Coverage Report

Created: 2025-07-23 06:30

/proc/self/cwd/libfaad/ps_dec.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: ps_dec.c,v 1.16 2009/01/26 22:32:31 menno Exp $
29
**/
30
31
#include "common.h"
32
33
#ifdef PS_DEC
34
35
#include <stdlib.h>
36
#include <stdio.h>
37
#include "ps_dec.h"
38
#include "ps_tables.h"
39
40
/* constants */
41
14.9M
#define NEGATE_IPD_MASK            (0x1000)
42
113k
#define DECAY_SLOPE                FRAC_CONST(0.05)
43
#define COEF_SQRT2                 COEF_CONST(1.4142135623731)
44
45
/* tables */
46
/* filters are mirrored in coef 6, second half left out */
47
static const real_t p8_13_20[7] =
48
{
49
    FRAC_CONST(0.00746082949812),
50
    FRAC_CONST(0.02270420949825),
51
    FRAC_CONST(0.04546865930473),
52
    FRAC_CONST(0.07266113929591),
53
    FRAC_CONST(0.09885108575264),
54
    FRAC_CONST(0.11793710567217),
55
    FRAC_CONST(0.125)
56
};
57
58
static const real_t p2_13_20[7] =
59
{
60
    FRAC_CONST(0.0),
61
    FRAC_CONST(0.01899487526049),
62
    FRAC_CONST(0.0),
63
    FRAC_CONST(-0.07293139167538),
64
    FRAC_CONST(0.0),
65
    FRAC_CONST(0.30596630545168),
66
    FRAC_CONST(0.5)
67
};
68
69
static const real_t p12_13_34[7] =
70
{
71
    FRAC_CONST(0.04081179924692),
72
    FRAC_CONST(0.03812810994926),
73
    FRAC_CONST(0.05144908135699),
74
    FRAC_CONST(0.06399831151592),
75
    FRAC_CONST(0.07428313801106),
76
    FRAC_CONST(0.08100347892914),
77
    FRAC_CONST(0.08333333333333)
78
};
79
80
static const real_t p8_13_34[7] =
81
{
82
    FRAC_CONST(0.01565675600122),
83
    FRAC_CONST(0.03752716391991),
84
    FRAC_CONST(0.05417891378782),
85
    FRAC_CONST(0.08417044116767),
86
    FRAC_CONST(0.10307344158036),
87
    FRAC_CONST(0.12222452249753),
88
    FRAC_CONST(0.125)
89
};
90
91
static const real_t p4_13_34[7] =
92
{
93
    FRAC_CONST(-0.05908211155639),
94
    FRAC_CONST(-0.04871498374946),
95
    FRAC_CONST(0.0),
96
    FRAC_CONST(0.07778723915851),
97
    FRAC_CONST(0.16486303567403),
98
    FRAC_CONST(0.23279856662996),
99
    FRAC_CONST(0.25)
100
};
101
102
#ifdef PARAM_32KHZ
103
static const uint8_t delay_length_d[2][NO_ALLPASS_LINKS] = {
104
    { 1, 2, 3 } /* d_24kHz */,
105
    { 3, 4, 5 } /* d_48kHz */
106
};
107
#else
108
static const uint8_t delay_length_d[NO_ALLPASS_LINKS] = {
109
    3, 4, 5 /* d_48kHz */
110
};
111
#endif
112
static const real_t filter_a[NO_ALLPASS_LINKS] = { /* a(m) = exp(-d_48kHz(m)/7) */
113
    FRAC_CONST(0.65143905753106),
114
    FRAC_CONST(0.56471812200776),
115
    FRAC_CONST(0.48954165955695)
116
};
117
118
static const uint8_t group_border20[10+12 + 1] =
119
{
120
    6, 7, 0, 1, 2, 3, /* 6 subqmf subbands */
121
    9, 8,             /* 2 subqmf subbands */
122
    10, 11,           /* 2 subqmf subbands */
123
    3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 35, 64
124
};
125
126
static const uint8_t group_border34[32+18 + 1] =
127
{
128
     0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, /* 12 subqmf subbands */
129
     12, 13, 14, 15, 16, 17, 18, 19,                 /*  8 subqmf subbands */
130
     20, 21, 22, 23,                                 /*  4 subqmf subbands */
131
     24, 25, 26, 27,                                 /*  4 subqmf subbands */
132
     28, 29, 30, 31,                                 /*  4 subqmf subbands */
133
     32-27, 33-27, 34-27, 35-27, 36-27, 37-27, 38-27, 40-27, 42-27, 44-27, 46-27, 48-27, 51-27, 54-27, 57-27, 60-27, 64-27, 68-27, 91-27
134
};
135
136
static const uint16_t map_group2bk20[10+12] =
137
{
138
    (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
139
    0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
140
};
141
142
static const uint16_t map_group2bk34[32+18] =
143
{
144
    0,  1,  2,  3,  4,  5,  6,  6,  7, (NEGATE_IPD_MASK | 2), (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
145
    10, 10, 4,  5,  6,  7,  8,  9,
146
    10, 11, 12, 9,
147
    14, 11, 12, 13,
148
    14, 15, 16, 13,
149
    16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33
150
};
151
152
/* type definitions */
153
typedef struct
154
{
155
    uint8_t frame_len;
156
    uint8_t resolution20[3];
157
    uint8_t resolution34[5];
158
159
    qmf_t *work;
160
    qmf_t **buffer;
161
    qmf_t **temp;
162
} hyb_info;
163
164
/* static function declarations */
165
static void ps_data_decode(ps_info *ps);
166
static hyb_info *hybrid_init(uint8_t numTimeSlotsRate);
167
static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
168
                            qmf_t *buffer, qmf_t **X_hybrid);
169
static void INLINE DCT3_4_unscaled(real_t *y, real_t *x);
170
static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
171
                            qmf_t *buffer, qmf_t **X_hybrid);
172
static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
173
                            uint8_t use34, uint8_t numTimeSlotsRate);
174
static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
175
                             uint8_t use34, uint8_t numTimeSlotsRate);
176
static int8_t delta_clip(int8_t i, int8_t min, int8_t max);
177
static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
178
                         uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
179
                         int8_t min_index, int8_t max_index);
180
static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
181
                                uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
182
                                int8_t and_modulo);
183
static void map20indexto34(int8_t *index, uint8_t bins);
184
#ifdef PS_LOW_POWER
185
static void map34indexto20(int8_t *index, uint8_t bins);
186
#endif
187
static void ps_data_decode(ps_info *ps);
188
static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
189
                           qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
190
static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
191
                         qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
192
193
/*  */
194
195
196
static hyb_info *hybrid_init(uint8_t numTimeSlotsRate)
197
9.34k
{
198
9.34k
    uint8_t i;
199
200
9.34k
    hyb_info *hyb = (hyb_info*)faad_malloc(sizeof(hyb_info));
201
202
9.34k
    hyb->resolution34[0] = 12;
203
9.34k
    hyb->resolution34[1] = 8;
204
9.34k
    hyb->resolution34[2] = 4;
205
9.34k
    hyb->resolution34[3] = 4;
206
9.34k
    hyb->resolution34[4] = 4;
207
208
9.34k
    hyb->resolution20[0] = 8;
209
9.34k
    hyb->resolution20[1] = 2;
210
9.34k
    hyb->resolution20[2] = 2;
211
212
9.34k
    hyb->frame_len = numTimeSlotsRate;
213
214
9.34k
    hyb->work = (qmf_t*)faad_malloc((hyb->frame_len+12) * sizeof(qmf_t));
215
9.34k
    memset(hyb->work, 0, (hyb->frame_len+12) * sizeof(qmf_t));
216
217
9.34k
    hyb->buffer = (qmf_t**)faad_malloc(5 * sizeof(qmf_t*));
218
56.0k
    for (i = 0; i < 5; i++)
219
46.7k
    {
220
46.7k
        hyb->buffer[i] = (qmf_t*)faad_malloc(hyb->frame_len * sizeof(qmf_t));
221
46.7k
        memset(hyb->buffer[i], 0, hyb->frame_len * sizeof(qmf_t));
222
46.7k
    }
223
224
9.34k
    hyb->temp = (qmf_t**)faad_malloc(hyb->frame_len * sizeof(qmf_t*));
225
305k
    for (i = 0; i < hyb->frame_len; i++)
226
295k
    {
227
295k
        hyb->temp[i] = (qmf_t*)faad_malloc(12 /*max*/ * sizeof(qmf_t));
228
295k
    }
229
230
9.34k
    return hyb;
231
9.34k
}
232
233
static void hybrid_free(hyb_info *hyb)
234
9.34k
{
235
9.34k
    uint8_t i;
236
237
9.34k
  if (!hyb) return;
238
239
9.34k
    if (hyb->work)
240
9.34k
        faad_free(hyb->work);
241
242
56.0k
    for (i = 0; i < 5; i++)
243
46.7k
    {
244
46.7k
        if (hyb->buffer[i])
245
46.7k
            faad_free(hyb->buffer[i]);
246
46.7k
    }
247
9.34k
    if (hyb->buffer)
248
9.34k
        faad_free(hyb->buffer);
249
250
305k
    for (i = 0; i < hyb->frame_len; i++)
251
295k
    {
252
295k
        if (hyb->temp[i])
253
295k
            faad_free(hyb->temp[i]);
254
295k
    }
255
9.34k
    if (hyb->temp)
256
9.34k
        faad_free(hyb->temp);
257
258
9.34k
    faad_free(hyb);
259
9.34k
}
260
261
/* real filter, size 2 */
262
static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
263
                            qmf_t *buffer, qmf_t **X_hybrid)
264
7.52k
{
265
7.52k
    uint8_t i;
266
7.52k
    (void)hyb;  /* TODO: remove parameter? */
267
268
244k
    for (i = 0; i < frame_len; i++)
269
236k
    {
270
236k
        real_t r0 = MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i])));
271
236k
        real_t r1 = MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i])));
272
236k
        real_t r2 = MUL_F(filter[2],(QMF_RE(buffer[2+i]) + QMF_RE(buffer[10+i])));
273
236k
        real_t r3 = MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
274
236k
        real_t r4 = MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
275
236k
        real_t r5 = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
276
236k
        real_t r6 = MUL_F(filter[6],QMF_RE(buffer[6+i]));
277
236k
        real_t i0 = MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i])));
278
236k
        real_t i1 = MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i])));
279
236k
        real_t i2 = MUL_F(filter[2],(QMF_IM(buffer[2+i]) + QMF_IM(buffer[10+i])));
280
236k
        real_t i3 = MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
281
236k
        real_t i4 = MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
282
236k
        real_t i5 = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
283
236k
        real_t i6 = MUL_F(filter[6],QMF_IM(buffer[6+i]));
284
285
        /* q = 0 */
286
236k
        QMF_RE(X_hybrid[i][0]) = r0 + r1 + r2 + r3 + r4 + r5 + r6;
287
236k
        QMF_IM(X_hybrid[i][0]) = i0 + i1 + i2 + i3 + i4 + i5 + i6;
288
289
        /* q = 1 */
290
236k
        QMF_RE(X_hybrid[i][1]) = r0 - r1 + r2 - r3 + r4 - r5 + r6;
291
236k
        QMF_IM(X_hybrid[i][1]) = i0 - i1 + i2 - i3 + i4 - i5 + i6;
292
236k
    }
293
7.52k
}
294
295
/* complex filter, size 4 */
296
static void channel_filter4(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
297
                            qmf_t *buffer, qmf_t **X_hybrid)
