Coverage Report

Created: 2025-07-18 06:36

/proc/self/cwd/libfaad/ps_dec.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: ps_dec.c,v 1.16 2009/01/26 22:32:31 menno Exp $
29
**/
30
31
#include "common.h"
32
33
#ifdef PS_DEC
34
35
#include <stdlib.h>
36
#include <stdio.h>
37
#include "ps_dec.h"
38
#include "ps_tables.h"
39
40
/* constants */
41
14.4M
#define NEGATE_IPD_MASK            (0x1000)
42
108k
#define DECAY_SLOPE                FRAC_CONST(0.05)
43
#define COEF_SQRT2                 COEF_CONST(1.4142135623731)
44
45
/* tables */
46
/* filters are mirrored in coef 6, second half left out */
47
static const real_t p8_13_20[7] =
48
{
49
    FRAC_CONST(0.00746082949812),
50
    FRAC_CONST(0.02270420949825),
51
    FRAC_CONST(0.04546865930473),
52
    FRAC_CONST(0.07266113929591),
53
    FRAC_CONST(0.09885108575264),
54
    FRAC_CONST(0.11793710567217),
55
    FRAC_CONST(0.125)
56
};
57
58
static const real_t p2_13_20[7] =
59
{
60
    FRAC_CONST(0.0),
61
    FRAC_CONST(0.01899487526049),
62
    FRAC_CONST(0.0),
63
    FRAC_CONST(-0.07293139167538),
64
    FRAC_CONST(0.0),
65
    FRAC_CONST(0.30596630545168),
66
    FRAC_CONST(0.5)
67
};
68
69
static const real_t p12_13_34[7] =
70
{
71
    FRAC_CONST(0.04081179924692),
72
    FRAC_CONST(0.03812810994926),
73
    FRAC_CONST(0.05144908135699),
74
    FRAC_CONST(0.06399831151592),
75
    FRAC_CONST(0.07428313801106),
76
    FRAC_CONST(0.08100347892914),
77
    FRAC_CONST(0.08333333333333)
78
};
79
80
static const real_t p8_13_34[7] =
81
{
82
    FRAC_CONST(0.01565675600122),
83
    FRAC_CONST(0.03752716391991),
84
    FRAC_CONST(0.05417891378782),
85
    FRAC_CONST(0.08417044116767),
86
    FRAC_CONST(0.10307344158036),
87
    FRAC_CONST(0.12222452249753),
88
    FRAC_CONST(0.125)
89
};
90
91
static const real_t p4_13_34[7] =
92
{
93
    FRAC_CONST(-0.05908211155639),
94
    FRAC_CONST(-0.04871498374946),
95
    FRAC_CONST(0.0),
96
    FRAC_CONST(0.07778723915851),
97
    FRAC_CONST(0.16486303567403),
98
    FRAC_CONST(0.23279856662996),
99
    FRAC_CONST(0.25)
100
};
101
102
#ifdef PARAM_32KHZ
103
static const uint8_t delay_length_d[2][NO_ALLPASS_LINKS] = {
104
    { 1, 2, 3 } /* d_24kHz */,
105
    { 3, 4, 5 } /* d_48kHz */
106
};
107
#else
108
static const uint8_t delay_length_d[NO_ALLPASS_LINKS] = {
109
    3, 4, 5 /* d_48kHz */
110
};
111
#endif
112
static const real_t filter_a[NO_ALLPASS_LINKS] = { /* a(m) = exp(-d_48kHz(m)/7) */
113
    FRAC_CONST(0.65143905753106),
114
    FRAC_CONST(0.56471812200776),
115
    FRAC_CONST(0.48954165955695)
116
};
117
118
static const uint8_t group_border20[10+12 + 1] =
119
{
120
    6, 7, 0, 1, 2, 3, /* 6 subqmf subbands */
121
    9, 8,             /* 2 subqmf subbands */
122
    10, 11,           /* 2 subqmf subbands */
123
    3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 35, 64
124
};
125
126
static const uint8_t group_border34[32+18 + 1] =
127
{
128
     0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, /* 12 subqmf subbands */
129
     12, 13, 14, 15, 16, 17, 18, 19,                 /*  8 subqmf subbands */
130
     20, 21, 22, 23,                                 /*  4 subqmf subbands */
131
     24, 25, 26, 27,                                 /*  4 subqmf subbands */
132
     28, 29, 30, 31,                                 /*  4 subqmf subbands */
133
     32-27, 33-27, 34-27, 35-27, 36-27, 37-27, 38-27, 40-27, 42-27, 44-27, 46-27, 48-27, 51-27, 54-27, 57-27, 60-27, 64-27, 68-27, 91-27
134
};
135
136
static const uint16_t map_group2bk20[10+12] =
137
{
138
    (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
139
    0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
140
};
141
142
static const uint16_t map_group2bk34[32+18] =
143
{
144
    0,  1,  2,  3,  4,  5,  6,  6,  7, (NEGATE_IPD_MASK | 2), (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
145
    10, 10, 4,  5,  6,  7,  8,  9,
146
    10, 11, 12, 9,
147
    14, 11, 12, 13,
148
    14, 15, 16, 13,
149
    16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33
150
};
151
152
/* type definitions */
153
typedef struct
154
{
155
    uint8_t frame_len;
156
    uint8_t resolution20[3];
157
    uint8_t resolution34[5];
158
159
    qmf_t *work;
160
    qmf_t **buffer;
161
    qmf_t **temp;
162
} hyb_info;
163
164
/* static function declarations */
165
static void ps_data_decode(ps_info *ps);
166
static hyb_info *hybrid_init(uint8_t numTimeSlotsRate);
167
static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
168
                            qmf_t *buffer, qmf_t **X_hybrid);
169
static void INLINE DCT3_4_unscaled(real_t *y, real_t *x);
170
static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
171
                            qmf_t *buffer, qmf_t **X_hybrid);
172
static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
173
                            uint8_t use34, uint8_t numTimeSlotsRate);
174
static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
175
                             uint8_t use34, uint8_t numTimeSlotsRate);
176
static int8_t delta_clip(int8_t i, int8_t min, int8_t max);
177
static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
178
                         uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
179
                         int8_t min_index, int8_t max_index);
180
static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
181
                                uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
182
                                int8_t and_modulo);
183
static void map20indexto34(int8_t *index, uint8_t bins);
184
#ifdef PS_LOW_POWER
185
static void map34indexto20(int8_t *index, uint8_t bins);
186
#endif
187
static void ps_data_decode(ps_info *ps);
188
static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
189
                           qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
190
static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
191
                         qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
192
193
/*  */
194
195
196
static hyb_info *hybrid_init(uint8_t numTimeSlotsRate)
197
9.03k
{
198
9.03k
    uint8_t i;
199
200
9.03k
    hyb_info *hyb = (hyb_info*)faad_malloc(sizeof(hyb_info));
201
202
9.03k
    hyb->resolution34[0] = 12;
203
9.03k
    hyb->resolution34[1] = 8;
204
9.03k
    hyb->resolution34[2] = 4;
205
9.03k
    hyb->resolution34[3] = 4;
206
9.03k
    hyb->resolution34[4] = 4;
207
208
9.03k
    hyb->resolution20[0] = 8;
209
9.03k
    hyb->resolution20[1] = 2;
210
9.03k
    hyb->resolution20[2] = 2;
211
212
9.03k
    hyb->frame_len = numTimeSlotsRate;
213
214
9.03k
    hyb->work = (qmf_t*)faad_malloc((hyb->frame_len+12) * sizeof(qmf_t));
215
9.03k
    memset(hyb->work, 0, (hyb->frame_len+12) * sizeof(qmf_t));
216
217
9.03k
    hyb->buffer = (qmf_t**)faad_malloc(5 * sizeof(qmf_t*));
218
54.2k
    for (i = 0; i < 5; i++)
219
45.1k
    {
220
45.1k
        hyb->buffer[i] = (qmf_t*)faad_malloc(hyb->frame_len * sizeof(qmf_t));
221
45.1k
        memset(hyb->buffer[i], 0, hyb->frame_len * sizeof(qmf_t));
222
45.1k
    }
223
224
9.03k
    hyb->temp = (qmf_t**)faad_malloc(hyb->frame_len * sizeof(qmf_t*));
225
295k
    for (i = 0; i < hyb->frame_len; i++)
226
285k
    {
227
285k
        hyb->temp[i] = (qmf_t*)faad_malloc(12 /*max*/ * sizeof(qmf_t));
228
285k
    }
229
230
9.03k
    return hyb;
231
9.03k
}
232
233
static void hybrid_free(hyb_info *hyb)
234
9.03k
{
235
9.03k
    uint8_t i;
236
237
9.03k
  if (!hyb) return;
238
239
9.03k
    if (hyb->work)
240
9.03k
        faad_free(hyb->work);
241
242
54.2k
    for (i = 0; i < 5; i++)
243
45.1k
    {
244
45.1k
        if (hyb->buffer[i])
245
45.1k
            faad_free(hyb->buffer[i]);
246
45.1k
    }
247
9.03k
    if (hyb->buffer)
248
9.03k
        faad_free(hyb->buffer);
249
250
295k
    for (i = 0; i < hyb->frame_len; i++)
251
285k
    {
252
285k
        if (hyb->temp[i])
253
285k
            faad_free(hyb->temp[i]);
254
285k
    }
255
9.03k
    if (hyb->temp)
256
9.03k
        faad_free(hyb->temp);
257
258
9.03k
    faad_free(hyb);
259
9.03k
}
260
261
/* real filter, size 2 */
262
static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
263
                            qmf_t *buffer, qmf_t **X_hybrid)
264
7.17k
{
265
7.17k
    uint8_t i;
266
7.17k
    (void)hyb;  /* TODO: remove parameter? */
267
268
232k
    for (i = 0; i < frame_len; i++)
269
225k
    {
270
225k
        real_t r0 = MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i])));
271
225k
        real_t r1 = MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i])));
272
225k
        real_t r2 = MUL_F(filter[2],(QMF_RE(buffer[2+i]) + QMF_RE(buffer[10+i])));
273
225k
        real_t r3 = MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
274
225k
        real_t r4 = MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
275
225k
        real_t r5 = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
276
225k
        real_t r6 = MUL_F(filter[6],QMF_RE(buffer[6+i]));
277
225k
        real_t i0 = MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i])));
278
225k
        real_t i1 = MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i])));
279
225k
        real_t i2 = MUL_F(filter[2],(QMF_IM(buffer[2+i]) + QMF_IM(buffer[10+i])));
280
225k
        real_t i3 = MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
281
225k
        real_t i4 = MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
282
225k
        real_t i5 = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
283
225k
        real_t i6 = MUL_F(filter[6],QMF_IM(buffer[6+i]));
284
285
        /* q = 0 */
286
225k
        QMF_RE(X_hybrid[i][0]) = r0 + r1 + r2 + r3 + r4 + r5 + r6;
287
225k
        QMF_IM(X_hybrid[i][0]) = i0 + i1 + i2 + i3 + i4 + i5 + i6;
288
289
        /* q = 1 */
290
225k
        QMF_RE(X_hybrid[i][1]) = r0 - r1 + r2 - r3 + r4 - r5 + r6;
291
225k
        QMF_IM(X_hybrid[i][1]) = i0 - i1 + i2 - i3 + i4 - i5 + i6;
292
225k
    }
293
7.17k
}
294
295
/* complex filter, size 4 */
296
static void channel_filter4(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
297
                            qmf_t *buffer, qmf_t **X_hybrid)
298
6.41k
{
299
6.41k
    uint8_t i;
300
6.41k
    real_t input_re1[2], input_re2[2], input_im1[2], input_im2[2];
301
6.41k
    (void)hyb;  /* TODO: remove parameter? */
302
303
202k
    for (i = 0; i < frame_len; i++)
304
196k
    {
305
196k
        input_re1[0] = -MUL_F(filter[2], (QMF_RE(buffer[i+2]) + QMF_RE(buffer[i+10]))) +
306
196k
            MUL_F(filter[6], QMF_RE(buffer[i+6]));
307
196k
        input_re1[1] = MUL_F(FRAC_CONST(-0.70710678118655),
308
196k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) + QMF_RE(buffer[i+11]))) +
309
196k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) + QMF_RE(buffer[i+9]))) -
310
196k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) + QMF_RE(buffer[i+7])))));
