Coverage Report

Created: 2025-07-11 06:40

/proc/self/cwd/libfaad/mdct.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: mdct.c,v 1.47 2007/11/01 12:33:31 menno Exp $
29
**/
30
31
/*
32
 * Fast (I)MDCT Implementation using (I)FFT ((Inverse) Fast Fourier Transform)
33
 * and consists of three steps: pre-(I)FFT complex multiplication, complex
34
 * (I)FFT, post-(I)FFT complex multiplication,
35
 *
36
 * As described in:
37
 *  P. Duhamel, Y. Mahieux, and J.P. Petit, "A Fast Algorithm for the
38
 *  Implementation of Filter Banks Based on 'Time Domain Aliasing
39
 *  Cancellation'," IEEE Proc. on ICASSP'91, 1991, pp. 2209-2212.
40
 *
41
 *
42
 * As of April 6th 2002 completely rewritten.
43
 * This (I)MDCT can now be used for any data size n, where n is divisible by 8.
44
 *
45
 */
46
47
#include "common.h"
48
#include "structs.h"
49
50
#include <stdlib.h>
51
#ifdef _WIN32_WCE
52
#define assert(x)
53
#else
54
#include <assert.h>
55
#endif
56
57
#include "cfft.h"
58
#include "mdct.h"
59
#include "mdct_tab.h"
60
61
62
mdct_info *faad_mdct_init(uint16_t N)
63
25.4k
{
64
25.4k
    mdct_info *mdct = (mdct_info*)faad_malloc(sizeof(mdct_info));
65
66
25.4k
    assert(N % 8 == 0);
67
68
25.4k
    mdct->N = N;
69
70
    /* NOTE: For "small framelengths" in FIXED_POINT the coefficients need to be
71
     * scaled by sqrt("(nearest power of 2) > N" / N) */
72
73
    /* RE(mdct->sincos[k]) = scale*(real_t)(cos(2.0*M_PI*(k+1./8.) / (real_t)N));
74
     * IM(mdct->sincos[k]) = scale*(real_t)(sin(2.0*M_PI*(k+1./8.) / (real_t)N)); */
75
    /* scale is 1 for fixed point, sqrt(N) for floating point */
76
25.4k
    switch (N)
77
25.4k
    {
78
6.89k
    case 2048: mdct->sincos = (complex_t*)mdct_tab_2048; break;
79
6.89k
    case 256:  mdct->sincos = (complex_t*)mdct_tab_256;  break;
80
0
#ifdef LD_DEC
81
6.89k
    case 1024: mdct->sincos = (complex_t*)mdct_tab_1024; break;
82
0
#endif
83
0
#ifdef ALLOW_SMALL_FRAMELENGTH
84
1.57k
    case 1920: mdct->sincos = (complex_t*)mdct_tab_1920; break;
85
1.57k
    case 240:  mdct->sincos = (complex_t*)mdct_tab_240;  break;
86
0
#ifdef LD_DEC
87
1.57k
    case 960:  mdct->sincos = (complex_t*)mdct_tab_960;  break;
88
25.4k
#endif
89
25.4k
#endif
90
#ifdef SSR_DEC
91
    case 512:  mdct->sincos = (complex_t*)mdct_tab_512;  break;
92
    case 64:   mdct->sincos = (complex_t*)mdct_tab_64;   break;
93
#endif
94
25.4k
    }
95
96
    /* initialise fft */
97
25.4k
    mdct->cfft = cffti(N/4);
98
99
#ifdef PROFILE
100
    mdct->cycles = 0;
101
    mdct->fft_cycles = 0;
102
#endif
103
104
25.4k
    return mdct;
105
25.4k
}
106
107
void faad_mdct_end(mdct_info *mdct)
108
25.4k
{
109
25.4k
    if (mdct != NULL)
110
25.4k
    {
111
#ifdef PROFILE
112
        printf("MDCT[%.4d]:         %I64d cycles\n", mdct->N, mdct->cycles);
113
        printf("CFFT[%.4d]:         %I64d cycles\n", mdct->N/4, mdct->fft_cycles);
114
#endif
115
116
25.4k
        cfftu(mdct->cfft);
