Coverage Report

Created: 2025-07-11 06:39

/proc/self/cwd/libfaad/sbr_qmf.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: sbr_qmf.c,v 1.32 2007/11/01 12:33:36 menno Exp $
29
**/
30
31
#include "common.h"
32
#include "structs.h"
33
34
#ifdef SBR_DEC
35
36
37
#include <stdlib.h>
38
#include "sbr_dct.h"
39
#include "sbr_qmf.h"
40
#include "sbr_qmf_c.h"
41
#include "sbr_syntax.h"
42
43
qmfa_info *qmfa_init(uint8_t channels)
44
0
{
45
0
    qmfa_info *qmfa = (qmfa_info*)faad_malloc(sizeof(qmfa_info));
46
47
  /* x is implemented as double ringbuffer */
48
0
    qmfa->x = (real_t*)faad_malloc(2 * channels * 10 * sizeof(real_t));
49
0
    memset(qmfa->x, 0, 2 * channels * 10 * sizeof(real_t));
50
51
  /* ringbuffer index */
52
0
  qmfa->x_index = 0;
53
54
0
    qmfa->channels = channels;
55
56
0
    return qmfa;
57
0
}
58
59
void qmfa_end(qmfa_info *qmfa)
60
0
{
61
0
    if (qmfa)
62
0
    {
63
0
        if (qmfa->x) faad_free(qmfa->x);
64
0
        faad_free(qmfa);
65
0
    }
66
0
}
67
68
void sbr_qmf_analysis_32(sbr_info *sbr, qmfa_info *qmfa, const real_t *input,
69
                         qmf_t X[MAX_NTSRHFG][64], uint8_t offset, uint8_t kx)
70
0
{
71
0
    ALIGN real_t u[64];
72
0
#ifndef SBR_LOW_POWER
73
0
    ALIGN real_t in_real[32], in_imag[32], out_real[32], out_imag[32];
74
#else
75
    ALIGN real_t y[32];
76
#endif
77
0
    uint32_t in = 0;
78
0
    uint8_t l;
79
80
    /* qmf subsample l */
81
0
    for (l = 0; l < sbr->numTimeSlotsRate; l++)
82
0
    {
83
0
        int16_t n;
84
85
        /* shift input buffer x */
86
    /* input buffer is not shifted anymore, x is implemented as double ringbuffer */
87
        //memmove(qmfa->x + 32, qmfa->x, (320-32)*sizeof(real_t));
88
89
        /* add new samples to input buffer x */
90
0
        for (n = 32 - 1; n >= 0; n--)
91
0
        {
92
#ifdef FIXED_POINT
93
            qmfa->x[qmfa->x_index + n] = qmfa->x[qmfa->x_index + n + 320] = (input[in++]) >> 4;
94
#else
95
0
            qmfa->x[qmfa->x_index + n] = qmfa->x[qmfa->x_index + n + 320] = input[in++];
96
0
#endif
97
0
        }
98
99
        /* window and summation to create array u */
100
0
        for (n = 0; n < 64; n++)
101
0
        {
102
0
            u[n] = MUL_F(qmfa->x[qmfa->x_index + n], qmf_c[2*n]) +
103
0
                MUL_F(qmfa->x[qmfa->x_index + n + 64], qmf_c[2*(n + 64)]) +
104
0
                MUL_F(qmfa->x[qmfa->x_index + n + 128], qmf_c[2*(n + 128)]) +
105
0
                MUL_F(qmfa->x[qmfa->x_index + n + 192], qmf_c[2*(n + 192)]) +
106
0
                MUL_F(qmfa->x[qmfa->x_index + n + 256], qmf_c[2*(n + 256)]);
107
0
        }
108
109
    /* update ringbuffer index */
110
0
    qmfa->x_index -= 32;
111
0
    if (qmfa->x_index < 0)
112
0
      qmfa->x_index = (320-32);
113
114
        /* calculate 32 subband samples by introducing X */
115
#ifdef SBR_LOW_POWER
116
        y[0] = u[48];
117
        for (n = 1; n < 16; n++)
118
            y[n] = u[n+48] + u[48-n];
119
        for (n = 16; n < 32; n++)
120
            y[n] = -u[n-16] + u[48-n];
121
122
        DCT3_32_unscaled(u, y);
123
124
        for (n = 0; n < 32; n++)
