/proc/self/cwd/libfaad/sbr_fbt.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding |
3 | | ** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com |
4 | | ** |
5 | | ** This program is free software; you can redistribute it and/or modify |
6 | | ** it under the terms of the GNU General Public License as published by |
7 | | ** the Free Software Foundation; either version 2 of the License, or |
8 | | ** (at your option) any later version. |
9 | | ** |
10 | | ** This program is distributed in the hope that it will be useful, |
11 | | ** but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | ** GNU General Public License for more details. |
14 | | ** |
15 | | ** You should have received a copy of the GNU General Public License |
16 | | ** along with this program; if not, write to the Free Software |
17 | | ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
18 | | ** |
19 | | ** Any non-GPL usage of this software or parts of this software is strictly |
20 | | ** forbidden. |
21 | | ** |
22 | | ** The "appropriate copyright message" mentioned in section 2c of the GPLv2 |
23 | | ** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com" |
24 | | ** |
25 | | ** Commercial non-GPL licensing of this software is possible. |
26 | | ** For more info contact Nero AG through Mpeg4AAClicense@nero.com. |
27 | | ** |
28 | | ** $Id: sbr_fbt.c,v 1.21 2007/11/01 12:33:35 menno Exp $ |
29 | | **/ |
30 | | |
31 | | /* Calculate frequency band tables */ |
32 | | |
33 | | #include "common.h" |
34 | | #include "structs.h" |
35 | | |
36 | | #ifdef SBR_DEC |
37 | | |
38 | | #include <stdlib.h> |
39 | | |
40 | | #include "sbr_syntax.h" |
41 | | #include "sbr_fbt.h" |
42 | | |
43 | | /* static function declarations */ |
44 | | static int32_t find_bands(uint8_t warp, uint8_t bands, uint8_t a0, uint8_t a1); |
45 | | |
46 | | |
47 | | /* calculate the start QMF channel for the master frequency band table */ |
48 | | /* parameter is also called k0 */ |
49 | | uint8_t qmf_start_channel(uint8_t bs_start_freq, uint8_t bs_samplerate_mode, |
50 | | uint32_t sample_rate) |
51 | 0 | { |
52 | 0 | static const uint8_t startMinTable[12] = { 7, 7, 10, 11, 12, 16, 16, |
53 | 0 | 17, 24, 32, 35, 48 }; |
54 | 0 | static const uint8_t offsetIndexTable[12] = { 5, 5, 4, 4, 4, 3, 2, 1, 0, |
55 | 0 | 6, 6, 6 }; |
56 | 0 | static const int8_t offset[7][16] = { |
57 | 0 | { -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7 }, |
58 | 0 | { -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13 }, |
59 | 0 | { -5, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16 }, |
60 | 0 | { -6, -4, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16 }, |
61 | 0 | { -4, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20 }, |
62 | 0 | { -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24 }, |
63 | 0 | { 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24, 28, 33 } |
64 | 0 | }; |
65 | 0 | uint8_t startMin = startMinTable[get_sr_index(sample_rate)]; |
66 | 0 | uint8_t offsetIndex = offsetIndexTable[get_sr_index(sample_rate)]; |
67 | |
|
68 | | #if 0 /* replaced with table (startMinTable) */ |
69 | | if (sample_rate >= 64000) |
70 | | { |
71 | | startMin = (uint8_t)((5000.*128.)/(float)sample_rate + 0.5); |
72 | | } else if (sample_rate < 32000) { |
73 | | startMin = (uint8_t)((3000.*128.)/(float)sample_rate + 0.5); |
74 | | } else { |
75 | | startMin = (uint8_t)((4000.*128.)/(float)sample_rate + 0.5); |
76 | | } |
77 | | #endif |
78 | |
|
79 | 0 | if (bs_samplerate_mode) |
80 | 0 | { |
