Coverage Report

Created: 2025-07-11 06:39

/proc/self/cwd/libfaad/sbr_fbt.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: sbr_fbt.c,v 1.21 2007/11/01 12:33:35 menno Exp $
29
**/
30
31
/* Calculate frequency band tables */
32
33
#include "common.h"
34
#include "structs.h"
35
36
#ifdef SBR_DEC
37
38
#include <stdlib.h>
39
40
#include "sbr_syntax.h"
41
#include "sbr_fbt.h"
42
43
/* static function declarations */
44
static int32_t find_bands(uint8_t warp, uint8_t bands, uint8_t a0, uint8_t a1);
45
46
47
/* calculate the start QMF channel for the master frequency band table */
48
/* parameter is also called k0 */
49
uint8_t qmf_start_channel(uint8_t bs_start_freq, uint8_t bs_samplerate_mode,
50
                           uint32_t sample_rate)
51
0
{
52
0
    static const uint8_t startMinTable[12] = { 7, 7, 10, 11, 12, 16, 16,
53
0
        17, 24, 32, 35, 48 };
54
0
    static const uint8_t offsetIndexTable[12] = { 5, 5, 4, 4, 4, 3, 2, 1, 0,
55
0
        6, 6, 6 };
56
0
    static const int8_t offset[7][16] = {
57
0
        { -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7 },
58
0
        { -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13 },
59
0
        { -5, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16 },
60
0
        { -6, -4, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16 },
61
0
        { -4, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20 },
62
0
        { -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24 },
63
0
        { 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24, 28, 33 }
64
0
    };
65
0
    uint8_t startMin = startMinTable[get_sr_index(sample_rate)];
66
0
    uint8_t offsetIndex = offsetIndexTable[get_sr_index(sample_rate)];
67
68
#if 0 /* replaced with table (startMinTable) */
69
    if (sample_rate >= 64000)
70
    {
71
        startMin = (uint8_t)((5000.*128.)/(float)sample_rate + 0.5);
72
    } else if (sample_rate < 32000) {
73
        startMin = (uint8_t)((3000.*128.)/(float)sample_rate + 0.5);
74
    } else {
75
        startMin = (uint8_t)((4000.*128.)/(float)sample_rate + 0.5);
76
    }
77
#endif
78
79
0
    if (bs_samplerate_mode)
80
0
    {
81
0
        return startMin + offset[offsetIndex][bs_start_freq];
82
83
#if 0 /* replaced by offsetIndexTable */
84
        switch (sample_rate)
85
        {
86
        case 16000:
87
            return startMin + offset[0][bs_start_freq];
88
        case 22050:
89
            return startMin + offset[1][bs_start_freq];
90
        case 24000:
91
            return startMin + offset[2][bs_start_freq];
92
        case 32000:
93
            return startMin + offset[3][bs_start_freq];
94
        default:
95
            if (sample_rate > 64000)
96
            {
97
                return startMin + offset[5][bs_start_freq];
98
            } else { /* 44100 <= sample_rate <= 64000 */
99
                return startMin + offset[4][bs_start_freq];
100
            }
101
        }
102
#endif
103
0
    } else {
104
0
        return startMin + offset[6][bs_start_freq];
105
0
    }
106
0
}
107
108
static int int32cmp(const void *a, const void *b)
109
0
{
110
0
    return ((int)(*(int32_t*)a - *(int32_t*)b));
111
0
}
112
113
static int uint8cmp(const void *a, const void *b)
114
0
{
115
0
    return ((int)(*(uint8_t*)a - *(uint8_t*)b));
116
0
}
117
118