125
        {
126
            if (n < kx)
127
            {
128
#ifdef FIXED_POINT
129
                QMF_RE(X[l + offset][n]) = u[n] /*<< 1*/;
130
#else
131
                QMF_RE(X[l + offset][n]) = 2. * u[n];
132
#endif
133
            } else {
134
                QMF_RE(X[l + offset][n]) = 0;
135
            }
136
        }
137
#else
138
139
        // Reordering of data moved from DCT_IV to here
140
0
        in_imag[31] = u[1];
141
0
        in_real[0] = u[0];
142
0
        for (n = 1; n < 31; n++)
143
0
        {
144
0
            in_imag[31 - n] = u[n+1];
145
0
            in_real[n] = -u[64-n];
146
0
        }
147
0
        in_imag[0] = u[32];
148
0
        in_real[31] = -u[33];
149
150
        // dct4_kernel is DCT_IV without reordering which is done before and after FFT
151
0
        dct4_kernel(in_real, in_imag, out_real, out_imag);
152
153
        // Reordering of data moved from DCT_IV to here
154
0
        for (n = 0; n < 16; n++) {
155
0
            if (2*n+1 < kx) {
156
#ifdef FIXED_POINT
157
                QMF_RE(X[l + offset][2*n])   = out_real[n];
158
                QMF_IM(X[l + offset][2*n])   = out_imag[n];
159
                QMF_RE(X[l + offset][2*n+1]) = -out_imag[31-n];
160
                QMF_IM(X[l + offset][2*n+1]) = -out_real[31-n];
161
#else
162
0
                QMF_RE(X[l + offset][2*n])   = 2. * out_real[n];
163
0
                QMF_IM(X[l + offset][2*n])   = 2. * out_imag[n];
164
0
                QMF_RE(X[l + offset][2*n+1]) = -2. * out_imag[31-n];
165
0
                QMF_IM(X[l + offset][2*n+1]) = -2. * out_real[31-n];
166
0
#endif
167
0
            } else {
168
0
                if (2*n < kx) {
169
#ifdef FIXED_POINT
170
                    QMF_RE(X[l + offset][2*n])   = out_real[n];
171
                    QMF_IM(X[l + offset][2*n])   = out_imag[n];
172
#else
173
0
                    QMF_RE(X[l + offset][2*n])   = 2. * out_real[n];
174
0
                    QMF_IM(X[l + offset][2*n])   = 2. * out_imag[n];
175
0
#endif
176
0
                }
177
0
                else {
178
0
                    QMF_RE(X[l + offset][2*n]) = 0;
179
0
                    QMF_IM(X[l + offset][2*n]) = 0;
180
0
                }
181
0
                QMF_RE(X[l + offset][2*n+1]) = 0;
182
0
                QMF_IM(X[l + offset][2*n+1]) = 0;
183
0
            }
184
0
        }
185
0
#endif
186
0
    }
187
0
}
188
189
static const complex_t qmf32_pre_twiddle[] =
190
{
191
    { FRAC_CONST(0.999924701839145), FRAC_CONST(-0.012271538285720) },
192
    { FRAC_CONST(0.999322384588350), FRAC_CONST(-0.036807222941359) },
193
    { FRAC_CONST(0.998118112900149), FRAC_CONST(-0.061320736302209) },
194
    { FRAC_CONST(0.996312612182778), FRAC_CONST(-0.085797312344440) },
195
    { FRAC_CONST(0.993906970002356), FRAC_CONST(-0.110222207293883) },
196
    { FRAC_CONST(0.990902635427780), FRAC_CONST(-0.134580708507126) },
197
    { FRAC_CONST(0.987301418157858), FRAC_CONST(-0.158858143333861) },
198
    { FRAC_CONST(0.983105487431216), FRAC_CONST(-0.183039887955141) },
199
    { FRAC_CONST(0.978317370719628), FRAC_CONST(-0.207111376192219) },
200