311
312
196k
        input_im1[0] = MUL_F(filter[0], (QMF_IM(buffer[i+0]) - QMF_IM(buffer[i+12]))) -
313
196k
            MUL_F(filter[4], (QMF_IM(buffer[i+4]) - QMF_IM(buffer[i+8])));
314
196k
        input_im1[1] = MUL_F(FRAC_CONST(0.70710678118655),
315
196k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) - QMF_IM(buffer[i+11]))) -
316
196k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) - QMF_IM(buffer[i+9]))) -
317
196k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) - QMF_IM(buffer[i+7])))));
318
319
196k
        input_re2[0] = MUL_F(filter[0], (QMF_RE(buffer[i+0]) - QMF_RE(buffer[i+12]))) -
320
196k
            MUL_F(filter[4], (QMF_RE(buffer[i+4]) - QMF_RE(buffer[i+8])));
321
196k
        input_re2[1] = MUL_F(FRAC_CONST(0.70710678118655),
322
196k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) - QMF_RE(buffer[i+11]))) -
323
196k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) - QMF_RE(buffer[i+9]))) -
324
196k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) - QMF_RE(buffer[i+7])))));
325
326
196k
        input_im2[0] = -MUL_F(filter[2], (QMF_IM(buffer[i+2]) + QMF_IM(buffer[i+10]))) +
327
196k
            MUL_F(filter[6], QMF_IM(buffer[i+6]));
328
196k
        input_im2[1] = MUL_F(FRAC_CONST(-0.70710678118655),
329
196k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) + QMF_IM(buffer[i+11]))) +
330
196k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) + QMF_IM(buffer[i+9]))) -
331
196k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) + QMF_IM(buffer[i+7])))));
332
333
        /* q == 0 */
334
196k
        QMF_RE(X_hybrid[i][0]) =  input_re1[0] + input_re1[1] + input_im1[0] + input_im1[1];
335
196k
        QMF_IM(X_hybrid[i][0]) = -input_re2[0] - input_re2[1] + input_im2[0] + input_im2[1];
336
337
        /* q == 1 */
338
196k
        QMF_RE(X_hybrid[i][1]) =  input_re1[0] - input_re1[1] - input_im1[0] + input_im1[1];
339
196k
        QMF_IM(X_hybrid[i][1]) =  input_re2[0] - input_re2[1] + input_im2[0] - input_im2[1];
340
341
        /* q == 2 */
342
196k
        QMF_RE(X_hybrid[i][2]) =  input_re1[0] - input_re1[1] + input_im1[0] - input_im1[1];
343
196k
        QMF_IM(X_hybrid[i][2]) = -input_re2[0] + input_re2[1] + input_im2[0] - input_im2[1];
344
345
        /* q == 3 */
346
196k
        QMF_RE(X_hybrid[i][3]) =  input_re1[0] + input_re1[1] - input_im1[0] - input_im1[1];
347
196k
        QMF_IM(X_hybrid[i][3]) =  input_re2[0] + input_re2[1] + input_im2[0] + input_im2[1];
348
196k
    }
349
6.41k
}
350
351
static void INLINE DCT3_4_unscaled(real_t *y, real_t *x)
352
712k
{
353
712k
    real_t f0, f1, f2, f3, f4, f5, f6, f7, f8;
354
355
712k
    f0 = MUL_F(x[2], FRAC_CONST(0.7071067811865476));
356
712k
    f1 = x[0] - f0;
357
712k
    f2 = x[0] + f0;
358
712k
    f3 = x[1] + x[3];
359
712k
    f4 = MUL_C(x[1], COEF_CONST(1.3065629648763766));
360
712k
    f5 = MUL_F(f3, FRAC_CONST(-0.9238795325112866));
361
712k
    f6 = MUL_F(x[3], FRAC_CONST(-0.5411961001461967));
362
712k
    f7 = f4 + f5;
363
712k
    f8 = f6 - f5;
364
712k
    y[3] = f2 - f8;
365
712k
    y[0] = f2 + f8;
366
712k
    y[2] = f1 - f7;
367
712k
    y[1] = f1 + f7;
368
712k
}
369
370
/* complex filter, size 8 */
371
static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
372
                            qmf_t *buffer, qmf_t **X_hybrid)
373
5.72k
{
374
5.72k
    uint8_t i, n;
375
5.72k
    real_t input_re1[4], input_re2[4], input_im1[4], input_im2[4];
376
5.72k
    real_t x[4];
377
5.72k
    (void)hyb;  /* TODO: remove parameter? */
378
379
183k
    for (i = 0; i < frame_len; i++)
380
178k
    {
381
178k
        input_re1[0] =  MUL_F(filter[6],QMF_RE(buffer[6+i]));
382
178k
        input_re1[1] =  MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
383
178k
        input_re1[2] = -MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i]))) + MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
384
178k
        input_re1[3] = -MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i]))) + MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
385
386
178k
        input_im1[0] = MUL_F(filter[5],(QMF_IM(buffer[7+i]) - QMF_IM(buffer[5+i])));
387
178k
        input_im1[1] = MUL_F(filter[0],(QMF_IM(buffer[12+i]) - QMF_IM(buffer[0+i]))) + MUL_F(filter[4],(QMF_IM(buffer[8+i]) - QMF_IM(buffer[4+i])));
388
178k
        input_im1[2] = MUL_F(filter[1],(QMF_IM(buffer[11+i]) - QMF_IM(buffer[1+i]))) + MUL_F(filter[3],(QMF_IM(buffer[9+i]) - QMF_IM(buffer[3+i])));
389
178k
        input_im1[3] = MUL_F(filter[2],(QMF_IM(buffer[10+i]) - QMF_IM(buffer[2+i])));
390
391
890k
        for (n = 0; n < 4; n++)
392
712k
        {
393
712k
            x[n] = input_re1[n] - input_im1[3-n];
394
712k
        }
395
178k
        DCT3_4_unscaled(x, x);
396
178k
        QMF_RE(X_hybrid[i][7]) = x[0];
397
178k
        QMF_RE(X_hybrid[i][5]) = x[2];
398
178k
        QMF_RE(X_hybrid[i][3]) = x[3];
399
178k
        QMF_RE(X_hybrid[i][1]) = x[1];
400
401
890k
        for (n = 0; n < 4; n++)
402
712k
        {
403
712k
            x[n] = input_re1[n] + input_im1[3-n];
404
712k
        }
405
178k
        DCT3_4_unscaled(x, x);
406
178k
        QMF_RE(X_hybrid[i][6]) = x[1];
407
178k
        QMF_RE(X_hybrid[i][4]) = x[3];
408
178k
        QMF_RE(X_hybrid[i][2]) = x[2];
409
178k
        QMF_RE(X_hybrid[i][0]) = x[0];
410
411
178k
        input_im2[0] =  MUL_F(filter[6],QMF_IM(buffer[6+i]));
412
178k
        input_im2[1] =  MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
413
178k
        input_im2[2] = -MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i]))) + MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
414
178k
        input_im2[3] = -MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i]))) + MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
415
416
178k
        input_re2[0] = MUL_F(filter[5],(QMF_RE(buffer[7+i]) - QMF_RE(buffer[5+i])));
417
178k
        input_re2[1] = MUL_F(filter[0],(QMF_RE(buffer[12+i]) - QMF_RE(buffer[0+i]))) + MUL_F(filter[4],(QMF_RE(buffer[8+i]) - QMF_RE(buffer[4+i])));
418
178k
        input_re2[2] = MUL_F(filter[1],(QMF_RE(buffer[11+i]) - QMF_RE(buffer[1+i]))) + MUL_F(filter[3],(QMF_RE(buffer[9+i]) - QMF_RE(buffer[3+i])));
419
178k
        input_re2[3] = MUL_F(filter[2],(QMF_RE(buffer[10+i]) - QMF_RE(buffer[2+i])));
420
421
890k
        for (n = 0; n < 4; n++)
422
712k
        {
423
712k
            x[n] = input_im2[n] + input_re2[3-n];
424
712k
        }
425
178k
        DCT3_4_unscaled(x, x);
426
178k
        QMF_IM(X_hybrid[i][7]) = x[0];
427
178k
        QMF_IM(X_hybrid[i][5]) = x[2];
428
178k
        QMF_IM(X_hybrid[i][3]) = x[3];
429
178k
        QMF_IM(X_hybrid[i][1]) = x[1];
430
431
890k
        for (n = 0; n < 4; n++)
432
712k
        {
433
712k
            x[n] = input_im2[n] - input_re2[3-n];
434
712k
        }
435
178k
        DCT3_4_unscaled(x, x);
436
178k
        QMF_IM(X_hybrid[i][6]) = x[1];
437
178k
        QMF_IM(X_hybrid[i][4]) = x[3];
438
178k
        QMF_IM(X_hybrid[i][2]) = x[2];
439
178k
        QMF_IM(X_hybrid[i][0]) = x[0];
440
178k
    }
441
5.72k
}
442
443
static void INLINE DCT3_6_unscaled(real_t *y, real_t *x)
444
262k
{
445
262k
    real_t f0, f1, f2, f3, f4, f5, f6, f7;
446
447
262k
    f0 = MUL_F(x[3], FRAC_CONST(0.70710678118655));
448
262k
    f1 = x[0] + f0;
449
262k
    f2 = x[0] - f0;
450
262k
    f3 = MUL_F((x[1] - x[5]), FRAC_CONST(0.70710678118655));
451
262k
    f4 = MUL_F(x[2], FRAC_CONST(0.86602540378444)) + MUL_F(x[4], FRAC_CONST(0.5));
452
262k
    f5 = f4 - x[4];
453
262k
    f6 = MUL_F(x[1], FRAC_CONST(0.96592582628907)) + MUL_F(x[5], FRAC_CONST(0.25881904510252));
454
262k
    f7 = f6 - f3;
455
262k
    y[0] = f1 + f6 + f4;
456
262k
    y[1] = f2 + f3 - x[4];
457
262k
    y[2] = f7 + f2 - f5;
458
262k
    y[3] = f1 - f7 - f5;
459
262k
    y[4] = f1 - f3 - x[4];
460
262k
    y[5] = f2 - f6 + f4;
461
262k
}
462
463
/* complex filter, size 12 */
464
static void channel_filter12(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
465
                             qmf_t *buffer, qmf_t **X_hybrid)
466
2.13k
{
467
2.13k
    uint8_t i, n;
468
2.13k
    real_t input_re1[6], input_re2[6], input_im1[6], input_im2[6];
469
2.13k
    real_t out_re1[6], out_re2[6], out_im1[6], out_im2[6];
470
2.13k
    (void)hyb;  /* TODO: remove parameter? */
471
472
67.6k
    for (i = 0; i < frame_len; i++)
473
65.5k
    {
474
458k
        for (n = 0; n < 6; n++)
475
393k
        {
476
393k
            if (n == 0)
477
65.5k
            {
478
65.5k
                input_re1[0] = MUL_F(QMF_RE(buffer[6+i]), filter[6]);
479
65.5k
                input_re2[0] = MUL_F(QMF_IM(buffer[6+i]), filter[6]);
480
327k
            } else {
481
327k
                input_re1[6-n] = MUL_F((QMF_RE(buffer[n+i]) + QMF_RE(buffer[12-n+i])), filter[n]);
482
327k
                input_re2[6-n] = MUL_F((QMF_IM(buffer[n+i]) + QMF_IM(buffer[12-n+i])), filter[n]);
483
327k
            }
484
393k
            input_im2[n] = MUL_F((QMF_RE(buffer[n+i]) - QMF_RE(buffer[12-n+i])), filter[n]);
485
393k
            input_im1[n] = MUL_F((QMF_IM(buffer[n+i]) - QMF_IM(buffer[12-n+i])), filter[n]);
486
393k
        }
487
488
65.5k
        DCT3_6_unscaled(out_re1, input_re1);
489
65.5k
        DCT3_6_unscaled(out_re2, input_re2);
490
491
65.5k
        DCT3_6_unscaled(out_im1, input_im1);
492
65.5k
        DCT3_6_unscaled(out_im2, input_im2);
493
494
262k
        for (n = 0; n < 6; n += 2)
495
196k
        {
496
196k
            QMF_RE(X_hybrid[i][n]) = out_re1[n] - out_im1[n];
497
196k
            QMF_IM(X_hybrid[i][n]) = out_re2[n] + out_im2[n];
498
196k
            QMF_RE(X_hybrid[i][n+1]) = out_re1[n+1] + out_im1[n+1];
499
196k
            QMF_IM(X_hybrid[i][n+1]) = out_re2[n+1] - out_im2[n+1];
500
501
196k
            QMF_RE(X_hybrid[i][10-n]) = out_re1[n+1] - out_im1[n+1];
502
196k
            QMF_IM(X_hybrid[i][10-n]) = out_re2[n+1] + out_im2[n+1];
503
196k
            QMF_RE(X_hybrid[i][11-n]) = out_re1[n] + out_im1[n];
504
196k
            QMF_IM(X_hybrid[i][11-n]) = out_re2[n] - out_im2[n];
505
196k
        }
506
65.5k
    }
507
2.13k
}
508
509
/* Hybrid analysis: further split up QMF subbands
510
 * to improve frequency resolution
511
 */
512
static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
513
                            uint8_t use34, uint8_t numTimeSlotsRate)
514
5.72k
{
515
5.72k
    uint8_t k, n, band;
516
5.72k
    uint8_t offset = 0;
517
5.72k
    uint8_t qmf_bands = (use34) ? 5 : 3;
518
5.72k
    uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
519
520
27.1k
    for (band = 0; band < qmf_bands; band++)
521
21.4k
    {
522
        /* build working buffer */
523
21.4k
        memcpy(hyb->work, hyb->buffer[band], 12 * sizeof(qmf_t));
524
525
        /* add new samples */
526
686k
        for (n = 0; n < hyb->frame_len; n++)
