // conf_min_version is the minimum acceptable protocol version configured by
3540
  // |SSL_CTX_set_min_proto_version|. Note this version is normalized in DTLS
3541
  // and is further constrainted by |SSL_OP_NO_*|.
3542
  uint16_t conf_min_version = 0;
3543
3544
  // num_tickets is the number of tickets to send immediately after the TLS 1.3
3545
  // handshake. TLS 1.3 recommends single-use tickets so, by default, issue two
3546
  /// in case the client makes several connections before getting a renewal.
3547
  uint8_t num_tickets = 2;
3548
3549
  // quic_method is the method table corresponding to the QUIC hooks.
3550
  const SSL_QUIC_METHOD *quic_method = nullptr;
3551
3552
  bssl::UniquePtr<bssl::SSLCipherPreferenceList> cipher_list;
3553
3554
  X509_STORE *cert_store = nullptr;
3555
  LHASH_OF(SSL_SESSION) *sessions = nullptr;
3556
  // Most session-ids that will be cached, default is
3557
  // SSL_SESSION_CACHE_MAX_SIZE_DEFAULT. 0 is unlimited.
3558
  unsigned long session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
3559
  SSL_SESSION *session_cache_head = nullptr;
3560
  SSL_SESSION *session_cache_tail = nullptr;
3561
3562
  // handshakes_since_cache_flush is the number of successful handshakes since
3563
  // the last cache flush.
3564
  int handshakes_since_cache_flush = 0;
3565
3566
  // This can have one of 2 values, ored together,
3567
  // SSL_SESS_CACHE_CLIENT,
3568
  // SSL_SESS_CACHE_SERVER,
3569
  // Default is SSL_SESSION_CACHE_SERVER, which means only
3570
  // SSL_accept which cache SSL_SESSIONS.
3571
  int session_cache_mode = SSL_SESS_CACHE_SERVER;
3572
3573
  // session_timeout is the default lifetime for new sessions in TLS 1.2 and
3574
  // earlier, in seconds.
3575
  uint32_t session_timeout = SSL_DEFAULT_SESSION_TIMEOUT;
3576
3577
  // session_psk_dhe_timeout is the default lifetime for new sessions in TLS
3578
  // 1.3, in seconds.
3579
  uint32_t session_psk_dhe_timeout = SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT;
3580
3581
  // If this callback is not null, it will be called each time a session id is
3582
  // added to the cache.  If this function returns 1, it means that the
3583
  // callback will do a SSL_SESSION_free() when it has finished using it.
3584
  // Otherwise, on 0, it means the callback has finished with it. If
3585
  // remove_session_cb is not null, it will be called when a session-id is
3586
  // removed from the cache.  After the call, OpenSSL will SSL_SESSION_free()
3587
  // it.
3588
  int (*new_session_cb)(SSL *ssl, SSL_SESSION *sess) = nullptr;
3589
  void (*remove_session_cb)(SSL_CTX *ctx, SSL_SESSION *sess) = nullptr;
3590
  SSL_SESSION *(*get_session_cb)(SSL *ssl, const uint8_t *data, int len,
3591
                                 int *copy) = nullptr;
3592
3593
  // if defined, these override the X509_verify_cert() calls
3594
  int (*app_verify_callback)(X509_STORE_CTX *store_ctx, void *arg) = nullptr;
3595
  void *app_verify_arg = nullptr;
3596
3597
  ssl_verify_result_t (*custom_verify_callback)(SSL *ssl,
3598
                                                uint8_t *out_alert) = nullptr;
3599
3600
  // Default password callback.
3601
  pem_password_cb *default_passwd_callback = nullptr;
3602
3603
  // Default password callback user data.
3604
  void *default_passwd_callback_userdata = nullptr;
3605
3606
  // get client cert callback
3607
  int (*client_cert_cb)(SSL *ssl, X509 **out_x509,
3608
                        EVP_PKEY **out_pkey) = nullptr;
3609
3610
  CRYPTO_EX_DATA ex_data;
3611
3612
  // Default values used when no per-SSL value is defined follow
3613
3614
  void (*info_callback)(const SSL *ssl, int type, int value) = nullptr;
3615
3616
  // what we put in client cert requests
3617
  bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA;
3618
3619
  // cached_x509_client_CA is a cache of parsed versions of the elements of
3620
  // |client_CA|.