298
6.57k
{
299
6.57k
    uint8_t i;
300
6.57k
    real_t input_re1[2], input_re2[2], input_im1[2], input_im2[2];
301
6.57k
    (void)hyb;  /* TODO: remove parameter? */
302
303
208k
    for (i = 0; i < frame_len; i++)
304
201k
    {
305
201k
        input_re1[0] = -MUL_F(filter[2], (QMF_RE(buffer[i+2]) + QMF_RE(buffer[i+10]))) +
306
201k
            MUL_F(filter[6], QMF_RE(buffer[i+6]));
307
201k
        input_re1[1] = MUL_F(FRAC_CONST(-0.70710678118655),
308
201k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) + QMF_RE(buffer[i+11]))) +
309
201k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) + QMF_RE(buffer[i+9]))) -
310
201k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) + QMF_RE(buffer[i+7])))));
311
312
201k
        input_im1[0] = MUL_F(filter[0], (QMF_IM(buffer[i+0]) - QMF_IM(buffer[i+12]))) -
313
201k
            MUL_F(filter[4], (QMF_IM(buffer[i+4]) - QMF_IM(buffer[i+8])));
314
201k
        input_im1[1] = MUL_F(FRAC_CONST(0.70710678118655),
315
201k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) - QMF_IM(buffer[i+11]))) -
316
201k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) - QMF_IM(buffer[i+9]))) -
317
201k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) - QMF_IM(buffer[i+7])))));
318
319
201k
        input_re2[0] = MUL_F(filter[0], (QMF_RE(buffer[i+0]) - QMF_RE(buffer[i+12]))) -
320
201k
            MUL_F(filter[4], (QMF_RE(buffer[i+4]) - QMF_RE(buffer[i+8])));
321
201k
        input_re2[1] = MUL_F(FRAC_CONST(0.70710678118655),
322
201k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) - QMF_RE(buffer[i+11]))) -
323
201k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) - QMF_RE(buffer[i+9]))) -
324
201k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) - QMF_RE(buffer[i+7])))));
325
326
201k
        input_im2[0] = -MUL_F(filter[2], (QMF_IM(buffer[i+2]) + QMF_IM(buffer[i+10]))) +
327
201k
            MUL_F(filter[6], QMF_IM(buffer[i+6]));
328
201k
        input_im2[1] = MUL_F(FRAC_CONST(-0.70710678118655),
329
201k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) + QMF_IM(buffer[i+11]))) +
330
201k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) + QMF_IM(buffer[i+9]))) -
331
201k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) + QMF_IM(buffer[i+7])))));
332
333
        /* q == 0 */
334
201k
        QMF_RE(X_hybrid[i][0]) =  input_re1[0] + input_re1[1] + input_im1[0] + input_im1[1];
335
201k
        QMF_IM(X_hybrid[i][0]) = -input_re2[0] - input_re2[1] + input_im2[0] + input_im2[1];
336
337
        /* q == 1 */
338
201k
        QMF_RE(X_hybrid[i][1]) =  input_re1[0] - input_re1[1] - input_im1[0] + input_im1[1];
339
201k
        QMF_IM(X_hybrid[i][1]) =  input_re2[0] - input_re2[1] + input_im2[0] - input_im2[1];
340
341
        /* q == 2 */
342
201k
        QMF_RE(X_hybrid[i][2]) =  input_re1[0] - input_re1[1] + input_im1[0] - input_im1[1];
343
201k
        QMF_IM(X_hybrid[i][2]) = -input_re2[0] + input_re2[1] + input_im2[0] - input_im2[1];
344
345
        /* q == 3 */
346
201k
        QMF_RE(X_hybrid[i][3]) =  input_re1[0] + input_re1[1] - input_im1[0] - input_im1[1];
347
201k
        QMF_IM(X_hybrid[i][3]) =  input_re2[0] + input_re2[1] + input_im2[0] + input_im2[1];
348
201k
    }
349
6.57k
}
350
351
static void INLINE DCT3_4_unscaled(real_t *y, real_t *x)
352
742k
{
353
742k
    real_t f0, f1, f2, f3, f4, f5, f6, f7, f8;
354
355
742k
    f0 = MUL_F(x[2], FRAC_CONST(0.7071067811865476));
356
742k
    f1 = x[0] - f0;
357
742k
    f2 = x[0] + f0;
358
742k
    f3 = x[1] + x[3];
359
742k
    f4 = MUL_C(x[1], COEF_CONST(1.3065629648763766));
360
742k
    f5 = MUL_F(f3, FRAC_CONST(-0.9238795325112866));
361
742k
    f6 = MUL_F(x[3], FRAC_CONST(-0.5411961001461967));
362
742k
    f7 = f4 + f5;
363
742k
    f8 = f6 - f5;
364
742k
    y[3] = f2 - f8;
365
742k
    y[0] = f2 + f8;
366
742k
    y[2] = f1 - f7;
367
742k
    y[1] = f1 + f7;
368
742k
}
369
370
/* complex filter, size 8 */
371
static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
372
                            qmf_t *buffer, qmf_t **X_hybrid)
373
5.95k
{
374
5.95k
    uint8_t i, n;
375
5.95k
    real_t input_re1[4], input_re2[4], input_im1[4], input_im2[4];
376
5.95k
    real_t x[4];
377
5.95k
    (void)hyb;  /* TODO: remove parameter? */
378
379
191k
    for (i = 0; i < frame_len; i++)
380
185k
    {
381
185k
        input_re1[0] =  MUL_F(filter[6],QMF_RE(buffer[6+i]));
382
185k
        input_re1[1] =  MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
383
185k
        input_re1[2] = -MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i]))) + MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
384
185k
        input_re1[3] = -MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i]))) + MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
385
386
185k
        input_im1[0] = MUL_F(filter[5],(QMF_IM(buffer[7+i]) - QMF_IM(buffer[5+i])));
387
185k
        input_im1[1] = MUL_F(filter[0],(QMF_IM(buffer[12+i]) - QMF_IM(buffer[0+i]))) + MUL_F(filter[4],(QMF_IM(buffer[8+i]) - QMF_IM(buffer[4+i])));
388
185k
        input_im1[2] = MUL_F(filter[1],(QMF_IM(buffer[11+i]) - QMF_IM(buffer[1+i]))) + MUL_F(filter[3],(QMF_IM(buffer[9+i]) - QMF_IM(buffer[3+i])));
389
185k
        input_im1[3] = MUL_F(filter[2],(QMF_IM(buffer[10+i]) - QMF_IM(buffer[2+i])));
390
391
928k
        for (n = 0; n < 4; n++)
392
742k
        {
393
742k
            x[n] = input_re1[n] - input_im1[3-n];
394
742k
        }
395
185k
        DCT3_4_unscaled(x, x);
396
185k
        QMF_RE(X_hybrid[i][7]) = x[0];
397
185k
        QMF_RE(X_hybrid[i][5]) = x[2];
398
185k
        QMF_RE(X_hybrid[i][3]) = x[3];
399
185k
        QMF_RE(X_hybrid[i][1]) = x[1];
400
401
928k
        for (n = 0; n < 4; n++)
402
742k
        {
403
742k
            x[n] = input_re1[n] + input_im1[3-n];
404
742k
        }
405
185k
        DCT3_4_unscaled(x, x);
406
185k
        QMF_RE(X_hybrid[i][6]) = x[1];
407
185k
        QMF_RE(X_hybrid[i][4]) = x[3];
408
185k
        QMF_RE(X_hybrid[i][2]) = x[2];
409
185k
        QMF_RE(X_hybrid[i][0]) = x[0];
410
411
185k
        input_im2[0] =  MUL_F(filter[6],QMF_IM(buffer[6+i]));
412
185k
        input_im2[1] =  MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
413
185k
        input_im2[2] = -MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i]))) + MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
414
185k
        input_im2[3] = -MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i]))) + MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
415
416
185k
        input_re2[0] = MUL_F(filter[5],(QMF_RE(buffer[7+i]) - QMF_RE(buffer[5+i])));
417
185k
        input_re2[1] = MUL_F(filter[0],(QMF_RE(buffer[12+i]) - QMF_RE(buffer[0+i]))) + MUL_F(filter[4],(QMF_RE(buffer[8+i]) - QMF_RE(buffer[4+i])));
418
185k
        input_re2[2] = MUL_F(filter[1],(QMF_RE(buffer[11+i]) - QMF_RE(buffer[1+i]))) + MUL_F(filter[3],(QMF_RE(buffer[9+i]) - QMF_RE(buffer[3+i])));
419
185k
        input_re2[3] = MUL_F(filter[2],(QMF_RE(buffer[10+i]) - QMF_RE(buffer[2+i])));
420
421
928k
        for (n = 0; n < 4; n++)
422
742k
        {
423
742k
            x[n] = input_im2[n] + input_re2[3-n];
424
742k
        }
425
185k
        DCT3_4_unscaled(x, x);
426
185k
        QMF_IM(X_hybrid[i][7]) = x[0];
427
185k
        QMF_IM(X_hybrid[i][5]) = x[2];
428
185k
        QMF_IM(X_hybrid[i][3]) = x[3];
429
185k
        QMF_IM(X_hybrid[i][1]) = x[1];
430
431
928k
        for (n = 0; n < 4; n++)
432
742k
        {
433
742k
            x[n] = input_im2[n] - input_re2[3-n];
434
742k
        }
435
185k
        DCT3_4_unscaled(x, x);
436
185k
        QMF_IM(X_hybrid[i][6]) = x[1];
437
185k
        QMF_IM(X_hybrid[i][4]) = x[3];
438
185k
        QMF_IM(X_hybrid[i][2]) = x[2];
439
185k
        QMF_IM(X_hybrid[i][0]) = x[0];
440
185k
    }
441
5.95k
}
442
443
static void INLINE DCT3_6_unscaled(real_t *y, real_t *x)
444
269k
{
445
269k
    real_t f0, f1, f2, f3, f4, f5, f6, f7;
446
447
269k
    f0 = MUL_F(x[3], FRAC_CONST(0.70710678118655));
448
269k
    f1 = x[0] + f0;
449
269k
    f2 = x[0] - f0;
450
269k
    f3 = MUL_F((x[1] - x[5]), FRAC_CONST(0.70710678118655));
451
269k
    f4 = MUL_F(x[2], FRAC_CONST(0.86602540378444)) + MUL_F(x[4], FRAC_CONST(0.5));
452
269k
    f5 = f4 - x[4];
453
269k
    f6 = MUL_F(x[1], FRAC_CONST(0.96592582628907)) + MUL_F(x[5], FRAC_CONST(0.25881904510252));
454
269k
    f7 = f6 - f3;
455
269k
    y[0] = f1 + f6 + f4;
456
269k
    y[1] = f2 + f3 - x[4];
457
269k
    y[2] = f7 + f2 - f5;
458
269k
    y[3] = f1 - f7 - f5;
459
269k
    y[4] = f1 - f3 - x[4];
460
269k
    y[5] = f2 - f6 + f4;
461
269k
}
462
463
/* complex filter, size 12 */
464
static void channel_filter12(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
465
                             qmf_t *buffer, qmf_t **X_hybrid)
466
2.19k
{
467
2.19k
    uint8_t i, n;
468
2.19k
    real_t input_re1[6], input_re2[6], input_im1[6], input_im2[6];
469
2.19k
    real_t out_re1[6], out_re2[6], out_im1[6], out_im2[6];
470
2.19k
    (void)hyb;  /* TODO: remove parameter? */
471
472
69.5k
    for (i = 0; i < frame_len; i++)
473
67.3k
    {
474
471k
        for (n = 0; n < 6; n++)
475
403k
        {
476
403k
            if (n == 0)
477
67.3k
            {
478
67.3k
                input_re1[0] = MUL_F(QMF_RE(buffer[6+i]), filter[6]);
479
67.3k
                input_re2[0] = MUL_F(QMF_IM(buffer[6+i]), filter[6]);
480
336k
            } else {
481
336k
                input_re1[6-n] = MUL_F((QMF_RE(buffer[n+i]) + QMF_RE(buffer[12-n+i])), filter[n]);
482
336k
                input_re2[6-n] = MUL_F((QMF_IM(buffer[n+i]) + QMF_IM(buffer[12-n+i])), filter[n]);
483
336k
            }
484
403k
            input_im2[n] = MUL_F((QMF_RE(buffer[n+i]) - QMF_RE(buffer[12-n+i])), filter[n]);
485
403k
            input_im1[n] = MUL_F((QMF_IM(buffer[n+i]) - QMF_IM(buffer[12-n+i])), filter[n]);
486
403k
        }
487
488
67.3k
        DCT3_6_unscaled(out_re1, input_re1);
489
67.3k
        DCT3_6_unscaled(out_re2, input_re2);
490
491
67.3k
        DCT3_6_unscaled(out_im1, input_im1);
492
67.3k
        DCT3_6_unscaled(out_im2, input_im2);
493
494
269k
