/proc/self/cwd/libfaad/sbr_qmf.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding |
3 | | ** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com |
4 | | ** |
5 | | ** This program is free software; you can redistribute it and/or modify |
6 | | ** it under the terms of the GNU General Public License as published by |
7 | | ** the Free Software Foundation; either version 2 of the License, or |
8 | | ** (at your option) any later version. |
9 | | ** |
10 | | ** This program is distributed in the hope that it will be useful, |
11 | | ** but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | ** GNU General Public License for more details. |
14 | | ** |
15 | | ** You should have received a copy of the GNU General Public License |
16 | | ** along with this program; if not, write to the Free Software |
17 | | ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
18 | | ** |
19 | | ** Any non-GPL usage of this software or parts of this software is strictly |
20 | | ** forbidden. |
21 | | ** |
22 | | ** The "appropriate copyright message" mentioned in section 2c of the GPLv2 |
23 | | ** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com" |
24 | | ** |
25 | | ** Commercial non-GPL licensing of this software is possible. |
26 | | ** For more info contact Nero AG through Mpeg4AAClicense@nero.com. |
27 | | ** |
28 | | ** $Id: sbr_qmf.c,v 1.32 2007/11/01 12:33:36 menno Exp $ |
29 | | **/ |
30 | | |
31 | | #include "common.h" |
32 | | #include "structs.h" |
33 | | |
34 | | #ifdef SBR_DEC |
35 | | |
36 | | |
37 | | #include <stdlib.h> |
38 | | #include "sbr_dct.h" |
39 | | #include "sbr_qmf.h" |
40 | | #include "sbr_qmf_c.h" |
41 | | #include "sbr_syntax.h" |
42 | | |
43 | | qmfa_info *qmfa_init(uint8_t channels) |
44 | 0 | { |
45 | 0 | qmfa_info *qmfa = (qmfa_info*)faad_malloc(sizeof(qmfa_info)); |
46 | | |
47 | | /* x is implemented as double ringbuffer */ |
48 | 0 | qmfa->x = (real_t*)faad_malloc(2 * channels * 10 * sizeof(real_t)); |
49 | 0 | memset(qmfa->x, 0, 2 * channels * 10 * sizeof(real_t)); |
50 | | |
51 | | /* ringbuffer index */ |
52 | 0 | qmfa->x_index = 0; |
53 | |
|
54 | 0 | qmfa->channels = channels; |
55 | |
|
56 | 0 | return qmfa; |
57 | 0 | } |
58 | | |
59 | | void qmfa_end(qmfa_info *qmfa) |
60 | 0 | { |
61 | 0 | if (qmfa) |
62 | 0 | { |
63 | 0 | if (qmfa->x) faad_free(qmfa->x); |
64 | 0 | faad_free(qmfa); |
65 | 0 | } |
66 | 0 | } |
67 | | |
68 | | void sbr_qmf_analysis_32(sbr_info *sbr, qmfa_info *qmfa, const real_t *input, |
69 | | qmf_t X[MAX_NTSRHFG][64], uint8_t offset, uint8_t kx) |
70 | 0 | { |
71 | 0 | ALIGN real_t u[64]; |
72 | 0 | #ifndef SBR_LOW_POWER |
73 | 0 | ALIGN real_t in_real[32], in_imag[32], out_real[32], out_imag[32]; |
74 | | #else |
75 | | ALIGN real_t y[32]; |
76 | | #endif |
77 | 0 | uint32_t in = 0; |
78 | 0 | uint8_t l; |
79 | | |
80 | | /* qmf subsample l */ |
81 | 0 | for (l = 0; l < sbr->numTimeSlotsRate; l++) |
82 | 0 | { |
83 | 0 | int16_t n; |
84 | | |
85 | | /* shift input buffer x */ |
86 | | /* input buffer is not shifted anymore, x is implemented as double ringbuffer */ |
87 | | //memmove(qmfa->x + 32, qmfa->x, (320-32)*sizeof(real_t)); |
88 | | |
89 | | /* add new samples to input buffer x */ |