81 | 0 | return startMin + offset[offsetIndex][bs_start_freq]; |
82 | |
|
83 | | #if 0 /* replaced by offsetIndexTable */ |
84 | | switch (sample_rate) |
85 | | { |
86 | | case 16000: |
87 | | return startMin + offset[0][bs_start_freq]; |
88 | | case 22050: |
89 | | return startMin + offset[1][bs_start_freq]; |
90 | | case 24000: |
91 | | return startMin + offset[2][bs_start_freq]; |
92 | | case 32000: |
93 | | return startMin + offset[3][bs_start_freq]; |
94 | | default: |
95 | | if (sample_rate > 64000) |
96 | | { |
97 | | return startMin + offset[5][bs_start_freq]; |
98 | | } else { /* 44100 <= sample_rate <= 64000 */ |
99 | | return startMin + offset[4][bs_start_freq]; |
100 | | } |
101 | | } |
102 | | #endif |
103 | 0 | } else { |
104 | 0 | return startMin + offset[6][bs_start_freq]; |
105 | 0 | } |
106 | 0 | } |
107 | | |
108 | | static int int32cmp(const void *a, const void *b) |
109 | 0 | { |
110 | 0 | return ((int)(*(int32_t*)a - *(int32_t*)b)); |
111 | 0 | } |
112 | | |
113 | | static int uint8cmp(const void *a, const void *b) |
114 | 0 | { |
115 | 0 | return ((int)(*(uint8_t*)a - *(uint8_t*)b)); |
116 | 0 | } |
117 | | |
118 | | /* calculate the stop QMF channel for the master frequency band table */ |
119 | | /* parameter is also called k2 */ |
120 | | uint8_t qmf_stop_channel(uint8_t bs_stop_freq, uint32_t sample_rate, |
121 | | uint8_t k0) |
122 | 0 | { |
123 | 0 | if (bs_stop_freq == 15) |
124 | 0 | { |
125 | 0 | return min(64, k0 * 3); |
126 | 0 | } else if (bs_stop_freq == 14) { |
127 | 0 | return min(64, k0 * 2); |
128 | 0 | } else { |
129 | 0 | static const uint8_t stopMinTable[12] = { 13, 15, 20, 21, 23, |
130 | 0 | 32, 32, 35, 48, 64, 70, 96 }; |
131 | 0 | static const int8_t offset[12][14] = { |
132 | 0 | { 0, 2, 4, 6, 8, 11, 14, 18, 22, 26, 31, 37, 44, 51 }, |
133 | 0 | { 0, 2, 4, 6, 8, 11, 14, 18, 22, 26, 31, 36, 42, 49 }, |
134 | 0 | { 0, 2, 4, 6, 8, 11, 14, 17, 21, 25, 29, 34, 39, 44 }, |
135 | 0 | { 0, 2, 4, 6, 8, 11, 14, 17, 20, 24, 28, 33, 38, 43 }, |
136 | 0 | { 0, 2, 4, 6, 8, 11, 14, 17, 20, 24, 28, 32, 36, 41 }, |
137 | 0 | { 0, 2, 4, 6, 8, 10, 12, 14, 17, 20, 23, 26, 29, 32 }, |
138 | 0 | { 0, 2, 4, 6, 8, 10, 12, 14, 17, 20, 23, 26, 29, 32 }, |
139 | 0 | { 0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 20, 23, 26, 29 }, |
140 | 0 | { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16 }, |
141 | 0 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, |
142 | 0 | { 0, -1, -2, -3, -4, -5, -6, -6, -6, -6, -6, -6, -6, -6 }, |
143 | 0 | { 0, -3, -6, -9, -12, -15, -18, -20, -22, -24, -26, -28, -30, -32 } |
144 | 0 | }; |
145 | | #if 0 |
146 | | uint8_t i; |
147 | | int32_t stopDk[13], stopDk_t[14], k2; |
148 | | #endif |
149 | 0 | uint8_t stopMin = stopMinTable[get_sr_index(sample_rate)]; |
150 | |
|
151 | | #if 0 /* replaced by table lookup */ |
152 | | if (sample_rate >= 64000) |
153 | | { |
154 | | stopMin = (uint8_t)((10000.*128.)/(float)sample_rate + 0.5); |
155 | | } else if (sample_rate < 32000) { |
156 | | stopMin = (uint8_t)((6000.*128.)/(float)sample_rate + 0.5); |
157 | | } else { |
158 | | stopMin = (uint8_t)((8000.*128.)/(float)sample_rate + 0.5); |
159 | | } |
160 | | #endif |
161 | |
|
162 | | #if 0 /* replaced by table lookup */ |
163 | | /* diverging power series */ |
164 | | for (i = 0; i <= 13; i++) |
165 | | { |
166 | | stopDk_t[i] = (int32_t)(stopMin*pow(64.0/stopMin, i/13.0) + 0.5); |
167 | | } |
168 | | for (i = 0; i < 13; i++) |
169 | | { |
170 | | stopDk[i] = stopDk_t[i+1] - stopDk_t[i]; |
171 | | } |
172 | | |