527
665k
        {
528
665k
            QMF_RE(hyb->work[12 + n]) = QMF_RE(X[n + 6 /*delay*/][band]);
529
665k
            QMF_IM(hyb->work[12 + n]) = QMF_IM(X[n + 6 /*delay*/][band]);
530
665k
        }
531
532
        /* store samples */
533
21.4k
        memcpy(hyb->buffer[band], hyb->work + hyb->frame_len, 12 * sizeof(qmf_t));
534
535
536
21.4k
        switch(resolution[band])
537
21.4k
        {
538
7.17k
        case 2:
539
            /* Type B real filter, Q[p] = 2 */
540
7.17k
            channel_filter2(hyb, hyb->frame_len, p2_13_20, hyb->work, hyb->temp);
541
7.17k
            break;
542
6.41k
        case 4:
543
            /* Type A complex filter, Q[p] = 4 */
544
6.41k
            channel_filter4(hyb, hyb->frame_len, p4_13_34, hyb->work, hyb->temp);
545
6.41k
            break;
546
5.72k
        case 8:
547
            /* Type A complex filter, Q[p] = 8 */
548
5.72k
            channel_filter8(hyb, hyb->frame_len, (use34) ? p8_13_34 : p8_13_20,
549
5.72k
                hyb->work, hyb->temp);
550
5.72k
            break;
551
2.13k
        case 12:
552
            /* Type A complex filter, Q[p] = 12 */
553
2.13k
            channel_filter12(hyb, hyb->frame_len, p12_13_34, hyb->work, hyb->temp);
554
2.13k
            break;
555
21.4k
        }
556
557
686k
        for (n = 0; n < hyb->frame_len; n++)
558
665k
        {
559
4.11M
            for (k = 0; k < resolution[band]; k++)
560
3.44M
            {
561
3.44M
                QMF_RE(X_hybrid[n][offset + k]) = QMF_RE(hyb->temp[n][k]);
562
3.44M
                QMF_IM(X_hybrid[n][offset + k]) = QMF_IM(hyb->temp[n][k]);
563
3.44M
            }
564
665k
        }
565
21.4k
        offset += resolution[band];
566
21.4k
    }
567
568
    /* group hybrid channels */
569
5.72k
    if (!use34)
570
3.58k
    {
571
116k
        for (n = 0; n < numTimeSlotsRate; n++)
572
112k
        {
573
112k
            QMF_RE(X_hybrid[n][3]) += QMF_RE(X_hybrid[n][4]);
574
112k
            QMF_IM(X_hybrid[n][3]) += QMF_IM(X_hybrid[n][4]);
575
112k
            QMF_RE(X_hybrid[n][4]) = 0;
576
112k
            QMF_IM(X_hybrid[n][4]) = 0;
577
578
112k
            QMF_RE(X_hybrid[n][2]) += QMF_RE(X_hybrid[n][5]);
579
112k
            QMF_IM(X_hybrid[n][2]) += QMF_IM(X_hybrid[n][5]);
580
112k
            QMF_RE(X_hybrid[n][5]) = 0;
581
112k
            QMF_IM(X_hybrid[n][5]) = 0;
582
112k
        }
583
3.58k
    }
584
5.72k
}
585
586
static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
587
                             uint8_t use34, uint8_t numTimeSlotsRate)
588
11.4k
{
589
11.4k
    uint8_t k, n, band;
590
11.4k
    uint8_t offset = 0;
591
11.4k
    uint8_t qmf_bands = (use34) ? 5 : 3;
592
11.4k
    uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
593
11.4k
    (void)numTimeSlotsRate;  /* TODO: remove parameter? */
594
595
54.3k
    for(band = 0; band < qmf_bands; band++)
596
42.9k
    {
597
1.37M
        for (n = 0; n < hyb->frame_len; n++)
598
1.33M
        {
599
1.33M
            QMF_RE(X[n][band]) = 0;
600
1.33M
            QMF_IM(X[n][band]) = 0;
601
602
8.22M
            for (k = 0; k < resolution[band]; k++)
603
6.89M
            {
604
6.89M
                QMF_RE(X[n][band]) += QMF_RE(X_hybrid[n][offset + k]);
605
6.89M
                QMF_IM(X[n][band]) += QMF_IM(X_hybrid[n][offset + k]);
606
6.89M
            }
607
1.33M
        }
608
42.9k
        offset += resolution[band];
609
42.9k
    }
610
11.4k
}
611
612
/* limits the value i to the range [min,max] */
613
static int8_t delta_clip(int8_t i, int8_t min, int8_t max)
614
91.6k
{
615
91.6k
    if (i < min)
616
9.42k
        return min;
617
82.2k
    else if (i > max)
618
3.21k
        return max;
619
79.0k
    else
620
79.0k
        return i;
621
91.6k
}
622
623
//int iid = 0;
624
625
/* delta decode array */
626
static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
627
                         uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
628
                         int8_t min_index, int8_t max_index)
629
18.2k
{
630
18.2k
    int8_t i;
631
632
18.2k
    if (enable == 1)
633
8.10k
    {
634
8.10k
        if (dt_flag == 0)
635
5.62k
        {
636
            /* delta coded in frequency direction */
637
5.62k
            index[0] = 0 + index[0];
638
5.62k
            index[0] = delta_clip(index[0], min_index, max_index);
639
640
66.3k
            for (i = 1; i < nr_par; i++)
641
60.6k
            {
642
60.6k
                index[i] = index[i-1] + index[i];
643
60.6k
                index[i] = delta_clip(index[i], min_index, max_index);
644
60.6k
            }
645
5.62k
        } else {
646
            /* delta coded in time direction */
647
27.8k
            for (i = 0; i < nr_par; i++)
648
25.3k
            {
649
                //int8_t tmp2;
650
                //int8_t tmp = index[i];
651
652
                //printf("%d %d\n", index_prev[i*stride], index[i]);
653
                //printf("%d\n", index[i]);
654
655
25.3k
                index[i] = index_prev[i*stride] + index[i];
656
                //tmp2 = index[i];
657
25.3k
                index[i] = delta_clip(index[i], min_index, max_index);
658
659
                //if (iid)
660
                //{
661
                //    if (index[i] == 7)
662
                //    {
663
                //        printf("%d %d %d\n", index_prev[i*stride], tmp, tmp2);
664
                //    }
665
                //}
666
25.3k
            }
667
2.47k
        }
668
10.1k
    } else {
669
        /* set indices to zero */
670
18.9k
        for (i = 0; i < nr_par; i++)
671
8.76k
        {
672
8.76k
            index[i] = 0;
673
8.76k
        }
674
10.1k
    }
675
676
    /* coarse */
677
18.2k
    if (stride == 2)
678
11.3k
    {
679
41.6k
        for (i = (nr_par<<1)-1; i > 0; i--)
680
30.3k
        {
681
30.3k
            index[i] = index[i>>1];
682
30.3k
        }
683
11.3k
    }
684
18.2k
}
685
686
/* delta modulo decode array */
687
/* in: log2 value of the modulo value to allow using AND instead of MOD */
688
static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
689
                                uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
690
                                int8_t and_modulo)
691
18.2k
{
692
18.2k
    int8_t i;
693
694
18.2k
    if (enable == 1)
695
5.96k
    {
696
5.96k
        if (dt_flag == 0)
697
2.42k
        {
698
            /* delta coded in frequency direction */
699
2.42k
            index[0] = 0 + index[0];
700
2.42k
            index[0] &= and_modulo;
701
702
8.78k
            for (i = 1; i < nr_par; i++)
703
6.36k
            {
704
6.36k
                index[i] = index[i-1] + index[i];
705
6.36k
                index[i] &= and_modulo;
706
6.36k
            }
707
3.53k
        } else {
708
            /* delta coded in time direction */
709
10.2k
            for (i = 0; i < nr_par; i++)
710
6.75k
            {
711
6.75k
                index[i] = index_prev[i*stride] + index[i];
712
6.75k
                index[i] &= and_modulo;
713
6.75k
            }
714
3.53k
        }
715
12.3k
    } else {
716
        /* set indices to zero */
717
52.7k
        for (i = 0; i < nr_par; i++)
718
40.4k
        {
719
40.4k
            index[i] = 0;
720
40.4k
        }
721
12.3k
    }
722
723
    /* coarse */
724
18.2k
    if (stride == 2)
725
0
    {
726
0
        index[0] = 0;
727
0
        for (i = (nr_par<<1)-1; i > 0; i--)
728
0
        {
729
0
            index[i] = index[i>>1];
730
0
        }
731
0
    }
732
18.2k
}
733
734
#ifdef PS_LOW_POWER
735
static void map34indexto20(int8_t *index, uint8_t bins)
736
{
737
    index[0] = (2*index[0]+index[1])/3;
738
    index[1] = (index[1]+2*index[2])/3;
739
    index[2] = (2*index[3]+index[4])/3;
740
    index[3] = (index[4]+2*index[5])/3;
741
    index[4] = (index[6]+index[7])/2;
742
    index[5] = (index[8]+index[9])/2;
743
    index[6] = index[10];
744
    index[7] = index[11];
745
    index[8] = (index[12]+index[13])/2;
746
    index[9] = (index[14]+index[15])/2;
747
    index[10] = index[16];
748
749
    if (bins == 34)
750
    {
751
        index[11] = index[17];
752
        index[12] = index[18];
753
        index[13] = index[19];
754
        index[14] = (index[20]+index[21])/2;
755
        index[15] = (index[22]+index[23])/2;
756
        index[16] = (index[24]+index[25])/2;
757
        index[17] = (index[26]+index[27])/2;
758
        index[18] = (index[28]+index[29]+index[30]+index[31])/4;
759
        index[19] = (index[32]+index[33])/2;
760
    }
761
}
762
#endif
763
764
static void map20indexto34(int8_t *index, uint8_t bins)
765
7.89k
{
766
7.89k
    index[0] = index[0];
767
7.89k
    index[1] = (index[0] + index[1])/2;
768
7.89k
    index[2] = index[1];
769
7.89k
    index[3] = index[2];
770
7.89k
    index[4] = (index[2] + index[3])/2;
771
7.89k
    index[5] = index[3];
772
7.89k
    index[6] = index[4];
773
7.89k
    index[7] = index[4];
774
7.89k
    index[8] = index[5];
775
7.89k
    index[9] = index[5];
776
7.89k
    index[10] = index[6];
777
7.89k
    index[11] = index[7];
778
7.89k
    index[12] = index[8];
779
7.89k
    index[13] = index[8];
780
7.89k
    index[14] = index[9];
781
7.89k
    index[15] = index[9];
782
7.89k
    index[16] = index[10];
783
784
7.89k
    if (bins == 34)
785
3.68k
    {
786
3.68k
        index[17] = index[11];
787
3.68k
        index[18] = index[12];
788
3.68k
        index[19] = index[13];
789
3.68k
        index[20] = index[14];
790
3.68k
        index[21] = index[14];
791
3.68k
        index[22] = index[15];
792
3.68k
        index[23] = index[15];
793
3.68k
        index[24] = index[16];
794
3.68k
        index[25] = index[16];
795
3.68k
        index[26] = index[17];
796
3.68k
        index[27] = index[17];
797
3.68k
        index[28] = index[18];
798
3.68k
        index[29] = index[18];
799
3.68k
        index[30] = index[18];
800
3.68k
        index[31] = index[18];
801
3.68k
        index[32] = index[19];
802
3.68k
        index[33] = index[19];
803
3.68k
    }
804
7.89k
}
805
806
/* parse the bitstream data decoded in ps_data() */
807
static void ps_data_decode(ps_info *ps)
808
5.72k
{
809
5.72k
    uint8_t env, bin;
810
811
    /* ps data not available, use data from previous frame */
812
5.72k
    if (ps->ps_data_available == 0)
813
1.63k
    {
814
1.63k
        ps->num_env = 0;
815
1.63k
    }
816
817
14.8k
    for (env = 0; env < ps->num_env; env++)
818
9.14k
    {
819
9.14k
        int8_t *iid_index_prev;
820
9.14k
        int8_t *icc_index_prev;
821
9.14k
        int8_t *ipd_index_prev;
822
9.14k
        int8_t *opd_index_prev;
823
824
9.14k
        int8_t num_iid_steps = (ps->iid_mode < 3) ? 7 : 15 /*fine quant*/;
825
826
9.14k
        if (env == 0)
827
2.67k
        {
828
            /* take last envelope from previous frame */
829
2.67k
            iid_index_prev = ps->iid_index_prev;