90 | 0 | for (n = 32 - 1; n >= 0; n--) |
91 | 0 | { |
92 | | #ifdef FIXED_POINT |
93 | | qmfa->x[qmfa->x_index + n] = qmfa->x[qmfa->x_index + n + 320] = (input[in++]) >> 4; |
94 | | #else |
95 | 0 | qmfa->x[qmfa->x_index + n] = qmfa->x[qmfa->x_index + n + 320] = input[in++]; |
96 | 0 | #endif |
97 | 0 | } |
98 | | |
99 | | /* window and summation to create array u */ |
100 | 0 | for (n = 0; n < 64; n++) |
101 | 0 | { |
102 | 0 | u[n] = MUL_F(qmfa->x[qmfa->x_index + n], qmf_c[2*n]) + |
103 | 0 | MUL_F(qmfa->x[qmfa->x_index + n + 64], qmf_c[2*(n + 64)]) + |
104 | 0 | MUL_F(qmfa->x[qmfa->x_index + n + 128], qmf_c[2*(n + 128)]) + |
105 | 0 | MUL_F(qmfa->x[qmfa->x_index + n + 192], qmf_c[2*(n + 192)]) + |
106 | 0 | MUL_F(qmfa->x[qmfa->x_index + n + 256], qmf_c[2*(n + 256)]); |
107 | 0 | } |
108 | | |
109 | | /* update ringbuffer index */ |
110 | 0 | qmfa->x_index -= 32; |
111 | 0 | if (qmfa->x_index < 0) |
112 | 0 | qmfa->x_index = (320-32); |
113 | | |
114 | | /* calculate 32 subband samples by introducing X */ |
115 | | #ifdef SBR_LOW_POWER |
116 | | y[0] = u[48]; |
117 | | for (n = 1; n < 16; n++) |
118 | | y[n] = u[n+48] + u[48-n]; |
119 | | for (n = 16; n < 32; n++) |
120 | | y[n] = -u[n-16] + u[48-n]; |
121 | | |
122 | | DCT3_32_unscaled(u, y); |
123 | | |
124 | | for (n = 0; n < 32; n++) |
125 | | { |
126 | | if (n < kx) |
127 | | { |
128 | | #ifdef FIXED_POINT |
129 | | QMF_RE(X[l + offset][n]) = u[n] /*<< 1*/; |
130 | | #else |
131 | | QMF_RE(X[l + offset][n]) = 2. * u[n]; |
132 | | #endif |
133 | | } else { |
134 | | QMF_RE(X[l + offset][n]) = 0; |
135 | | } |
136 | | } |
137 | | #else |
138 | | |
139 | | // Reordering of data moved from DCT_IV to here |
140 | 0 | in_imag[31] = u[1]; |
141 | 0 | in_real[0] = u[0]; |
142 | 0 | for (n = 1; n < 31; n++) |
143 | 0 | { |
144 | 0 | in_imag[31 - n] = u[n+1]; |
145 | 0 | in_real[n] = -u[64-n]; |
146 | 0 | } |
147 | 0 | in_imag[0] = u[32]; |
148 | 0 | in_real[31] = -u[33]; |
149 | | |
150 | | // dct4_kernel is DCT_IV without reordering which is done before and after FFT |
151 | 0 | dct4_kernel(in_real, in_imag, out_real, out_imag); |
152 | | |
153 | | // Reordering of data moved from DCT_IV to here |
154 | 0 | for (n = 0; n < 16; n++) { |
155 | 0 | if (2*n+1 < kx) { |
156 | | #ifdef FIXED_POINT |
157 | | QMF_RE(X[l + offset][2*n]) = out_real[n]; |
158 | | QMF_IM(X[l + offset][2*n]) = out_imag[n]; |
159 | | QMF_RE(X[l + offset][2*n+1]) = -out_imag[31-n]; |
160 | | QMF_IM(X[l + offset][2*n+1]) = -out_real[31-n]; |
161 | | #else |
162 | 0 | QMF_RE(X[l + offset][2*n]) = 2. * out_real[n]; |
163 | 0 | QMF_IM(X[l + offset][2*n]) = 2. * out_imag[n]; |
164 | 0 | QMF_RE(X[l + offset][2*n+1]) = -2. * out_imag[31-n]; |
165 | 0 | QMF_IM(X[l + offset][2*n+1]) = -2. * out_real[31-n]; |
166 | 0 | #endif |
167 | 0 | } else { |
168 | 0 | if (2*n < kx) { |
169 | | #ifdef FIXED_POINT |
170 | | QMF_RE(X[l + offset][2*n]) = out_real[n]; |
171 | | QMF_IM(X[l + offset][2*n]) = out_imag[n]; |
172 | | #else |
173 | 0 | QMF_RE(X[l + offset][2*n]) = 2. * out_real[n]; |
174 | 0 | QMF_IM(X[l + offset][2*n]) = 2. * out_imag[n]; |
175 | 0 | #endif |
176 | 0 | } |
177 | 0 | else { |
178 | 0 | QMF_RE(X[l + offset][2*n]) = 0; |