    { FRAC_CONST(0.972939952205560), FRAC_CONST(-0.231058108280671) },
201
    { FRAC_CONST(0.966976471044852), FRAC_CONST(-0.254865659604515) },
202
    { FRAC_CONST(0.960430519415566), FRAC_CONST(-0.278519689385053) },
203
    { FRAC_CONST(0.953306040354194), FRAC_CONST(-0.302005949319228) },
204
    { FRAC_CONST(0.945607325380521), FRAC_CONST(-0.325310292162263) },
205
    { FRAC_CONST(0.937339011912575), FRAC_CONST(-0.348418680249435) },
206
    { FRAC_CONST(0.928506080473216), FRAC_CONST(-0.371317193951838) },
207
    { FRAC_CONST(0.919113851690058), FRAC_CONST(-0.393992040061048) },
208
    { FRAC_CONST(0.909167983090522), FRAC_CONST(-0.416429560097637) },
209
    { FRAC_CONST(0.898674465693954), FRAC_CONST(-0.438616238538528) },
210
    { FRAC_CONST(0.887639620402854), FRAC_CONST(-0.460538710958240) },
211
    { FRAC_CONST(0.876070094195407), FRAC_CONST(-0.482183772079123) },
212
    { FRAC_CONST(0.863972856121587), FRAC_CONST(-0.503538383725718) },
213
    { FRAC_CONST(0.851355193105265), FRAC_CONST(-0.524589682678469) },
214
    { FRAC_CONST(0.838224705554838), FRAC_CONST(-0.545324988422046) },
215
    { FRAC_CONST(0.824589302785025), FRAC_CONST(-0.565731810783613) },
216
    { FRAC_CONST(0.810457198252595), FRAC_CONST(-0.585797857456439) },
217
    { FRAC_CONST(0.795836904608884), FRAC_CONST(-0.605511041404326) },
218
    { FRAC_CONST(0.780737228572094), FRAC_CONST(-0.624859488142386) },
219
    { FRAC_CONST(0.765167265622459), FRAC_CONST(-0.643831542889791) },
220
    { FRAC_CONST(0.749136394523459), FRAC_CONST(-0.662415777590172) },
221
    { FRAC_CONST(0.732654271672413), FRAC_CONST(-0.680600997795453) },
222
    { FRAC_CONST(0.715730825283819), FRAC_CONST(-0.698376249408973) }
223
};
224
225
qmfs_info *qmfs_init(uint8_t channels)
226
0
{
227
0
    qmfs_info *qmfs = (qmfs_info*)faad_malloc(sizeof(qmfs_info));
228
229
  /* v is a double ringbuffer */
230
0
    qmfs->v = (real_t*)faad_malloc(2 * channels * 20 * sizeof(real_t));
231
0
    memset(qmfs->v, 0, 2 * channels * 20 * sizeof(real_t));
232
233
0
    qmfs->v_index = 0;
234
235
0
    qmfs->channels = channels;
236
237
0
    return qmfs;
238
0
}
239
240
void qmfs_end(qmfs_info *qmfs)
241
0
{
242
0
    if (qmfs)
243
0
    {
244
0
        if (qmfs->v) faad_free(qmfs->v);
245
0
        faad_free(qmfs);
246
0
    }
247
0
}
248
249
#ifdef SBR_LOW_POWER
250
251
void sbr_qmf_synthesis_32(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64],
252
                          real_t *output)
253
{
254
    ALIGN real_t x[16];
255
    ALIGN real_t y[16];
256
    int32_t n, k, out = 0;
257
    uint8_t l;
258
259
    /* qmf subsample l */
260
    for (l = 0; l < sbr->numTimeSlotsRate; l++)
261
    {
262
        /* shift buffers */
263
        /* we are not shifting v, it is a double ringbuffer */
264
        //memmove(qmfs->v + 64, qmfs->v, (640-64)*sizeof(real_t));
265
266
        /* calculate 64 samples */
267
        for (k = 0; k < 16; k++)
268
        {
269
#ifdef FIXED_POINT
270
            y[k] = (QMF_RE(X[l][k]) - QMF_RE(X[l][31 - k]));
271
            x[k] = (QMF_RE(X[l][k]) + QMF_RE(X[l][31 - k]));