/* calculate the stop QMF channel for the master frequency band table */
119
/* parameter is also called k2 */
120
uint8_t qmf_stop_channel(uint8_t bs_stop_freq, uint32_t sample_rate,
121
                          uint8_t k0)
122
0
{
123
0
    if (bs_stop_freq == 15)
124
0
    {
125
0
        return min(64, k0 * 3);
126
0
    } else if (bs_stop_freq == 14) {
127
0
        return min(64, k0 * 2);
128
0
    } else {
129
0
        static const uint8_t stopMinTable[12] = { 13, 15, 20, 21, 23,
130
0
            32, 32, 35, 48, 64, 70, 96 };
131
0
        static const int8_t offset[12][14] = {
132
0
            { 0, 2, 4, 6, 8, 11, 14, 18, 22, 26, 31, 37, 44, 51 },
133
0
            { 0, 2, 4, 6, 8, 11, 14, 18, 22, 26, 31, 36, 42, 49 },
134
0
            { 0, 2, 4, 6, 8, 11, 14, 17, 21, 25, 29, 34, 39, 44 },
135
0
            { 0, 2, 4, 6, 8, 11, 14, 17, 20, 24, 28, 33, 38, 43 },
136
0
            { 0, 2, 4, 6, 8, 11, 14, 17, 20, 24, 28, 32, 36, 41 },
137
0
            { 0, 2, 4, 6, 8, 10, 12, 14, 17, 20, 23, 26, 29, 32 },
138
0
            { 0, 2, 4, 6, 8, 10, 12, 14, 17, 20, 23, 26, 29, 32 },
139
0
            { 0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 20, 23, 26, 29 },
140
0
            { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16 },
141
0
            { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
142
0
            { 0, -1, -2, -3, -4, -5, -6, -6, -6, -6, -6, -6, -6, -6 },
143
0
            { 0, -3, -6, -9, -12, -15, -18, -20, -22, -24, -26, -28, -30, -32 }
144
0
        };
145
#if 0
146
        uint8_t i;
147
        int32_t stopDk[13], stopDk_t[14], k2;
148
#endif
149
0
        uint8_t stopMin = stopMinTable[get_sr_index(sample_rate)];
150
151
#if 0 /* replaced by table lookup */
152
        if (sample_rate >= 64000)
153
        {
154
            stopMin = (uint8_t)((10000.*128.)/(float)sample_rate + 0.5);
155
        } else if (sample_rate < 32000) {
156
            stopMin = (uint8_t)((6000.*128.)/(float)sample_rate + 0.5);
157
        } else {
158
            stopMin = (uint8_t)((8000.*128.)/(float)sample_rate + 0.5);
159
        }
160
#endif
161
162
#if 0 /* replaced by table lookup */
163
        /* diverging power series */
164
        for (i = 0; i <= 13; i++)
165
        {
166
            stopDk_t[i] = (int32_t)(stopMin*pow(64.0/stopMin, i/13.0) + 0.5);
167
        }
168
        for (i = 0; i < 13; i++)
169
        {
170
            stopDk[i] = stopDk_t[i+1] - stopDk_t[i];
171
        }
172
173
        /* needed? */
174
        qsort(stopDk, 13, sizeof(stopDk[0]), int32cmp);
175
176
        k2 = stopMin;
177
        for (i = 0; i < bs_stop_freq; i++)
178
        {
179
            k2 += stopDk[i];
180
        }
181
        return min(64, k2);
182
#endif
183
        /* bs_stop_freq <= 13 */
184
0
        return min(64, stopMin + offset[get_sr_index(sample_rate)][min(bs_stop_freq, 13)]);
185
0
    }
186
187
    // return 0;
188
0
}
189
190
/* calculate the master frequency table from k0, k2, bs_freq_scale
191
   and bs_alter_scale
192
193
   version for bs_freq_scale = 0
194
*/
195
uint8_t master_frequency_table_fs0(sbr_info *sbr, uint8_t k0, uint8_t k2,
196
                                   uint8_t bs_alter_scale)
197
0
{
198
0
    int8_t incr;
199
0
    uint8_t k;
200
0
    uint8_t dk;
201
0
    int32_t nrBands, k2Achieved;
202
0
    int32_t k2Diff, vDk[64] = {0};
203