179 | 0 | QMF_IM(X[l + offset][2*n]) = 0; |
180 | 0 | } |
181 | 0 | QMF_RE(X[l + offset][2*n+1]) = 0; |
182 | 0 | QMF_IM(X[l + offset][2*n+1]) = 0; |
183 | 0 | } |
184 | 0 | } |
185 | 0 | #endif |
186 | 0 | } |
187 | 0 | } |
188 | | |
189 | | static const complex_t qmf32_pre_twiddle[] = |
190 | | { |
191 | | { FRAC_CONST(0.999924701839145), FRAC_CONST(-0.012271538285720) }, |
192 | | { FRAC_CONST(0.999322384588350), FRAC_CONST(-0.036807222941359) }, |
193 | | { FRAC_CONST(0.998118112900149), FRAC_CONST(-0.061320736302209) }, |
194 | | { FRAC_CONST(0.996312612182778), FRAC_CONST(-0.085797312344440) }, |
195 | | { FRAC_CONST(0.993906970002356), FRAC_CONST(-0.110222207293883) }, |
196 | | { FRAC_CONST(0.990902635427780), FRAC_CONST(-0.134580708507126) }, |
197 | | { FRAC_CONST(0.987301418157858), FRAC_CONST(-0.158858143333861) }, |
198 | | { FRAC_CONST(0.983105487431216), FRAC_CONST(-0.183039887955141) }, |
199 | | { FRAC_CONST(0.978317370719628), FRAC_CONST(-0.207111376192219) }, |
200 | | { FRAC_CONST(0.972939952205560), FRAC_CONST(-0.231058108280671) }, |
201 | | { FRAC_CONST(0.966976471044852), FRAC_CONST(-0.254865659604515) }, |
202 | | { FRAC_CONST(0.960430519415566), FRAC_CONST(-0.278519689385053) }, |
203 | | { FRAC_CONST(0.953306040354194), FRAC_CONST(-0.302005949319228) }, |
204 | | { FRAC_CONST(0.945607325380521), FRAC_CONST(-0.325310292162263) }, |
205 | | { FRAC_CONST(0.937339011912575), FRAC_CONST(-0.348418680249435) }, |
206 | | { FRAC_CONST(0.928506080473216), FRAC_CONST(-0.371317193951838) }, |
207 | | { FRAC_CONST(0.919113851690058), FRAC_CONST(-0.393992040061048) }, |
208 | | { FRAC_CONST(0.909167983090522), FRAC_CONST(-0.416429560097637) }, |
209 | | { FRAC_CONST(0.898674465693954), FRAC_CONST(-0.438616238538528) }, |
210 | | { FRAC_CONST(0.887639620402854), FRAC_CONST(-0.460538710958240) }, |
211 | | { FRAC_CONST(0.876070094195407), FRAC_CONST(-0.482183772079123) }, |
212 | | { FRAC_CONST(0.863972856121587), FRAC_CONST(-0.503538383725718) }, |
213 | | { FRAC_CONST(0.851355193105265), FRAC_CONST(-0.524589682678469) }, |
214 | | { FRAC_CONST(0.838224705554838), FRAC_CONST(-0.545324988422046) }, |
215 | | { FRAC_CONST(0.824589302785025), FRAC_CONST(-0.565731810783613) }, |
216 | | { FRAC_CONST(0.810457198252595), FRAC_CONST(-0.585797857456439) }, |
217 | | { FRAC_CONST(0.795836904608884), FRAC_CONST(-0.605511041404326) }, |
218 | | { FRAC_CONST(0.780737228572094), FRAC_CONST(-0.624859488142386) }, |
219 | | { FRAC_CONST(0.765167265622459), FRAC_CONST(-0.643831542889791) }, |
220 | | { FRAC_CONST(0.749136394523459), FRAC_CONST(-0.662415777590172) }, |
221 | | { FRAC_CONST(0.732654271672413), FRAC_CONST(-0.680600997795453) }, |
222 | | { FRAC_CONST(0.715730825283819), FRAC_CONST(-0.698376249408973) } |
223 | | }; |
224 | | |
225 | | qmfs_info *qmfs_init(uint8_t channels) |
226 | 0 | { |
227 | 0 | qmfs_info *qmfs = (qmfs_info*)faad_malloc(sizeof(qmfs_info)); |
228 | | |
229 | | /* v is a double ringbuffer */ |
230 | 0 | qmfs->v = (real_t*)faad_malloc(2 * channels * 20 * sizeof(real_t)); |
231 | 0 | memset(qmfs->v, 0, 2 * channels * 20 * sizeof(real_t)); |
232 | |
|
233 | 0 | qmfs->v_index = 0; |
234 | |
|