830
2.67k
            icc_index_prev = ps->icc_index_prev;
831
2.67k
            ipd_index_prev = ps->ipd_index_prev;
832
2.67k
            opd_index_prev = ps->opd_index_prev;
833
6.47k
        } else {
834
            /* take index values from previous envelope */
835
6.47k
            iid_index_prev = ps->iid_index[env - 1];
836
6.47k
            icc_index_prev = ps->icc_index[env - 1];
837
6.47k
            ipd_index_prev = ps->ipd_index[env - 1];
838
6.47k
            opd_index_prev = ps->opd_index[env - 1];
839
6.47k
        }
840
841
//        iid = 1;
842
        /* delta decode iid parameters */
843
9.14k
        delta_decode(ps->enable_iid, ps->iid_index[env], iid_index_prev,
844
9.14k
            ps->iid_dt[env], ps->nr_iid_par,
845
9.14k
            (ps->iid_mode == 0 || ps->iid_mode == 3) ? 2 : 1,
846
9.14k
            -num_iid_steps, num_iid_steps);
847
//        iid = 0;
848
849
        /* delta decode icc parameters */
850
9.14k
        delta_decode(ps->enable_icc, ps->icc_index[env], icc_index_prev,
851
9.14k
            ps->icc_dt[env], ps->nr_icc_par,
852
9.14k
            (ps->icc_mode == 0 || ps->icc_mode == 3) ? 2 : 1,
853
9.14k
            0, 7);
854
855
        /* delta modulo decode ipd parameters */
856
9.14k
        delta_modulo_decode(ps->enable_ipdopd, ps->ipd_index[env], ipd_index_prev,
857
9.14k
            ps->ipd_dt[env], ps->nr_ipdopd_par, 1, 7);
858
859
        /* delta modulo decode opd parameters */
860
9.14k
        delta_modulo_decode(ps->enable_ipdopd, ps->opd_index[env], opd_index_prev,
861
9.14k
            ps->opd_dt[env], ps->nr_ipdopd_par, 1, 7);
862
9.14k
    }
863
864
    /* handle error case */
865
5.72k
    if (ps->num_env == 0)
866
3.05k
    {
867
        /* force to 1 */
868
3.05k
        ps->num_env = 1;
869
870
3.05k
        if (ps->enable_iid)
871
2.10k
        {
872
73.6k
            for (bin = 0; bin < 34; bin++)
873
71.5k
                ps->iid_index[0][bin] = ps->iid_index_prev[bin];
874
2.10k
        } else {
875
33.1k
            for (bin = 0; bin < 34; bin++)
876
32.1k
                ps->iid_index[0][bin] = 0;
877
946
        }
878
879
3.05k
        if (ps->enable_icc)
880
1.69k
        {
881
59.2k
            for (bin = 0; bin < 34; bin++)
882
57.5k
                ps->icc_index[0][bin] = ps->icc_index_prev[bin];
883
1.69k
        } else {
884
47.5k
            for (bin = 0; bin < 34; bin++)
885
46.1k
                ps->icc_index[0][bin] = 0;
886
1.35k
        }
887
888
3.05k
        if (ps->enable_ipdopd)
889
493
        {
890
8.87k
            for (bin = 0; bin < 17; bin++)
891
8.38k
            {
892
8.38k
                ps->ipd_index[0][bin] = ps->ipd_index_prev[bin];
893
8.38k
                ps->opd_index[0][bin] = ps->opd_index_prev[bin];
894
8.38k
            }
895
2.55k
        } else {
896
46.0k
            for (bin = 0; bin < 17; bin++)
897
43.4k
            {
898
43.4k
                ps->ipd_index[0][bin] = 0;
899
43.4k
                ps->opd_index[0][bin] = 0;
900
43.4k
            }
901
2.55k
        }
902
3.05k
    }
903
904
    /* update previous indices */
905
200k
    for (bin = 0; bin < 34; bin++)
906
194k
        ps->iid_index_prev[bin] = ps->iid_index[ps->num_env-1][bin];
907
200k
    for (bin = 0; bin < 34; bin++)
908
194k
        ps->icc_index_prev[bin] = ps->icc_index[ps->num_env-1][bin];
909
103k
    for (bin = 0; bin < 17; bin++)
910
97.3k
    {
911
97.3k
        ps->ipd_index_prev[bin] = ps->ipd_index[ps->num_env-1][bin];
912
97.3k
        ps->opd_index_prev[bin] = ps->opd_index[ps->num_env-1][bin];
913
97.3k
    }
914
915
5.72k
    ps->ps_data_available = 0;
916
917
5.72k
    if (ps->frame_class == 0)
918
3.88k
    {
919
3.88k
        ps->border_position[0] = 0;
920
6.98k
        for (env = 1; env < ps->num_env; env++)
921
3.10k
        {
922
3.10k
            ps->border_position[env] = (env * ps->numTimeSlotsRate) / ps->num_env;
923
3.10k
        }
924
3.88k
        ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
925
3.88k
    } else {
926
1.83k
        ps->border_position[0] = 0;
927
928
1.83k
        if (ps->border_position[ps->num_env] < ps->numTimeSlotsRate)
929
1.59k
        {
930
55.6k
            for (bin = 0; bin < 34; bin++)
931
54.0k
            {
932
54.0k
                ps->iid_index[ps->num_env][bin] = ps->iid_index[ps->num_env-1][bin];
933
54.0k
                ps->icc_index[ps->num_env][bin] = ps->icc_index[ps->num_env-1][bin];
934
54.0k
            }
935
28.6k
            for (bin = 0; bin < 17; bin++)
936
27.0k
            {
937
27.0k
                ps->ipd_index[ps->num_env][bin] = ps->ipd_index[ps->num_env-1][bin];
938
27.0k
                ps->opd_index[ps->num_env][bin] = ps->opd_index[ps->num_env-1][bin];
939
27.0k
            }
940
1.59k
            ps->num_env++;
941
1.59k
            ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
942
1.59k
        }
943
944
6.80k
        for (env = 1; env < ps->num_env; env++)
945
4.96k
        {
946
4.96k
            int8_t thr = ps->numTimeSlotsRate - (ps->num_env - env);
947
948
4.96k
            if (ps->border_position[env] > thr)
949
860
            {
950
860
                ps->border_position[env] = thr;
951
4.10k
            } else {
952
4.10k
                thr = ps->border_position[env-1]+1;
953
4.10k
                if (ps->border_position[env] < thr)
954
2.01k
                {
955
2.01k
                    ps->border_position[env] = thr;
956
2.01k
                }
957
4.10k
            }
958
4.96k
        }
959
1.83k
    }
960
961
    /* make sure that the indices of all parameters can be mapped
962
     * to the same hybrid synthesis filterbank
963
     */
964
#ifdef PS_LOW_POWER
965
    for (env = 0; env < ps->num_env; env++)
966
    {
967
        if (ps->iid_mode == 2 || ps->iid_mode == 5)
968
            map34indexto20(ps->iid_index[env], 34);
969
        if (ps->icc_mode == 2 || ps->icc_mode == 5)
970
            map34indexto20(ps->icc_index[env], 34);
971
972
        /* disable ipd/opd */
973
        for (bin = 0; bin < 17; bin++)
974
        {
975
            ps->aaIpdIndex[env][bin] = 0;
976
            ps->aaOpdIndex[env][bin] = 0;
977
        }
978
    }
979
#else
980
5.72k
    if (ps->use34hybrid_bands)
981
2.13k
    {
982
5.94k
        for (env = 0; env < ps->num_env; env++)
983
3.80k
        {
984
3.80k
            if (ps->iid_mode != 2 && ps->iid_mode != 5)
985
2.10k
                map20indexto34(ps->iid_index[env], 34);
986
3.80k
            if (ps->icc_mode != 2 && ps->icc_mode != 5)
987
1.58k
                map20indexto34(ps->icc_index[env], 34);
988
3.80k
            if (ps->ipd_mode != 2 && ps->ipd_mode != 5)
989
2.10k
            {
990
2.10k
                map20indexto34(ps->ipd_index[env], 17);
991
2.10k
                map20indexto34(ps->opd_index[env], 17);
992
2.10k
            }
993
3.80k
        }
994
2.13k
    }
995
5.72k
#endif
996
997
#if 0
998
    for (env = 0; env < ps->num_env; env++)
999
    {
1000
        printf("iid[env:%d]:", env);
1001
        for (bin = 0; bin < 34; bin++)
1002
        {
1003
            printf(" %d", ps->iid_index[env][bin]);
1004
        }
1005
        printf("\n");
1006
    }
1007
    for (env = 0; env < ps->num_env; env++)
1008
    {
1009
        printf("icc[env:%d]:", env);
1010
        for (bin = 0; bin < 34; bin++)
1011
        {
1012
            printf(" %d", ps->icc_index[env][bin]);
1013
        }
1014
        printf("\n");
1015
    }
1016
    for (env = 0; env < ps->num_env; env++)
1017
    {
1018
        printf("ipd[env:%d]:", env);
1019
        for (bin = 0; bin < 17; bin++)
1020
        {
1021
            printf(" %d", ps->ipd_index[env][bin]);
1022
        }
1023
        printf("\n");
1024
    }
1025
    for (env = 0; env < ps->num_env; env++)
1026
    {
1027
        printf("opd[env:%d]:", env);
1028
        for (bin = 0; bin < 17; bin++)
1029
        {
1030
            printf(" %d", ps->opd_index[env][bin]);
1031
        }
1032
        printf("\n");
1033
    }
1034
    printf("\n");
1035
#endif
1036
5.72k
}
1037
1038
/* decorrelate the mono signal using an allpass filter */
1039
static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
1040
                           qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
1041
5.72k
{
1042
5.72k
    uint8_t gr, n, bk;
1043
5.72k
    uint8_t temp_delay = 0;
1044
5.72k
    uint8_t sb, maxsb;
1045
5.72k
    const complex_t *Phi_Fract_SubQmf;
1046
5.72k
    uint8_t temp_delay_ser[NO_ALLPASS_LINKS];
1047
5.72k
    real_t P_SmoothPeakDecayDiffNrg, nrg;
1048
5.72k
    real_t P[32][34];
1049
5.72k
    real_t G_TransientRatio[32][34] = {{0}};
1050
5.72k
    complex_t inputLeft;
1051
1052
1053
    /* chose hybrid filterbank: 20 or 34 band case */
1054
5.72k
    if (ps->use34hybrid_bands)
1055
2.13k
    {
1056
2.13k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf34;
1057
3.58k
    } else{
1058
3.58k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf20;
1059
3.58k
    }
1060
1061
    /* clear the energy values */
1062
188k
    for (n = 0; n < 32; n++)
1063
183k
    {
1064
6.41M
        for (bk = 0; bk < 34; bk++)
1065
6.22M
        {
1066
6.22M
            P[n][bk] = 0;
1067
6.22M
        }
1068
183k
    }
1069
1070
    /* calculate the energy in each parameter band b(k) */
1071
191k
    for (gr = 0; gr < ps->num_groups; gr++)
1072
185k
    {
1073
        /* select the parameter index b(k) to which this group belongs */
1074
185k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1075
1076
        /* select the upper subband border for this group */
1077
185k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr]+1 : ps->group_border[gr+1];
1078
1079
635k
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1080
449k
        {
1081
14.4M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1082
13.9M
            {
1083
#ifdef FIXED_POINT
1084
                uint32_t in_re, in_im;
1085
#endif
1086
1087
                /* input from hybrid subbands or QMF subbands */
1088
13.9M
                if (gr < ps->num_hybrid_groups)
1089
3.22M
                {
1090
3.22M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1091
3.22M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1092
10.7M
                } else {
1093
10.7M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1094
10.7M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1095
10.7M
                }
1096
1097
                /* accumulate energy */
1098
#ifdef FIXED_POINT
1099
                /* NOTE: all input is scaled by 2^(-5) because of fixed point QMF
1100
                 * meaning that P will be scaled by 2^(-10) compared to floating point version
1101
                 */
1102
                in_re = ((abs(RE(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1103
                in_im = ((abs(IM(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1104