117
118
25.4k
        faad_free(mdct);
119
25.4k
    }
120
25.4k
}
121
122
void faad_imdct(mdct_info *mdct, real_t *X_in, real_t *X_out)
123
439k
{
124
439k
    uint16_t k;
125
126
439k
    complex_t x;
127
439k
#ifdef ALLOW_SMALL_FRAMELENGTH
128
#ifdef FIXED_POINT
129
    real_t scale = 0, b_scale = 0;
130
#endif
131
439k
#endif
132
439k
    ALIGN complex_t Z1[512];
133
439k
    complex_t *sincos = mdct->sincos;
134
135
439k
    uint16_t N  = mdct->N;
136
439k
    uint16_t N2 = N >> 1;
137
439k
    uint16_t N4 = N >> 2;
138
439k
    uint16_t N8 = N >> 3;
139
140
#ifdef PROFILE
141
    int64_t count1, count2 = faad_get_ts();
142
#endif
143
144
439k
#ifdef ALLOW_SMALL_FRAMELENGTH
145
#ifdef FIXED_POINT
146
    /* detect non-power of 2 */
147
    if (N & (N-1))
148
    {
149
        /* adjust scale for non-power of 2 MDCT */
150
        /* 2048/1920 */
151
        b_scale = 1;
152
        scale = COEF_CONST(1.0666666666666667);
153
    }
154
#endif
155
439k
#endif
156
157
    /* pre-IFFT complex multiplication */
158
130M
    for (k = 0; k < N4; k++)
159
129M
    {
160
129M
        ComplexMult(&IM(Z1[k]), &RE(Z1[k]),
161
129M
            X_in[2*k], X_in[N2 - 1 - 2*k], RE(sincos[k]), IM(sincos[k]));
162
129M
    }
163
164
#ifdef PROFILE
165
    count1 = faad_get_ts();
166
#endif
167
168
    /* complex IFFT, any non-scaling FFT can be used here */
169
439k
    cfftb(mdct->cfft, Z1);
170
171
#ifdef PROFILE
172
    count1 = faad_get_ts() - count1;
173
#endif
174
175
    /* post-IFFT complex multiplication */
176
130M
    for (k = 0; k < N4; k++)
177
129M
    {
178
129M
        RE(x) = RE(Z1[k]);
179
129M
        IM(x) = IM(Z1[k]);
180
129M
        ComplexMult(&IM(Z1[k]), &RE(Z1[k]),
181
129M
            IM(x), RE(x), RE(sincos[k]), IM(sincos[k]));
182
183
129M
#ifdef ALLOW_SMALL_FRAMELENGTH
184
#ifdef FIXED_POINT
185
        /* non-power of 2 MDCT scaling */
186
        if (b_scale)
187
        {
188
            RE(Z1[k]) = MUL_C(RE(Z1[k]), scale);
189
            IM(Z1[k]) = MUL_C(IM(Z1[k]), scale);
190
        }
191
#endif
192
129M
#endif
193
129M
    }
194
195
    /* reordering */
196
32.8M
    for (k = 0; k < N8; k+=2)
197
32.4M
    {
198
32.4M
        X_out[              2*k] =  IM(Z1[N8 +     k]);
199
32.4M
        X_out[          2 + 2*k] =  IM(Z1[N8 + 1 + k]);
200
201
32.4M
        X_out[          1 + 2*k] = -RE(Z1[N8 - 1 - k]);
202
32.4M
        X_out[          3 + 2*k] = -RE(Z1[N8 - 2 - k]);
203
204
32.4M
        X_out[N4 +          2*k] =  RE(Z1[         k]);
205
32.4M
        X_out[N4 +    + 2 + 2*k] =  RE(Z1[     1 + k]);
206
207
32.4M
        X_out[N4 +      1 + 2*k] = -IM(Z1[N4 - 1 - k]);
208
32.4M
        X_out[N4 +      3 + 2*k] = -IM(Z1[N4 - 2 - k]);
209
210
32.4M
        X_out[N2 +          2*k] =  RE(Z1[N8 +     k]);
211
32.4M
        X_out[N2 +    + 2 + 2*k] =  RE(Z1[N8 + 1 + k]);
212
213
32.4M
        X_out[N2 +      1 + 2*k] = -IM(Z1[N8 - 1 - k]);
214