        for (n = 0; n < 6; n += 2)
495
201k
        {
496
201k
            QMF_RE(X_hybrid[i][n]) = out_re1[n] - out_im1[n];
497
201k
            QMF_IM(X_hybrid[i][n]) = out_re2[n] + out_im2[n];
498
201k
            QMF_RE(X_hybrid[i][n+1]) = out_re1[n+1] + out_im1[n+1];
499
201k
            QMF_IM(X_hybrid[i][n+1]) = out_re2[n+1] - out_im2[n+1];
500
501
201k
            QMF_RE(X_hybrid[i][10-n]) = out_re1[n+1] - out_im1[n+1];
502
201k
            QMF_IM(X_hybrid[i][10-n]) = out_re2[n+1] + out_im2[n+1];
503
201k
            QMF_RE(X_hybrid[i][11-n]) = out_re1[n] + out_im1[n];
504
201k
            QMF_IM(X_hybrid[i][11-n]) = out_re2[n] - out_im2[n];
505
201k
        }
506
67.3k
    }
507
2.19k
}
508
509
/* Hybrid analysis: further split up QMF subbands
510
 * to improve frequency resolution
511
 */
512
static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
513
                            uint8_t use34, uint8_t numTimeSlotsRate)
514
5.95k
{
515
5.95k
    uint8_t k, n, band;
516
5.95k
    uint8_t offset = 0;
517
5.95k
    uint8_t qmf_bands = (use34) ? 5 : 3;
518
5.95k
    uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
519
520
28.2k
    for (band = 0; band < qmf_bands; band++)
521
22.2k
    {
522
        /* build working buffer */
523
22.2k
        memcpy(hyb->work, hyb->buffer[band], 12 * sizeof(qmf_t));
524
525
        /* add new samples */
526
713k
        for (n = 0; n < hyb->frame_len; n++)
527
691k
        {
528
691k
            QMF_RE(hyb->work[12 + n]) = QMF_RE(X[n + 6 /*delay*/][band]);
529
691k
            QMF_IM(hyb->work[12 + n]) = QMF_IM(X[n + 6 /*delay*/][band]);
530
691k
        }
531
532
        /* store samples */
533
22.2k
        memcpy(hyb->buffer[band], hyb->work + hyb->frame_len, 12 * sizeof(qmf_t));
534
535
536
22.2k
        switch(resolution[band])
537
22.2k
        {
538
7.52k
        case 2:
539
            /* Type B real filter, Q[p] = 2 */
540
7.52k
            channel_filter2(hyb, hyb->frame_len, p2_13_20, hyb->work, hyb->temp);
541
7.52k
            break;
542
6.57k
        case 4:
543
            /* Type A complex filter, Q[p] = 4 */
544
6.57k
            channel_filter4(hyb, hyb->frame_len, p4_13_34, hyb->work, hyb->temp);
545
6.57k
            break;
546
5.95k
        case 8:
547
            /* Type A complex filter, Q[p] = 8 */
548
5.95k
            channel_filter8(hyb, hyb->frame_len, (use34) ? p8_13_34 : p8_13_20,
549
5.95k
                hyb->work, hyb->temp);
550
5.95k
            break;
551
2.19k
        case 12:
552
            /* Type A complex filter, Q[p] = 12 */
553
2.19k
            channel_filter12(hyb, hyb->frame_len, p12_13_34, hyb->work, hyb->temp);
554
2.19k
            break;
555
22.2k
        }
556
557
713k
        for (n = 0; n < hyb->frame_len; n++)
558
691k
        {
559
4.26M
            for (k = 0; k < resolution[band]; k++)
560
3.57M
            {
561
3.57M
                QMF_RE(X_hybrid[n][offset + k]) = QMF_RE(hyb->temp[n][k]);
562
3.57M
                QMF_IM(X_hybrid[n][offset + k]) = QMF_IM(hyb->temp[n][k]);
563
3.57M
            }
564
691k
        }
565
22.2k
        offset += resolution[band];
566
22.2k
    }
567
568
    /* group hybrid channels */
569
5.95k
    if (!use34)
570
3.76k
    {
571
122k
        for (n = 0; n < numTimeSlotsRate; n++)
572
118k
        {
573
118k
            QMF_RE(X_hybrid[n][3]) += QMF_RE(X_hybrid[n][4]);
574
118k
            QMF_IM(X_hybrid[n][3]) += QMF_IM(X_hybrid[n][4]);
575
118k
            QMF_RE(X_hybrid[n][4]) = 0;
576
118k
            QMF_IM(X_hybrid[n][4]) = 0;
577
578
118k
            QMF_RE(X_hybrid[n][2]) += QMF_RE(X_hybrid[n][5]);
579
118k
            QMF_IM(X_hybrid[n][2]) += QMF_IM(X_hybrid[n][5]);
580
118k
            QMF_RE(X_hybrid[n][5]) = 0;
581
118k
            QMF_IM(X_hybrid[n][5]) = 0;
582
118k
        }
583
3.76k
    }
584
5.95k
}
585
586
static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
587
                             uint8_t use34, uint8_t numTimeSlotsRate)
588
11.9k
{
589
11.9k
    uint8_t k, n, band;
590
11.9k
    uint8_t offset = 0;
591
11.9k
    uint8_t qmf_bands = (use34) ? 5 : 3;
592
11.9k
    uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
593
11.9k
    (void)numTimeSlotsRate;  /* TODO: remove parameter? */
594
595
56.4k
    for(band = 0; band < qmf_bands; band++)
596
44.4k
    {
597
1.42M
        for (n = 0; n < hyb->frame_len; n++)
598
1.38M
        {
599
1.38M
            QMF_RE(X[n][band]) = 0;
600
1.38M
            QMF_IM(X[n][band]) = 0;
601
602
8.53M
            for (k = 0; k < resolution[band]; k++)
603
7.14M
            {
604
7.14M
                QMF_RE(X[n][band]) += QMF_RE(X_hybrid[n][offset + k]);
605
7.14M
                QMF_IM(X[n][band]) += QMF_IM(X_hybrid[n][offset + k]);
606
7.14M
            }
607
1.38M
        }
608
44.4k
        offset += resolution[band];
609
44.4k
    }
610
11.9k
}
611
612
/* limits the value i to the range [min,max] */
613
static int8_t delta_clip(int8_t i, int8_t min, int8_t max)
614
91.8k
{
615
91.8k
    if (i < min)
616
9.94k
        return min;
617
81.9k
    else if (i > max)
618
3.32k
        return max;
619
78.6k
    else
620
78.6k
        return i;
621
91.8k
}
622
623
//int iid = 0;
624
625
/* delta decode array */
626
static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
627
                         uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
628
                         int8_t min_index, int8_t max_index)
629
18.7k
{
630
18.7k
    int8_t i;
631
632
18.7k
    if (enable == 1)
633
8.24k
    {
634
8.24k
        if (dt_flag == 0)
635
5.73k
        {
636
            /* delta coded in frequency direction */
637
5.73k
            index[0] = 0 + index[0];
638
5.73k
            index[0] = delta_clip(index[0], min_index, max_index);
639
640
66.2k
            for (i = 1; i < nr_par; i++)
641
60.4k
            {
642
60.4k
                index[i] = index[i-1] + index[i];
643
60.4k
                index[i] = delta_clip(index[i], min_index, max_index);
644
60.4k
            }
645
5.73k
        } else {
646
            /* delta coded in time direction */
647
28.1k
            for (i = 0; i < nr_par; i++)
648
25.6k
            {
649
                //int8_t tmp2;
650
                //int8_t tmp = index[i];
651
652
                //printf("%d %d\n", index_prev[i*stride], index[i]);
653
                //printf("%d\n", index[i]);
654
655
25.6k
                index[i] = index_prev[i*stride] + index[i];
656
                //tmp2 = index[i];
657
25.6k
                index[i] = delta_clip(index[i], min_index, max_index);
658
659
                //if (iid)
660
                //{
661
                //    if (index[i] == 7)
662
                //    {
663
                //        printf("%d %d %d\n", index_prev[i*stride], tmp, tmp2);
664
                //    }
665
                //}
666
25.6k
            }
667
2.50k
        }
668
10.5k
    } else {
669
        /* set indices to zero */
670
19.6k
        for (i = 0; i < nr_par; i++)
671
9.14k
        {
672
9.14k
            index[i] = 0;
673
9.14k
        }
674
10.5k
    }
675
676
    /* coarse */
677
18.7k
    if (stride == 2)
678
11.7k
    {
679
43.8k
        for (i = (nr_par<<1)-1; i > 0; i--)
680
32.1k
        {
681
32.1k
            index[i] = index[i>>1];
682
32.1k
        }
683
11.7k
    }
684
18.7k
}
685
686
/* delta modulo decode array */
687
/* in: log2 value of the modulo value to allow using AND instead of MOD */
688
static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
689
                                uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
690
                                int8_t and_modulo)
691
18.7k
{
692
18.7k
    int8_t i;
693
694
18.7k
    if (enable == 1)
695
5.99k
    {
696
5.99k
        if (dt_flag == 0)
697
2.43k
        {
698
            /* delta coded in frequency direction */
699
2.43k
            index[0] = 0 + index[0];
700
2.43k
            index[0] &= and_modulo;
701
702
8.36k
            for (i = 1; i < nr_par; i++)
703
5.92k
            {
704
5.92k
                index[i] = index[i-1] + index[i];
705
5.92k
                index[i] &= and_modulo;
706
5.92k
            }
707
3.56k
        } else {
708
            /* delta coded in time direction */
709
10.4k
            for (i = 0; i < nr_par; i++)
710
6.86k
            {
711
6.86k
                index[i] = index_prev[i*stride] + index[i];
712
6.86k
                index[i] &= and_modulo;
713
6.86k
            }
714
3.56k
        }
715
12.7k
    } else {
716
        /* set indices to zero */
717
52.9k
        for (i = 0; i < nr_par; i++)
718
40.2k
        {
719
40.2k
            index[i] = 0;
720
40.2k
        }
721
12.7k
    }
722
723
    /* coarse */
724
18.7k
    if (stride == 2)
725
0
    {
726
0
        index[0] = 0;
727
0
        for (i = (nr_par<<1)-1; i > 0; i--)
728
0
        {
729
0
            index[i] = index[i>>1];
730
0
        }
731
0
    }
732
18.7k
}
733
734
#ifdef PS_LOW_POWER
735
static void map34indexto20(int8_t *index, uint8_t bins)
736
{
737
    index[0] = (2*index[0]+index[1])/3;
738
    index[1] = (index[1]+2*index[2])/3;
739
    index[2] = (2*index[3]+index[4])/3;
740
    index[3] = (index[4]+2*index[5])/3;
741
    index[4] = (index[6]+index[7])/2;
742
    index[5] = (index[8]+index[9])/2;
743
    index[6] = index[10];
744
    index[7] = index[11];
745
    index[8] = (index[12]+index[13])/2;
746
    index[9] = (index[14]+index[15])/2;
747
    index[10] = index[16];
748
749
    if (bins == 34)
750
    {
751
        index[11] = index[17];
752
        index[12] = index[18];
753
        index[13] = index[19];
754
        index[14] = (index[20]+index[21])/2;
755
        index[15] = (index[22]+index[23])/2;
756
        index[16] = (index[24]+index[25])/2;
757
        index[17] = (index[26]+index[27])/2;
758
        index[18] = (index[28]+index[29]+index[30]+index[31])/4;
759
        index[19] = (index[32]+index[33])/2;
760
    }
761
}
762
#endif
763
764
static void map20indexto34(int8_t *index, uint8_t bins)
765
8.04k
{
766
8.04k
    index[0] = index[0];
767
8.04k
    index[1] = (index[0] + index[1])/2;
768
8.04k
    index[2] = index[1];
769
8.04k