235 | 0 | qmfs->channels = channels; |
236 | |
|
237 | 0 | return qmfs; |
238 | 0 | } |
239 | | |
240 | | void qmfs_end(qmfs_info *qmfs) |
241 | 0 | { |
242 | 0 | if (qmfs) |
243 | 0 | { |
244 | 0 | if (qmfs->v) faad_free(qmfs->v); |
245 | 0 | faad_free(qmfs); |
246 | 0 | } |
247 | 0 | } |
248 | | |
249 | | #ifdef SBR_LOW_POWER |
250 | | |
251 | | void sbr_qmf_synthesis_32(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64], |
252 | | real_t *output) |
253 | | { |
254 | | ALIGN real_t x[16]; |
255 | | ALIGN real_t y[16]; |
256 | | int32_t n, k, out = 0; |
257 | | uint8_t l; |
258 | | |
259 | | /* qmf subsample l */ |
260 | | for (l = 0; l < sbr->numTimeSlotsRate; l++) |
261 | | { |
262 | | /* shift buffers */ |
263 | | /* we are not shifting v, it is a double ringbuffer */ |
264 | | //memmove(qmfs->v + 64, qmfs->v, (640-64)*sizeof(real_t)); |
265 | | |
266 | | /* calculate 64 samples */ |
267 | | for (k = 0; k < 16; k++) |
268 | | { |
269 | | #ifdef FIXED_POINT |
270 | | y[k] = (QMF_RE(X[l][k]) - QMF_RE(X[l][31 - k])); |
271 | | x[k] = (QMF_RE(X[l][k]) + QMF_RE(X[l][31 - k])); |
272 | | #else |
273 | | y[k] = (QMF_RE(X[l][k]) - QMF_RE(X[l][31 - k])) / 32.0; |
274 | | x[k] = (QMF_RE(X[l][k]) + QMF_RE(X[l][31 - k])) / 32.0; |
275 | | #endif |
276 | | } |
277 | | |
278 | | /* even n samples */ |
279 | | DCT2_16_unscaled(x, x); |
280 | | /* odd n samples */ |
281 | | DCT4_16(y, y); |
282 | | |
283 | | for (n = 8; n < 24; n++) |
284 | | { |
285 | | qmfs->v[qmfs->v_index + n*2] = qmfs->v[qmfs->v_index + 640 + n*2] = x[n-8]; |
286 | | qmfs->v[qmfs->v_index + n*2+1] = qmfs->v[qmfs->v_index + 640 + n*2+1] = y[n-8]; |
287 | | } |
288 | | for (n = 0; n < 16; n++) |
289 | | { |
290 | | qmfs->v[qmfs->v_index + n] = qmfs->v[qmfs->v_index + 640 + n] = qmfs->v[qmfs->v_index + 32-n]; |
291 | | } |
292 | | qmfs->v[qmfs->v_index + 48] = qmfs->v[qmfs->v_index + 640 + 48] = 0; |
293 | | for (n = 1; n < 16; n++) |
294 | | { |
295 | | qmfs->v[qmfs->v_index + 48+n] = qmfs->v[qmfs->v_index + 640 + 48+n] = -qmfs->v[qmfs->v_index + 48-n]; |
296 | | } |
297 | | |
298 | | /* calculate 32 output samples and window */ |
299 | | for (k = 0; k < 32; k++) |
300 | | { |
301 | | output[out++] = MUL_F(qmfs->v[qmfs->v_index + k], qmf_c[2*k]) + |
302 | | MUL_F(qmfs->v[qmfs->v_index + 96 + k], qmf_c[64 + 2*k]) + |
303 | | MUL_F(qmfs->v[qmfs->v_index + 128 + k], qmf_c[128 + 2*k]) + |
304 | | MUL_F(qmfs->v[qmfs->v_index + 224 + k], qmf_c[192 + 2*k]) + |
305 | | MUL_F(qmfs->v[qmfs->v_index + 256 + k], qmf_c[256 + 2*k]) + |
306 | | MUL_F(qmfs->v[qmfs->v_index + 352 + k], qmf_c[320 + 2*k]) + |
307 | | MUL_F(qmfs->v[qmfs->v_index + 384 + k], qmf_c[384 + 2*k]) + |
308 | | MUL_F(qmfs->v[qmfs->v_index + 480 + k], qmf_c[448 + 2*k]) + |
309 | | MUL_F(qmfs->v[qmfs->v_index + 512 + k], qmf_c[512 + 2*k]) + |
310 | | MUL_F(qmfs->v[qmfs->v_index + 608 + k], qmf_c[576 + 2*k]); |
311 | | } |
312 | | |
313 | | /* update the ringbuffer index */ |
314 | | qmfs->v_index -= 64; |
315 | | if (qmfs->v_index < 0) |
316 | | qmfs->v_index = (640-64); |
317 | | } |
318 | | } |
319 | | |
320 | | void sbr_qmf_synthesis_64(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64], |
321 | | real_t *output) |