173 | | /* needed? */ |
174 | | qsort(stopDk, 13, sizeof(stopDk[0]), int32cmp); |
175 | | |
176 | | k2 = stopMin; |
177 | | for (i = 0; i < bs_stop_freq; i++) |
178 | | { |
179 | | k2 += stopDk[i]; |
180 | | } |
181 | | return min(64, k2); |
182 | | #endif |
183 | | /* bs_stop_freq <= 13 */ |
184 | 0 | return min(64, stopMin + offset[get_sr_index(sample_rate)][min(bs_stop_freq, 13)]); |
185 | 0 | } |
186 | | |
187 | | // return 0; |
188 | 0 | } |
189 | | |
190 | | /* calculate the master frequency table from k0, k2, bs_freq_scale |
191 | | and bs_alter_scale |
192 | | |
193 | | version for bs_freq_scale = 0 |
194 | | */ |
195 | | uint8_t master_frequency_table_fs0(sbr_info *sbr, uint8_t k0, uint8_t k2, |
196 | | uint8_t bs_alter_scale) |
197 | 0 | { |
198 | 0 | int8_t incr; |
199 | 0 | uint8_t k; |
200 | 0 | uint8_t dk; |
201 | 0 | int32_t nrBands, k2Achieved; |
202 | 0 | int32_t k2Diff, vDk[64] = {0}; |
203 | | |
204 | | /* mft only defined for k2 > k0 */ |
205 | 0 | if (k2 <= k0) |
206 | 0 | { |
207 | 0 | sbr->N_master = 0; |
208 | 0 | return 1; |
209 | 0 | } |
210 | | |
211 | 0 | dk = bs_alter_scale ? 2 : 1; |
212 | |
|
213 | | #if 0 /* replaced by float-less design */ |
214 | | nrBands = 2 * (int32_t)((float)(k2-k0)/(dk*2) + (-1+dk)/2.0f); |
215 | | #else |
216 | 0 | if (bs_alter_scale) |
217 | 0 | { |
218 | 0 | nrBands = (((k2-k0+2)>>2)<<1); |
219 | 0 | } else { |
220 | 0 | nrBands = (((k2-k0)>>1)<<1); |
221 | 0 | } |
222 | 0 | #endif |
223 | 0 | nrBands = min(nrBands, 63); |
224 | 0 | if (nrBands <= 0) |
225 | 0 | return 1; |
226 | | |
227 | 0 | k2Achieved = k0 + nrBands * dk; |
228 | 0 | k2Diff = k2 - k2Achieved; |
229 | 0 | for (k = 0; k < nrBands; k++) |
230 | 0 | vDk[k] = dk; |
231 | |
|
232 | 0 | if (k2Diff) |
233 | 0 | { |
234 | 0 | incr = (k2Diff > 0) ? -1 : 1; |
235 | 0 | k = (uint8_t) ((k2Diff > 0) ? (nrBands-1) : 0); |
236 | |
|
237 | 0 | while (k2Diff != 0) |
238 | 0 | { |
239 | 0 | vDk[k] -= incr; |
240 | 0 | k += incr; |
241 | 0 | k2Diff += incr; |
242 | 0 | } |
243 | 0 | } |
244 | |
|
245 | 0 | sbr->f_master[0] = k0; |
246 | 0 | for (k = 1; k <= nrBands; k++) |
247 | 0 | sbr->f_master[k] = (uint8_t)(sbr->f_master[k-1] + vDk[k-1]); |
248 | |
|
249 | 0 | sbr->N_master = (uint8_t)nrBands; |
250 | 0 | sbr->N_master = (min(sbr->N_master, 64)); |
251 | |
|
252 | | #if 0 |
253 | | printf("f_master[%d]: ", nrBands); |
254 | | for (k = 0; k <= nrBands; k++) |
255 | | { |
256 | | printf("%d ", sbr->f_master[k]); |
257 | | } |
258 | | printf("\n"); |
259 | | #endif |
260 | |
|
261 | 0 | return 0; |
262 | 0 | } |
263 | | |
264 | | /* |
265 | | This function finds the number of bands using this formula: |
266 | | bands * log(a1/a0)/log(2.0) + 0.5 |
267 | | */ |
268 | | static int32_t find_bands(uint8_t warp, uint8_t bands, uint8_t a0, uint8_t a1) |
269 | 0 | { |
270 | | #ifdef FIXED_POINT |
271 | | /* table with log2() values */ |
272 | | static const real_t log2Table[65] = { |
273 | | COEF_CONST(0.0), COEF_CONST(0.0), COEF_CONST(1.0000000000), COEF_CONST(1.5849625007), |
274 | | COEF_CONST(2.0000000000), COEF_CONST(2.3219280949), COEF_CONST(2.5849625007), COEF_CONST(2.8073549221), |
275 | | COEF_CONST(3.0000000000), COEF_CONST(3.1699250014), COEF_CONST(3.3219280949), COEF_CONST(3.4594316186), |
276 | | COEF_CONST(3.5849625007), COEF_CONST(3.7004397181), COEF_CONST(3.8073549221), COEF_CONST(3.9068905956), |
277 | | COEF_CONST(4.0000000000), COEF_CONST(4.0874628413), COEF_CONST(4.1699250014), COEF_CONST(4.2479275134), |