    index[3] = index[2];
770
8.04k
    index[4] = (index[2] + index[3])/2;
771
8.04k
    index[5] = index[3];
772
8.04k
    index[6] = index[4];
773
8.04k
    index[7] = index[4];
774
8.04k
    index[8] = index[5];
775
8.04k
    index[9] = index[5];
776
8.04k
    index[10] = index[6];
777
8.04k
    index[11] = index[7];
778
8.04k
    index[12] = index[8];
779
8.04k
    index[13] = index[8];
780
8.04k
    index[14] = index[9];
781
8.04k
    index[15] = index[9];
782
8.04k
    index[16] = index[10];
783
784
8.04k
    if (bins == 34)
785
3.70k
    {
786
3.70k
        index[17] = index[11];
787
3.70k
        index[18] = index[12];
788
3.70k
        index[19] = index[13];
789
3.70k
        index[20] = index[14];
790
3.70k
        index[21] = index[14];
791
3.70k
        index[22] = index[15];
792
3.70k
        index[23] = index[15];
793
3.70k
        index[24] = index[16];
794
3.70k
        index[25] = index[16];
795
3.70k
        index[26] = index[17];
796
3.70k
        index[27] = index[17];
797
3.70k
        index[28] = index[18];
798
3.70k
        index[29] = index[18];
799
3.70k
        index[30] = index[18];
800
3.70k
        index[31] = index[18];
801
3.70k
        index[32] = index[19];
802
3.70k
        index[33] = index[19];
803
3.70k
    }
804
8.04k
}
805
806
/* parse the bitstream data decoded in ps_data() */
807
static void ps_data_decode(ps_info *ps)
808
5.95k
{
809
5.95k
    uint8_t env, bin;
810
811
    /* ps data not available, use data from previous frame */
812
5.95k
    if (ps->ps_data_available == 0)
813
1.73k
    {
814
1.73k
        ps->num_env = 0;
815
1.73k
    }
816
817
15.3k
    for (env = 0; env < ps->num_env; env++)
818
9.38k
    {
819
9.38k
        int8_t *iid_index_prev;
820
9.38k
        int8_t *icc_index_prev;
821
9.38k
        int8_t *ipd_index_prev;
822
9.38k
        int8_t *opd_index_prev;
823
824
9.38k
        int8_t num_iid_steps = (ps->iid_mode < 3) ? 7 : 15 /*fine quant*/;
825
826
9.38k
        if (env == 0)
827
2.75k
        {
828
            /* take last envelope from previous frame */
829
2.75k
            iid_index_prev = ps->iid_index_prev;
830
2.75k
            icc_index_prev = ps->icc_index_prev;
831
2.75k
            ipd_index_prev = ps->ipd_index_prev;
832
2.75k
            opd_index_prev = ps->opd_index_prev;
833
6.63k
        } else {
834
            /* take index values from previous envelope */
835
6.63k
            iid_index_prev = ps->iid_index[env - 1];
836
6.63k
            icc_index_prev = ps->icc_index[env - 1];
837
6.63k
            ipd_index_prev = ps->ipd_index[env - 1];
838
6.63k
            opd_index_prev = ps->opd_index[env - 1];
839
6.63k
        }
840
841
//        iid = 1;
842
        /* delta decode iid parameters */
843
9.38k
        delta_decode(ps->enable_iid, ps->iid_index[env], iid_index_prev,
844
9.38k
            ps->iid_dt[env], ps->nr_iid_par,
845
9.38k
            (ps->iid_mode == 0 || ps->iid_mode == 3) ? 2 : 1,
846
9.38k
            -num_iid_steps, num_iid_steps);
847
//        iid = 0;
848
849
        /* delta decode icc parameters */
850
9.38k
        delta_decode(ps->enable_icc, ps->icc_index[env], icc_index_prev,
851
9.38k
            ps->icc_dt[env], ps->nr_icc_par,
852
9.38k
            (ps->icc_mode == 0 || ps->icc_mode == 3) ? 2 : 1,
853
9.38k
            0, 7);
854
855
        /* delta modulo decode ipd parameters */
856
9.38k
        delta_modulo_decode(ps->enable_ipdopd, ps->ipd_index[env], ipd_index_prev,
857
9.38k
            ps->ipd_dt[env], ps->nr_ipdopd_par, 1, 7);
858
859
        /* delta modulo decode opd parameters */
860
9.38k
        delta_modulo_decode(ps->enable_ipdopd, ps->opd_index[env], opd_index_prev,
861
9.38k
            ps->opd_dt[env], ps->nr_ipdopd_par, 1, 7);
862
9.38k
    }
863
864
    /* handle error case */
865
5.95k
    if (ps->num_env == 0)
866
3.20k
    {
867
        /* force to 1 */
868
3.20k
        ps->num_env = 1;
869
870
3.20k
        if (ps->enable_iid)
871
2.17k
        {
872
76.0k
            for (bin = 0; bin < 34; bin++)
873
73.8k
                ps->iid_index[0][bin] = ps->iid_index_prev[bin];
874
2.17k
        } else {
875
36.0k
            for (bin = 0; bin < 34; bin++)
876
34.9k
                ps->iid_index[0][bin] = 0;
877
1.02k
        }
878
879
3.20k
        if (ps->enable_icc)
880
1.76k
        {
881
61.8k
            for (bin = 0; bin < 34; bin++)
882
60.0k
                ps->icc_index[0][bin] = ps->icc_index_prev[bin];
883
1.76k
        } else {
884
50.2k
            for (bin = 0; bin < 34; bin++)
885
48.7k
                ps->icc_index[0][bin] = 0;
886
1.43k
        }
887
888
3.20k
        if (ps->enable_ipdopd)
889
491
        {
890
8.83k
            for (bin = 0; bin < 17; bin++)
891
8.34k
            {
892
8.34k
                ps->ipd_index[0][bin] = ps->ipd_index_prev[bin];
893
8.34k
                ps->opd_index[0][bin] = ps->opd_index_prev[bin];
894
8.34k
            }
895
2.71k
        } else {
896
48.7k
            for (bin = 0; bin < 17; bin++)
897
46.0k
            {
898
46.0k
                ps->ipd_index[0][bin] = 0;
899
46.0k
                ps->opd_index[0][bin] = 0;
900
46.0k
            }
901
2.71k
        }
902
3.20k
    }
903
904
    /* update previous indices */
905
208k
    for (bin = 0; bin < 34; bin++)
906
202k
        ps->iid_index_prev[bin] = ps->iid_index[ps->num_env-1][bin];
907
208k
    for (bin = 0; bin < 34; bin++)
908
202k
        ps->icc_index_prev[bin] = ps->icc_index[ps->num_env-1][bin];
909
107k
    for (bin = 0; bin < 17; bin++)
910
101k
    {
911
101k
        ps->ipd_index_prev[bin] = ps->ipd_index[ps->num_env-1][bin];
912
101k
        ps->opd_index_prev[bin] = ps->opd_index[ps->num_env-1][bin];
913
101k
    }
914
915
5.95k
    ps->ps_data_available = 0;
916
917
5.95k
    if (ps->frame_class == 0)
918
4.00k
    {
919
4.00k
        ps->border_position[0] = 0;
920
7.14k
        for (env = 1; env < ps->num_env; env++)
921
3.13k
        {
922
3.13k
            ps->border_position[env] = (env * ps->numTimeSlotsRate) / ps->num_env;
923
3.13k
        }
924
4.00k
        ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
925
4.00k
    } else {
926
1.95k
        ps->border_position[0] = 0;
927
928
1.95k
        if (ps->border_position[ps->num_env] < ps->numTimeSlotsRate)
929
1.70k
        {
930
59.7k
            for (bin = 0; bin < 34; bin++)
931
58.0k
            {
932
58.0k
                ps->iid_index[ps->num_env][bin] = ps->iid_index[ps->num_env-1][bin];
933
58.0k
                ps->icc_index[ps->num_env][bin] = ps->icc_index[ps->num_env-1][bin];
934
58.0k
            }
935
30.7k
            for (bin = 0; bin < 17; bin++)
936
29.0k
            {
937
29.0k
                ps->ipd_index[ps->num_env][bin] = ps->ipd_index[ps->num_env-1][bin];
938
29.0k
                ps->opd_index[ps->num_env][bin] = ps->opd_index[ps->num_env-1][bin];
939
29.0k
            }
940
1.70k
            ps->num_env++;
941
1.70k
            ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
942
1.70k
        }
943
944
7.15k
        for (env = 1; env < ps->num_env; env++)
945
5.20k
        {
946
5.20k
            int8_t thr = ps->numTimeSlotsRate - (ps->num_env - env);
947
948
5.20k
            if (ps->border_position[env] > thr)
949
870
            {
950
870
                ps->border_position[env] = thr;
951
4.33k
            } else {
952
4.33k
                thr = ps->border_position[env-1]+1;
953
4.33k
                if (ps->border_position[env] < thr)
954
2.08k
                {
955
2.08k
                    ps->border_position[env] = thr;
956
2.08k
                }
957
4.33k
            }
958
5.20k
        }
959
1.95k
    }
960
961
    /* make sure that the indices of all parameters can be mapped
962
     * to the same hybrid synthesis filterbank
963
     */
964
#ifdef PS_LOW_POWER
965
    for (env = 0; env < ps->num_env; env++)
966
    {
967
        if (ps->iid_mode == 2 || ps->iid_mode == 5)
968
            map34indexto20(ps->iid_index[env], 34);
969
        if (ps->icc_mode == 2 || ps->icc_mode == 5)
970
            map34indexto20(ps->icc_index[env], 34);
971
972
        /* disable ipd/opd */
973
        for (bin = 0; bin < 17; bin++)
974
        {
975
            ps->aaIpdIndex[env][bin] = 0;
976
            ps->aaOpdIndex[env][bin] = 0;
977
        }
978
    }
979
#else
980
5.95k
    if (ps->use34hybrid_bands)
981
2.19k
    {
982
6.01k
        for (env = 0; env < ps->num_env; env++)
983
3.82k
        {
984
3.82k
            if (ps->iid_mode != 2 && ps->iid_mode != 5)
985
2.17k
                map20indexto34(ps->iid_index[env], 34);
986
3.82k
            if (ps->icc_mode != 2 && ps->icc_mode != 5)
987
1.53k
                map20indexto34(ps->icc_index[env], 34);
988
3.82k
            if (ps->ipd_mode != 2 && ps->ipd_mode != 5)
989
2.17k
            {
990
2.17k
                map20indexto34(ps->ipd_index[env], 17);
991
2.17k
                map20indexto34(ps->opd_index[env], 17);
992
2.17k
            }
993
3.82k
        }
994
2.19k
    }
995
5.95k
#endif
996
997
#if 0
998
    for (env = 0; env < ps->num_env; env++)
999
    {
1000
        printf("iid[env:%d]:", env);
1001
        for (bin = 0; bin < 34; bin++)
1002
        {
1003
            printf(" %d", ps->iid_index[env][bin]);
1004
        }
1005
        printf("\n");
1006
    }
1007
    for (env = 0; env < ps->num_env; env++)
1008
    {
1009
        printf("icc[env:%d]:", env);
1010
        for (bin = 0; bin < 34; bin++)
1011
        {
1012
            printf(" %d", ps->icc_index[env][bin]);
1013
        }
1014
        printf("\n");
1015
    }
1016
    for (env = 0; env < ps->num_env; env++)
1017
    {
1018
        printf("ipd[env:%d]:", env);
1019
        for (bin = 0; bin < 17; bin++)
1020
        {
1021
            printf(" %d", ps->ipd_index[env][bin]);
1022
        }
1023
        printf("\n");
1024
    }
1025
    for (env = 0; env < ps->num_env; env++)
1026
    {
1027
        printf("opd[env:%d]:", env);
1028
        for (bin = 0; bin < 17; bin++)
1029
        {
1030
            printf(" %d", ps->opd_index[env][bin]);
1031
        }
1032
        printf("\n");
1033
    }
1034
    printf("\n");