322 | | { |
323 | | ALIGN real_t x[64]; |
324 | | ALIGN real_t y[64]; |
325 | | int32_t n, k, out = 0; |
326 | | uint8_t l; |
327 | | |
328 | | |
329 | | /* qmf subsample l */ |
330 | | for (l = 0; l < sbr->numTimeSlotsRate; l++) |
331 | | { |
332 | | /* shift buffers */ |
333 | | /* we are not shifting v, it is a double ringbuffer */ |
334 | | //memmove(qmfs->v + 128, qmfs->v, (1280-128)*sizeof(real_t)); |
335 | | |
336 | | /* calculate 128 samples */ |
337 | | for (k = 0; k < 32; k++) |
338 | | { |
339 | | #ifdef FIXED_POINT |
340 | | y[k] = (QMF_RE(X[l][k]) - QMF_RE(X[l][63 - k])); |
341 | | x[k] = (QMF_RE(X[l][k]) + QMF_RE(X[l][63 - k])); |
342 | | #else |
343 | | y[k] = (QMF_RE(X[l][k]) - QMF_RE(X[l][63 - k])) / 32.0; |
344 | | x[k] = (QMF_RE(X[l][k]) + QMF_RE(X[l][63 - k])) / 32.0; |
345 | | #endif |
346 | | } |
347 | | |
348 | | /* even n samples */ |
349 | | DCT2_32_unscaled(x, x); |
350 | | /* odd n samples */ |
351 | | DCT4_32(y, y); |
352 | | |
353 | | for (n = 16; n < 48; n++) |
354 | | { |
355 | | qmfs->v[qmfs->v_index + n*2] = qmfs->v[qmfs->v_index + 1280 + n*2] = x[n-16]; |
356 | | qmfs->v[qmfs->v_index + n*2+1] = qmfs->v[qmfs->v_index + 1280 + n*2+1] = y[n-16]; |
357 | | } |
358 | | for (n = 0; n < 32; n++) |
359 | | { |
360 | | qmfs->v[qmfs->v_index + n] = qmfs->v[qmfs->v_index + 1280 + n] = qmfs->v[qmfs->v_index + 64-n]; |
361 | | } |
362 | | qmfs->v[qmfs->v_index + 96] = qmfs->v[qmfs->v_index + 1280 + 96] = 0; |
363 | | for (n = 1; n < 32; n++) |
364 | | { |
365 | | qmfs->v[qmfs->v_index + 96+n] = qmfs->v[qmfs->v_index + 1280 + 96+n] = -qmfs->v[qmfs->v_index + 96-n]; |
366 | | } |
367 | | |
368 | | /* calculate 64 output samples and window */ |
369 | | for (k = 0; k < 64; k++) |
370 | | { |
371 | | output[out++] = MUL_F(qmfs->v[qmfs->v_index + k], qmf_c[k]) + |
372 | | MUL_F(qmfs->v[qmfs->v_index + 192 + k], qmf_c[64 + k]) + |
373 | | MUL_F(qmfs->v[qmfs->v_index + 256 + k], qmf_c[128 + k]) + |
374 | | MUL_F(qmfs->v[qmfs->v_index + 256 + 192 + k], qmf_c[128 + 64 + k]) + |
375 | | MUL_F(qmfs->v[qmfs->v_index + 512 + k], qmf_c[256 + k]) + |
376 | | MUL_F(qmfs->v[qmfs->v_index + 512 + 192 + k], qmf_c[256 + 64 + k]) + |
377 | | MUL_F(qmfs->v[qmfs->v_index + 768 + k], qmf_c[384 + k]) + |
378 | | MUL_F(qmfs->v[qmfs->v_index + 768 + 192 + k], qmf_c[384 + 64 + k]) + |
379 | | MUL_F(qmfs->v[qmfs->v_index + 1024 + k], qmf_c[512 + k]) + |
380 | | MUL_F(qmfs->v[qmfs->v_index + 1024 + 192 + k], qmf_c[512 + 64 + k]); |
381 | | } |
382 | | |
383 | | /* update the ringbuffer index */ |
384 | | qmfs->v_index -= 128; |
385 | | if (qmfs->v_index < 0) |
386 | | qmfs->v_index = (1280-128); |
387 | | } |
388 | | } |
389 | | #else |
390 | | void sbr_qmf_synthesis_32(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64], |
391 | | real_t *output) |
392 | 0 | { |
393 | 0 | ALIGN real_t x1[32], x2[32]; |
394 | 0 | #ifndef FIXED_POINT |
395 | 0 | real_t scale = 1.f/64.f; |
396 | 0 | #endif |
397 | 0 | int32_t n, k, out = 0; |
398 | 0 | uint8_t l; |
399 | | |
400 | | |
401 | | /* qmf subsample l */ |
402 | 0 | for (l = 0; l < sbr->numTimeSlotsRate; l++) |
403 | 0 | { |
404 | | /* shift buffer v */ |
405 | | /* buffer is not shifted, we are using a ringbuffer */ |