278 | | COEF_CONST(4.3219280949), COEF_CONST(4.3923174228), COEF_CONST(4.4594316186), COEF_CONST(4.5235619561), |
279 | | COEF_CONST(4.5849625007), COEF_CONST(4.6438561898), COEF_CONST(4.7004397181), COEF_CONST(4.7548875022), |
280 | | COEF_CONST(4.8073549221), COEF_CONST(4.8579809951), COEF_CONST(4.9068905956), COEF_CONST(4.9541963104), |
281 | | COEF_CONST(5.0000000000), COEF_CONST(5.0443941194), COEF_CONST(5.0874628413), COEF_CONST(5.1292830169), |
282 | | COEF_CONST(5.1699250014), COEF_CONST(5.2094533656), COEF_CONST(5.2479275134), COEF_CONST(5.2854022189), |
283 | | COEF_CONST(5.3219280949), COEF_CONST(5.3575520046), COEF_CONST(5.3923174228), COEF_CONST(5.4262647547), |
284 | | COEF_CONST(5.4594316186), COEF_CONST(5.4918530963), COEF_CONST(5.5235619561), COEF_CONST(5.5545888517), |
285 | | COEF_CONST(5.5849625007), COEF_CONST(5.6147098441), COEF_CONST(5.6438561898), COEF_CONST(5.6724253420), |
286 | | COEF_CONST(5.7004397181), COEF_CONST(5.7279204546), COEF_CONST(5.7548875022), COEF_CONST(5.7813597135), |
287 | | COEF_CONST(5.8073549221), COEF_CONST(5.8328900142), COEF_CONST(5.8579809951), COEF_CONST(5.8826430494), |
288 | | COEF_CONST(5.9068905956), COEF_CONST(5.9307373376), COEF_CONST(5.9541963104), COEF_CONST(5.9772799235), |
289 | | COEF_CONST(6.0) |
290 | | }; |
291 | | real_t r0 = log2Table[a0]; /* coef */ |
292 | | real_t r1 = log2Table[a1]; /* coef */ |
293 | | real_t r2 = (r1 - r0); /* coef */ |
294 | | |
295 | | if (warp) |
296 | | r2 = MUL_C(r2, COEF_CONST(1.0/1.3)); |
297 | | |
298 | | /* convert r2 to real and then multiply and round */ |
299 | | r2 = (r2 >> (COEF_BITS-REAL_BITS)) * bands + (1<<(REAL_BITS-1)); |
300 | | |
301 | | return (r2 >> REAL_BITS); |
302 | | #else |
303 | 0 | real_t div = (real_t)log(2.0); |
304 | 0 | if (warp) div *= (real_t)1.3; |
305 | |
|
306 | 0 | return (int32_t)(bands * log((float)a1/(float)a0)/div + 0.5); |
307 | 0 | #endif |
308 | 0 | } |
309 | | |
310 | | static real_t find_initial_power(uint8_t bands, uint8_t a0, uint8_t a1) |
311 | 0 | { |
312 | | #ifdef FIXED_POINT |
313 | | /* table with log() values */ |
314 | | static const real_t logTable[65] = { |
315 | | COEF_CONST(0.0), COEF_CONST(0.0), COEF_CONST(0.6931471806), COEF_CONST(1.0986122887), |
316 | | COEF_CONST(1.3862943611), COEF_CONST(1.6094379124), COEF_CONST(1.7917594692), COEF_CONST(1.9459101491), |
317 | | COEF_CONST(2.0794415417), COEF_CONST(2.1972245773), COEF_CONST(2.3025850930), COEF_CONST(2.3978952728), |
318 | | COEF_CONST(2.4849066498), COEF_CONST(2.5649493575), COEF_CONST(2.6390573296), COEF_CONST(2.7080502011), |
319 | | COEF_CONST(2.7725887222), COEF_CONST(2.8332133441), COEF_CONST(2.8903717579), COEF_CONST(2.9444389792), |
320 | | COEF_CONST(2.9957322736), COEF_CONST(3.0445224377), COEF_CONST(3.0910424534), COEF_CONST(3.1354942159), |
321 | | COEF_CONST(3.1780538303), COEF_CONST(3.2188758249), COEF_CONST(3.2580965380), COEF_CONST(3.2958368660), |
322 | | COEF_CONST(3.3322045102), COEF_CONST(3.3672958300), COEF_CONST(3.4011973817), COEF_CONST(3.4339872045), |
323 | | COEF_CONST(3.4657359028), COEF_CONST(3.4965075615), COEF_CONST(3.5263605246), COEF_CONST(3.5553480615), |
324 | | COEF_CONST(3.5835189385), COEF_CONST(3.6109179126), COEF_CONST(3.6375861597), COEF_CONST(3.6635616461), |
325 | | COEF_CONST(3.6888794541), COEF_CONST(3.7135720667), COEF_CONST(3.7376696183), COEF_CONST(3.7612001157), |
326 | | COEF_CONST(3.7841896339), COEF_CONST(3.8066624898), COEF_CONST(3.8286413965), COEF_CONST(3.8501476017), |
327 | | COEF_CONST(3.8712010109), COEF_CONST(3.8918202981), COEF_CONST(3.9120230054), COEF_CONST(3.9318256327), |