3621
  STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr;
3622
3623
3624
  // Default values to use in SSL structures follow (these are copied by
3625
  // SSL_new)
3626
3627
  uint32_t options = 0;
3628
  // Disable the auto-chaining feature by default. wpa_supplicant relies on this
3629
  // feature, but require callers opt into it.
3630
  uint32_t mode = SSL_MODE_NO_AUTO_CHAIN;
3631
  uint32_t max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
3632
3633
  bssl::UniquePtr<bssl::CERT> cert;
3634
3635
  // callback that allows applications to peek at protocol messages
3636
  void (*msg_callback)(int is_write, int version, int content_type,
3637
                       const void *buf, size_t len, SSL *ssl,
3638
                       void *arg) = nullptr;
3639
  void *msg_callback_arg = nullptr;
3640
3641
  int verify_mode = SSL_VERIFY_NONE;
3642
  int (*default_verify_callback)(int ok, X509_STORE_CTX *ctx) =
3643
      nullptr;  // called 'verify_callback' in the SSL
3644
3645
  X509_VERIFY_PARAM *param = nullptr;
3646
3647
  // select_certificate_cb is called before most ClientHello processing and
3648
  // before the decision whether to resume a session is made. See
3649
  // |ssl_select_cert_result_t| for details of the return values.
3650
  ssl_select_cert_result_t (*select_certificate_cb)(const SSL_CLIENT_HELLO *) =
3651
      nullptr;
3652
3653
  // dos_protection_cb is called once the resumption decision for a ClientHello
3654
  // has been made. It returns one to continue the handshake or zero to
3655
  // abort.
3656
  int (*dos_protection_cb)(const SSL_CLIENT_HELLO *) = nullptr;
3657
3658
  // Controls whether to verify certificates when resuming connections. They
3659
  // were already verified when the connection was first made, so the default is
3660
  // false. For now, this is only respected on clients, not servers.
3661
  bool reverify_on_resume = false;
3662
3663
  // Maximum amount of data to send in one fragment. actual record size can be
3664
  // more than this due to padding and MAC overheads.
3665
  uint16_t max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3666
3667
  // TLS extensions servername callback
3668
  int (*servername_callback)(SSL *, int *, void *) = nullptr;
3669
  void *servername_arg = nullptr;
3670
3671
  // RFC 4507 session ticket keys. |ticket_key_current| may be NULL before the
3672
  // first handshake and |ticket_key_prev| may be NULL at any time.
3673
  // Automatically generated ticket keys are rotated as needed at handshake
3674
  // time. Hence, all access must be synchronized through |lock|.
3675
  bssl::UniquePtr<bssl::TicketKey> ticket_key_current;
3676
  bssl::UniquePtr<bssl::TicketKey> ticket_key_prev;
3677
3678
  // Callback to support customisation of ticket key setting
3679
  int (*ticket_key_cb)(SSL *ssl, uint8_t *name, uint8_t *iv,
3680
                       EVP_CIPHER_CTX *ectx, HMAC_CTX *hctx, int enc) = nullptr;
3681
3682
  // Server-only: psk_identity_hint is the default identity hint to send in
3683
  // PSK-based key exchanges.
3684
  bssl::UniquePtr<char> psk_identity_hint;
3685
3686
  unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity,
3687
                                  unsigned max_identity_len, uint8_t *psk,
3688
                                  unsigned max_psk_len) = nullptr;
3689
  unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk,
3690
                                  unsigned max_psk_len) = nullptr;
3691
3692
3693
  // Next protocol negotiation information
3694
  // (for experimental NPN extension).
3695
3696
  // For a server, this contains a callback function by which the set of
3697
  // advertised protocols can be provided.
3698
  int (*next_protos_advertised_cb)(SSL *ssl, const uint8_t **out,
3699
                                   unsigned *out_len, void *arg) = nullptr;
3700
  void *next_protos_advertised_cb_arg = nullptr;
3701
  // For a client, this contains a callback function that selects the
3702
  // next protocol from the list provided by the server.
3703
  int (*next_proto_select_cb)(SSL *ssl, uint8_t **out, uint8_t *out_len,
3704
                              const uint8_t *in, unsigned in_len,
3705
                              void *arg) = nullptr;
3706
  void *next_proto_select_cb_arg = nullptr;
3707
3708
  // ALPN information
3709
  // (we are in the process of transitioning from NPN to ALPN.)
3710
3711
  // For a server, this contains a callback function that allows the
3712
  // server to select the protocol for the connection.