406 | | //memmove(qmfs->v + 64, qmfs->v, (640-64)*sizeof(real_t)); |
407 | | |
408 | | /* calculate 64 samples */ |
409 | | /* complex pre-twiddle */ |
410 | 0 | for (k = 0; k < 32; k++) |
411 | 0 | { |
412 | 0 | x1[k] = MUL_F(QMF_RE(X[l][k]), RE(qmf32_pre_twiddle[k])) - MUL_F(QMF_IM(X[l][k]), IM(qmf32_pre_twiddle[k])); |
413 | 0 | x2[k] = MUL_F(QMF_IM(X[l][k]), RE(qmf32_pre_twiddle[k])) + MUL_F(QMF_RE(X[l][k]), IM(qmf32_pre_twiddle[k])); |
414 | |
|
415 | 0 | #ifndef FIXED_POINT |
416 | 0 | x1[k] *= scale; |
417 | 0 | x2[k] *= scale; |
418 | | #else |
419 | | x1[k] >>= 1; |
420 | | x2[k] >>= 1; |
421 | | #endif |
422 | 0 | } |
423 | | |
424 | | /* transform */ |
425 | 0 | DCT4_32(x1, x1); |
426 | 0 | DST4_32(x2, x2); |
427 | |
|
428 | 0 | for (n = 0; n < 32; n++) |
429 | 0 | { |
430 | 0 | qmfs->v[qmfs->v_index + n] = qmfs->v[qmfs->v_index + 640 + n] = -x1[n] + x2[n]; |
431 | 0 | qmfs->v[qmfs->v_index + 63 - n] = qmfs->v[qmfs->v_index + 640 + 63 - n] = x1[n] + x2[n]; |
432 | 0 | } |
433 | | |
434 | | /* calculate 32 output samples and window */ |
435 | 0 | for (k = 0; k < 32; k++) |
436 | 0 | { |
437 | 0 | output[out++] = MUL_F(qmfs->v[qmfs->v_index + k], qmf_c[2*k]) + |
438 | 0 | MUL_F(qmfs->v[qmfs->v_index + 96 + k], qmf_c[64 + 2*k]) + |
439 | 0 | MUL_F(qmfs->v[qmfs->v_index + 128 + k], qmf_c[128 + 2*k]) + |
440 | 0 | MUL_F(qmfs->v[qmfs->v_index + 224 + k], qmf_c[192 + 2*k]) + |
441 | 0 | MUL_F(qmfs->v[qmfs->v_index + 256 + k], qmf_c[256 + 2*k]) + |
442 | 0 | MUL_F(qmfs->v[qmfs->v_index + 352 + k], qmf_c[320 + 2*k]) + |
443 | 0 | MUL_F(qmfs->v[qmfs->v_index + 384 + k], qmf_c[384 + 2*k]) + |
444 | 0 | MUL_F(qmfs->v[qmfs->v_index + 480 + k], qmf_c[448 + 2*k]) + |
445 | 0 | MUL_F(qmfs->v[qmfs->v_index + 512 + k], qmf_c[512 + 2*k]) + |
446 | 0 | MUL_F(qmfs->v[qmfs->v_index + 608 + k], qmf_c[576 + 2*k]); |
447 | 0 | } |
448 | | |
449 | | /* update ringbuffer index */ |
450 | 0 | qmfs->v_index -= 64; |
451 | 0 | if (qmfs->v_index < 0) |
452 | 0 | qmfs->v_index = (640 - 64); |
453 | 0 | } |
454 | 0 | } |
455 | | |
456 | | void sbr_qmf_synthesis_64(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64], |
457 | | real_t *output) |
458 | 0 | { |
459 | | // ALIGN real_t x1[64], x2[64]; |
460 | 0 | #ifndef SBR_LOW_POWER |
461 | 0 | ALIGN real_t in_real1[32], in_imag1[32], out_real1[32], out_imag1[32]; |
462 | 0 | ALIGN real_t in_real2[32], in_imag2[32], out_real2[32], out_imag2[32]; |
463 | 0 | #endif |
464 | 0 | qmf_t * pX; |
465 | 0 | real_t * pring_buffer_1, * pring_buffer_3; |
466 | | // real_t * ptemp_1, * ptemp_2; |
467 | | #ifdef PREFER_POINTERS |
468 | | // These pointers are used if target platform has autoinc address generators |
469 | | real_t * pring_buffer_2, * pring_buffer_4; |
470 | | real_t * pring_buffer_5, * pring_buffer_6; |
471 | | real_t * pring_buffer_7, * pring_buffer_8; |
472 | | real_t * pring_buffer_9, * pring_buffer_10; |
473 | | const real_t * pqmf_c_1, * pqmf_c_2, * pqmf_c_3, * pqmf_c_4; |
474 | | const real_t * pqmf_c_5, * pqmf_c_6, * pqmf_c_7, * pqmf_c_8; |
475 | | const real_t * pqmf_c_9, * pqmf_c_10; |
476 | | #endif // #ifdef PREFER_POINTERS |
477 | 0 | #ifndef FIXED_POINT |