204
    /* mft only defined for k2 > k0 */
205
0
    if (k2 <= k0)
206
0
    {
207
0
        sbr->N_master = 0;
208
0
        return 1;
209
0
    }
210
211
0
    dk = bs_alter_scale ? 2 : 1;
212
213
#if 0 /* replaced by float-less design */
214
    nrBands = 2 * (int32_t)((float)(k2-k0)/(dk*2) + (-1+dk)/2.0f);
215
#else
216
0
    if (bs_alter_scale)
217
0
    {
218
0
        nrBands = (((k2-k0+2)>>2)<<1);
219
0
    } else {
220
0
        nrBands = (((k2-k0)>>1)<<1);
221
0
    }
222
0
#endif
223
0
    nrBands = min(nrBands, 63);
224
0
    if (nrBands <= 0)
225
0
        return 1;
226
227
0
    k2Achieved = k0 + nrBands * dk;
228
0
    k2Diff = k2 - k2Achieved;
229
0
    for (k = 0; k < nrBands; k++)
230
0
        vDk[k] = dk;
231
232
0
    if (k2Diff)
233
0
    {
234
0
        incr = (k2Diff > 0) ? -1 : 1;
235
0
        k = (uint8_t) ((k2Diff > 0) ? (nrBands-1) : 0);
236
237
0
        while (k2Diff != 0)
238
0
        {
239
0
            vDk[k] -= incr;
240
0
            k += incr;
241
0
            k2Diff += incr;
242
0
        }
243
0
    }
244
245
0
    sbr->f_master[0] = k0;
246
0
    for (k = 1; k <= nrBands; k++)
247
0
        sbr->f_master[k] = (uint8_t)(sbr->f_master[k-1] + vDk[k-1]);
248
249
0
    sbr->N_master = (uint8_t)nrBands;
250
0
    sbr->N_master = (min(sbr->N_master, 64));
251
252
#if 0
253
    printf("f_master[%d]: ", nrBands);
254
    for (k = 0; k <= nrBands; k++)
255
    {
256
        printf("%d ", sbr->f_master[k]);
257
    }
258
    printf("\n");
259
#endif
260
261
0
    return 0;
262
0
}
263
264
/*
265
   This function finds the number of bands using this formula:
266
    bands * log(a1/a0)/log(2.0) + 0.5
267
*/
268
static int32_t find_bands(uint8_t warp, uint8_t bands, uint8_t a0, uint8_t a1)
269
0
{
270
#ifdef FIXED_POINT
271
    /* table with log2() values */
272
    static const real_t log2Table[65] = {
273
        COEF_CONST(0.0), COEF_CONST(0.0), COEF_CONST(1.0000000000), COEF_CONST(1.5849625007),
274
        COEF_CONST(2.0000000000), COEF_CONST(2.3219280949), COEF_CONST(2.5849625007), COEF_CONST(2.8073549221),
275
        COEF_CONST(3.0000000000), COEF_CONST(3.1699250014), COEF_CONST(3.3219280949), COEF_CONST(3.4594316186),
276
        COEF_CONST(3.5849625007), COEF_CONST(3.7004397181), COEF_CONST(3.8073549221), COEF_CONST(3.9068905956),
277
        COEF_CONST(4.0000000000), COEF_CONST(4.0874628413), COEF_CONST(4.1699250014), COEF_CONST(4.2479275134),
278
        COEF_CONST(4.3219280949), COEF_CONST(4.3923174228), COEF_CONST(4.4594316186), COEF_CONST(4.5235619561),
279
        COEF_CONST(4.5849625007), COEF_CONST(4.6438561898), COEF_CONST(4.7004397181), COEF_CONST(4.7548875022),
280
        COEF_CONST(4.8073549221), COEF_CONST(4.8579809951), COEF_CONST(4.9068905956), COEF_CONST(4.9541963104),
281
        COEF_CONST(5.0000000000), COEF_CONST(5.0443941194), COEF_CONST(5.0874628413), COEF_CONST(5.1292830169),
282
        COEF_CONST(5.1699250014), COEF_CONST(5.2094533656), COEF_CONST(5.2479275134), COEF_CONST(5.2854022189),
283
        COEF_CONST(5.3219280949), COEF_CONST(5.3575520046), COEF_CONST(5.3923174228), COEF_CONST(5.4262647547),
284
        COEF_CONST(5.4594316186), COEF_CONST(5.4918530963), COEF_CONST(5.5235619561), COEF_CONST(5.5545888517),
285
        COEF_CONST(5.5849625007), COEF_CONST(5.6147098441), COEF_CONST(5.6438561898), COEF_CONST(5.6724253420),