3713
  //   out: on successful return, this must point to the raw protocol
3714
  //        name (without the length prefix).
3715
  //   outlen: on successful return, this contains the length of |*out|.
3716
  //   in: points to the client's list of supported protocols in
3717
  //       wire-format.
3718
  //   inlen: the length of |in|.
3719
  int (*alpn_select_cb)(SSL *ssl, const uint8_t **out, uint8_t *out_len,
3720
                        const uint8_t *in, unsigned in_len,
3721
                        void *arg) = nullptr;
3722
  void *alpn_select_cb_arg = nullptr;
3723
3724
  // For a client, this contains the list of supported protocols in wire
3725
  // format.
3726
  bssl::Array<uint8_t> alpn_client_proto_list;
3727
3728
  // SRTP profiles we are willing to do from RFC 5764
3729
  bssl::UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles;
3730
3731
  // Defined compression algorithms for certificates.
3732
  bssl::GrowableArray<bssl::CertCompressionAlg> cert_compression_algs;
3733
3734
  // Supported group values inherited by SSL structure
3735
  bssl::Array<uint16_t> supported_group_list;
3736
3737
  // channel_id_private is the client's Channel ID private key, or null if
3738
  // Channel ID should not be offered on this connection.
3739
  bssl::UniquePtr<EVP_PKEY> channel_id_private;
3740
3741
  // ech_keys contains the server's list of ECHConfig values and associated
3742
  // private keys. This list may be swapped out at any time, so all access must
3743
  // be synchronized through |lock|.
3744
  bssl::UniquePtr<SSL_ECH_KEYS> ech_keys;
3745
3746
  // keylog_callback, if not NULL, is the key logging callback. See
3747
  // |SSL_CTX_set_keylog_callback|.
3748
  void (*keylog_callback)(const SSL *ssl, const char *line) = nullptr;
3749
3750
  // current_time_cb, if not NULL, is the function to use to get the current
3751
  // time. It sets |*out_clock| to the current time. The |ssl| argument is
3752
  // always NULL. See |SSL_CTX_set_current_time_cb|.
3753
  void (*current_time_cb)(const SSL *ssl, struct timeval *out_clock) = nullptr;
3754
3755
  // pool is used for all |CRYPTO_BUFFER|s in case we wish to share certificate
3756
  // memory.
3757
  CRYPTO_BUFFER_POOL *pool = nullptr;
3758
3759
  // ticket_aead_method contains function pointers for opening and sealing
3760
  // session tickets.
3761
  const SSL_TICKET_AEAD_METHOD *ticket_aead_method = nullptr;
3762
3763
  // legacy_ocsp_callback implements an OCSP-related callback for OpenSSL
3764
  // compatibility.
3765
  int (*legacy_ocsp_callback)(SSL *ssl, void *arg) = nullptr;
3766
  void *legacy_ocsp_callback_arg = nullptr;
3767
3768
  // tls13_cipher_policy limits the set of ciphers that can be selected when
3769
  // negotiating a TLS 1.3 connection.
3770
  enum ssl_compliance_policy_t tls13_cipher_policy = ssl_compliance_policy_none;
3771
3772
  // verify_sigalgs, if not empty, is the set of signature algorithms
3773
  // accepted from the peer in decreasing order of preference.
3774
  bssl::Array<uint16_t> verify_sigalgs;
3775
3776
  // retain_only_sha256_of_client_certs is true if we should compute the SHA256
3777
  // hash of the peer's certificate and then discard it to save memory and
3778
  // session space. Only effective on the server side.
3779
  bool retain_only_sha256_of_client_certs : 1;
3780
3781
  // quiet_shutdown is true if the connection should not send a close_notify on
3782
  // shutdown.
3783
  bool quiet_shutdown : 1;
3784
3785
  // ocsp_stapling_enabled is only used by client connections and indicates
3786
  // whether OCSP stapling will be requested.
3787
  bool ocsp_stapling_enabled : 1;
3788
3789
  // If true, a client will request certificate timestamps.
3790
  bool signed_cert_timestamps_enabled : 1;
3791
3792
  // channel_id_enabled is whether Channel ID is enabled. For a server, means
3793
  // that we'll accept Channel IDs from clients.  For a client, means that we'll
3794
  // advertise support.
3795
  bool channel_id_enabled : 1;
3796
3797
  // grease_enabled is whether GREASE (RFC 8701) is enabled.