478 | 0 | real_t scale = 1.f/64.f; |
479 | 0 | #endif |
480 | 0 | int32_t n, k, out = 0; |
481 | 0 | uint8_t l; |
482 | | |
483 | | |
484 | | /* qmf subsample l */ |
485 | 0 | for (l = 0; l < sbr->numTimeSlotsRate; l++) |
486 | 0 | { |
487 | | /* shift buffer v */ |
488 | | /* buffer is not shifted, we use double ringbuffer */ |
489 | | //memmove(qmfs->v + 128, qmfs->v, (1280-128)*sizeof(real_t)); |
490 | | |
491 | | /* calculate 128 samples */ |
492 | 0 | #ifndef FIXED_POINT |
493 | |
|
494 | 0 | pX = X[l]; |
495 | |
|
496 | 0 | in_imag1[31] = scale*QMF_RE(pX[1]); |
497 | 0 | in_real1[0] = scale*QMF_RE(pX[0]); |
498 | 0 | in_imag2[31] = scale*QMF_IM(pX[63-1]); |
499 | 0 | in_real2[0] = scale*QMF_IM(pX[63-0]); |
500 | 0 | for (k = 1; k < 31; k++) |
501 | 0 | { |
502 | 0 | in_imag1[31 - k] = scale*QMF_RE(pX[2*k + 1]); |
503 | 0 | in_real1[ k] = scale*QMF_RE(pX[2*k ]); |
504 | 0 | in_imag2[31 - k] = scale*QMF_IM(pX[63 - (2*k + 1)]); |
505 | 0 | in_real2[ k] = scale*QMF_IM(pX[63 - (2*k )]); |
506 | 0 | } |
507 | 0 | in_imag1[0] = scale*QMF_RE(pX[63]); |
508 | 0 | in_real1[31] = scale*QMF_RE(pX[62]); |
509 | 0 | in_imag2[0] = scale*QMF_IM(pX[63-63]); |
510 | 0 | in_real2[31] = scale*QMF_IM(pX[63-62]); |
511 | |
|
512 | | #else |
513 | | |
514 | | pX = X[l]; |
515 | | |
516 | | in_imag1[31] = QMF_RE(pX[1]) >> 1; |
517 | | in_real1[0] = QMF_RE(pX[0]) >> 1; |
518 | | in_imag2[31] = QMF_IM(pX[62]) >> 1; |
519 | | in_real2[0] = QMF_IM(pX[63]) >> 1; |
520 | | for (k = 1; k < 31; k++) |
521 | | { |
522 | | in_imag1[31 - k] = QMF_RE(pX[2*k + 1]) >> 1; |
523 | | in_real1[ k] = QMF_RE(pX[2*k ]) >> 1; |
524 | | in_imag2[31 - k] = QMF_IM(pX[63 - (2*k + 1)]) >> 1; |
525 | | in_real2[ k] = QMF_IM(pX[63 - (2*k )]) >> 1; |
526 | | } |
527 | | in_imag1[0] = QMF_RE(pX[63]) >> 1; |
528 | | in_real1[31] = QMF_RE(pX[62]) >> 1; |
529 | | in_imag2[0] = QMF_IM(pX[0]) >> 1; |
530 | | in_real2[31] = QMF_IM(pX[1]) >> 1; |
531 | | |
532 | | #endif |
533 | | |
534 | | |
535 | | // dct4_kernel is DCT_IV without reordering which is done before and after FFT |
536 | 0 | dct4_kernel(in_real1, in_imag1, out_real1, out_imag1); |
537 | 0 | dct4_kernel(in_real2, in_imag2, out_real2, out_imag2); |
538 | | |
539 | |
|
540 | 0 | pring_buffer_1 = qmfs->v + qmfs->v_index; |
541 | 0 | pring_buffer_3 = pring_buffer_1 + 1280; |
542 | | #ifdef PREFER_POINTERS |
543 | | pring_buffer_2 = pring_buffer_1 + 127; |
544 | | pring_buffer_4 = pring_buffer_1 + (1280 + 127); |
545 | | #endif // #ifdef PREFER_POINTERS |
546 | | // ptemp_1 = x1; |
547 | | // ptemp_2 = x2; |
548 | | #ifdef PREFER_POINTERS |
549 | | for (n = 0; n < 32; n ++) |
550 | | { |
551 | | //real_t x1 = *ptemp_1++; |
552 | | //real_t x2 = *ptemp_2++; |
553 | | // pring_buffer_3 and pring_buffer_4 are needed only for double ring buffer |
554 | | *pring_buffer_1++ = *pring_buffer_3++ = out_real2[n] - out_real1[n]; |
555 | | *pring_buffer_2-- = *pring_buffer_4-- = out_real2[n] + out_real1[n]; |
556 | | //x1 = *ptemp_1++; |
557 | | //x2 = *ptemp_2++; |
558 | | *pring_buffer_1++ = *pring_buffer_3++ = out_imag2[31-n] + out_imag1[31-n]; |
559 | | *pring_buffer_2-- = *pring_buffer_4-- = out_imag2[31-n] - out_imag1[31-n]; |
560 | | } |