1035
#endif
1036
5.95k
}
1037
1038
/* decorrelate the mono signal using an allpass filter */
1039
static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
1040
                           qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
1041
5.95k
{
1042
5.95k
    uint8_t gr, n, bk;
1043
5.95k
    uint8_t temp_delay = 0;
1044
5.95k
    uint8_t sb, maxsb;
1045
5.95k
    const complex_t *Phi_Fract_SubQmf;
1046
5.95k
    uint8_t temp_delay_ser[NO_ALLPASS_LINKS];
1047
5.95k
    real_t P_SmoothPeakDecayDiffNrg, nrg;
1048
5.95k
    real_t P[32][34];
1049
5.95k
    real_t G_TransientRatio[32][34] = {{0}};
1050
5.95k
    complex_t inputLeft;
1051
1052
1053
    /* chose hybrid filterbank: 20 or 34 band case */
1054
5.95k
    if (ps->use34hybrid_bands)
1055
2.19k
    {
1056
2.19k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf34;
1057
3.76k
    } else{
1058
3.76k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf20;
1059
3.76k
    }
1060
1061
    /* clear the energy values */
1062
196k
    for (n = 0; n < 32; n++)
1063
190k
    {
1064
6.66M
        for (bk = 0; bk < 34; bk++)
1065
6.47M
        {
1066
6.47M
            P[n][bk] = 0;
1067
6.47M
        }
1068
190k
    }
1069
1070
    /* calculate the energy in each parameter band b(k) */
1071
198k
    for (gr = 0; gr < ps->num_groups; gr++)
1072
192k
    {
1073
        /* select the parameter index b(k) to which this group belongs */
1074
192k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1075
1076
        /* select the upper subband border for this group */
1077
192k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr]+1 : ps->group_border[gr+1];
1078
1079
659k
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1080
466k
        {
1081
15.0M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1082
14.5M
            {
1083
#ifdef FIXED_POINT
1084
                uint32_t in_re, in_im;
1085
#endif
1086
1087
                /* input from hybrid subbands or QMF subbands */
1088
14.5M
                if (gr < ps->num_hybrid_groups)
1089
3.34M
                {
1090
3.34M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1091
3.34M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1092
11.2M
                } else {
1093
11.2M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1094
11.2M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1095
11.2M
                }
1096
1097
                /* accumulate energy */
1098
#ifdef FIXED_POINT
1099
                /* NOTE: all input is scaled by 2^(-5) because of fixed point QMF
1100
                 * meaning that P will be scaled by 2^(-10) compared to floating point version
1101
                 */
1102
                in_re = ((abs(RE(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1103
                in_im = ((abs(IM(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1104
                P[n][bk] += in_re*in_re + in_im*in_im;
1105
#else
1106
14.5M
                P[n][bk] += MUL_R(RE(inputLeft),RE(inputLeft)) + MUL_R(IM(inputLeft),IM(inputLeft));
1107
14.5M
#endif
1108
14.5M
            }
1109
466k
        }
1110
192k
    }
1111
1112
#if 0
1113
    for (n = 0; n < 32; n++)
1114
    {
1115
        for (bk = 0; bk < 34; bk++)
1116
        {
1117
#ifdef FIXED_POINT
1118
            printf("%d %d: %d\n", n, bk, P[n][bk] /*/(float)REAL_PRECISION*/);
1119
#else
1120
            printf("%d %d: %f\n", n, bk, P[n][bk]/1024.0);
1121
#endif
1122
        }
1123
    }
1124
#endif
1125
1126
    /* calculate transient reduction ratio for each parameter band b(k) */
1127
155k
    for (bk = 0; bk < ps->nr_par_bands; bk++)
1128
149k
    {
1129
4.81M
        for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1130
4.66M
        {
1131
4.66M
            const real_t gamma = COEF_CONST(1.5);
1132
1133
4.66M
            ps->P_PeakDecayNrg[bk] = MUL_F(ps->P_PeakDecayNrg[bk], ps->alpha_decay);
1134
4.66M
            if (ps->P_PeakDecayNrg[bk] < P[n][bk])
1135
48.0k
                ps->P_PeakDecayNrg[bk] = P[n][bk];
1136
1137
            /* apply smoothing filter to peak decay energy */
1138
4.66M
            P_SmoothPeakDecayDiffNrg = ps->P_SmoothPeakDecayDiffNrg_prev[bk];
1139
4.66M
            P_SmoothPeakDecayDiffNrg += MUL_F((ps->P_PeakDecayNrg[bk] - P[n][bk] - ps->P_SmoothPeakDecayDiffNrg_prev[bk]), ps->alpha_smooth);
1140
4.66M
            ps->P_SmoothPeakDecayDiffNrg_prev[bk] = P_SmoothPeakDecayDiffNrg;
1141
1142
            /* apply smoothing filter to energy */
1143
4.66M
            nrg = ps->P_prev[bk];
1144
4.66M
            nrg += MUL_F((P[n][bk] - ps->P_prev[bk]), ps->alpha_smooth);
1145
4.66M
            ps->P_prev[bk] = nrg;
1146
1147
            /* calculate transient ratio */
1148
4.66M
            if (MUL_C(P_SmoothPeakDecayDiffNrg, gamma) <= nrg)
1149
4.62M
            {
1150
4.62M
                G_TransientRatio[n][bk] = REAL_CONST(1.0);
1151
4.62M
            } else {
1152
38.5k
                G_TransientRatio[n][bk] = DIV_R(nrg, (MUL_C(P_SmoothPeakDecayDiffNrg, gamma)));
1153
38.5k
            }
1154
4.66M
        }
1155
149k
    }
1156
1157
#if 0
1158
    for (n = 0; n < 32; n++)
1159
    {
1160
        for (bk = 0; bk < 34; bk++)
1161
        {
1162
#ifdef FIXED_POINT
1163
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]/(float)REAL_PRECISION);
1164
#else
1165
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]);
1166
#endif
1167
        }
1168
    }
1169
#endif
1170
1171
    /* apply stereo decorrelation filter to the signal */
1172
198k
    for (gr = 0; gr < ps->num_groups; gr++)
1173
192k
    {
1174
192k
        if (gr < ps->num_hybrid_groups)
1175
107k
            maxsb = ps->group_border[gr] + 1;
1176
84.6k
        else
1177
84.6k
            maxsb = ps->group_border[gr + 1];
1178
1179
        /* QMF channel */
1180
659k
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1181
466k
        {
1182
466k
            real_t g_DecaySlope;
1183
466k
            real_t g_DecaySlope_filt[NO_ALLPASS_LINKS];
1184
1185
            /* g_DecaySlope: [0..1] */
1186
466k
            if (gr < ps->num_hybrid_groups || sb <= ps->decay_cutoff)
1187
113k
            {
1188
113k
                g_DecaySlope = FRAC_CONST(1.0);
1189
352k
            } else {
1190
352k
                int8_t decay = ps->decay_cutoff - sb;
1191
352k
                if (decay <= -20 /* -1/DECAY_SLOPE */)
1192
239k
                {
1193
239k
                    g_DecaySlope = 0;
1194
239k
                } else {
1195
                    /* decay(int)*decay_slope(frac) = g_DecaySlope(frac) */
1196
113k
                    g_DecaySlope = FRAC_CONST(1.0) + DECAY_SLOPE * decay;
1197
113k
                }
1198
352k
            }
1199
1200
            /* calculate g_DecaySlope_filt for every n multiplied by filter_a[n] */
1201
1.86M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1202
1.39M
            {
1203
1.39M
                g_DecaySlope_filt[n] = MUL_F(g_DecaySlope, filter_a[n]);
1204
1.39M
            }
1205
1206
1207
            /* set delay indices */
1208
466k
            temp_delay = ps->saved_delay;
1209
1.86M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1210
1.39M
                temp_delay_ser[n] = ps->delay_buf_index_ser[n];
1211
1212
15.0M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1213
14.5M
            {
1214
14.5M
                complex_t tmp, tmp0, R0;
1215
14.5M
                uint8_t m;
1216
1217
14.5M
                if (gr < ps->num_hybrid_groups)
1218
3.34M
                {
1219
                    /* hybrid filterbank input */
1220
3.34M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1221
3.34M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1222
11.2M
                } else {
1223
                    /* QMF filterbank input */
1224
11.2M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1225
11.2M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1226
11.2M
                }
1227
1228
14.5M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1229
7.62M
                {
1230
                    /* delay */
1231
1232
                    /* never hybrid subbands here, always QMF subbands */
1233
7.62M
                    RE(tmp) = RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1234
7.62M
                    IM(tmp) = IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1235
7.62M
                    RE(R0) = RE(tmp);
1236
7.62M
                    IM(R0) = IM(tmp);
1237
7.62M
                    RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = RE(inputLeft);
1238
7.62M
                    IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = IM(inputLeft);
1239
7.62M
                } else {
1240
                    /* allpass filter */
1241
6.92M
                    complex_t Phi_Fract;
1242
1243
                    /* fetch parameters */
1244
6.92M
                    if (gr < ps->num_hybrid_groups)
1245
3.34M
                    {
1246
                        /* select data from the hybrid subbands */
1247
3.34M
                        RE(tmp0) = RE(ps->delay_SubQmf[temp_delay][sb]);
1248
3.34M
                        IM(tmp0) = IM(ps->delay_SubQmf[temp_delay][sb]);
1249
1250
3.34M
                        RE(ps->delay_SubQmf[temp_delay][sb]) = RE(inputLeft);
1251
3.34M
                        IM(ps->delay_SubQmf[temp_delay][sb]) = IM(inputLeft);
1252
1253
3.34M
                        RE(Phi_Fract) = RE(Phi_Fract_SubQmf[sb]);
1254
3.34M
                        IM(Phi_Fract) = IM(Phi_Fract_SubQmf[sb]);
1255
3.58M
                    } else {
1256
                        /* select data from the QMF subbands */
1257
3.58M
                        RE(tmp0) = RE(ps->delay_Qmf[temp_delay][sb]);
1258
3.58M
                        IM(tmp0) = IM(ps->delay_Qmf[temp_delay][sb]);
1259
1260
3.58M
                        RE(ps->delay_Qmf[temp_delay][sb]) = RE(inputLeft);
1261
3.58M
                        IM(ps->delay_Qmf[temp_delay][sb]) = IM(inputLeft);
1262
1263
3.58M
                        RE(Phi_Fract) = RE(Phi_Fract_Qmf[sb]);
1264
3.58M
                        IM(Phi_Fract) = IM(Phi_Fract_Qmf[sb]);
1265
3.58M
                    }
1266
1267