328 | | COEF_CONST(3.9512437186), COEF_CONST(3.9702919136), COEF_CONST(3.9889840466), COEF_CONST(4.0073331852), |
329 | | COEF_CONST(4.0253516907), COEF_CONST(4.0430512678), COEF_CONST(4.0604430105), COEF_CONST(4.0775374439), |
330 | | COEF_CONST(4.0943445622), COEF_CONST(4.1108738642), COEF_CONST(4.1271343850), COEF_CONST(4.1431347264), |
331 | | COEF_CONST(4.158883083) |
332 | | }; |
333 | | /* standard Taylor polynomial coefficients for exp(x) around 0 */ |
334 | | /* a polynomial around x=1 is more precise, as most values are around 1.07, |
335 | | but this is just fine already */ |
336 | | static const real_t c1 = COEF_CONST(1.0); |
337 | | static const real_t c2 = COEF_CONST(1.0/2.0); |
338 | | static const real_t c3 = COEF_CONST(1.0/6.0); |
339 | | static const real_t c4 = COEF_CONST(1.0/24.0); |
340 | | |
341 | | real_t r0 = logTable[a0]; /* coef */ |
342 | | real_t r1 = logTable[a1]; /* coef */ |
343 | | real_t r2 = (r1 - r0) / bands; /* coef */ |
344 | | real_t rexp = c1 + MUL_C((c1 + MUL_C((c2 + MUL_C((c3 + MUL_C(c4,r2)), r2)), r2)), r2); |
345 | | |
346 | | return (rexp >> (COEF_BITS-REAL_BITS)); /* real */ |
347 | | #else |
348 | 0 | return (real_t)pow((real_t)a1/(real_t)a0, 1.0/(real_t)bands); |
349 | 0 | #endif |
350 | 0 | } |
351 | | |
352 | | /* |
353 | | version for bs_freq_scale > 0 |
354 | | */ |
355 | | uint8_t master_frequency_table(sbr_info *sbr, uint8_t k0, uint8_t k2, |
356 | | uint8_t bs_freq_scale, uint8_t bs_alter_scale) |
357 | 0 | { |
358 | 0 | uint8_t k, bands, twoRegions; |
359 | 0 | uint8_t k1; |
360 | 0 | uint8_t nrBand0, nrBand1; |
361 | 0 | int32_t vDk0[64] = {0}, vDk1[64] = {0}; |
362 | 0 | int32_t vk0[64] = {0}, vk1[64] = {0}; |
363 | 0 | uint8_t temp1[] = { 6, 5, 4 }; |
364 | 0 | real_t q, qk; |
365 | 0 | int32_t A_1; |
366 | | #ifdef FIXED_POINT |
367 | | real_t rk2, rk0; |
368 | | #endif |
369 | 0 | (void)bs_alter_scale; /* TODO: remove parameter? */ |
370 | | |
371 | | /* mft only defined for k2 > k0 */ |
372 | 0 | if (k2 <= k0) |
373 | 0 | { |
374 | 0 | sbr->N_master = 0; |
375 | 0 | return 1; |
376 | 0 | } |
377 | | |
378 | 0 | bands = temp1[bs_freq_scale-1]; |
379 | |
|
380 | | #ifdef FIXED_POINT |
381 | | rk0 = (real_t)k0 << REAL_BITS; |
382 | | rk2 = (real_t)k2 << REAL_BITS; |
383 | | if (rk2 > MUL_C(rk0, COEF_CONST(2.2449))) |
384 | | #else |
385 | 0 | if ((float)k2/(float)k0 > 2.2449) |
386 | 0 | #endif |
387 | 0 | { |
388 | 0 | twoRegions = 1; |
389 | 0 | k1 = k0 << 1; |
390 | 0 | } else { |
391 | 0 | twoRegions = 0; |
392 | 0 | k1 = k2; |
393 | 0 | } |
394 | |
|
395 | 0 | nrBand0 = (uint8_t)(2 * find_bands(0, bands, k0, k1)); |
396 | 0 | nrBand0 = min(nrBand0, 63); |
397 | 0 | if (nrBand0 <= 0) |
398 | 0 | return 1; |
399 | | |
400 | 0 | q = find_initial_power(nrBand0, k0, k1); |
401 | | #ifdef FIXED_POINT |
402 | | qk = (real_t)k0 << REAL_BITS; |
403 | | //A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS); |
404 | | A_1 = k0; |
405 | | #else |
406 | 0 | qk = REAL_CONST(k0); |
407 | 0 | A_1 = (int32_t)(qk + .5); |
408 | 0 | #endif |
409 | 0 | for (k = 0; k <= nrBand0; k++) |
410 | 0 | { |
411 | 0 | int32_t A_0 = A_1; |
412 | | #ifdef FIXED_POINT |
413 | | qk = MUL_R(qk,q); |
414 | | A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS); |
415 | | #else |
416 | 0 | qk *= q; |
417 | 0 | A_1 = (int32_t)(qk + 0.5); |
418 | 0 | #endif |
419 | 0 | vDk0[k] = A_1 - A_0; |
420 | 0 | } |
421 | | |
422 | | /* needed? */ |
423 | 0 | qsort(vDk0, nrBand0, sizeof(vDk0[0]), int32cmp); |