272
#else
273
            y[k] = (QMF_RE(X[l][k]) - QMF_RE(X[l][31 - k])) / 32.0;
274
            x[k] = (QMF_RE(X[l][k]) + QMF_RE(X[l][31 - k])) / 32.0;
275
#endif
276
        }
277
278
        /* even n samples */
279
        DCT2_16_unscaled(x, x);
280
        /* odd n samples */
281
        DCT4_16(y, y);
282
283
        for (n = 8; n < 24; n++)
284
        {
285
            qmfs->v[qmfs->v_index + n*2] = qmfs->v[qmfs->v_index + 640 + n*2] = x[n-8];
286
            qmfs->v[qmfs->v_index + n*2+1] = qmfs->v[qmfs->v_index + 640 + n*2+1] = y[n-8];
287
        }
288
        for (n = 0; n < 16; n++)
289
        {
290
            qmfs->v[qmfs->v_index + n] = qmfs->v[qmfs->v_index + 640 + n] = qmfs->v[qmfs->v_index + 32-n];
291
        }
292
        qmfs->v[qmfs->v_index + 48] = qmfs->v[qmfs->v_index + 640 + 48] = 0;
293
        for (n = 1; n < 16; n++)
294
        {
295
            qmfs->v[qmfs->v_index + 48+n] = qmfs->v[qmfs->v_index + 640 + 48+n] = -qmfs->v[qmfs->v_index + 48-n];
296
        }
297
298
        /* calculate 32 output samples and window */
299
        for (k = 0; k < 32; k++)
300
        {
301
            output[out++] = MUL_F(qmfs->v[qmfs->v_index + k], qmf_c[2*k]) +
302
                MUL_F(qmfs->v[qmfs->v_index + 96 + k], qmf_c[64 + 2*k]) +
303
                MUL_F(qmfs->v[qmfs->v_index + 128 + k], qmf_c[128 + 2*k]) +
304
                MUL_F(qmfs->v[qmfs->v_index + 224 + k], qmf_c[192 + 2*k]) +
305
                MUL_F(qmfs->v[qmfs->v_index + 256 + k], qmf_c[256 + 2*k]) +
306
                MUL_F(qmfs->v[qmfs->v_index + 352 + k], qmf_c[320 + 2*k]) +
307
                MUL_F(qmfs->v[qmfs->v_index + 384 + k], qmf_c[384 + 2*k]) +
308
                MUL_F(qmfs->v[qmfs->v_index + 480 + k], qmf_c[448 + 2*k]) +
309
                MUL_F(qmfs->v[qmfs->v_index + 512 + k], qmf_c[512 + 2*k]) +
310
                MUL_F(qmfs->v[qmfs->v_index + 608 + k], qmf_c[576 + 2*k]);
311
        }
312
313
        /* update the ringbuffer index */
314
        qmfs->v_index -= 64;
315
        if (qmfs->v_index < 0)
316
            qmfs->v_index = (640-64);
317
    }
318
}
319
320
void sbr_qmf_synthesis_64(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64],
321
                          real_t *output)
322
{
323
    ALIGN real_t x[64];
324
    ALIGN real_t y[64];
325
    int32_t n, k, out = 0;
326
    uint8_t l;
327
328
329
    /* qmf subsample l */
330
    for (l = 0; l < sbr->numTimeSlotsRate; l++)
331
    {
332
        /* shift buffers */
333
        /* we are not shifting v, it is a double ringbuffer */
334
        //memmove(qmfs->v + 128, qmfs->v, (1280-128)*sizeof(real_t));
335
336
        /* calculate 128 samples */
337
        for (k = 0; k < 32; k++)
338
        {
339
#ifdef FIXED_POINT
340
            y[k] = (QMF_RE(X[l][k]) - QMF_RE(X[l][63 - k]));
341
            x[k] = (QMF_RE(X[l][k]) + QMF_RE(X[l][63 - k]));
342
#else
343
            y[k] = (QMF_RE(X[l][k]) - QMF_RE(X[l][63 - k])) / 32.0;
344
            x[k] = (QMF_RE(X[l][k]) + QMF_RE(X[l][63 - k])) / 32.0;
345
#endif
346
        }
347
348
        /* even n samples */
349
        DCT2_32_unscaled(x, x);