286
        COEF_CONST(5.7004397181), COEF_CONST(5.7279204546), COEF_CONST(5.7548875022), COEF_CONST(5.7813597135),
287
        COEF_CONST(5.8073549221), COEF_CONST(5.8328900142), COEF_CONST(5.8579809951), COEF_CONST(5.8826430494),
288
        COEF_CONST(5.9068905956), COEF_CONST(5.9307373376), COEF_CONST(5.9541963104), COEF_CONST(5.9772799235),
289
        COEF_CONST(6.0)
290
    };
291
    real_t r0 = log2Table[a0]; /* coef */
292
    real_t r1 = log2Table[a1]; /* coef */
293
    real_t r2 = (r1 - r0); /* coef */
294
295
    if (warp)
296
        r2 = MUL_C(r2, COEF_CONST(1.0/1.3));
297
298
    /* convert r2 to real and then multiply and round */
299
    r2 = (r2 >> (COEF_BITS-REAL_BITS)) * bands + (1<<(REAL_BITS-1));
300
301
    return (r2 >> REAL_BITS);
302
#else
303
0
    real_t div = (real_t)log(2.0);
304
0
    if (warp) div *= (real_t)1.3;
305
306
0
    return (int32_t)(bands * log((float)a1/(float)a0)/div + 0.5);
307
0
#endif
308
0
}
309
310
static real_t find_initial_power(uint8_t bands, uint8_t a0, uint8_t a1)
311
0
{
312
#ifdef FIXED_POINT
313
    /* table with log() values */
314
    static const real_t logTable[65] = {
315
        COEF_CONST(0.0), COEF_CONST(0.0), COEF_CONST(0.6931471806), COEF_CONST(1.0986122887),
316
        COEF_CONST(1.3862943611), COEF_CONST(1.6094379124), COEF_CONST(1.7917594692), COEF_CONST(1.9459101491),
317
        COEF_CONST(2.0794415417), COEF_CONST(2.1972245773), COEF_CONST(2.3025850930), COEF_CONST(2.3978952728),
318
        COEF_CONST(2.4849066498), COEF_CONST(2.5649493575), COEF_CONST(2.6390573296), COEF_CONST(2.7080502011),
319
        COEF_CONST(2.7725887222), COEF_CONST(2.8332133441), COEF_CONST(2.8903717579), COEF_CONST(2.9444389792),
320
        COEF_CONST(2.9957322736), COEF_CONST(3.0445224377), COEF_CONST(3.0910424534), COEF_CONST(3.1354942159),
321
        COEF_CONST(3.1780538303), COEF_CONST(3.2188758249), COEF_CONST(3.2580965380), COEF_CONST(3.2958368660),
322
        COEF_CONST(3.3322045102), COEF_CONST(3.3672958300), COEF_CONST(3.4011973817), COEF_CONST(3.4339872045),
323
        COEF_CONST(3.4657359028), COEF_CONST(3.4965075615), COEF_CONST(3.5263605246), COEF_CONST(3.5553480615),
324
        COEF_CONST(3.5835189385), COEF_CONST(3.6109179126), COEF_CONST(3.6375861597), COEF_CONST(3.6635616461),
325
        COEF_CONST(3.6888794541), COEF_CONST(3.7135720667), COEF_CONST(3.7376696183), COEF_CONST(3.7612001157),
326
        COEF_CONST(3.7841896339), COEF_CONST(3.8066624898), COEF_CONST(3.8286413965), COEF_CONST(3.8501476017),
327
        COEF_CONST(3.8712010109), COEF_CONST(3.8918202981), COEF_CONST(3.9120230054), COEF_CONST(3.9318256327),
328
        COEF_CONST(3.9512437186), COEF_CONST(3.9702919136), COEF_CONST(3.9889840466), COEF_CONST(4.0073331852),
329
        COEF_CONST(4.0253516907), COEF_CONST(4.0430512678), COEF_CONST(4.0604430105), COEF_CONST(4.0775374439),
330
        COEF_CONST(4.0943445622), COEF_CONST(4.1108738642), COEF_CONST(4.1271343850), COEF_CONST(4.1431347264),
331
        COEF_CONST(4.158883083)
332
    };
333
    /* standard Taylor polynomial coefficients for exp(x) around 0 */
334
    /* a polynomial around x=1 is more precise, as most values are around 1.07,
335
       but this is just fine already */
336
    static const real_t c1 = COEF_CONST(1.0);
337
    static const real_t c2 = COEF_CONST(1.0/2.0);