561 | | #else // #ifdef PREFER_POINTERS |
562 | |
|
563 | 0 | for (n = 0; n < 32; n++) |
564 | 0 | { |
565 | | // pring_buffer_3 and pring_buffer_4 are needed only for double ring buffer |
566 | 0 | pring_buffer_1[2*n] = pring_buffer_3[2*n] = out_real2[n] - out_real1[n]; |
567 | 0 | pring_buffer_1[127-2*n] = pring_buffer_3[127-2*n] = out_real2[n] + out_real1[n]; |
568 | 0 | pring_buffer_1[2*n+1] = pring_buffer_3[2*n+1] = out_imag2[31-n] + out_imag1[31-n]; |
569 | 0 | pring_buffer_1[127-(2*n+1)] = pring_buffer_3[127-(2*n+1)] = out_imag2[31-n] - out_imag1[31-n]; |
570 | 0 | } |
571 | |
|
572 | 0 | #endif // #ifdef PREFER_POINTERS |
573 | |
|
574 | 0 | pring_buffer_1 = qmfs->v + qmfs->v_index; |
575 | | #ifdef PREFER_POINTERS |
576 | | pring_buffer_2 = pring_buffer_1 + 192; |
577 | | pring_buffer_3 = pring_buffer_1 + 256; |
578 | | pring_buffer_4 = pring_buffer_1 + (256 + 192); |
579 | | pring_buffer_5 = pring_buffer_1 + 512; |
580 | | pring_buffer_6 = pring_buffer_1 + (512 + 192); |
581 | | pring_buffer_7 = pring_buffer_1 + 768; |
582 | | pring_buffer_8 = pring_buffer_1 + (768 + 192); |
583 | | pring_buffer_9 = pring_buffer_1 + 1024; |
584 | | pring_buffer_10 = pring_buffer_1 + (1024 + 192); |
585 | | pqmf_c_1 = qmf_c; |
586 | | pqmf_c_2 = qmf_c + 64; |
587 | | pqmf_c_3 = qmf_c + 128; |
588 | | pqmf_c_4 = qmf_c + 192; |
589 | | pqmf_c_5 = qmf_c + 256; |
590 | | pqmf_c_6 = qmf_c + 320; |
591 | | pqmf_c_7 = qmf_c + 384; |
592 | | pqmf_c_8 = qmf_c + 448; |
593 | | pqmf_c_9 = qmf_c + 512; |
594 | | pqmf_c_10 = qmf_c + 576; |
595 | | #endif // #ifdef PREFER_POINTERS |
596 | | |
597 | | /* calculate 64 output samples and window */ |
598 | 0 | for (k = 0; k < 64; k++) |
599 | 0 | { |
600 | | #ifdef PREFER_POINTERS |
601 | | output[out++] = |
602 | | MUL_F(*pring_buffer_1++, *pqmf_c_1++) + |
603 | | MUL_F(*pring_buffer_2++, *pqmf_c_2++) + |
604 | | MUL_F(*pring_buffer_3++, *pqmf_c_3++) + |
605 | | MUL_F(*pring_buffer_4++, *pqmf_c_4++) + |
606 | | MUL_F(*pring_buffer_5++, *pqmf_c_5++) + |
607 | | MUL_F(*pring_buffer_6++, *pqmf_c_6++) + |
608 | | MUL_F(*pring_buffer_7++, *pqmf_c_7++) + |
609 | | MUL_F(*pring_buffer_8++, *pqmf_c_8++) + |
610 | | MUL_F(*pring_buffer_9++, *pqmf_c_9++) + |
611 | | MUL_F(*pring_buffer_10++, *pqmf_c_10++); |
612 | | #else // #ifdef PREFER_POINTERS |
613 | 0 | output[out++] = |
614 | 0 | MUL_F(pring_buffer_1[k+0], qmf_c[k+0]) + |
615 | 0 | MUL_F(pring_buffer_1[k+192], qmf_c[k+64]) + |
616 | 0 | MUL_F(pring_buffer_1[k+256], qmf_c[k+128]) + |
617 | 0 | MUL_F(pring_buffer_1[k+(256+192)], qmf_c[k+192]) + |
618 | 0 | MUL_F(pring_buffer_1[k+512], qmf_c[k+256]) + |
619 | 0 | MUL_F(pring_buffer_1[k+(512+192)], qmf_c[k+320]) + |
620 | 0 | MUL_F(pring_buffer_1[k+768], qmf_c[k+384]) + |
621 | 0 | MUL_F(pring_buffer_1[k+(768+192)], qmf_c[k+448]) + |
622 | 0 | MUL_F(pring_buffer_1[k+1024], qmf_c[k+512]) + |
623 | 0 | MUL_F(pring_buffer_1[k+(1024+192)], qmf_c[k+576]); |
624 | 0 | #endif // #ifdef PREFER_POINTERS |
625 | 0 | } |
626 | | |
627 | | /* update ringbuffer index */ |
628 | 0 | qmfs->v_index -= 128; |
629 | 0 | if (qmfs->v_index < 0) |
630 | 0 | qmfs->v_index = (1280 - 128); |
631 | 0 | } |
632 | 0 | } |
633 | | #endif |
634 | | |
635 | | #endif |