350
        /* odd n samples */
351
        DCT4_32(y, y);
352
353
        for (n = 16; n < 48; n++)
354
        {
355
            qmfs->v[qmfs->v_index + n*2]   = qmfs->v[qmfs->v_index + 1280 + n*2]   = x[n-16];
356
            qmfs->v[qmfs->v_index + n*2+1] = qmfs->v[qmfs->v_index + 1280 + n*2+1] = y[n-16];
357
        }
358
        for (n = 0; n < 32; n++)
359
        {
360
            qmfs->v[qmfs->v_index + n] = qmfs->v[qmfs->v_index + 1280 + n] = qmfs->v[qmfs->v_index + 64-n];
361
        }
362
        qmfs->v[qmfs->v_index + 96] = qmfs->v[qmfs->v_index + 1280 + 96] = 0;
363
        for (n = 1; n < 32; n++)
364
        {
365
            qmfs->v[qmfs->v_index + 96+n] = qmfs->v[qmfs->v_index + 1280 + 96+n] = -qmfs->v[qmfs->v_index + 96-n];
366
        }
367
368
        /* calculate 64 output samples and window */
369
        for (k = 0; k < 64; k++)
370
        {
371
            output[out++] = MUL_F(qmfs->v[qmfs->v_index + k], qmf_c[k]) +
372
                MUL_F(qmfs->v[qmfs->v_index + 192 + k], qmf_c[64 + k]) +
373
                MUL_F(qmfs->v[qmfs->v_index + 256 + k], qmf_c[128 + k]) +
374
                MUL_F(qmfs->v[qmfs->v_index + 256 + 192 + k], qmf_c[128 + 64 + k]) +
375
                MUL_F(qmfs->v[qmfs->v_index + 512 + k], qmf_c[256 + k]) +
376
                MUL_F(qmfs->v[qmfs->v_index + 512 + 192 + k], qmf_c[256 + 64 + k]) +
377
                MUL_F(qmfs->v[qmfs->v_index + 768 + k], qmf_c[384 + k]) +
378
                MUL_F(qmfs->v[qmfs->v_index + 768 + 192 + k], qmf_c[384 + 64 + k]) +
379
                MUL_F(qmfs->v[qmfs->v_index + 1024 + k], qmf_c[512 + k]) +
380
                MUL_F(qmfs->v[qmfs->v_index + 1024 + 192 + k], qmf_c[512 + 64 + k]);
381
        }
382
383
        /* update the ringbuffer index */
384
        qmfs->v_index -= 128;
385
        if (qmfs->v_index < 0)
386
            qmfs->v_index = (1280-128);
387
    }
388
}
389
#else
390
void sbr_qmf_synthesis_32(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64],
391
                          real_t *output)
392
0
{
393
0
    ALIGN real_t x1[32], x2[32];
394
0
#ifndef FIXED_POINT
395
0
    real_t scale = 1.f/64.f;
396
0
#endif
397
0
    int32_t n, k, out = 0;
398
0
    uint8_t l;
399
400
401
    /* qmf subsample l */
402
0
    for (l = 0; l < sbr->numTimeSlotsRate; l++)
403
0
    {
404
        /* shift buffer v */
405
        /* buffer is not shifted, we are using a ringbuffer */
406
        //memmove(qmfs->v + 64, qmfs->v, (640-64)*sizeof(real_t));
407
408
        /* calculate 64 samples */
409
        /* complex pre-twiddle */
410
0
        for (k = 0; k < 32; k++)
411
0
        {
412
0
            x1[k] = MUL_F(QMF_RE(X[l][k]), RE(qmf32_pre_twiddle[k])) - MUL_F(QMF_IM(X[l][k]), IM(qmf32_pre_twiddle[k]));
413
0
            x2[k] = MUL_F(QMF_IM(X[l][k]), RE(qmf32_pre_twiddle[k])) + MUL_F(QMF_RE(X[l][k]), IM(qmf32_pre_twiddle[k]));
414
415
0
#ifndef FIXED_POINT
416
0
            x1[k] *= scale;
417
0
            x2[k] *= scale;
418
#else
419
            x1[k] >>= 1;
420
            x2[k] >>= 1;
421
#endif
422
0
        }
423
424
        /* transform */