338
    static const real_t c3 = COEF_CONST(1.0/6.0);
339
    static const real_t c4 = COEF_CONST(1.0/24.0);
340
341
    real_t r0 = logTable[a0]; /* coef */
342
    real_t r1 = logTable[a1]; /* coef */
343
    real_t r2 = (r1 - r0) / bands; /* coef */
344
    real_t rexp = c1 + MUL_C((c1 + MUL_C((c2 + MUL_C((c3 + MUL_C(c4,r2)), r2)), r2)), r2);
345
346
    return (rexp >> (COEF_BITS-REAL_BITS)); /* real */
347
#else
348
0
    return (real_t)pow((real_t)a1/(real_t)a0, 1.0/(real_t)bands);
349
0
#endif
350
0
}
351
352
/*
353
   version for bs_freq_scale > 0
354
*/
355
uint8_t master_frequency_table(sbr_info *sbr, uint8_t k0, uint8_t k2,
356
                               uint8_t bs_freq_scale, uint8_t bs_alter_scale)
357
0
{
358
0
    uint8_t k, bands, twoRegions;
359
0
    uint8_t k1;
360
0
    uint8_t nrBand0, nrBand1;
361
0
    int32_t vDk0[64] = {0}, vDk1[64] = {0};
362
0
    int32_t vk0[64] = {0}, vk1[64] = {0};
363
0
    uint8_t temp1[] = { 6, 5, 4 };
364
0
    real_t q, qk;
365
0
    int32_t A_1;
366
#ifdef FIXED_POINT
367
    real_t rk2, rk0;
368
#endif
369
0
    (void)bs_alter_scale;  /* TODO: remove parameter? */
370
371
    /* mft only defined for k2 > k0 */
372
0
    if (k2 <= k0)
373
0
    {
374
0
        sbr->N_master = 0;
375
0
        return 1;
376
0
    }
377
378
0
    bands = temp1[bs_freq_scale-1];
379
380
#ifdef FIXED_POINT
381
    rk0 = (real_t)k0 << REAL_BITS;
382
    rk2 = (real_t)k2 << REAL_BITS;
383
    if (rk2 > MUL_C(rk0, COEF_CONST(2.2449)))
384
#else
385
0
    if ((float)k2/(float)k0 > 2.2449)
386
0
#endif
387
0
    {
388
0
        twoRegions = 1;
389
0
        k1 = k0 << 1;
390
0
    } else {
391
0
        twoRegions = 0;
392
0
        k1 = k2;
393
0
    }
394
395
0
    nrBand0 = (uint8_t)(2 * find_bands(0, bands, k0, k1));
396
0
    nrBand0 = min(nrBand0, 63);
397
0
    if (nrBand0 <= 0)
398
0
        return 1;
399
400
0
    q = find_initial_power(nrBand0, k0, k1);
401
#ifdef FIXED_POINT
402
    qk = (real_t)k0 << REAL_BITS;
403
    //A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
404
    A_1 = k0;
405
#else
406
0
    qk = REAL_CONST(k0);
407
0
    A_1 = (int32_t)(qk + .5);
408
0
#endif
409
0
    for (k = 0; k <= nrBand0; k++)
410
0
    {
411
0
        int32_t A_0 = A_1;
412
#ifdef FIXED_POINT
413
        qk = MUL_R(qk,q);
414
        A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
415
#else
416
0
        qk *= q;
417
0
        A_1 = (int32_t)(qk + 0.5);
418
0
#endif
419
0
        vDk0[k] = A_1 - A_0;
420
0
    }
421
422
    /* needed? */
423
0
    qsort(vDk0, nrBand0, sizeof(vDk0[0]), int32cmp);
424
425
0
    vk0[0] = k0;
426
0
    for (k = 1; k <= nrBand0; k++)
427
0
    {
428
0
        vk0[k] = vk0[k-1] + vDk0[k-1];
429
0
        if (vDk0[k-1] == 0)
430
0
            return 1;
431
0
    }
432
433
0
    if (!twoRegions)
434
0
    {
435
0
        for (k = 0; k <= nrBand0; k++)
436
0
            sbr->f_master[k] = (uint8_t) vk0[k];
437
438
0
        sbr->N_master = nrBand0;
439
0
        sbr->N_master = min(sbr->N_master, 64);
440
0
        return 0;
441
0
    }
442
443
0
    nrBand1 = (uint8_t)(2 * find_bands(1 /* warped */, bands, k1, k2));
444
0
    nrBand1 = min(nrBand1, 63);
445
446
0
    q = find_initial_power(nrBand1, k1, k2);
447
#ifdef FIXED_POINT
448
    qk = (real_t)k1 << REAL_BITS;
449
    //A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