                P[n][bk] += in_re*in_re + in_im*in_im;
1105
#else
1106
13.9M
                P[n][bk] += MUL_R(RE(inputLeft),RE(inputLeft)) + MUL_R(IM(inputLeft),IM(inputLeft));
1107
13.9M
#endif
1108
13.9M
            }
1109
449k
        }
1110
185k
    }
1111
1112
#if 0
1113
    for (n = 0; n < 32; n++)
1114
    {
1115
        for (bk = 0; bk < 34; bk++)
1116
        {
1117
#ifdef FIXED_POINT
1118
            printf("%d %d: %d\n", n, bk, P[n][bk] /*/(float)REAL_PRECISION*/);
1119
#else
1120
            printf("%d %d: %f\n", n, bk, P[n][bk]/1024.0);
1121
#endif
1122
        }
1123
    }
1124
#endif
1125
1126
    /* calculate transient reduction ratio for each parameter band b(k) */
1127
150k
    for (bk = 0; bk < ps->nr_par_bands; bk++)
1128
144k
    {
1129
4.63M
        for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1130
4.48M
        {
1131
4.48M
            const real_t gamma = COEF_CONST(1.5);
1132
1133
4.48M
            ps->P_PeakDecayNrg[bk] = MUL_F(ps->P_PeakDecayNrg[bk], ps->alpha_decay);
1134
4.48M
            if (ps->P_PeakDecayNrg[bk] < P[n][bk])
1135
48.2k
                ps->P_PeakDecayNrg[bk] = P[n][bk];
1136
1137
            /* apply smoothing filter to peak decay energy */
1138
4.48M
            P_SmoothPeakDecayDiffNrg = ps->P_SmoothPeakDecayDiffNrg_prev[bk];
1139
4.48M
            P_SmoothPeakDecayDiffNrg += MUL_F((ps->P_PeakDecayNrg[bk] - P[n][bk] - ps->P_SmoothPeakDecayDiffNrg_prev[bk]), ps->alpha_smooth);
1140
4.48M
            ps->P_SmoothPeakDecayDiffNrg_prev[bk] = P_SmoothPeakDecayDiffNrg;
1141
1142
            /* apply smoothing filter to energy */
1143
4.48M
            nrg = ps->P_prev[bk];
1144
4.48M
            nrg += MUL_F((P[n][bk] - ps->P_prev[bk]), ps->alpha_smooth);
1145
4.48M
            ps->P_prev[bk] = nrg;
1146
1147
            /* calculate transient ratio */
1148
4.48M
            if (MUL_C(P_SmoothPeakDecayDiffNrg, gamma) <= nrg)
1149
4.44M
            {
1150
4.44M
                G_TransientRatio[n][bk] = REAL_CONST(1.0);
1151
4.44M
            } else {
1152
37.9k
                G_TransientRatio[n][bk] = DIV_R(nrg, (MUL_C(P_SmoothPeakDecayDiffNrg, gamma)));
1153
37.9k
            }
1154
4.48M
        }
1155
144k
    }
1156
1157
#if 0
1158
    for (n = 0; n < 32; n++)
1159
    {
1160
        for (bk = 0; bk < 34; bk++)
1161
        {
1162
#ifdef FIXED_POINT
1163
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]/(float)REAL_PRECISION);
1164
#else
1165
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]);
1166
#endif
1167
        }
1168
    }
1169
#endif
1170
1171
    /* apply stereo decorrelation filter to the signal */
1172
191k
    for (gr = 0; gr < ps->num_groups; gr++)
1173
185k
    {
1174
185k
        if (gr < ps->num_hybrid_groups)
1175
104k
            maxsb = ps->group_border[gr] + 1;
1176
81.5k
        else
1177
81.5k
            maxsb = ps->group_border[gr + 1];
1178
1179
        /* QMF channel */
1180
635k
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1181
449k
        {
1182
449k
            real_t g_DecaySlope;
1183
449k
            real_t g_DecaySlope_filt[NO_ALLPASS_LINKS];
1184
1185
            /* g_DecaySlope: [0..1] */
1186
449k
            if (gr < ps->num_hybrid_groups || sb <= ps->decay_cutoff)
1187
110k
            {
1188
110k
                g_DecaySlope = FRAC_CONST(1.0);
1189
339k
            } else {
1190
339k
                int8_t decay = ps->decay_cutoff - sb;
1191
339k
                if (decay <= -20 /* -1/DECAY_SLOPE */)
1192
230k
                {
1193
230k
                    g_DecaySlope = 0;
1194
230k
                } else {
1195
                    /* decay(int)*decay_slope(frac) = g_DecaySlope(frac) */
1196
108k
                    g_DecaySlope = FRAC_CONST(1.0) + DECAY_SLOPE * decay;
1197
108k
                }
1198
339k
            }
1199
1200
            /* calculate g_DecaySlope_filt for every n multiplied by filter_a[n] */
1201
1.79M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1202
1.34M
            {
1203
1.34M
                g_DecaySlope_filt[n] = MUL_F(g_DecaySlope, filter_a[n]);
1204
1.34M
            }
1205
1206
1207
            /* set delay indices */
1208
449k
            temp_delay = ps->saved_delay;
1209
1.79M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1210
1.34M
                temp_delay_ser[n] = ps->delay_buf_index_ser[n];
1211
1212
14.4M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1213
13.9M
            {
1214
13.9M
                complex_t tmp, tmp0, R0;
1215
13.9M
                uint8_t m;
1216
1217
13.9M
                if (gr < ps->num_hybrid_groups)
1218
3.22M
                {
1219
                    /* hybrid filterbank input */
1220
3.22M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1221
3.22M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1222
10.7M
                } else {
1223
                    /* QMF filterbank input */
1224
10.7M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1225
10.7M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1226
10.7M
                }
1227
1228
13.9M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1229
7.31M
                {
1230
                    /* delay */
1231
1232
                    /* never hybrid subbands here, always QMF subbands */
1233
7.31M
                    RE(tmp) = RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1234
7.31M
                    IM(tmp) = IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1235
7.31M
                    RE(R0) = RE(tmp);
1236
7.31M
                    IM(R0) = IM(tmp);
1237
7.31M
                    RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = RE(inputLeft);
1238
7.31M
                    IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = IM(inputLeft);
1239
7.31M
                } else {
1240
                    /* allpass filter */
1241
6.66M
                    complex_t Phi_Fract;
1242
1243
                    /* fetch parameters */
1244
6.66M
                    if (gr < ps->num_hybrid_groups)
1245
3.22M
                    {
1246
                        /* select data from the hybrid subbands */
1247
3.22M
                        RE(tmp0) = RE(ps->delay_SubQmf[temp_delay][sb]);
1248
3.22M
                        IM(tmp0) = IM(ps->delay_SubQmf[temp_delay][sb]);
1249
1250
3.22M
                        RE(ps->delay_SubQmf[temp_delay][sb]) = RE(inputLeft);
1251
3.22M
                        IM(ps->delay_SubQmf[temp_delay][sb]) = IM(inputLeft);
1252
1253
3.22M
                        RE(Phi_Fract) = RE(Phi_Fract_SubQmf[sb]);
1254
3.22M
                        IM(Phi_Fract) = IM(Phi_Fract_SubQmf[sb]);
1255
3.43M
                    } else {
1256
                        /* select data from the QMF subbands */
1257
3.43M
                        RE(tmp0) = RE(ps->delay_Qmf[temp_delay][sb]);
1258
3.43M
                        IM(tmp0) = IM(ps->delay_Qmf[temp_delay][sb]);
1259
1260
3.43M
                        RE(ps->delay_Qmf[temp_delay][sb]) = RE(inputLeft);
1261
3.43M
                        IM(ps->delay_Qmf[temp_delay][sb]) = IM(inputLeft);
1262
1263
3.43M
                        RE(Phi_Fract) = RE(Phi_Fract_Qmf[sb]);
1264
3.43M
                        IM(Phi_Fract) = IM(Phi_Fract_Qmf[sb]);
1265
3.43M
                    }
1266
1267
                    /* z^(-2) * Phi_Fract[k] */
1268
6.66M
                    ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Phi_Fract), IM(Phi_Fract));
1269
1270
6.66M
                    RE(R0) = RE(tmp);
1271
6.66M
                    IM(R0) = IM(tmp);
1272
26.6M
                    for (m = 0; m < NO_ALLPASS_LINKS; m++)
1273
19.9M
                    {
1274
19.9M
                        complex_t Q_Fract_allpass, tmp2;
1275
1276
                        /* fetch parameters */
1277
19.9M
                        if (gr < ps->num_hybrid_groups)
1278
9.67M
                        {
1279
                            /* select data from the hybrid subbands */
1280
9.67M
                            RE(tmp0) = RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1281
9.67M
                            IM(tmp0) = IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1282
1283
9.67M
                            if (ps->use34hybrid_bands)
1284
6.29M
                            {
1285
6.29M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf34[sb][m]);
1286
6.29M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf34[sb][m]);
1287
6.29M
                            } else {
1288
3.38M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf20[sb][m]);
1289
3.38M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf20[sb][m]);
1290
3.38M
                            }
1291
10.3M
                        } else {
1292
                            /* select data from the QMF subbands */
1293
10.3M
                            RE(tmp0) = RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1294
10.3M
                            IM(tmp0) = IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1295
1296
10.3M
                            RE(Q_Fract_allpass) = RE(Q_Fract_allpass_Qmf[sb][m]);
1297
10.3M
                            IM(Q_Fract_allpass) = IM(Q_Fract_allpass_Qmf[sb][m]);
1298
10.3M
                        }
1299
1300
                        /* delay by a fraction */
1301
                        /* z^(-d(m)) * Q_Fract_allpass[k,m] */
1302
19.9M
                        ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Q_Fract_allpass), IM(Q_Fract_allpass));
1303
1304
                        /* -a(m) * g_DecaySlope[k] */
1305
19.9M
                        RE(tmp) += -MUL_F(g_DecaySlope_filt[m], RE(R0));
1306
19.9M
                        IM(tmp) += -MUL_F(g_DecaySlope_filt[m], IM(R0));
1307
1308
                        /* -a(m) * g_DecaySlope[k] * Q_Fract_allpass[k,m] * z^(-d(m)) */
1309
19.9M
                        RE(tmp2) = RE(R0) + MUL_F(g_DecaySlope_filt[m], RE(tmp));
1310
19.9M
                        IM(tmp2) = IM(R0) + MUL_F(g_DecaySlope_filt[m], IM(tmp));
1311
1312
                        /* store sample */
1313
19.9M
                        if (gr < ps->num_hybrid_groups)
1314
9.67M
                        {
1315
9.67M
                            RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1316
9.67M
                            IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1317
10.3M
                        } else {
1318
10.3M
                            RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1319
10.3M
                            IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1320
10.3M
                        }
1321
1322
                        /* store for next iteration (or as output value if last iteration) */
1323
19.9M
                        RE(R0) = RE(tmp);
1324
19.9M
                        IM(R0) = IM(tmp);