3798
  bool grease_enabled : 1;
3799
3800
  // permute_extensions is whether to permute extensions when sending messages.
3801
  bool permute_extensions : 1;
3802
3803
  // allow_unknown_alpn_protos is whether the client allows unsolicited ALPN
3804
  // protocols from the peer.
3805
  bool allow_unknown_alpn_protos : 1;
3806
3807
  // false_start_allowed_without_alpn is whether False Start (if
3808
  // |SSL_MODE_ENABLE_FALSE_START| is enabled) is allowed without ALPN.
3809
  bool false_start_allowed_without_alpn : 1;
3810
3811
  // handoff indicates that a server should stop after receiving the
3812
  // ClientHello and pause the handshake in such a way that |SSL_get_error|
3813
  // returns |SSL_ERROR_HANDOFF|.
3814
  bool handoff : 1;
3815
3816
  // If enable_early_data is true, early data can be sent and accepted.
3817
  bool enable_early_data : 1;
3818
3819
  // aes_hw_override if set indicates we should override checking for AES
3820
  // hardware support, and use the value in aes_hw_override_value instead.
3821
  bool aes_hw_override : 1;
3822
3823
  // aes_hw_override_value is used for testing to indicate the support or lack
3824
  // of support for AES hardware. The value is only considered if
3825
  // |aes_hw_override| is true.
3826
  bool aes_hw_override_value : 1;
3827
3828
 private:
3829
  friend RefCounted;
3830
  ~ssl_ctx_st();
3831
};
3832
3833
struct ssl_st {
3834
  explicit ssl_st(SSL_CTX *ctx_arg);
3835
  ssl_st(const ssl_st &) = delete;
3836
  ssl_st &operator=(const ssl_st &) = delete;
3837
  ~ssl_st();
3838
3839
  // method is the method table corresponding to the current protocol (DTLS or
3840
  // TLS).
3841
  const bssl::SSL_PROTOCOL_METHOD *method = nullptr;
3842
3843
  // config is a container for handshake configuration.  Accesses to this field
3844
  // should check for nullptr, since configuration may be shed after the
3845
  // handshake completes.  (If you have the |SSL_HANDSHAKE| object at hand, use
3846
  // that instead, and skip the null check.)
3847
  bssl::UniquePtr<bssl::SSL_CONFIG> config;
3848
3849
  // version is the protocol version.
3850
  uint16_t version = 0;
3851
3852
  uint16_t max_send_fragment = 0;
3853
3854
  // There are 2 BIO's even though they are normally both the same. This is so
3855
  // data can be read and written to different handlers
3856
3857
  bssl::UniquePtr<BIO> rbio;  // used by SSL_read
3858
  bssl::UniquePtr<BIO> wbio;  // used by SSL_write
3859
3860
  // do_handshake runs the handshake. On completion, it returns |ssl_hs_ok|.
3861
  // Otherwise, it returns a value corresponding to what operation is needed to
3862
  // progress.
3863
  bssl::ssl_hs_wait_t (*do_handshake)(bssl::SSL_HANDSHAKE *hs) = nullptr;
3864
3865
  bssl::SSL3_STATE *s3 = nullptr;   // TLS variables
3866
  bssl::DTLS1_STATE *d1 = nullptr;  // DTLS variables
3867
3868
  // callback that allows applications to peek at protocol messages
3869
  void (*msg_callback)(int write_p, int version, int content_type,
3870
                       const void *buf, size_t len, SSL *ssl,
3871
                       void *arg) = nullptr;
3872
  void *msg_callback_arg = nullptr;
3873
3874
  // session info
3875
3876
  // initial_timeout_duration_ms is the default DTLS timeout duration in
3877
  // milliseconds. It's used to initialize the timer any time it's restarted.
3878
  //
3879
  // RFC 6347 states that implementations SHOULD use an initial timer value of 1
3880
  // second.
3881
  unsigned initial_timeout_duration_ms = 1000;
3882
3883
  // session is the configured session to be offered by the client. This session
3884
  // is immutable.
3885
  bssl::UniquePtr<SSL_SESSION> session;
3886
3887
  void (*info_callback)(const SSL *ssl, int type, int value) = nullptr;
3888
3889
  bssl::UniquePtr<SSL_CTX> ctx;
3890
3891
  // session_ctx is the |SSL_CTX| used for the session cache and related
3892
  // settings.