450
    A_1 = k1;
451
#else
452
0
    qk = REAL_CONST(k1);
453
0
    A_1 = (int32_t)(qk + .5);
454
0
#endif
455
0
    for (k = 0; k <= nrBand1 - 1; k++)
456
0
    {
457
0
        int32_t A_0 = A_1;
458
#ifdef FIXED_POINT
459
        qk = MUL_R(qk,q);
460
        A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
461
#else
462
0
        qk *= q;
463
0
        A_1 = (int32_t)(qk + 0.5);
464
0
#endif
465
0
        vDk1[k] = A_1 - A_0;
466
0
    }
467
468
0
    if (vDk1[0] < vDk0[nrBand0 - 1])
469
0
    {
470
0
        int32_t change;
471
472
        /* needed? */
473
0
        qsort(vDk1, nrBand1 + 1, sizeof(vDk1[0]), int32cmp);
474
0
        change = vDk0[nrBand0 - 1] - vDk1[0];
475
0
        vDk1[0] = vDk0[nrBand0 - 1];
476
0
        vDk1[nrBand1 - 1] = vDk1[nrBand1 - 1] - change;
477
0
    }
478
479
    /* needed? */
480
0
    qsort(vDk1, nrBand1, sizeof(vDk1[0]), int32cmp);
481
0
    vk1[0] = k1;
482
0
    for (k = 1; k <= nrBand1; k++)
483
0
    {
484
0
        vk1[k] = vk1[k-1] + vDk1[k-1];
485
0
        if (vDk1[k-1] == 0)
486
0
            return 1;
487
0
    }
488
489
0
    sbr->N_master = nrBand0 + nrBand1;
490
0
    sbr->N_master = min(sbr->N_master, 64);
491
0
    for (k = 0; k <= nrBand0; k++)
492
0
    {
493
0
        sbr->f_master[k] =  (uint8_t) vk0[k];
494
0
    }
495
0
    for (k = nrBand0 + 1; k <= sbr->N_master; k++)
496
0
    {
497
0
        sbr->f_master[k] = (uint8_t) vk1[k - nrBand0];
498
0
    }
499
500
#if 0
501
    printf("f_master[%d]: ", sbr->N_master);
502
    for (k = 0; k <= sbr->N_master; k++)
503
    {
504
        printf("%d ", sbr->f_master[k]);
505
    }
506
    printf("\n");
507
#endif
508
509
0
    return 0;
510
0
}
511
512
/* calculate the derived frequency border tables from f_master */
513
uint8_t derived_frequency_table(sbr_info *sbr, uint8_t bs_xover_band,
514
                                uint8_t k2)
515
0
{
516
0
    uint8_t k, i;
517
0
    uint32_t minus;
518
519
    /* The following relation shall be satisfied: bs_xover_band < N_Master */
520
0
    if (sbr->N_master <= bs_xover_band)
521
0
        return 1;
522
523
0
    sbr->N_high = sbr->N_master - bs_xover_band;
524
0
    sbr->N_low = (sbr->N_high>>1) + (sbr->N_high - ((sbr->N_high>>1)<<1));
525
526
0
    sbr->n[0] = sbr->N_low;
527
0
    sbr->n[1] = sbr->N_high;
528
529
0
    for (k = 0; k <= sbr->N_high; k++)
530
0
    {
531
0
        sbr->f_table_res[HI_RES][k] = sbr->f_master[k + bs_xover_band];
532
0
    }
533
534
0
    sbr->M = sbr->f_table_res[HI_RES][sbr->N_high] - sbr->f_table_res[HI_RES][0];
535
0
    if (sbr->M > MAX_M)
536
0
        return 1;
537
0
    sbr->kx = sbr->f_table_res[HI_RES][0];
538
0
    if (sbr->kx > 32)
539
0
        return 1;
540
0
    if (sbr->kx + sbr->M > 64)
541
0
        return 1;
542
543
0
    minus = (sbr->N_high & 1) ? 1 : 0;
544
545
0
    i = 0;
546
0
    for (k = 0; k <= sbr->N_low; k++)
547
0
    {
548
0
        if (k != 0)
549
0
            i = (uint8_t)(2*k - minus);
550
0
        sbr->f_table_res[LO_RES][k] = sbr->f_table_res[HI_RES][i];
551
0
    }
552
553
#if 0
554
    printf("bs_freq_scale: %d\n", sbr->bs_freq_scale);
555
    printf("bs_limiter_bands: %d\n", sbr->bs_limiter_bands);
556
    printf("f_table_res[HI_RES][%d]: ", sbr->N_high);
557
    for (k = 0; k <= sbr->N_high; k++)
558
    {
559