424 | |
|
425 | 0 | vk0[0] = k0; |
426 | 0 | for (k = 1; k <= nrBand0; k++) |
427 | 0 | { |
428 | 0 | vk0[k] = vk0[k-1] + vDk0[k-1]; |
429 | 0 | if (vDk0[k-1] == 0) |
430 | 0 | return 1; |
431 | 0 | } |
432 | | |
433 | 0 | if (!twoRegions) |
434 | 0 | { |
435 | 0 | for (k = 0; k <= nrBand0; k++) |
436 | 0 | sbr->f_master[k] = (uint8_t) vk0[k]; |
437 | |
|
438 | 0 | sbr->N_master = nrBand0; |
439 | 0 | sbr->N_master = min(sbr->N_master, 64); |
440 | 0 | return 0; |
441 | 0 | } |
442 | | |
443 | 0 | nrBand1 = (uint8_t)(2 * find_bands(1 /* warped */, bands, k1, k2)); |
444 | 0 | nrBand1 = min(nrBand1, 63); |
445 | |
|
446 | 0 | q = find_initial_power(nrBand1, k1, k2); |
447 | | #ifdef FIXED_POINT |
448 | | qk = (real_t)k1 << REAL_BITS; |
449 | | //A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS); |
450 | | A_1 = k1; |
451 | | #else |
452 | 0 | qk = REAL_CONST(k1); |
453 | 0 | A_1 = (int32_t)(qk + .5); |
454 | 0 | #endif |
455 | 0 | for (k = 0; k <= nrBand1 - 1; k++) |
456 | 0 | { |
457 | 0 | int32_t A_0 = A_1; |
458 | | #ifdef FIXED_POINT |
459 | | qk = MUL_R(qk,q); |
460 | | A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS); |
461 | | #else |
462 | 0 | qk *= q; |
463 | 0 | A_1 = (int32_t)(qk + 0.5); |
464 | 0 | #endif |
465 | 0 | vDk1[k] = A_1 - A_0; |
466 | 0 | } |
467 | |
|
468 | 0 | if (vDk1[0] < vDk0[nrBand0 - 1]) |
469 | 0 | { |
470 | 0 | int32_t change; |
471 | | |
472 | | /* needed? */ |
473 | 0 | qsort(vDk1, nrBand1 + 1, sizeof(vDk1[0]), int32cmp); |
474 | 0 | change = vDk0[nrBand0 - 1] - vDk1[0]; |
475 | 0 | vDk1[0] = vDk0[nrBand0 - 1]; |
476 | 0 | vDk1[nrBand1 - 1] = vDk1[nrBand1 - 1] - change; |
477 | 0 | } |
478 | | |
479 | | /* needed? */ |
480 | 0 | qsort(vDk1, nrBand1, sizeof(vDk1[0]), int32cmp); |
481 | 0 | vk1[0] = k1; |
482 | 0 | for (k = 1; k <= nrBand1; k++) |
483 | 0 | { |
484 | 0 | vk1[k] = vk1[k-1] + vDk1[k-1]; |
485 | 0 | if (vDk1[k-1] == 0) |
486 | 0 | return 1; |
487 | 0 | } |
488 | | |
489 | 0 | sbr->N_master = nrBand0 + nrBand1; |
490 | 0 | sbr->N_master = min(sbr->N_master, 64); |
491 | 0 | for (k = 0; k <= nrBand0; k++) |
492 | 0 | { |
493 | 0 | sbr->f_master[k] = (uint8_t) vk0[k]; |
494 | 0 | } |
495 | 0 | for (k = nrBand0 + 1; k <= sbr->N_master; k++) |
496 | 0 | { |
497 | 0 | sbr->f_master[k] = (uint8_t) vk1[k - nrBand0]; |
498 | 0 | } |
499 | |
|
500 | | #if 0 |
501 | | printf("f_master[%d]: ", sbr->N_master); |
502 | | for (k = 0; k <= sbr->N_master; k++) |
503 | | { |
504 | | printf("%d ", sbr->f_master[k]); |
505 | | } |
506 | | printf("\n"); |
507 | | #endif |
508 | |
|
509 | 0 | return 0; |
510 | 0 | } |
511 | | |
512 | | /* calculate the derived frequency border tables from f_master */ |
513 | | uint8_t derived_frequency_table(sbr_info *sbr, uint8_t bs_xover_band, |
514 | | uint8_t k2) |
515 | 0 | { |
516 | 0 | uint8_t k, i; |
517 | 0 | uint32_t minus; |
518 | | |
519 | | /* The following relation shall be satisfied: bs_xover_band < N_Master */ |
520 | 0 | if (sbr->N_master <= bs_xover_band) |
521 | 0 | return 1; |
522 | | |
523 | 0 | sbr->N_high = sbr->N_master - bs_xover_band; |
524 | 0 | sbr->N_low = (sbr->N_high>>1) + (sbr->N_high - ((sbr->N_high>>1)<<1)); |
525 | |
|
526 | 0 | sbr->n[0] = sbr->N_low; |
527 | 0 | sbr->n[1] = sbr->N_high; |
528 | |
|
529 | 0 | for (k = 0; k <= sbr->N_high; k++) |
530 | 0 | { |
531 | 0 | sbr->f_table_res[HI_RES][k] = sbr->f_master[k + bs_xover_band]; |
532 | 0 | } |
533 | |
|
534 | 0 | sbr->M = sbr->f_table_res[HI_RES][sbr->N_high] - sbr->f_table_res[HI_RES][0]; |