425
0
        DCT4_32(x1, x1);
426
0
        DST4_32(x2, x2);
427
428
0
        for (n = 0; n < 32; n++)
429
0
        {
430
0
            qmfs->v[qmfs->v_index + n]      = qmfs->v[qmfs->v_index + 640 + n]      = -x1[n] + x2[n];
431
0
            qmfs->v[qmfs->v_index + 63 - n] = qmfs->v[qmfs->v_index + 640 + 63 - n] =  x1[n] + x2[n];
432
0
        }
433
434
        /* calculate 32 output samples and window */
435
0
        for (k = 0; k < 32; k++)
436
0
        {
437
0
            output[out++] = MUL_F(qmfs->v[qmfs->v_index + k], qmf_c[2*k]) +
438
0
                MUL_F(qmfs->v[qmfs->v_index + 96 + k], qmf_c[64 + 2*k]) +
439
0
                MUL_F(qmfs->v[qmfs->v_index + 128 + k], qmf_c[128 + 2*k]) +
440
0
                MUL_F(qmfs->v[qmfs->v_index + 224 + k], qmf_c[192 + 2*k]) +
441
0
                MUL_F(qmfs->v[qmfs->v_index + 256 + k], qmf_c[256 + 2*k]) +
442
0
                MUL_F(qmfs->v[qmfs->v_index + 352 + k], qmf_c[320 + 2*k]) +
443
0
                MUL_F(qmfs->v[qmfs->v_index + 384 + k], qmf_c[384 + 2*k]) +
444
0
                MUL_F(qmfs->v[qmfs->v_index + 480 + k], qmf_c[448 + 2*k]) +
445
0
                MUL_F(qmfs->v[qmfs->v_index + 512 + k], qmf_c[512 + 2*k]) +
446
0
                MUL_F(qmfs->v[qmfs->v_index + 608 + k], qmf_c[576 + 2*k]);
447
0
        }
448
449
        /* update ringbuffer index */
450
0
        qmfs->v_index -= 64;
451
0
        if (qmfs->v_index < 0)
452
0
            qmfs->v_index = (640 - 64);
453
0
    }
454
0
}
455
456
void sbr_qmf_synthesis_64(sbr_info *sbr, qmfs_info *qmfs, qmf_t X[MAX_NTSRHFG][64],
457
                          real_t *output)
458
0
{
459
//    ALIGN real_t x1[64], x2[64];
460
0
#ifndef SBR_LOW_POWER
461
0
    ALIGN real_t in_real1[32], in_imag1[32], out_real1[32], out_imag1[32];
462
0
    ALIGN real_t in_real2[32], in_imag2[32], out_real2[32], out_imag2[32];
463
0
#endif
464
0
    qmf_t * pX;
465
0
    real_t * pring_buffer_1, * pring_buffer_3;
466
//    real_t * ptemp_1, * ptemp_2;
467
#ifdef PREFER_POINTERS
468
    // These pointers are used if target platform has autoinc address generators
469
    real_t * pring_buffer_2, * pring_buffer_4;
470
    real_t * pring_buffer_5, * pring_buffer_6;
471
    real_t * pring_buffer_7, * pring_buffer_8;
472
    real_t * pring_buffer_9, * pring_buffer_10;
473
    const real_t * pqmf_c_1, * pqmf_c_2, * pqmf_c_3, * pqmf_c_4;
474
    const real_t * pqmf_c_5, * pqmf_c_6, * pqmf_c_7, * pqmf_c_8;
475
    const real_t * pqmf_c_9, * pqmf_c_10;
476
#endif // #ifdef PREFER_POINTERS
477
0
#ifndef FIXED_POINT
478
0
    real_t scale = 1.f/64.f;
479
0
#endif
480
0
    int32_t n, k, out = 0;
481
0
    uint8_t l;
482
483
484
    /* qmf subsample l */
485
0
    for (l = 0; l < sbr->numTimeSlotsRate; l++)
486
0
    {
487
        /* shift buffer v */
488
    /* buffer is not shifted, we use double ringbuffer */
489
    //memmove(qmfs->v + 128, qmfs->v, (1280-128)*sizeof(real_t));
490
491
        /* calculate 128 samples */
492
0
#ifndef FIXED_POINT
493
494
0
        pX = X[l];
495
496
0
        in_imag1[31] = scale*QMF_RE(pX[1]);
497
0
        in_real1[0]  = scale*QMF_RE(pX[0]);