                    /* z^(-2) * Phi_Fract[k] */
1268
6.92M
                    ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Phi_Fract), IM(Phi_Fract));
1269
1270
6.92M
                    RE(R0) = RE(tmp);
1271
6.92M
                    IM(R0) = IM(tmp);
1272
27.7M
                    for (m = 0; m < NO_ALLPASS_LINKS; m++)
1273
20.7M
                    {
1274
20.7M
                        complex_t Q_Fract_allpass, tmp2;
1275
1276
                        /* fetch parameters */
1277
20.7M
                        if (gr < ps->num_hybrid_groups)
1278
10.0M
                        {
1279
                            /* select data from the hybrid subbands */
1280
10.0M
                            RE(tmp0) = RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1281
10.0M
                            IM(tmp0) = IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1282
1283
10.0M
                            if (ps->use34hybrid_bands)
1284
6.46M
                            {
1285
6.46M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf34[sb][m]);
1286
6.46M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf34[sb][m]);
1287
6.46M
                            } else {
1288
3.55M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf20[sb][m]);
1289
3.55M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf20[sb][m]);
1290
3.55M
                            }
1291
10.7M
                        } else {
1292
                            /* select data from the QMF subbands */
1293
10.7M
                            RE(tmp0) = RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1294
10.7M
                            IM(tmp0) = IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1295
1296
10.7M
                            RE(Q_Fract_allpass) = RE(Q_Fract_allpass_Qmf[sb][m]);
1297
10.7M
                            IM(Q_Fract_allpass) = IM(Q_Fract_allpass_Qmf[sb][m]);
1298
10.7M
                        }
1299
1300
                        /* delay by a fraction */
1301
                        /* z^(-d(m)) * Q_Fract_allpass[k,m] */
1302
20.7M
                        ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Q_Fract_allpass), IM(Q_Fract_allpass));
1303
1304
                        /* -a(m) * g_DecaySlope[k] */
1305
20.7M
                        RE(tmp) += -MUL_F(g_DecaySlope_filt[m], RE(R0));
1306
20.7M
                        IM(tmp) += -MUL_F(g_DecaySlope_filt[m], IM(R0));
1307
1308
                        /* -a(m) * g_DecaySlope[k] * Q_Fract_allpass[k,m] * z^(-d(m)) */
1309
20.7M
                        RE(tmp2) = RE(R0) + MUL_F(g_DecaySlope_filt[m], RE(tmp));
1310
20.7M
                        IM(tmp2) = IM(R0) + MUL_F(g_DecaySlope_filt[m], IM(tmp));
1311
1312
                        /* store sample */
1313
20.7M
                        if (gr < ps->num_hybrid_groups)
1314
10.0M
                        {
1315
10.0M
                            RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1316
10.0M
                            IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1317
10.7M
                        } else {
1318
10.7M
                            RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1319
10.7M
                            IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1320
10.7M
                        }
1321
1322
                        /* store for next iteration (or as output value if last iteration) */
1323
20.7M
                        RE(R0) = RE(tmp);
1324
20.7M
                        IM(R0) = IM(tmp);
1325
20.7M
                    }
1326
6.92M
                }
1327
1328
                /* select b(k) for reading the transient ratio */
1329
14.5M
                bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1330
1331
                /* duck if a past transient is found */
1332
14.5M
                RE(R0) = MUL_R(G_TransientRatio[n][bk], RE(R0));
1333
14.5M
                IM(R0) = MUL_R(G_TransientRatio[n][bk], IM(R0));
1334
1335
14.5M
                if (gr < ps->num_hybrid_groups)
1336
3.34M
                {
1337
                    /* hybrid */
1338
3.34M
                    QMF_RE(X_hybrid_right[n][sb]) = RE(R0);
1339
3.34M
                    QMF_IM(X_hybrid_right[n][sb]) = IM(R0);
1340
11.2M
                } else {
1341
                    /* QMF */
1342
11.2M
                    QMF_RE(X_right[n][sb]) = RE(R0);
1343
11.2M
                    QMF_IM(X_right[n][sb]) = IM(R0);
1344
11.2M
                }
1345
1346
                /* Update delay buffer index */
1347
14.5M
                if (++temp_delay >= 2)
1348
7.27M
                {
1349
7.27M
                    temp_delay = 0;
1350
7.27M
                }
1351
1352
                /* update delay indices */
1353
14.5M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1354
7.62M
                {
1355
                    /* delay_D depends on the samplerate, it can hold the values 14 and 1 */
1356
7.62M
                    if (++ps->delay_buf_index_delay[sb] >= ps->delay_D[sb])
1357
5.53M
                    {
1358
5.53M
                        ps->delay_buf_index_delay[sb] = 0;
1359
5.53M
                    }
1360
7.62M
                }
1361
1362
58.1M
                for (m = 0; m < NO_ALLPASS_LINKS; m++)
1363
43.6M
                {
1364
43.6M
                    if (++temp_delay_ser[m] >= ps->num_sample_delay_ser[m])
1365
11.1M
                    {
1366
11.1M
                        temp_delay_ser[m] = 0;
1367
11.1M
                    }
1368
43.6M
                }
1369
14.5M
            }
1370
466k
        }
1371
192k
    }
1372
1373
    /* update delay indices */
1374
5.95k
    ps->saved_delay = temp_delay;
1375
23.8k
    for (n = 0; n < NO_ALLPASS_LINKS; n++)
1376
17.8k
        ps->delay_buf_index_ser[n] = temp_delay_ser[n];
1377
5.95k
}
1378
1379
#if 0
1380
#ifdef FIXED_POINT
1381
#define step(shift) \
1382
    if ((0x40000000l >> shift) + root <= value)       \
1383
    {                                                 \
1384
        value -= (0x40000000l >> shift) + root;       \
1385
        root = (root >> 1) | (0x40000000l >> shift);  \
1386
    } else {                                          \
1387
        root = root >> 1;                             \
1388
    }
1389
1390
/* fixed point square root approximation */
1391
static real_t ps_sqrt(real_t value)
1392
{
1393
    real_t root = 0;
1394
1395
    step( 0); step( 2); step( 4); step( 6);
1396
    step( 8); step(10); step(12); step(14);
1397
    step(16); step(18); step(20); step(22);
1398
    step(24); step(26); step(28); step(30);
1399
1400
    if (root < value)
1401
        ++root;
1402
1403
    root <<= (REAL_BITS/2);
1404
1405
    return root;
1406
}
1407
#else
1408
#define ps_sqrt(A) sqrt(A)
1409
#endif
1410
#endif
1411
1412
static const real_t ipdopd_cos_tab[] = {
1413
    FRAC_CONST(1.000000000000000),
1414
    FRAC_CONST(0.707106781186548),
1415
    FRAC_CONST(0.000000000000000),
1416
    FRAC_CONST(-0.707106781186547),
1417
    FRAC_CONST(-1.000000000000000),
1418
    FRAC_CONST(-0.707106781186548),
1419
    FRAC_CONST(-0.000000000000000),
1420
    FRAC_CONST(0.707106781186547),
1421
    FRAC_CONST(1.000000000000000)
1422
};
1423
1424
static const real_t ipdopd_sin_tab[] = {
1425
    FRAC_CONST(0.000000000000000),
1426
    FRAC_CONST(0.707106781186547),
1427
    FRAC_CONST(1.000000000000000),
1428
    FRAC_CONST(0.707106781186548),
1429
    FRAC_CONST(0.000000000000000),
1430
    FRAC_CONST(-0.707106781186547),
1431
    FRAC_CONST(-1.000000000000000),
1432
    FRAC_CONST(-0.707106781186548),
1433
    FRAC_CONST(-0.000000000000000)
1434
};
1435
1436
static real_t magnitude_c(complex_t c)
1437
111k
{
1438
#ifdef FIXED_POINT
1439
#define ps_abs(A) (((A) > 0) ? (A) : (-(A)))
1440
#define ALPHA FRAC_CONST(0.948059448969)
1441
#define BETA  FRAC_CONST(0.392699081699)
1442
1443
    real_t abs_inphase = ps_abs(RE(c));
1444
    real_t abs_quadrature = ps_abs(IM(c));
1445
1446
    if (abs_inphase > abs_quadrature) {
1447
        return MUL_F(abs_inphase, ALPHA) + MUL_F(abs_quadrature, BETA);
1448
    } else {
1449
        return MUL_F(abs_quadrature, ALPHA) + MUL_F(abs_inphase, BETA);
1450
    }
1451
#else
1452
111k
    return sqrt(RE(c)*RE(c) + IM(c)*IM(c));
1453
111k
#endif
1454
111k
}
1455
1456
static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
1457
                         qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
1458
5.95k
{
1459
5.95k
    uint8_t n;
1460
5.95k
    uint8_t gr;
1461
5.95k
    uint8_t bk = 0;
1462
5.95k
    uint8_t sb, maxsb;
1463
5.95k
    uint8_t env;
1464
5.95k
    uint8_t nr_ipdopd_par;
1465
5.95k
    complex_t h11, h12, h21, h22;  // COEF
1466
5.95k
    complex_t H11, H12, H21, H22;  // COEF
1467
5.95k
    complex_t deltaH11, deltaH12, deltaH21, deltaH22;  // COEF
1468
5.95k
    complex_t tempLeft, tempRight; // FRAC
1469
5.95k
    complex_t phaseLeft, phaseRight; // FRAC
1470
5.95k
    real_t L;
1471
5.95k
    const real_t *sf_iid;
1472
5.95k
    uint8_t no_iid_steps;
1473
1474
5.95k
    if (ps->iid_mode >= 3)
1475
2.51k
    {
1476
2.51k
        no_iid_steps = 15;
1477
2.51k
        sf_iid = sf_iid_fine;
1478
3.44k
    } else {
1479
3.44k
        no_iid_steps = 7;
1480
3.44k
        sf_iid = sf_iid_normal;
1481
3.44k
    }
1482
1483
5.95k
    if (ps->ipd_mode == 0 || ps->ipd_mode == 3)
1484
3.27k
    {
1485
3.27k
        nr_ipdopd_par = 11; /* resolution */
1486
3.27k
    } else {
1487
2.67k
        nr_ipdopd_par = ps->nr_ipdopd_par;
1488
2.67k
    }
1489
1490
198k
    for (gr = 0; gr < ps->num_groups; gr++)
1491
192k
    {
1492
192k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1493
1494
        /* use one channel per group in the subqmf domain */
1495
192k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr] + 1 : ps->group_border[gr + 1];
1496
1497
613k
        for (env = 0; env < ps->num_env; env++)
1498
421k
        {
1499
421k
            uint8_t abs_iid = (uint8_t)abs(ps->iid_index[env][bk]);
1500
            /* index range is supposed to be -7...7 or -15...15 depending on iid_mode
1501
                (Table 8.24, ISO/IEC 14496-3:2005).