1325
19.9M
                    }
1326
6.66M
                }
1327
1328
                /* select b(k) for reading the transient ratio */
1329
13.9M
                bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1330
1331
                /* duck if a past transient is found */
1332
13.9M
                RE(R0) = MUL_R(G_TransientRatio[n][bk], RE(R0));
1333
13.9M
                IM(R0) = MUL_R(G_TransientRatio[n][bk], IM(R0));
1334
1335
13.9M
                if (gr < ps->num_hybrid_groups)
1336
3.22M
                {
1337
                    /* hybrid */
1338
3.22M
                    QMF_RE(X_hybrid_right[n][sb]) = RE(R0);
1339
3.22M
                    QMF_IM(X_hybrid_right[n][sb]) = IM(R0);
1340
10.7M
                } else {
1341
                    /* QMF */
1342
10.7M
                    QMF_RE(X_right[n][sb]) = RE(R0);
1343
10.7M
                    QMF_IM(X_right[n][sb]) = IM(R0);
1344
10.7M
                }
1345
1346
                /* Update delay buffer index */
1347
13.9M
                if (++temp_delay >= 2)
1348
6.98M
                {
1349
6.98M
                    temp_delay = 0;
1350
6.98M
                }
1351
1352
                /* update delay indices */
1353
13.9M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1354
7.31M
                {
1355
                    /* delay_D depends on the samplerate, it can hold the values 14 and 1 */
1356
7.31M
                    if (++ps->delay_buf_index_delay[sb] >= ps->delay_D[sb])
1357
5.31M
                    {
1358
5.31M
                        ps->delay_buf_index_delay[sb] = 0;
1359
5.31M
                    }
1360
7.31M
                }
1361
1362
55.9M
                for (m = 0; m < NO_ALLPASS_LINKS; m++)
1363
41.9M
                {
1364
41.9M
                    if (++temp_delay_ser[m] >= ps->num_sample_delay_ser[m])
1365
10.7M
                    {
1366
10.7M
                        temp_delay_ser[m] = 0;
1367
10.7M
                    }
1368
41.9M
                }
1369
13.9M
            }
1370
449k
        }
1371
185k
    }
1372
1373
    /* update delay indices */
1374
5.72k
    ps->saved_delay = temp_delay;
1375
22.8k
    for (n = 0; n < NO_ALLPASS_LINKS; n++)
1376
17.1k
        ps->delay_buf_index_ser[n] = temp_delay_ser[n];
1377
5.72k
}
1378
1379
#if 0
1380
#ifdef FIXED_POINT
1381
#define step(shift) \
1382
    if ((0x40000000l >> shift) + root <= value)       \
1383
    {                                                 \
1384
        value -= (0x40000000l >> shift) + root;       \
1385
        root = (root >> 1) | (0x40000000l >> shift);  \
1386
    } else {                                          \
1387
        root = root >> 1;                             \
1388
    }
1389
1390
/* fixed point square root approximation */
1391
static real_t ps_sqrt(real_t value)
1392
{
1393
    real_t root = 0;
1394
1395
    step( 0); step( 2); step( 4); step( 6);
1396
    step( 8); step(10); step(12); step(14);
1397
    step(16); step(18); step(20); step(22);
1398
    step(24); step(26); step(28); step(30);
1399
1400
    if (root < value)
1401
        ++root;
1402
1403
    root <<= (REAL_BITS/2);
1404
1405
    return root;
1406
}
1407
#else
1408
#define ps_sqrt(A) sqrt(A)
1409
#endif
1410
#endif
1411
1412
static const real_t ipdopd_cos_tab[] = {
1413
    FRAC_CONST(1.000000000000000),
1414
    FRAC_CONST(0.707106781186548),
1415
    FRAC_CONST(0.000000000000000),
1416
    FRAC_CONST(-0.707106781186547),
1417
    FRAC_CONST(-1.000000000000000),
1418
    FRAC_CONST(-0.707106781186548),
1419
    FRAC_CONST(-0.000000000000000),
1420
    FRAC_CONST(0.707106781186547),
1421
    FRAC_CONST(1.000000000000000)
1422
};
1423
1424
static const real_t ipdopd_sin_tab[] = {
1425
    FRAC_CONST(0.000000000000000),
1426
    FRAC_CONST(0.707106781186547),
1427
    FRAC_CONST(1.000000000000000),
1428
    FRAC_CONST(0.707106781186548),
1429
    FRAC_CONST(0.000000000000000),
1430
    FRAC_CONST(-0.707106781186547),
1431
    FRAC_CONST(-1.000000000000000),
1432
    FRAC_CONST(-0.707106781186548),
1433
    FRAC_CONST(-0.000000000000000)
1434
};
1435
1436
static real_t magnitude_c(complex_t c)
1437
112k
{
1438
#ifdef FIXED_POINT
1439
#define ps_abs(A) (((A) > 0) ? (A) : (-(A)))
1440
#define ALPHA FRAC_CONST(0.948059448969)
1441
#define BETA  FRAC_CONST(0.392699081699)
1442
1443
    real_t abs_inphase = ps_abs(RE(c));
1444
    real_t abs_quadrature = ps_abs(IM(c));
1445
1446
    if (abs_inphase > abs_quadrature) {
1447
        return MUL_F(abs_inphase, ALPHA) + MUL_F(abs_quadrature, BETA);
1448
    } else {
1449
        return MUL_F(abs_quadrature, ALPHA) + MUL_F(abs_inphase, BETA);
1450
    }
1451
#else
1452
112k
    return sqrt(RE(c)*RE(c) + IM(c)*IM(c));
1453
112k
#endif
1454
112k
}
1455
1456
static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
1457
                         qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
1458
5.72k
{
1459
5.72k
    uint8_t n;
1460
5.72k
    uint8_t gr;
1461
5.72k
    uint8_t bk = 0;
1462
5.72k
    uint8_t sb, maxsb;
1463
5.72k
    uint8_t env;
1464
5.72k
    uint8_t nr_ipdopd_par;
1465
5.72k
    complex_t h11, h12, h21, h22;  // COEF
1466
5.72k
    complex_t H11, H12, H21, H22;  // COEF
1467
5.72k
    complex_t deltaH11, deltaH12, deltaH21, deltaH22;  // COEF
1468
5.72k
    complex_t tempLeft, tempRight; // FRAC
1469
5.72k
    complex_t phaseLeft, phaseRight; // FRAC
1470
5.72k
    real_t L;
1471
5.72k
    const real_t *sf_iid;
1472
5.72k
    uint8_t no_iid_steps;
1473
1474
5.72k
    if (ps->iid_mode >= 3)
1475
2.39k
    {
1476
2.39k
        no_iid_steps = 15;
1477
2.39k
        sf_iid = sf_iid_fine;
1478
3.32k
    } else {
1479
3.32k
        no_iid_steps = 7;
1480
3.32k
        sf_iid = sf_iid_normal;
1481
3.32k
    }
1482
1483
5.72k
    if (ps->ipd_mode == 0 || ps->ipd_mode == 3)
1484
3.11k
    {
1485
3.11k
        nr_ipdopd_par = 11; /* resolution */
1486
3.11k
    } else {
1487
2.60k
        nr_ipdopd_par = ps->nr_ipdopd_par;
1488
2.60k
    }
1489
1490
191k
    for (gr = 0; gr < ps->num_groups; gr++)
1491
185k
    {
1492
185k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1493
1494
        /* use one channel per group in the subqmf domain */
1495
185k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr] + 1 : ps->group_border[gr + 1];
1496
1497
595k
        for (env = 0; env < ps->num_env; env++)
1498
409k
        {
1499
409k
            uint8_t abs_iid = (uint8_t)abs(ps->iid_index[env][bk]);
1500
            /* index range is supposed to be -7...7 or -15...15 depending on iid_mode
1501
                (Table 8.24, ISO/IEC 14496-3:2005).
1502
                if it is outside these boundaries, this is most likely an error. sanitize
1503
                it and try to process further. */
1504
409k
            if (ps->iid_index[env][bk] < -no_iid_steps) {
1505
153
                fprintf(stderr, "Warning: invalid iid_index: %d < %d\n", ps->iid_index[env][bk],
1506
153
                    -no_iid_steps);
1507
153
                ps->iid_index[env][bk] = -no_iid_steps;
1508
153
                abs_iid = no_iid_steps;
1509
409k
            } else if (ps->iid_index[env][bk] > no_iid_steps) {
1510
76
                fprintf(stderr, "Warning: invalid iid_index: %d > %d\n", ps->iid_index[env][bk],
1511
76
                    no_iid_steps);
1512
76
                ps->iid_index[env][bk] = no_iid_steps;
1513
76
                abs_iid = no_iid_steps;
1514
76
            }
1515
409k
            if (ps->icc_index[env][bk] < 0) {
1516
307
                fprintf(stderr, "Warning: invalid icc_index: %d < 0\n", ps->icc_index[env][bk]);
1517
307
                ps->icc_index[env][bk] = 0;
1518
409k
            } else if (ps->icc_index[env][bk] > 7) {
1519
0
                fprintf(stderr, "Warning: invalid icc_index: %d > 7\n", ps->icc_index[env][bk]);
1520
0
                ps->icc_index[env][bk] = 7;
1521
0
            }
1522
1523
409k
            if (ps->icc_mode < 3)
1524
259k
            {
1525
                /* type 'A' mixing as described in 8.6.4.6.2.1 */
1526
259k
                real_t c_1, c_2;  // COEF
1527
259k
                real_t cosa, sina;  // COEF
1528
259k
                real_t cosb, sinb;  // COEF
1529
259k
                real_t ab1, ab2;  // COEF
1530
259k
                real_t ab3, ab4;  // COEF
1531
1532
                /*
1533
                c_1 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps + iid_index] / 10.0)));
1534
                c_2 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps - iid_index] / 10.0)));
1535
                alpha = 0.5 * acos(quant_rho[icc_index]);
1536
                beta = alpha * ( c_1 - c_2 ) / sqrt(2.0);
1537
                */
1538
1539
                //printf("%d\n", ps->iid_index[env][bk]);
1540
1541
                /* calculate the scalefactors c_1 and c_2 from the intensity differences */
1542
259k
                c_1 = sf_iid[no_iid_steps + ps->iid_index[env][bk]];
1543
259k
                c_2 = sf_iid[no_iid_steps - ps->iid_index[env][bk]];
1544
1545
                /* calculate alpha and beta using the ICC parameters */
1546
259k
                cosa = cos_alphas[ps->icc_index[env][bk]];
1547
259k
                sina = sin_alphas[ps->icc_index[env][bk]];
1548
1549
259k
                if (ps->iid_mode >= 3)
1550
91.5k
                {
1551
91.5k
                    cosb = cos_betas_fine[abs_iid][ps->icc_index[env][bk]];
1552
91.5k
                    sinb = sin_betas_fine[abs_iid][ps->icc_index[env][bk]];
1553
167k
                } else {
1554
167k
                    cosb = cos_betas_normal[abs_iid][ps->icc_index[env][bk]];
1555
167k
                    sinb = sin_betas_normal[abs_iid][ps->icc_index[env][bk]];
1556
167k
                }
1557
1558
259k
                ab1 = MUL_C(cosb, cosa);
1559
259k
                ab2 = MUL_C(sinb, sina);
1560
259k
                ab3 = MUL_C(sinb, cosa);
1561
259k
                ab4 = MUL_C(cosb, sina);
1562
1563
                /* h_xy: COEF */
1564
259k
                RE(h11) = MUL_C(c_2, (ab1 - ab2));
1565
259k
                RE(h12) = MUL_C(c_1, (ab1 + ab2));
1566
259k
                RE(h21) = MUL_C(c_2, (ab3 + ab4));
1567
259k
                RE(h22) = MUL_C(c_1, (ab3 - ab4));
1568
259k
            } else {
1569
                /* type 'B' mixing as described in 8.6.4.6.2.2 */
1570
150k
                real_t sina, cosa;  // COEF
1571
150k
                real_t cosg, sing;  // COEF
1572
1573
                /*
1574
                real_t c, rho, mu, alpha, gamma;
1575
                uint8_t i;
1576
1577
                i = ps->iid_index[env][bk];
1578
                c = (real_t)pow(10.0, ((i)?(((i>0)?1:-1)*quant_iid[((i>0)?i:-i)-1]):0.)/20.0);
1579
                rho = quant_rho[ps->icc_index[env][bk]];
1580
1581
                if (rho == 0.0f && c == 1.)