498
0
        in_imag2[31] = scale*QMF_IM(pX[63-1]);
499
0
        in_real2[0]  = scale*QMF_IM(pX[63-0]);
500
0
        for (k = 1; k < 31; k++)
501
0
        {
502
0
            in_imag1[31 - k] = scale*QMF_RE(pX[2*k + 1]);
503
0
            in_real1[     k] = scale*QMF_RE(pX[2*k    ]);
504
0
            in_imag2[31 - k] = scale*QMF_IM(pX[63 - (2*k + 1)]);
505
0
            in_real2[     k] = scale*QMF_IM(pX[63 - (2*k    )]);
506
0
        }
507
0
        in_imag1[0]  = scale*QMF_RE(pX[63]);
508
0
        in_real1[31] = scale*QMF_RE(pX[62]);
509
0
        in_imag2[0]  = scale*QMF_IM(pX[63-63]);
510
0
        in_real2[31] = scale*QMF_IM(pX[63-62]);
511
512
#else
513
514
        pX = X[l];
515
516
        in_imag1[31] = QMF_RE(pX[1]) >> 1;
517
        in_real1[0]  = QMF_RE(pX[0]) >> 1;
518
        in_imag2[31] = QMF_IM(pX[62]) >> 1;
519
        in_real2[0]  = QMF_IM(pX[63]) >> 1;
520
        for (k = 1; k < 31; k++)
521
        {
522
            in_imag1[31 - k] = QMF_RE(pX[2*k + 1]) >> 1;
523
            in_real1[     k] = QMF_RE(pX[2*k    ]) >> 1;
524
            in_imag2[31 - k] = QMF_IM(pX[63 - (2*k + 1)]) >> 1;
525
            in_real2[     k] = QMF_IM(pX[63 - (2*k    )]) >> 1;
526
        }
527
        in_imag1[0]  = QMF_RE(pX[63]) >> 1;
528
        in_real1[31] = QMF_RE(pX[62]) >> 1;
529
        in_imag2[0]  = QMF_IM(pX[0]) >> 1;
530
        in_real2[31] = QMF_IM(pX[1]) >> 1;
531
532
#endif
533
534
535
        // dct4_kernel is DCT_IV without reordering which is done before and after FFT
536
0
        dct4_kernel(in_real1, in_imag1, out_real1, out_imag1);
537
0
        dct4_kernel(in_real2, in_imag2, out_real2, out_imag2);
538
539
540
0
        pring_buffer_1 = qmfs->v + qmfs->v_index;
541
0
        pring_buffer_3 = pring_buffer_1 + 1280;
542
#ifdef PREFER_POINTERS
543
        pring_buffer_2 = pring_buffer_1 + 127;
544
        pring_buffer_4 = pring_buffer_1 + (1280 + 127);
545
#endif // #ifdef PREFER_POINTERS
546
//        ptemp_1 = x1;
547
//        ptemp_2 = x2;
548
#ifdef PREFER_POINTERS
549
        for (n = 0; n < 32; n ++)
550
        {
551
            //real_t x1 = *ptemp_1++;
552
            //real_t x2 = *ptemp_2++;
553
            // pring_buffer_3 and pring_buffer_4 are needed only for double ring buffer
554
            *pring_buffer_1++ = *pring_buffer_3++ = out_real2[n] - out_real1[n];
555
            *pring_buffer_2-- = *pring_buffer_4-- = out_real2[n] + out_real1[n];
556
            //x1 = *ptemp_1++;
557
            //x2 = *ptemp_2++;
558
            *pring_buffer_1++ = *pring_buffer_3++ = out_imag2[31-n] + out_imag1[31-n];
559
            *pring_buffer_2-- = *pring_buffer_4-- = out_imag2[31-n] - out_imag1[31-n];
560
        }
561
#else // #ifdef PREFER_POINTERS
562
563
0
        for (n = 0; n < 32; n++)
564
0
        {
565
            // pring_buffer_3 and pring_buffer_4 are needed only for double ring buffer
566
0
            pring_buffer_1[2*n]         = pring_buffer_3[2*n]         = out_real2[n] - out_real1[n];
567
0
            pring_buffer_1[127-2*n]     = pring_buffer_3[127-2*n]     = out_real2[n] + out_real1[n];
568