1502
                if it is outside these boundaries, this is most likely an error. sanitize
1503
                it and try to process further. */
1504
421k
            if (ps->iid_index[env][bk] < -no_iid_steps) {
1505
142
                fprintf(stderr, "Warning: invalid iid_index: %d < %d\n", ps->iid_index[env][bk],
1506
142
                    -no_iid_steps);
1507
142
                ps->iid_index[env][bk] = -no_iid_steps;
1508
142
                abs_iid = no_iid_steps;
1509
421k
            } else if (ps->iid_index[env][bk] > no_iid_steps) {
1510
97
                fprintf(stderr, "Warning: invalid iid_index: %d > %d\n", ps->iid_index[env][bk],
1511
97
                    no_iid_steps);
1512
97
                ps->iid_index[env][bk] = no_iid_steps;
1513
97
                abs_iid = no_iid_steps;
1514
97
            }
1515
421k
            if (ps->icc_index[env][bk] < 0) {
1516
285
                fprintf(stderr, "Warning: invalid icc_index: %d < 0\n", ps->icc_index[env][bk]);
1517
285
                ps->icc_index[env][bk] = 0;
1518
421k
            } else if (ps->icc_index[env][bk] > 7) {
1519
0
                fprintf(stderr, "Warning: invalid icc_index: %d > 7\n", ps->icc_index[env][bk]);
1520
0
                ps->icc_index[env][bk] = 7;
1521
0
            }
1522
1523
421k
            if (ps->icc_mode < 3)
1524
266k
            {
1525
                /* type 'A' mixing as described in 8.6.4.6.2.1 */
1526
266k
                real_t c_1, c_2;  // COEF
1527
266k
                real_t cosa, sina;  // COEF
1528
266k
                real_t cosb, sinb;  // COEF
1529
266k
                real_t ab1, ab2;  // COEF
1530
266k
                real_t ab3, ab4;  // COEF
1531
1532
                /*
1533
                c_1 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps + iid_index] / 10.0)));
1534
                c_2 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps - iid_index] / 10.0)));
1535
                alpha = 0.5 * acos(quant_rho[icc_index]);
1536
                beta = alpha * ( c_1 - c_2 ) / sqrt(2.0);
1537
                */
1538
1539
                //printf("%d\n", ps->iid_index[env][bk]);
1540
1541
                /* calculate the scalefactors c_1 and c_2 from the intensity differences */
1542
266k
                c_1 = sf_iid[no_iid_steps + ps->iid_index[env][bk]];
1543
266k
                c_2 = sf_iid[no_iid_steps - ps->iid_index[env][bk]];
1544
1545
                /* calculate alpha and beta using the ICC parameters */
1546
266k
                cosa = cos_alphas[ps->icc_index[env][bk]];
1547
266k
                sina = sin_alphas[ps->icc_index[env][bk]];
1548
1549
266k
                if (ps->iid_mode >= 3)
1550
95.6k
                {
1551
95.6k
                    cosb = cos_betas_fine[abs_iid][ps->icc_index[env][bk]];
1552
95.6k
                    sinb = sin_betas_fine[abs_iid][ps->icc_index[env][bk]];
1553
170k
                } else {
1554
170k
                    cosb = cos_betas_normal[abs_iid][ps->icc_index[env][bk]];
1555
170k
                    sinb = sin_betas_normal[abs_iid][ps->icc_index[env][bk]];
1556
170k
                }
1557
1558
266k
                ab1 = MUL_C(cosb, cosa);
1559
266k
                ab2 = MUL_C(sinb, sina);
1560
266k
                ab3 = MUL_C(sinb, cosa);
1561
266k
                ab4 = MUL_C(cosb, sina);
1562
1563
                /* h_xy: COEF */
1564
266k
                RE(h11) = MUL_C(c_2, (ab1 - ab2));
1565
266k
                RE(h12) = MUL_C(c_1, (ab1 + ab2));
1566
266k
                RE(h21) = MUL_C(c_2, (ab3 + ab4));
1567
266k
                RE(h22) = MUL_C(c_1, (ab3 - ab4));
1568
266k
            } else {
1569
                /* type 'B' mixing as described in 8.6.4.6.2.2 */
1570
155k
                real_t sina, cosa;  // COEF
1571
155k
                real_t cosg, sing;  // COEF
1572
1573
                /*
1574
                real_t c, rho, mu, alpha, gamma;
1575
                uint8_t i;
1576
1577
                i = ps->iid_index[env][bk];
1578
                c = (real_t)pow(10.0, ((i)?(((i>0)?1:-1)*quant_iid[((i>0)?i:-i)-1]):0.)/20.0);
1579
                rho = quant_rho[ps->icc_index[env][bk]];
1580
1581
                if (rho == 0.0f && c == 1.)
1582
                {
1583
                    alpha = (real_t)M_PI/4.0f;
1584
                    rho = 0.05f;
1585
                } else {
1586
                    if (rho <= 0.05f)
1587
                    {
1588
                        rho = 0.05f;
1589
                    }
1590
                    alpha = 0.5f*(real_t)atan( (2.0f*c*rho) / (c*c-1.0f) );
1591
1592
                    if (alpha < 0.)
1593
                    {
1594
                        alpha += (real_t)M_PI/2.0f;
1595
                    }
1596
                    if (rho < 0.)