3893
  bssl::UniquePtr<SSL_CTX> session_ctx;
3894
3895
  // extra application data
3896
  CRYPTO_EX_DATA ex_data;
3897
3898
  uint32_t options = 0;  // protocol behaviour
3899
  uint32_t mode = 0;     // API behaviour
3900
  uint32_t max_cert_list = 0;
3901
  bssl::UniquePtr<char> hostname;
3902
3903
  // quic_method is the method table corresponding to the QUIC hooks.
3904
  const SSL_QUIC_METHOD *quic_method = nullptr;
3905
3906
  // renegotiate_mode controls how peer renegotiation attempts are handled.
3907
  ssl_renegotiate_mode_t renegotiate_mode = ssl_renegotiate_never;
3908
3909
  // server is true iff the this SSL* is the server half. Note: before the SSL*
3910
  // is initialized by either SSL_set_accept_state or SSL_set_connect_state,
3911
  // the side is not determined. In this state, server is always false.
3912
  bool server : 1;
3913
3914
  // quiet_shutdown is true if the connection should not send a close_notify on
3915
  // shutdown.
3916
  bool quiet_shutdown : 1;
3917
3918
  // If enable_early_data is true, early data can be sent and accepted.
3919
  bool enable_early_data : 1;
3920
};
3921
3922
struct ssl_session_st : public bssl::RefCounted<ssl_session_st> {
3923
  explicit ssl_session_st(const bssl::SSL_X509_METHOD *method);
3924
  ssl_session_st(const ssl_session_st &) = delete;
3925
  ssl_session_st &operator=(const ssl_session_st &) = delete;
3926
3927
  // ssl_version is the (D)TLS version that established the session.
3928
  uint16_t ssl_version = 0;
3929
3930
  // group_id is the ID of the ECDH group used to establish this session or zero
3931
  // if not applicable or unknown.
3932
  uint16_t group_id = 0;
3933
3934
  // peer_signature_algorithm is the signature algorithm used to authenticate
3935
  // the peer, or zero if not applicable or unknown.
3936
  uint16_t peer_signature_algorithm = 0;
3937
3938
  // secret, in TLS 1.2 and below, is the master secret associated with the
3939
  // session. In TLS 1.3 and up, it is the resumption PSK for sessions handed to
3940
  // the caller, but it stores the resumption secret when stored on |SSL|
3941
  // objects.
3942
  uint8_t secret_length = 0;
3943
  uint8_t secret[SSL_MAX_MASTER_KEY_LENGTH] = {0};
3944
3945
  // session_id - valid?
3946
  uint8_t session_id_length = 0;
3947
  uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0};
3948
  // this is used to determine whether the session is being reused in
3949
  // the appropriate context. It is up to the application to set this,
3950
  // via SSL_new
3951
  uint8_t sid_ctx_length = 0;
3952
  uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0};
3953
3954
  bssl::UniquePtr<char> psk_identity;
3955
3956
  // certs contains the certificate chain from the peer, starting with the leaf
3957
  // certificate.
3958
  bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> certs;
3959
3960
  const bssl::SSL_X509_METHOD *x509_method = nullptr;
3961
3962
  // x509_peer is the peer's certificate.
3963
  X509 *x509_peer = nullptr;
3964
3965
  // x509_chain is the certificate chain sent by the peer. NOTE: for historical
3966
  // reasons, when a client (so the peer is a server), the chain includes
3967
  // |peer|, but when a server it does not.
3968
  STACK_OF(X509) *x509_chain = nullptr;
3969
3970
  // x509_chain_without_leaf is a lazily constructed copy of |x509_chain| that
3971
  // omits the leaf certificate. This exists because OpenSSL, historically,
3972
  // didn't include the leaf certificate in the chain for a server, but did for
3973
  // a client. The |x509_chain| always includes it and, if an API call requires
3974
  // a chain without, it is stored here.
3975
  STACK_OF(X509) *x509_chain_without_leaf = nullptr;
3976
3977
  // verify_result is the result of certificate verification in the case of
3978
  // non-fatal certificate errors.
3979
  long verify_result = X509_V_ERR_INVALID_CALL;
3980
3981
  // timeout is the lifetime of the session in seconds, measured from |time|.
3982
  // This is renewable up to |auth_timeout|.
3983
  uint32_t timeout = SSL_DEFAULT_SESSION_TIMEOUT;
3984
3985
  // auth_timeout is the non-renewable lifetime of the session in seconds,
3986
  // measured from |time|.