535 | 0 | if (sbr->M > MAX_M) |
536 | 0 | return 1; |
537 | 0 | sbr->kx = sbr->f_table_res[HI_RES][0]; |
538 | 0 | if (sbr->kx > 32) |
539 | 0 | return 1; |
540 | 0 | if (sbr->kx + sbr->M > 64) |
541 | 0 | return 1; |
542 | | |
543 | 0 | minus = (sbr->N_high & 1) ? 1 : 0; |
544 | |
|
545 | 0 | i = 0; |
546 | 0 | for (k = 0; k <= sbr->N_low; k++) |
547 | 0 | { |
548 | 0 | if (k != 0) |
549 | 0 | i = (uint8_t)(2*k - minus); |
550 | 0 | sbr->f_table_res[LO_RES][k] = sbr->f_table_res[HI_RES][i]; |
551 | 0 | } |
552 | |
|
553 | | #if 0 |
554 | | printf("bs_freq_scale: %d\n", sbr->bs_freq_scale); |
555 | | printf("bs_limiter_bands: %d\n", sbr->bs_limiter_bands); |
556 | | printf("f_table_res[HI_RES][%d]: ", sbr->N_high); |
557 | | for (k = 0; k <= sbr->N_high; k++) |
558 | | { |
559 | | printf("%d ", sbr->f_table_res[HI_RES][k]); |
560 | | } |
561 | | printf("\n"); |
562 | | #endif |
563 | | #if 0 |
564 | | printf("f_table_res[LO_RES][%d]: ", sbr->N_low); |
565 | | for (k = 0; k <= sbr->N_low; k++) |
566 | | { |
567 | | printf("%d ", sbr->f_table_res[LO_RES][k]); |
568 | | } |
569 | | printf("\n"); |
570 | | #endif |
571 | |
|
572 | 0 | sbr->N_Q = 0; |
573 | 0 | if (sbr->bs_noise_bands == 0) |
574 | 0 | { |
575 | 0 | sbr->N_Q = 1; |
576 | 0 | } else { |
577 | | #if 0 |
578 | | sbr->N_Q = max(1, (int32_t)(sbr->bs_noise_bands*(log(k2/(float)sbr->kx)/log(2.0)) + 0.5)); |
579 | | #else |
580 | 0 | sbr->N_Q = (uint8_t)(max(1, find_bands(0, sbr->bs_noise_bands, sbr->kx, k2))); |
581 | 0 | #endif |
582 | 0 | sbr->N_Q = min(5, sbr->N_Q); |
583 | 0 | } |
584 | |
|
585 | 0 | i = 0; |
586 | 0 | for (k = 0; k <= sbr->N_Q; k++) |
587 | 0 | { |
588 | 0 | if (k != 0) |
589 | 0 | i = i + (sbr->N_low - i)/(sbr->N_Q + 1 - k); |
590 | 0 | sbr->f_table_noise[k] = sbr->f_table_res[LO_RES][i]; |
591 | 0 | } |
592 | | |
593 | | /* build table for mapping k to g in hf patching */ |
594 | 0 | for (k = 0; k < 64; k++) |
595 | 0 | { |
596 | 0 | uint8_t g; |
597 | 0 | for (g = 0; g < sbr->N_Q; g++) |
598 | 0 | { |
599 | 0 | if ((sbr->f_table_noise[g] <= k) && |
600 | 0 | (k < sbr->f_table_noise[g+1])) |
601 | 0 | { |
602 | 0 | sbr->table_map_k_to_g[k] = g; |
603 | 0 | break; |
604 | 0 | } |
605 | 0 | } |
606 | 0 | } |
607 | |
|
608 | | #if 0 |
609 | | printf("f_table_noise[%d]: ", sbr->N_Q); |
610 | | for (k = 0; k <= sbr->N_Q; k++) |
611 | | { |
612 | | printf("%d ", sbr->f_table_noise[k] - sbr->kx); |
613 | | } |
614 | | printf("\n"); |
615 | | #endif |
616 | |
|
617 | 0 | return 0; |
618 | 0 | } |
619 | | |
620 | | /* TODO: blegh, ugly */ |
621 | | /* Modified to calculate for all possible bs_limiter_bands always |
622 | | * This reduces the number calls to this functions needed (now only on |
623 | | * header reset) |
624 | | */ |
625 | | void limiter_frequency_table(sbr_info *sbr) |
626 | 0 | { |
627 | | #if 0 |
628 | | static const real_t limiterBandsPerOctave[] = { REAL_CONST(1.2), |
629 | | REAL_CONST(2), REAL_CONST(3) }; |
630 | | #else |
631 | 0 | static const real_t limiterBandsCompare[] = { REAL_CONST(1.327152), |
632 | 0 | REAL_CONST(1.185093), REAL_CONST(1.119872) }; |
633 | 0 | #endif |
634 | 0 | uint8_t k, s; |
635 | 0 | int8_t nrLim; |
636 | | #if 0 |
637 | | real_t limBands; |
638 | | #endif |
639 | |
|
640 | 0 | sbr->f_table_lim[0][0] = sbr->f_table_res[LO_RES][0] - sbr->kx; |
641 | 0 | sbr->f_table_lim[0][1] = sbr->f_table_res[LO_RES][sbr->N_low] - sbr->kx; |
642 | 0 | sbr->N_L[0] = 1; |
643 | |
|
644 | | #if 0 |
645 | | printf("f_table_lim[%d][%d]: ", 0, sbr->N_L[0]); |