0
            pring_buffer_1[2*n+1]       = pring_buffer_3[2*n+1]       = out_imag2[31-n] + out_imag1[31-n];
569
0
            pring_buffer_1[127-(2*n+1)] = pring_buffer_3[127-(2*n+1)] = out_imag2[31-n] - out_imag1[31-n];
570
0
        }
571
572
0
#endif // #ifdef PREFER_POINTERS
573
574
0
        pring_buffer_1 = qmfs->v + qmfs->v_index;
575
#ifdef PREFER_POINTERS
576
        pring_buffer_2 = pring_buffer_1 + 192;
577
        pring_buffer_3 = pring_buffer_1 + 256;
578
        pring_buffer_4 = pring_buffer_1 + (256 + 192);
579
        pring_buffer_5 = pring_buffer_1 + 512;
580
        pring_buffer_6 = pring_buffer_1 + (512 + 192);
581
        pring_buffer_7 = pring_buffer_1 + 768;
582
        pring_buffer_8 = pring_buffer_1 + (768 + 192);
583
        pring_buffer_9 = pring_buffer_1 + 1024;
584
        pring_buffer_10 = pring_buffer_1 + (1024 + 192);
585
        pqmf_c_1 = qmf_c;
586
        pqmf_c_2 = qmf_c + 64;
587
        pqmf_c_3 = qmf_c + 128;
588
        pqmf_c_4 = qmf_c + 192;
589
        pqmf_c_5 = qmf_c + 256;
590
        pqmf_c_6 = qmf_c + 320;
591
        pqmf_c_7 = qmf_c + 384;
592
        pqmf_c_8 = qmf_c + 448;
593
        pqmf_c_9 = qmf_c + 512;
594
        pqmf_c_10 = qmf_c + 576;
595
#endif // #ifdef PREFER_POINTERS
596
597
        /* calculate 64 output samples and window */
598
0
        for (k = 0; k < 64; k++)
599
0
        {
600
#ifdef PREFER_POINTERS
601
            output[out++] =
602
                MUL_F(*pring_buffer_1++,  *pqmf_c_1++) +
603
                MUL_F(*pring_buffer_2++,  *pqmf_c_2++) +
604
                MUL_F(*pring_buffer_3++,  *pqmf_c_3++) +
605
                MUL_F(*pring_buffer_4++,  *pqmf_c_4++) +
606
                MUL_F(*pring_buffer_5++,  *pqmf_c_5++) +
607
                MUL_F(*pring_buffer_6++,  *pqmf_c_6++) +
608
                MUL_F(*pring_buffer_7++,  *pqmf_c_7++) +
609
                MUL_F(*pring_buffer_8++,  *pqmf_c_8++) +
610
                MUL_F(*pring_buffer_9++,  *pqmf_c_9++) +
611
                MUL_F(*pring_buffer_10++, *pqmf_c_10++);
612
#else // #ifdef PREFER_POINTERS
613
0
            output[out++] =
614
0
                MUL_F(pring_buffer_1[k+0],          qmf_c[k+0])   +
615
0
                MUL_F(pring_buffer_1[k+192],        qmf_c[k+64])  +
616
0
                MUL_F(pring_buffer_1[k+256],        qmf_c[k+128]) +
617
0
                MUL_F(pring_buffer_1[k+(256+192)],  qmf_c[k+192]) +
618
0
                MUL_F(pring_buffer_1[k+512],        qmf_c[k+256]) +
619
0
                MUL_F(pring_buffer_1[k+(512+192)],  qmf_c[k+320]) +
620
0
                MUL_F(pring_buffer_1[k+768],        qmf_c[k+384]) +
621
0
                MUL_F(pring_buffer_1[k+(768+192)],  qmf_c[k+448]) +
622
0
                MUL_F(pring_buffer_1[k+1024],       qmf_c[k+512]) +
623
0
                MUL_F(pring_buffer_1[k+(1024+192)], qmf_c[k+576]);
624
0
#endif // #ifdef PREFER_POINTERS
625
0
        }
626
627
        /* update ringbuffer index */
628
0
        qmfs->v_index -= 128;
629
0
        if (qmfs->v_index < 0)
630
0
            qmfs->v_index = (1280 - 128);
631
0
    }
632
0
}
633
#endif
634
635
#endif