3987
  uint32_t auth_timeout = SSL_DEFAULT_SESSION_TIMEOUT;
3988
3989
  // time is the time the session was issued, measured in seconds from the UNIX
3990
  // epoch.
3991
  uint64_t time = 0;
3992
3993
  const SSL_CIPHER *cipher = nullptr;
3994
3995
  CRYPTO_EX_DATA ex_data;  // application specific data
3996
3997
  // These are used to make removal of session-ids more efficient and to
3998
  // implement a maximum cache size.
3999
  SSL_SESSION *prev = nullptr, *next = nullptr;
4000
4001
  bssl::Array<uint8_t> ticket;
4002
4003
  bssl::UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list;
4004
4005
  // The OCSP response that came with the session.
4006
  bssl::UniquePtr<CRYPTO_BUFFER> ocsp_response;
4007
4008
  // peer_sha256 contains the SHA-256 hash of the peer's certificate if
4009
  // |peer_sha256_valid| is true.
4010
  uint8_t peer_sha256[SHA256_DIGEST_LENGTH] = {0};
4011
4012
  // original_handshake_hash contains the handshake hash (either SHA-1+MD5 or
4013
  // SHA-2, depending on TLS version) for the original, full handshake that
4014
  // created a session. This is used by Channel IDs during resumption.
4015
  uint8_t original_handshake_hash[EVP_MAX_MD_SIZE] = {0};
4016
  uint8_t original_handshake_hash_len = 0;
4017
4018
  uint32_t ticket_lifetime_hint = 0;  // Session lifetime hint in seconds
4019
4020
  uint32_t ticket_age_add = 0;
4021
4022
  // ticket_max_early_data is the maximum amount of data allowed to be sent as
4023
  // early data. If zero, 0-RTT is disallowed.
4024
  uint32_t ticket_max_early_data = 0;
4025
4026
  // early_alpn is the ALPN protocol from the initial handshake. This is only
4027
  // stored for TLS 1.3 and above in order to enforce ALPN matching for 0-RTT
4028
  // resumptions. For the current connection's ALPN protocol, see
4029
  // |alpn_selected| on |SSL3_STATE|.
4030
  bssl::Array<uint8_t> early_alpn;
4031
4032
  // local_application_settings, if |has_application_settings| is true, is the
4033
  // local ALPS value for this connection.
4034
  bssl::Array<uint8_t> local_application_settings;
4035
4036
  // peer_application_settings, if |has_application_settings| is true, is the
4037
  // peer ALPS value for this connection.
4038
  bssl::Array<uint8_t> peer_application_settings;
4039
4040
  // extended_master_secret is whether the master secret in this session was
4041
  // generated using EMS and thus isn't vulnerable to the Triple Handshake
4042
  // attack.
4043
  bool extended_master_secret : 1;
4044
4045
  // peer_sha256_valid is whether |peer_sha256| is valid.
4046
  bool peer_sha256_valid : 1;  // Non-zero if peer_sha256 is valid
4047
4048
  // not_resumable is used to indicate that session resumption is disallowed.
4049
  bool not_resumable : 1;
4050
4051
  // ticket_age_add_valid is whether |ticket_age_add| is valid.
4052
  bool ticket_age_add_valid : 1;
4053
4054
  // is_server is whether this session was created by a server.
4055
  bool is_server : 1;
4056
4057
  // is_quic indicates whether this session was created using QUIC.
4058
  bool is_quic : 1;
4059
4060
  // has_application_settings indicates whether ALPS was negotiated in this
4061
  // session.
4062
  bool has_application_settings : 1;
4063
4064
  // quic_early_data_context is used to determine whether early data must be
4065
  // rejected when performing a QUIC handshake.
4066
  bssl::Array<uint8_t> quic_early_data_context;
4067
4068
 private:
4069
  friend RefCounted;
4070
  ~ssl_session_st();
4071
};
4072
4073
struct ssl_ech_keys_st : public bssl::RefCounted<ssl_ech_keys_st> {
4074
0
  ssl_ech_keys_st() : RefCounted(CheckSubClass()) {}
4075
4076
  bssl::GrowableArray<bssl::UniquePtr<bssl::ECHServerConfig>> configs;
4077
4078
 private:
4079
  friend RefCounted;
4080
0
  ~ssl_ech_keys_st() = default;
4081
};
4082
4083
#endif  // OPENSSL_HEADER_SSL_INTERNAL_H