646 | | for (k = 0; k <= sbr->N_L[0]; k++) |
647 | | { |
648 | | printf("%d ", sbr->f_table_lim[0][k]); |
649 | | } |
650 | | printf("\n"); |
651 | | #endif |
652 | |
|
653 | 0 | for (s = 1; s < 4; s++) |
654 | 0 | { |
655 | 0 | uint8_t limTable[100 /*TODO*/] = {0}; |
656 | 0 | uint8_t patchBorders[64/*??*/] = {0}; |
657 | |
|
658 | | #if 0 |
659 | | limBands = limiterBandsPerOctave[s - 1]; |
660 | | #endif |
661 | |
|
662 | 0 | patchBorders[0] = sbr->kx; |
663 | 0 | for (k = 1; k <= sbr->noPatches; k++) |
664 | 0 | { |
665 | 0 | patchBorders[k] = patchBorders[k-1] + sbr->patchNoSubbands[k-1]; |
666 | 0 | } |
667 | |
|
668 | 0 | for (k = 0; k <= sbr->N_low; k++) |
669 | 0 | { |
670 | 0 | limTable[k] = sbr->f_table_res[LO_RES][k]; |
671 | 0 | } |
672 | 0 | for (k = 1; k < sbr->noPatches; k++) |
673 | 0 | { |
674 | 0 | limTable[k+sbr->N_low] = patchBorders[k]; |
675 | 0 | } |
676 | | |
677 | | /* needed */ |
678 | 0 | qsort(limTable, sbr->noPatches + sbr->N_low, sizeof(limTable[0]), uint8cmp); |
679 | 0 | k = 1; |
680 | 0 | nrLim = sbr->noPatches + sbr->N_low - 1; |
681 | |
|
682 | 0 | if (nrLim < 0) // TODO: BIG FAT PROBLEM |
683 | 0 | return; |
684 | | |
685 | 0 | restart: |
686 | 0 | if (k <= nrLim) |
687 | 0 | { |
688 | 0 | real_t nOctaves; |
689 | |
|
690 | 0 | if (limTable[k-1] != 0) |
691 | | #if 0 |
692 | | nOctaves = REAL_CONST(log((float)limTable[k]/(float)limTable[k-1])/log(2.0)); |
693 | | #else |
694 | | #ifdef FIXED_POINT |
695 | | nOctaves = DIV_R((limTable[k]<<REAL_BITS),REAL_CONST(limTable[k-1])); |
696 | | #else |
697 | 0 | nOctaves = (real_t)limTable[k]/(real_t)limTable[k-1]; |
698 | 0 | #endif |
699 | 0 | #endif |
700 | 0 | else |
701 | 0 | nOctaves = 0; |
702 | |
|
703 | | #if 0 |
704 | | if ((MUL_R(nOctaves,limBands)) < REAL_CONST(0.49)) |
705 | | #else |
706 | 0 | if (nOctaves < limiterBandsCompare[s - 1]) |
707 | 0 | #endif |
708 | 0 | { |
709 | 0 | uint8_t i; |
710 | 0 | if (limTable[k] != limTable[k-1]) |
711 | 0 | { |
712 | 0 | uint8_t found = 0, found2 = 0; |
713 | 0 | for (i = 0; i <= sbr->noPatches; i++) |
714 | 0 | { |
715 | 0 | if (limTable[k] == patchBorders[i]) |
716 | 0 | found = 1; |
717 | 0 | } |
718 | 0 | if (found) |
719 | 0 | { |
720 | 0 | found2 = 0; |
721 | 0 | for (i = 0; i <= sbr->noPatches; i++) |
722 | 0 | { |
723 | 0 | if (limTable[k-1] == patchBorders[i]) |
724 | 0 | found2 = 1; |
725 | 0 | } |
726 | 0 | if (found2) |
727 | 0 | { |
728 | 0 | k++; |
729 | 0 | goto restart; |
730 | 0 | } else { |
731 | | /* remove (k-1)th element */ |
732 | 0 | limTable[k-1] = sbr->f_table_res[LO_RES][sbr->N_low]; |
733 | 0 | qsort(limTable, sbr->noPatches + sbr->N_low, sizeof(limTable[0]), uint8cmp); |
734 | 0 | nrLim--; |
735 | 0 | goto restart; |
736 | 0 | } |
737 | 0 | } |
738 | 0 | } |
739 | | /* remove kth element */ |
740 | 0 | limTable[k] = sbr->f_table_res[LO_RES][sbr->N_low]; |
741 | 0 | qsort(limTable, nrLim, sizeof(limTable[0]), uint8cmp); |
742 | 0 | nrLim--; |
743 | 0 | goto restart; |
744 | 0 | } else { |
745 | 0 | k++; |
746 | 0 | goto restart; |
747 | 0 | } |
748 | 0 | } |
749 | | |
750 | 0 | sbr->N_L[s] = nrLim; |
751 | 0 | for (k = 0; k <= nrLim; k++) |
752 | 0 | { |
753 | 0 | sbr->f_table_lim[s][k] = limTable[k] - sbr->kx; |
754 | 0 | } |
755 | |
|
756 | | #if 0 |
757 | | printf("f_table_lim[%d][%d]: ", s, sbr->N_L[s]); |
758 | | for (k = 0; k <= sbr->N_L[s]; k++) |
759 | | { |
760 | | printf("%d ", sbr->f_table_lim[s][k]); |
761 | | } |
762 | | printf("\n"); |
763 | | #endif |
764 | 0 | } |
765 | 0 | } |
766 | | |
767 | | #endif |