1582
                {
1583
                    alpha = (real_t)M_PI/4.0f;
1584
                    rho = 0.05f;
1585
                } else {
1586
                    if (rho <= 0.05f)
1587
                    {
1588
                        rho = 0.05f;
1589
                    }
1590
                    alpha = 0.5f*(real_t)atan( (2.0f*c*rho) / (c*c-1.0f) );
1591
1592
                    if (alpha < 0.)
1593
                    {
1594
                        alpha += (real_t)M_PI/2.0f;
1595
                    }
1596
                    if (rho < 0.)
1597
                    {
1598
                        alpha += (real_t)M_PI;
1599
                    }
1600
                }
1601
                mu = c+1.0f/c;
1602
                mu = 1+(4.0f*rho*rho-4.0f)/(mu*mu);
1603
                gamma = (real_t)atan(sqrt((1.0f-sqrt(mu))/(1.0f+sqrt(mu))));
1604
                */
1605
1606
150k
                if (ps->iid_mode >= 3)
1607
77.4k
                {
1608
77.4k
                    cosa = sincos_alphas_B_fine[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1609
77.4k
                    sina = sincos_alphas_B_fine[30 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1610
77.4k
                    cosg = cos_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1611
77.4k
                    sing = sin_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1612
77.4k
                } else {
1613
73.0k
                    cosa = sincos_alphas_B_normal[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1614
73.0k
                    sina = sincos_alphas_B_normal[14 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1615
73.0k
                    cosg = cos_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1616
73.0k
                    sing = sin_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1617
73.0k
                }
1618
1619
150k
                RE(h11) = MUL_C(COEF_SQRT2, MUL_C(cosa, cosg));
1620
150k
                RE(h12) = MUL_C(COEF_SQRT2, MUL_C(sina, cosg));
1621
150k
                RE(h21) = MUL_C(COEF_SQRT2, MUL_C(-cosa, sing));
1622
150k
                RE(h22) = MUL_C(COEF_SQRT2, MUL_C(sina, sing));
1623
150k
            }
1624
409k
            IM(h11) = IM(h12) = IM(h21) = IM(h22) = 0;
1625
1626
            /* calculate phase rotation parameters H_xy */
1627
            /* note that the imaginary part of these parameters are only calculated when
1628
               IPD and OPD are enabled
1629
             */
1630
409k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1631
56.2k
            {
1632
56.2k
                int8_t i;
1633
56.2k
                real_t xy, pq, xypq;  // FRAC
1634
1635
                /* ringbuffer index */
1636
56.2k
                i = ps->phase_hist;
1637
1638
                /* previous value */
1639
#ifdef FIXED_POINT
1640
                /* divide by 4*2, shift right 3 bits;
1641
                   extra halving to avoid overflows; it is ok, because result is normalized */
1642
                RE(tempLeft)  = RE(ps->ipd_prev[bk][i]) >> 3;
1643
                IM(tempLeft)  = IM(ps->ipd_prev[bk][i]) >> 3;
1644
                RE(tempRight) = RE(ps->opd_prev[bk][i]) >> 3;
1645
                IM(tempRight) = IM(ps->opd_prev[bk][i]) >> 3;
1646
#else
1647
56.2k
                RE(tempLeft)  = MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1648
56.2k
                IM(tempLeft)  = MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1649
56.2k
                RE(tempRight) = MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1650
56.2k
                IM(tempRight) = MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1651
56.2k
#endif
1652
1653
                /* save current value */
1654
56.2k
                RE(ps->ipd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->ipd_index[env][bk])];
1655
56.2k
                IM(ps->ipd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->ipd_index[env][bk])];
1656
56.2k
                RE(ps->opd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->opd_index[env][bk])];
1657
56.2k
                IM(ps->opd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->opd_index[env][bk])];
1658
1659
                /* add current value */
1660
#ifdef FIXED_POINT
1661
                /* extra halving to avoid overflows */
1662
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]) >> 1;
1663
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]) >> 1;
1664
                RE(tempRight) += RE(ps->opd_prev[bk][i]) >> 1;
1665
                IM(tempRight) += IM(ps->opd_prev[bk][i]) >> 1;
1666
#else
1667
56.2k
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]);
1668
56.2k
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]);
1669
56.2k
                RE(tempRight) += RE(ps->opd_prev[bk][i]);
1670
56.2k
                IM(tempRight) += IM(ps->opd_prev[bk][i]);
1671
56.2k
#endif
1672
1673
                /* ringbuffer index */
1674
56.2k
                if (i == 0)
1675
28.4k
                {
1676
28.4k
                    i = 2;
1677
28.4k
                }
1678
56.2k
                i--;
1679
1680
                /* get value before previous */
1681
#ifdef FIXED_POINT
1682
                /* dividing by 2*2, shift right 2 bits; extra halving to avoid overflows */
1683
                RE(tempLeft)  += (RE(ps->ipd_prev[bk][i]) >> 2);
1684
                IM(tempLeft)  += (IM(ps->ipd_prev[bk][i]) >> 2);
1685
                RE(tempRight) += (RE(ps->opd_prev[bk][i]) >> 2);
1686
                IM(tempRight) += (IM(ps->opd_prev[bk][i]) >> 2);
1687
#else
1688
56.2k
                RE(tempLeft)  += MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1689
56.2k
                IM(tempLeft)  += MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1690
56.2k
                RE(tempRight) += MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1691
56.2k
                IM(tempRight) += MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1692
56.2k
#endif
1693
1694
#if 0 /* original code */
1695
                ipd = (float)atan2(IM(tempLeft), RE(tempLeft));
1696
                opd = (float)atan2(IM(tempRight), RE(tempRight));
1697
1698
                /* phase rotation */
1699
                RE(phaseLeft) = (float)cos(opd);
1700
                IM(phaseLeft) = (float)sin(opd);
1701
                opd -= ipd;
1702
                RE(phaseRight) = (float)cos(opd);
1703
                IM(phaseRight) = (float)sin(opd);
1704
#else
1705
1706
                // x = IM(tempLeft)
1707
                // y = RE(tempLeft)
1708
                // p = IM(tempRight)
1709
                // q = RE(tempRight)
1710
                // cos(atan2(x,y)) = y/sqrt((x*x) + (y*y))
1711
                // sin(atan2(x,y)) = x/sqrt((x*x) + (y*y))
1712
                // cos(atan2(x,y)-atan2(p,q)) = (y*q + x*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1713
                // sin(atan2(x,y)-atan2(p,q)) = (x*q - y*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1714
1715
56.2k
                xy = magnitude_c(tempRight);
1716
56.2k
                pq = magnitude_c(tempLeft);
1717
1718
56.2k
                if (xy != 0)
1719
56.2k
                {
1720
56.2k
                    RE(phaseLeft) = DIV_F(RE(tempRight), xy);
1721
56.2k
                    IM(phaseLeft) = DIV_F(IM(tempRight), xy);
1722
56.2k
                } else {
1723
0
                    RE(phaseLeft) = 0;
1724
0
                    IM(phaseLeft) = 0;
1725
0
                }
1726
1727
56.2k
                xypq = MUL_F(xy, pq);
1728
1729
56.2k
                if (xypq != 0)
1730
56.2k
                {
1731
56.2k
                    real_t tmp1 = MUL_F(RE(tempRight), RE(tempLeft)) + MUL_F(IM(tempRight), IM(tempLeft));
1732
56.2k
                    real_t tmp2 = MUL_F(IM(tempRight), RE(tempLeft)) - MUL_F(RE(tempRight), IM(tempLeft));
1733
1734
56.2k
                    RE(phaseRight) = DIV_F(tmp1, xypq);
1735
56.2k
                    IM(phaseRight) = DIV_F(tmp2, xypq);
1736
56.2k
                } else {
1737
0
                    RE(phaseRight) = 0;
1738
0
                    IM(phaseRight) = 0;
1739
0
                }
1740
1741
56.2k
#endif
1742
1743
                /* MUL_F(COEF, REAL) = COEF */
1744
56.2k
                IM(h11) = MUL_F(RE(h11), IM(phaseLeft));
1745
56.2k
                IM(h12) = MUL_F(RE(h12), IM(phaseRight));
1746
56.2k
                IM(h21) = MUL_F(RE(h21), IM(phaseLeft));
1747
56.2k
                IM(h22) = MUL_F(RE(h22), IM(phaseRight));
1748
1749
56.2k
                RE(h11) = MUL_F(RE(h11), RE(phaseLeft));
1750
56.2k
                RE(h12) = MUL_F(RE(h12), RE(phaseRight));
1751
56.2k
                RE(h21) = MUL_F(RE(h21), RE(phaseLeft));
1752
56.2k
                RE(h22) = MUL_F(RE(h22), RE(phaseRight));
1753
56.2k
            }
1754
1755
            /* length of the envelope n_e+1 - n_e (in time samples) */
1756
            /* 0 < L <= 32: integer */
1757
409k
            L = (real_t)(ps->border_position[env + 1] - ps->border_position[env]);
1758
1759
            /* obtain final H_xy by means of linear interpolation */
1760
409k
            RE(deltaH11) = (RE(h11) - RE(ps->h11_prev[gr])) / L;
1761
409k
            RE(deltaH12) = (RE(h12) - RE(ps->h12_prev[gr])) / L;
1762
409k
            RE(deltaH21) = (RE(h21) - RE(ps->h21_prev[gr])) / L;
1763
409k
            RE(deltaH22) = (RE(h22) - RE(ps->h22_prev[gr])) / L;
1764
1765
409k
            RE(H11) = RE(ps->h11_prev[gr]);
1766
409k
            RE(H12) = RE(ps->h12_prev[gr]);
1767
409k
            RE(H21) = RE(ps->h21_prev[gr]);
1768
409k
            RE(H22) = RE(ps->h22_prev[gr]);
1769
409k
            IM(H11) = IM(H12) = IM(H21) = IM(H22) = 0;
1770
1771
409k
            RE(ps->h11_prev[gr]) = RE(h11);
1772
409k
            RE(ps->h12_prev[gr]) = RE(h12);
1773
409k
            RE(ps->h21_prev[gr]) = RE(h21);
1774
409k
            RE(ps->h22_prev[gr]) = RE(h22);
1775
1776
            /* only calculate imaginary part when needed */
1777
409k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1778
56.2k
            {
1779
                /* obtain final H_xy by means of linear interpolation */
1780
56.2k
                IM(deltaH11) = (IM(h11) - IM(ps->h11_prev[gr])) / L;
1781
56.2k
                IM(deltaH12) = (IM(h12) - IM(ps->h12_prev[gr])) / L;
1782
56.2k
                IM(deltaH21) = (IM(h21) - IM(ps->h21_prev[gr])) / L;
1783
56.2k
                IM(deltaH22) = (IM(h22) - IM(ps->h22_prev[gr])) / L;
1784
1785
56.2k
                IM(H11) = IM(ps->h11_prev[gr]);
1786
56.2k
                IM(H12) = IM(ps->h12_prev[gr]);
1787
56.2k
                IM(H21) = IM(ps->h21_prev[gr]);
1788
56.2k