        printf("%d ", sbr->f_table_res[HI_RES][k]);
560
    }
561
    printf("\n");
562
#endif
563
#if 0
564
    printf("f_table_res[LO_RES][%d]: ", sbr->N_low);
565
    for (k = 0; k <= sbr->N_low; k++)
566
    {
567
        printf("%d ", sbr->f_table_res[LO_RES][k]);
568
    }
569
    printf("\n");
570
#endif
571
572
0
    sbr->N_Q = 0;
573
0
    if (sbr->bs_noise_bands == 0)
574
0
    {
575
0
        sbr->N_Q = 1;
576
0
    } else {
577
#if 0
578
        sbr->N_Q = max(1, (int32_t)(sbr->bs_noise_bands*(log(k2/(float)sbr->kx)/log(2.0)) + 0.5));
579
#else
580
0
        sbr->N_Q = (uint8_t)(max(1, find_bands(0, sbr->bs_noise_bands, sbr->kx, k2)));
581
0
#endif
582
0
        sbr->N_Q = min(5, sbr->N_Q);
583
0
    }
584
585
0
    i = 0;
586
0
    for (k = 0; k <= sbr->N_Q; k++)
587
0
    {
588
0
        if (k != 0)
589
0
            i = i + (sbr->N_low - i)/(sbr->N_Q + 1 - k);
590
0
        sbr->f_table_noise[k] = sbr->f_table_res[LO_RES][i];
591
0
    }
592
593
    /* build table for mapping k to g in hf patching */
594
0
    for (k = 0; k < 64; k++)
595
0
    {
596
0
        uint8_t g;
597
0
        for (g = 0; g < sbr->N_Q; g++)
598
0
        {
599
0
            if ((sbr->f_table_noise[g] <= k) &&
600
0
                (k < sbr->f_table_noise[g+1]))
601
0
            {
602
0
                sbr->table_map_k_to_g[k] = g;
603
0
                break;
604
0
            }
605
0
        }
606
0
    }
607
608
#if 0
609
    printf("f_table_noise[%d]: ", sbr->N_Q);
610
    for (k = 0; k <= sbr->N_Q; k++)
611
    {
612
        printf("%d ", sbr->f_table_noise[k] - sbr->kx);
613
    }
614
    printf("\n");
615
#endif
616
617
0
    return 0;
618
0
}
619
620
/* TODO: blegh, ugly */
621
/* Modified to calculate for all possible bs_limiter_bands always
622
 * This reduces the number calls to this functions needed (now only on
623
 * header reset)
624
 */
625
void limiter_frequency_table(sbr_info *sbr)
626
0
{
627
#if 0
628
    static const real_t limiterBandsPerOctave[] = { REAL_CONST(1.2),
629
        REAL_CONST(2), REAL_CONST(3) };
630
#else
631
0
    static const real_t limiterBandsCompare[] = { REAL_CONST(1.327152),
632
0
        REAL_CONST(1.185093), REAL_CONST(1.119872) };
633
0
#endif
634
0
    uint8_t k, s;
635
0
    int8_t nrLim;
636
#if 0
637
    real_t limBands;
638
#endif
639
640
0
    sbr->f_table_lim[0][0] = sbr->f_table_res[LO_RES][0] - sbr->kx;
641
0
    sbr->f_table_lim[0][1] = sbr->f_table_res[LO_RES][sbr->N_low] - sbr->kx;
642
0
    sbr->N_L[0] = 1;
643
644
#if 0
645
    printf("f_table_lim[%d][%d]: ", 0, sbr->N_L[0]);
646
    for (k = 0; k <= sbr->N_L[0]; k++)
647
    {
648
        printf("%d ", sbr->f_table_lim[0][k]);
649
    }
650
    printf("\n");
651
#endif
652
653
0
    for (s = 1; s < 4; s++)
654
0
    {
655
0
        uint8_t limTable[100 /*TODO*/] = {0};
656
0
        uint8_t patchBorders[64/*??*/] = {0};
657
658
#if 0
659
        limBands = limiterBandsPerOctave[s - 1];
660
#endif
661
662
0
        patchBorders[0] = sbr->kx;
663
0
        for (k = 1; k <= sbr->noPatches; k++)
664
0
        {
665
0
            patchBorders[k] = patchBorders[k-1] + sbr->patchNoSubbands[k-1];
666
0
        }
667
668
0
        for (k = 0; k <= sbr->N_low; k++)
669
0
        {
670
0
            limTable[k] = sbr->f_table_res[LO_RES][k];
671
0
        }
672
0
        for (k = 1; k < sbr->noPatches; k++)
673