32.4M
        X_out[N2 +      3 + 2*k] = -IM(Z1[N8 - 2 - k]);
215
216
32.4M
        X_out[N2 + N4 +     2*k] = -IM(Z1[         k]);
217
32.4M
        X_out[N2 + N4 + 2 + 2*k] = -IM(Z1[     1 + k]);
218
219
32.4M
        X_out[N2 + N4 + 1 + 2*k] =  RE(Z1[N4 - 1 - k]);
220
32.4M
        X_out[N2 + N4 + 3 + 2*k] =  RE(Z1[N4 - 2 - k]);
221
32.4M
    }
222
223
#ifdef PROFILE
224
    count2 = faad_get_ts() - count2;
225
    mdct->fft_cycles += count1;
226
    mdct->cycles += (count2 - count1);
227
#endif
228
439k
}
229
230
#ifdef LTP_DEC
231
void faad_mdct(mdct_info *mdct, real_t *X_in, real_t *X_out)
232
6.82k
{
233
6.82k
    uint16_t k;
234
235
6.82k
    complex_t x;
236
6.82k
    ALIGN complex_t Z1[512];
237
6.82k
    complex_t *sincos = mdct->sincos;
238
239
6.82k
    uint16_t N  = mdct->N;
240
6.82k
    uint16_t N2 = N >> 1;
241
6.82k
    uint16_t N4 = N >> 2;
242
6.82k
    uint16_t N8 = N >> 3;
243
244
6.82k
#ifndef FIXED_POINT
245
6.82k
  real_t scale = REAL_CONST(N);
246
#else
247
  real_t scale = REAL_CONST(4.0/N);
248
#endif
249
250
6.82k
#ifdef ALLOW_SMALL_FRAMELENGTH
251
#ifdef FIXED_POINT
252
    /* detect non-power of 2 */
253
    if (N & (N-1))
254
    {
255
        /* adjust scale for non-power of 2 MDCT */
256
        /* *= sqrt(2048/1920) */
257
        scale = MUL_C(scale, COEF_CONST(1.0327955589886444));
258
    }
259
#endif
260
6.82k
#endif
261
262
    /* pre-FFT complex multiplication */
263
1.65M
    for (k = 0; k < N8; k++)
264
1.64M
    {
265
1.64M
        uint16_t n = k << 1;
266
1.64M
        RE(x) = X_in[N - N4 - 1 - n] + X_in[N - N4 +     n];
267
1.64M
        IM(x) = X_in[    N4 +     n] - X_in[    N4 - 1 - n];
268
269
1.64M
        ComplexMult(&RE(Z1[k]), &IM(Z1[k]),
270
1.64M
            RE(x), IM(x), RE(sincos[k]), IM(sincos[k]));
271
272
1.64M
        RE(Z1[k]) = MUL_R(RE(Z1[k]), scale);
273
1.64M
        IM(Z1[k]) = MUL_R(IM(Z1[k]), scale);
274
275
1.64M
        RE(x) =  X_in[N2 - 1 - n] - X_in[        n];
276
1.64M
        IM(x) =  X_in[N2 +     n] + X_in[N - 1 - n];
277
278
1.64M
        ComplexMult(&RE(Z1[k + N8]), &IM(Z1[k + N8]),
279
1.64M
            RE(x), IM(x), RE(sincos[k + N8]), IM(sincos[k + N8]));
280
281
1.64M
        RE(Z1[k + N8]) = MUL_R(RE(Z1[k + N8]), scale);
282
1.64M
        IM(Z1[k + N8]) = MUL_R(IM(Z1[k + N8]), scale);
283
1.64M
    }
284
285
    /* complex FFT, any non-scaling FFT can be used here  */
286
6.82k
    cfftf(mdct->cfft, Z1);
287
288
    /* post-FFT complex multiplication */
289
3.30M
    for (k = 0; k < N4; k++)
290
3.29M
    {
291
3.29M
        uint16_t n = k << 1;
292
3.29M
        ComplexMult(&RE(x), &IM(x),
293
3.29M
            RE(Z1[k]), IM(Z1[k]), RE(sincos[k]), IM(sincos[k]));
294
295
3.29M
        X_out[         n] = -RE(x);
296
3.29M
        X_out[N2 - 1 - n] =  IM(x);
297
3.29M
        X_out[N2 +     n] = -IM(x);
298
3.29M
        X_out[N  - 1 - n] =  RE(x);
299
3.29M
    }
300
6.82k
}
301
#endif