                IM(H22) = IM(ps->h22_prev[gr]);
1789
1790
56.2k
                if ((NEGATE_IPD_MASK & ps->map_group2bk[gr]) != 0)
1791
7.80k
                {
1792
7.80k
                    IM(deltaH11) = -IM(deltaH11);
1793
7.80k
                    IM(deltaH12) = -IM(deltaH12);
1794
7.80k
                    IM(deltaH21) = -IM(deltaH21);
1795
7.80k
                    IM(deltaH22) = -IM(deltaH22);
1796
1797
7.80k
                    IM(H11) = -IM(H11);
1798
7.80k
                    IM(H12) = -IM(H12);
1799
7.80k
                    IM(H21) = -IM(H21);
1800
7.80k
                    IM(H22) = -IM(H22);
1801
7.80k
                }
1802
1803
56.2k
                IM(ps->h11_prev[gr]) = IM(h11);
1804
56.2k
                IM(ps->h12_prev[gr]) = IM(h12);
1805
56.2k
                IM(ps->h21_prev[gr]) = IM(h21);
1806
56.2k
                IM(ps->h22_prev[gr]) = IM(h22);
1807
56.2k
            }
1808
1809
            /* apply H_xy to the current envelope band of the decorrelated subband */
1810
6.17M
            for (n = ps->border_position[env]; n < ps->border_position[env + 1]; n++)
1811
5.76M
            {
1812
                /* addition finalises the interpolation over every n */
1813
5.76M
                RE(H11) += RE(deltaH11);
1814
5.76M
                RE(H12) += RE(deltaH12);
1815
5.76M
                RE(H21) += RE(deltaH21);
1816
5.76M
                RE(H22) += RE(deltaH22);
1817
5.76M
                if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1818
677k
                {
1819
677k
                    IM(H11) += IM(deltaH11);
1820
677k
                    IM(H12) += IM(deltaH12);
1821
677k
                    IM(H21) += IM(deltaH21);
1822
677k
                    IM(H22) += IM(deltaH22);
1823
677k
                }
1824
1825
                /* channel is an alias to the subband */
1826
19.7M
                for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1827
13.9M
                {
1828
13.9M
                    complex_t inLeft, inRight;  // precision_of in(Left|Right) == precision_of X_(left|right)
1829
1830
                    /* load decorrelated samples */
1831
13.9M
                    if (gr < ps->num_hybrid_groups)
1832
3.22M
                    {
1833
3.22M
                        RE(inLeft) =  RE(X_hybrid_left[n][sb]);
1834
3.22M
                        IM(inLeft) =  IM(X_hybrid_left[n][sb]);
1835
3.22M
                        RE(inRight) = RE(X_hybrid_right[n][sb]);
1836
3.22M
                        IM(inRight) = IM(X_hybrid_right[n][sb]);
1837
10.7M
                    } else {
1838
10.7M
                        RE(inLeft) =  RE(X_left[n][sb]);
1839
10.7M
                        IM(inLeft) =  IM(X_left[n][sb]);
1840
10.7M
                        RE(inRight) = RE(X_right[n][sb]);
1841
10.7M
                        IM(inRight) = IM(X_right[n][sb]);
1842
10.7M
                    }
1843
1844
                    /* precision_of temp(Left|Right) == precision_of X_(left|right) */
1845
1846
                    /* apply mixing */
1847
13.9M
                    RE(tempLeft) =  MUL_C(RE(H11), RE(inLeft)) + MUL_C(RE(H21), RE(inRight));
1848
13.9M
                    IM(tempLeft) =  MUL_C(RE(H11), IM(inLeft)) + MUL_C(RE(H21), IM(inRight));
1849
13.9M
                    RE(tempRight) = MUL_C(RE(H12), RE(inLeft)) + MUL_C(RE(H22), RE(inRight));
1850
13.9M
                    IM(tempRight) = MUL_C(RE(H12), IM(inLeft)) + MUL_C(RE(H22), IM(inRight));
1851
1852
                    /* only perform imaginary operations when needed */
1853
13.9M
                    if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1854
678k
                    {
1855
                        /* apply rotation */
1856
678k
                        RE(tempLeft)  -= MUL_C(IM(H11), IM(inLeft)) + MUL_C(IM(H21), IM(inRight));
1857
678k
                        IM(tempLeft)  += MUL_C(IM(H11), RE(inLeft)) + MUL_C(IM(H21), RE(inRight));
1858
678k
                        RE(tempRight) -= MUL_C(IM(H12), IM(inLeft)) + MUL_C(IM(H22), IM(inRight));
1859
678k
                        IM(tempRight) += MUL_C(IM(H12), RE(inLeft)) + MUL_C(IM(H22), RE(inRight));
1860
678k
                    }
1861
1862
                    /* store final samples */
1863
13.9M
                    if (gr < ps->num_hybrid_groups)
1864
3.22M
                    {
1865
3.22M
                        RE(X_hybrid_left[n][sb])  = RE(tempLeft);
1866
3.22M
                        IM(X_hybrid_left[n][sb])  = IM(tempLeft);
1867
3.22M
                        RE(X_hybrid_right[n][sb]) = RE(tempRight);
1868
3.22M
                        IM(X_hybrid_right[n][sb]) = IM(tempRight);
1869
10.7M
                    } else {
1870
10.7M
                        RE(X_left[n][sb])  = RE(tempLeft);
1871
10.7M
                        IM(X_left[n][sb])  = IM(tempLeft);
1872
10.7M
                        RE(X_right[n][sb]) = RE(tempRight);
1873
10.7M
                        IM(X_right[n][sb]) = IM(tempRight);
1874
10.7M
                    }
1875
13.9M
                }
1876
5.76M
            }
1877
1878
            /* shift phase smoother's circular buffer index */
1879
409k
            ps->phase_hist++;
1880
409k
            if (ps->phase_hist == 2)
1881
204k
            {
1882
204k
                ps->phase_hist = 0;
1883
204k
            }
1884
409k
        }
1885
185k
    }
1886
5.72k
}
1887
1888
void ps_free(ps_info *ps)
1889
9.03k
{
1890
    /* free hybrid filterbank structures */
1891
9.03k
    hybrid_free(ps->hyb);
1892
1893
9.03k
    faad_free(ps);
1894
9.03k
}
1895
1896
ps_info *ps_init(uint8_t sr_index, uint8_t numTimeSlotsRate)
1897
9.03k
{
1898
9.03k
    uint8_t i;
1899
9.03k
    uint8_t short_delay_band;
1900
1901
9.03k
    ps_info *ps = (ps_info*)faad_malloc(sizeof(ps_info));
1902
9.03k
    memset(ps, 0, sizeof(ps_info));
1903
1904
9.03k
    ps->hyb = hybrid_init(numTimeSlotsRate);
1905
9.03k
    ps->numTimeSlotsRate = numTimeSlotsRate;
1906
1907
9.03k
    ps->ps_data_available = 0;
1908
1909
    /* delay stuff*/
1910
9.03k
    ps->saved_delay = 0;
1911
1912
587k
    for (i = 0; i < 64; i++)
1913
578k
    {
1914
578k
        ps->delay_buf_index_delay[i] = 0;
1915
578k
    }
1916
1917
36.1k
    for (i = 0; i < NO_ALLPASS_LINKS; i++)
1918
27.1k
    {
1919
27.1k
        ps->delay_buf_index_ser[i] = 0;
1920
#ifdef PARAM_32KHZ
1921
        if (sr_index <= 5) /* >= 32 kHz*/
1922
        {
1923
            ps->num_sample_delay_ser[i] = delay_length_d[1][i];
1924
        } else {
1925
            ps->num_sample_delay_ser[i] = delay_length_d[0][i];
1926
        }
1927
#else
1928
27.1k
        (void)sr_index;
1929
        /* THESE ARE CONSTANTS NOW */
1930
27.1k
        ps->num_sample_delay_ser[i] = delay_length_d[i];
1931
27.1k
#endif
1932
27.1k
    }
1933
1934
#ifdef PARAM_32KHZ
1935
    if (sr_index <= 5) /* >= 32 kHz*/
1936
    {
1937
        short_delay_band = 35;
1938
        ps->nr_allpass_bands = 22;
1939
        ps->alpha_decay = FRAC_CONST(0.76592833836465);
1940
        ps->alpha_smooth = FRAC_CONST(0.25);
1941
    } else {
1942
        short_delay_band = 64;
1943
        ps->nr_allpass_bands = 45;
1944
        ps->alpha_decay = FRAC_CONST(0.58664621951003);
1945
        ps->alpha_smooth = FRAC_CONST(0.6);
1946
    }
1947
#else
1948
    /* THESE ARE CONSTANTS NOW */
1949
9.03k
    short_delay_band = 35;
1950
9.03k
    ps->nr_allpass_bands = 22;
1951
9.03k
    ps->alpha_decay = FRAC_CONST(0.76592833836465);
1952
9.03k
    ps->alpha_smooth = FRAC_CONST(0.25);
1953
9.03k
#endif
1954
1955
    /* THESE ARE CONSTANT NOW IF PS IS INDEPENDANT OF SAMPLERATE */
1956
325k
    for (i = 0; i < short_delay_band; i++)
1957
316k
    {
1958
316k
        ps->delay_D[i] = 14;
1959
316k
    }
1960
271k
    for (i = short_delay_band; i < 64; i++)
1961
262k
    {
1962
262k
        ps->delay_D[i] = 1;
1963
262k
    }
1964
1965
    /* mixing and phase */
1966
460k
    for (i = 0; i < 50; i++)
1967
451k
    {
1968
451k
        RE(ps->h11_prev[i]) = 1;
1969
451k
        IM(ps->h11_prev[i]) = 1;
1970
451k
        RE(ps->h12_prev[i]) = 1;
1971
451k
        IM(ps->h12_prev[i]) = 1;
1972
451k
    }
1973
1974
9.03k
    ps->phase_hist = 0;
1975
1976
189k
    for (i = 0; i < 20; i++)
1977
180k
    {
1978
180k
        RE(ps->ipd_prev[i][0]) = 0;
1979
180k
        IM(ps->ipd_prev[i][0]) = 0;
1980
180k
        RE(ps->ipd_prev[i][1]) = 0;
1981
180k
        IM(ps->ipd_prev[i][1]) = 0;
1982
180k
        RE(ps->opd_prev[i][0]) = 0;
1983
180k
        IM(ps->opd_prev[i][0]) = 0;
1984
180k
        RE(ps->opd_prev[i][1]) = 0;
1985
180k
        IM(ps->opd_prev[i][1]) = 0;
1986
180k
    }
1987
1988
9.03k
    return ps;
1989
9.03k
}
1990
1991
/* main Parametric Stereo decoding function */
1992
uint8_t ps_decode(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64])
1993
5.72k
{
1994
5.72k
    qmf_t X_hybrid_left[32][32] = {{{0}}};
1995
5.72k
    qmf_t X_hybrid_right[32][32] = {{{0}}};
1996
1997
    /* delta decoding of the bitstream data */
1998
5.72k
    ps_data_decode(ps);
1999
2000
    /* set up some parameters depending on filterbank type */
2001
5.72k
    if (ps->use34hybrid_bands)
2002
2.13k
    {
2003
2.13k
        ps->group_border = (uint8_t*)group_border34;
2004
2.13k
        ps->map_group2bk = (uint16_t*)map_group2bk34;
2005
2.13k
        ps->num_groups = 32+18;
2006
2.13k
        ps->num_hybrid_groups = 32;
2007
2.13k
        ps->nr_par_bands = 34;
2008
2.13k
        ps->decay_cutoff = 5;
2009
3.58k
    } else {
2010
3.58k
        ps->group_border = (uint8_t*)group_border20;
2011
3.58k
        ps->map_group2bk = (uint16_t*)map_group2bk20;
2012
3.58k
        ps->num_groups = 10+12;
2013
3.58k
        ps->num_hybrid_groups = 10;
2014
3.58k
        ps->nr_par_bands = 20;
2015
3.58k
        ps->decay_cutoff = 3;
2016
3.58k
    }
2017
2018
    /* Perform further analysis on the lowest subbands to get a higher
2019
     * frequency resolution
2020
     */
2021
5.72k
    hybrid_analysis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
2022
5.72k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2023
2024
    /* decorrelate mono signal */
2025
5.72k
    ps_decorrelate(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
2026
2027
    /* apply mixing and phase parameters */
2028
5.72k
    ps_mix_phase(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
2029
2030
    /* hybrid synthesis, to rebuild the SBR QMF matrices */
2031
5.72k
    hybrid_synthesis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
2032
5.72k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2033
2034
5.72k
    hybrid_synthesis((hyb_info*)ps->hyb, X_right, X_hybrid_right,
2035
5.72k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2036
2037
5.72k
    return 0;
2038
5.72k
}
2039
2040
#endif