0
        {
674
0
            limTable[k+sbr->N_low] = patchBorders[k];
675
0
        }
676
677
        /* needed */
678
0
        qsort(limTable, sbr->noPatches + sbr->N_low, sizeof(limTable[0]), uint8cmp);
679
0
        k = 1;
680
0
        nrLim = sbr->noPatches + sbr->N_low - 1;
681
682
0
        if (nrLim < 0) // TODO: BIG FAT PROBLEM
683
0
            return;
684
685
0
restart:
686
0
        if (k <= nrLim)
687
0
        {
688
0
            real_t nOctaves;
689
690
0
            if (limTable[k-1] != 0)
691
#if 0
692
                nOctaves = REAL_CONST(log((float)limTable[k]/(float)limTable[k-1])/log(2.0));
693
#else
694
#ifdef FIXED_POINT
695
                nOctaves = DIV_R((limTable[k]<<REAL_BITS),REAL_CONST(limTable[k-1]));
696
#else
697
0
                nOctaves = (real_t)limTable[k]/(real_t)limTable[k-1];
698
0
#endif
699
0
#endif
700
0
            else
701
0
                nOctaves = 0;
702
703
#if 0
704
            if ((MUL_R(nOctaves,limBands)) < REAL_CONST(0.49))
705
#else
706
0
            if (nOctaves < limiterBandsCompare[s - 1])
707
0
#endif
708
0
            {
709
0
                uint8_t i;
710
0
                if (limTable[k] != limTable[k-1])
711
0
                {
712
0
                    uint8_t found = 0, found2 = 0;
713
0
                    for (i = 0; i <= sbr->noPatches; i++)
714
0
                    {
715
0
                        if (limTable[k] == patchBorders[i])
716
0
                            found = 1;
717
0
                    }
718
0
                    if (found)
719
0
                    {
720
0
                        found2 = 0;
721
0
                        for (i = 0; i <= sbr->noPatches; i++)
722
0
                        {
723
0
                            if (limTable[k-1] == patchBorders[i])
724
0
                                found2 = 1;
725
0
                        }
726
0
                        if (found2)
727
0
                        {
728
0
                            k++;
729
0
                            goto restart;
730
0
                        } else {
731
                            /* remove (k-1)th element */
732
0
                            limTable[k-1] = sbr->f_table_res[LO_RES][sbr->N_low];
733
0
                            qsort(limTable, sbr->noPatches + sbr->N_low, sizeof(limTable[0]), uint8cmp);
734
0
                            nrLim--;
735
0
                            goto restart;
736
0
                        }
737
0
                    }
738
0
                }
739
                /* remove kth element */
740
0
                limTable[k] = sbr->f_table_res[LO_RES][sbr->N_low];
741
0
                qsort(limTable, nrLim, sizeof(limTable[0]), uint8cmp);
742
0
                nrLim--;
743
0
                goto restart;
744
0
            } else {
745
0
                k++;
746
0
                goto restart;
747
0
            }
748
0
        }
749
750
0
        sbr->N_L[s] = nrLim;
751
0
        for (k = 0; k <= nrLim; k++)
752
0
        {
753
0
            sbr->f_table_lim[s][k] = limTable[k] - sbr->kx;
754
0
        }
755
756
#if 0
757
        printf("f_table_lim[%d][%d]: ", s, sbr->N_L[s]);
758
        for (k = 0; k <= sbr->N_L[s]; k++)
759
        {
760
            printf("%d ", sbr->f_table_lim[s][k]);
761
        }
762
        printf("\n");
763
#endif
764
0
    }
765
0
}
766
767
#endif