1597
                    {
1598
                        alpha += (real_t)M_PI;
1599
                    }
1600
                }
1601
                mu = c+1.0f/c;
1602
                mu = 1+(4.0f*rho*rho-4.0f)/(mu*mu);
1603
                gamma = (real_t)atan(sqrt((1.0f-sqrt(mu))/(1.0f+sqrt(mu))));
1604
                */
1605
1606
155k
                if (ps->iid_mode >= 3)
1607
81.0k
                {
1608
81.0k
                    cosa = sincos_alphas_B_fine[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1609
81.0k
                    sina = sincos_alphas_B_fine[30 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1610
81.0k
                    cosg = cos_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1611
81.0k
                    sing = sin_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1612
81.0k
                } else {
1613
74.2k
                    cosa = sincos_alphas_B_normal[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1614
74.2k
                    sina = sincos_alphas_B_normal[14 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1615
74.2k
                    cosg = cos_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1616
74.2k
                    sing = sin_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1617
74.2k
                }
1618
1619
155k
                RE(h11) = MUL_C(COEF_SQRT2, MUL_C(cosa, cosg));
1620
155k
                RE(h12) = MUL_C(COEF_SQRT2, MUL_C(sina, cosg));
1621
155k
                RE(h21) = MUL_C(COEF_SQRT2, MUL_C(-cosa, sing));
1622
155k
                RE(h22) = MUL_C(COEF_SQRT2, MUL_C(sina, sing));
1623
155k
            }
1624
421k
            IM(h11) = IM(h12) = IM(h21) = IM(h22) = 0;
1625
1626
            /* calculate phase rotation parameters H_xy */
1627
            /* note that the imaginary part of these parameters are only calculated when
1628
               IPD and OPD are enabled
1629
             */
1630
421k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1631
55.8k
            {
1632
55.8k
                int8_t i;
1633
55.8k
                real_t xy, pq, xypq;  // FRAC
1634
1635
                /* ringbuffer index */
1636
55.8k
                i = ps->phase_hist;
1637
1638
                /* previous value */
1639
#ifdef FIXED_POINT
1640
                /* divide by 4*2, shift right 3 bits;
1641
                   extra halving to avoid overflows; it is ok, because result is normalized */
1642
                RE(tempLeft)  = RE(ps->ipd_prev[bk][i]) >> 3;
1643
                IM(tempLeft)  = IM(ps->ipd_prev[bk][i]) >> 3;
1644
                RE(tempRight) = RE(ps->opd_prev[bk][i]) >> 3;
1645
                IM(tempRight) = IM(ps->opd_prev[bk][i]) >> 3;
1646
#else
1647
55.8k
                RE(tempLeft)  = MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1648
55.8k
                IM(tempLeft)  = MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1649
55.8k
                RE(tempRight) = MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1650
55.8k
                IM(tempRight) = MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1651
55.8k
#endif
1652
1653
                /* save current value */
1654
55.8k
                RE(ps->ipd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->ipd_index[env][bk])];
1655
55.8k
                IM(ps->ipd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->ipd_index[env][bk])];
1656
55.8k
                RE(ps->opd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->opd_index[env][bk])];
1657
55.8k
                IM(ps->opd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->opd_index[env][bk])];
1658
1659
                /* add current value */
1660
#ifdef FIXED_POINT
1661
                /* extra halving to avoid overflows */
1662
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]) >> 1;
1663
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]) >> 1;
1664
                RE(tempRight) += RE(ps->opd_prev[bk][i]) >> 1;
1665
                IM(tempRight) += IM(ps->opd_prev[bk][i]) >> 1;
1666
#else
1667
55.8k
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]);
1668
55.8k
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]);
1669
55.8k
                RE(tempRight) += RE(ps->opd_prev[bk][i]);
1670
55.8k
                IM(tempRight) += IM(ps->opd_prev[bk][i]);
1671
55.8k
#endif
1672
1673
                /* ringbuffer index */
1674
55.8k
                if (i == 0)
1675
28.2k
                {
1676
28.2k
                    i = 2;
1677
28.2k
                }
1678
55.8k
                i--;
1679
1680
                /* get value before previous */
1681
#ifdef FIXED_POINT
1682
                /* dividing by 2*2, shift right 2 bits; extra halving to avoid overflows */
1683
                RE(tempLeft)  += (RE(ps->ipd_prev[bk][i]) >> 2);
1684
                IM(tempLeft)  += (IM(ps->ipd_prev[bk][i]) >> 2);
1685
                RE(tempRight) += (RE(ps->opd_prev[bk][i]) >> 2);
1686
                IM(tempRight) += (IM(ps->opd_prev[bk][i]) >> 2);
1687
#else
1688
55.8k
                RE(tempLeft)  += MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1689
55.8k
                IM(tempLeft)  += MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1690
55.8k
                RE(tempRight) += MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1691
55.8k
                IM(tempRight) += MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1692
55.8k
#endif
1693
1694
#if 0 /* original code */
1695
                ipd = (float)atan2(IM(tempLeft), RE(tempLeft));
1696
                opd = (float)atan2(IM(tempRight), RE(tempRight));
1697
1698
                /* phase rotation */
1699
                RE(phaseLeft) = (float)cos(opd);
1700
                IM(phaseLeft) = (float)sin(opd);
1701
                opd -= ipd;
1702
                RE(phaseRight) = (float)cos(opd);
1703
                IM(phaseRight) = (float)sin(opd);
1704
#else
1705
1706
                // x = IM(tempLeft)
1707
                // y = RE(tempLeft)
1708
                // p = IM(tempRight)
1709
                // q = RE(tempRight)
1710
                // cos(atan2(x,y)) = y/sqrt((x*x) + (y*y))
1711
                // sin(atan2(x,y)) = x/sqrt((x*x) + (y*y))
1712
                // cos(atan2(x,y)-atan2(p,q)) = (y*q + x*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1713
                // sin(atan2(x,y)-atan2(p,q)) = (x*q - y*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1714
1715
55.8k
                xy = magnitude_c(tempRight);
1716
55.8k
                pq = magnitude_c(tempLeft);
1717
1718
55.8k
                if (xy != 0)
1719
55.8k
                {
1720
55.8k
                    RE(phaseLeft) = DIV_F(RE(tempRight), xy);
1721
55.8k
                    IM(phaseLeft) = DIV_F(IM(tempRight), xy);
1722
55.8k
                } else {
1723
0
                    RE(phaseLeft) = 0;
1724
0
                    IM(phaseLeft) = 0;
1725
0
                }
1726
1727
55.8k
                xypq = MUL_F(xy, pq);
1728
1729
55.8k
                if (xypq != 0)
1730
55.8k
                {
1731
55.8k
                    real_t tmp1 = MUL_F(RE(tempRight), RE(tempLeft)) + MUL_F(IM(tempRight), IM(tempLeft));
1732
55.8k
                    real_t tmp2 = MUL_F(IM(tempRight), RE(tempLeft)) - MUL_F(RE(tempRight), IM(tempLeft));
1733
1734
55.8k
                    RE(phaseRight) = DIV_F(tmp1, xypq);
1735
55.8k
                    IM(phaseRight) = DIV_F(tmp2, xypq);
1736
55.8k
                } else {
1737
0
                    RE(phaseRight) = 0;
1738
0
                    IM(phaseRight) = 0;
1739
0
                }
1740
1741
55.8k
#endif
1742
1743
                /* MUL_F(COEF, REAL) = COEF */
1744
55.8k
                IM(h11) = MUL_F(RE(h11), IM(phaseLeft));
1745
55.8k
                IM(h12) = MUL_F(RE(h12), IM(phaseRight));
1746
55.8k
                IM(h21) = MUL_F(RE(h21), IM(phaseLeft));
1747
55.8k
                IM(h22) = MUL_F(RE(h22), IM(phaseRight));
1748
1749
55.8k
                RE(h11) = MUL_F(RE(h11), RE(phaseLeft));
1750
55.8k
                RE(h12) = MUL_F(RE(h12), RE(phaseRight));
1751
55.8k
                RE(h21) = MUL_F(RE(h21), RE(phaseLeft));
1752
55.8k
                RE(h22) = MUL_F(RE(h22), RE(phaseRight));
1753
55.8k
            }
1754
1755
            /* length of the envelope n_e+1 - n_e (in time samples) */
1756
            /* 0 < L <= 32: integer */
1757
421k
            L = (real_t)(ps->border_position[env + 1] - ps->border_position[env]);
1758
1759
            /* obtain final H_xy by means of linear interpolation */
1760
421k
            RE(deltaH11) = (RE(h11) - RE(ps->h11_prev[gr])) / L;
1761
421k
            RE(deltaH12) = (RE(h12) - RE(ps->h12_prev[gr])) / L;
1762
421k
            RE(deltaH21) = (RE(h21) - RE(ps->h21_prev[gr])) / L;
1763
421k
            RE(deltaH22) = (RE(h22) - RE(ps->h22_prev[gr])) / L;
1764
1765
421k
            RE(H11) = RE(ps->h11_prev[gr]);
1766
421k
            RE(H12) = RE(ps->h12_prev[gr]);
1767
421k
            RE(H21) = RE(ps->h21_prev[gr]);
1768
421k
            RE(H22) = RE(ps->h22_prev[gr]);
1769
421k
            IM(H11) = IM(H12) = IM(H21) = IM(H22) = 0;
1770
1771
421k
            RE(ps->h11_prev[gr]) = RE(h11);
1772
421k
            RE(ps->h12_prev[gr]) = RE(h12);
1773
421k
            RE(ps->h21_prev[gr]) = RE(h21);
1774
421k
            RE(ps->h22_prev[gr]) = RE(h22);
1775
1776
            /* only calculate imaginary part when needed */
1777
421k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1778
55.8k
            {
1779
                /* obtain final H_xy by means of linear interpolation */
1780
55.8k
                IM(deltaH11) = (IM(h11) - IM(ps->h11_prev[gr])) / L;
1781
55.8k
                IM(deltaH12) = (IM(h12) - IM(ps->h12_prev[gr])) / L;
1782
55.8k
                IM(deltaH21) = (IM(h21) - IM(ps->h21_prev[gr])) / L;
1783
55.8k
                IM(deltaH22) = (IM(h22) - IM(ps->h22_prev[gr])) / L;
1784
1785
55.8k
                IM(H11) = IM(ps->h11_prev[gr]);
1786
55.8k
                IM(H12) = IM(ps->h12_prev[gr]);
1787
55.8k
                IM(H21) = IM(ps->h21_prev[gr]);
1788
55.8k
                IM(H22) = IM(ps->h22_prev[gr]);
1789
1790
55.8k
                if ((NEGATE_IPD_MASK & ps->map_group2bk[gr]) != 0)
1791
7.78k
                {
1792
7.78k
                    IM(deltaH11) = -IM(deltaH11);
1793
7.78k
                    IM(deltaH12) = -IM(deltaH12);
1794
7.78k
                    IM(deltaH21) = -IM(deltaH21);
1795
7.78k
                    IM(deltaH22) = -IM(deltaH22);
1796
1797
7.78k
                    IM(H11) = -IM(H11);
1798
7.78k
                    IM(H12) = -IM(H12);
1799
7.78k
                    IM(H21) = -IM(H21);
1800
7.78k
                    IM(H22) = -IM(H22);
1801
7.78k
                }
1802
1803
55.8k
                IM(ps->h11_prev[gr]) = IM(h11);
1804
55.8k
                IM(ps->h12_prev[gr]) = IM(h12);
1805
55.8k
                IM(ps->h21_prev[gr]) = IM(h21);
1806
55.8k
                IM(ps->h22_prev[gr]) = IM(h22);
1807
55.8k
            }
1808
1809
            /* apply H_xy to the current envelope band of the decorrelated subband */
1810
6.39M
            for (n = ps->border_position[env]; n < ps->border_position[env + 1]; n++)
1811
5.97M
            {
1812
                /* addition finalises the interpolation over every n */
1813
5.97M
                RE(H11) += RE(deltaH11);
1814
5.97M
                RE(H12) += RE(deltaH12);
1815
5.97M
                RE(H21) += RE(deltaH21);
1816
5.97M
                RE(H22) += RE(deltaH22);
1817
5.97M
                if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1818
662k
                {
1819
662k
                    IM(H11) += IM(deltaH11);
1820
662k
                    IM(H12) += IM(deltaH12);
1821
662k
                    IM(H21) += IM(deltaH21);
1822
662k
                    IM(H22) += IM(deltaH22);
1823
662k
                }
1824
1825
                /* channel is an alias to the subband */
1826
20.5M
                for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1827
14.5M
                {
1828
14.5M
                    complex_t inLeft, inRight;  // precision_of in(Left|Right) == precision_of X_(left|right)
1829
1830
                    /* load decorrelated samples */
1831
14.5M
                    if (gr < ps->num_hybrid_groups)
1832
3.34M
                    {
1833
3.34M
                        RE(inLeft) =  RE(X_hybrid_left[n][sb]);
1834
3.34M
                        IM(inLeft) =  IM(X_hybrid_left[n][sb]);
1835
3.34M
                        RE(inRight) = RE(X_hybrid_right[n][sb]);
1836
3.34M
                        IM(inRight) = IM(X_hybrid_right[n][sb]);
1837
11.2M
                    } else {
1838
11.2M
                        RE(inLeft) =  RE(X_left[n][sb]);
1839
11.2M
                        IM(inLeft) =  IM(X_left[n][sb]);
1840
11.2M
                        RE(inRight) = RE(X_right[n][sb]);
1841
11.2M
                        IM(inRight) = IM(X_right[n][sb]);
1842
11.2M
                    }
1843
1844
                    /* precision_of temp(Left|Right) == precision_of X_(left|right) */
1845
1846
                    /* apply mixing */
1847
14.5M
                    RE(tempLeft) =  MUL_C(RE(H11), RE(inLeft)) + MUL_C(RE(H21), RE(inRight));
1848
14.5M
                    IM(tempLeft) =  MUL_C(RE(H11), IM(inLeft)) + MUL_C(RE(H21), IM(inRight));
1849
14.5M
                    RE(tempRight) = MUL_C(RE(H12), RE(inLeft)) + MUL_C(RE(H22), RE(inRight));
1850
14.5M
                    IM(tempRight) = MUL_C(RE(H12), IM(inLeft)) + MUL_C(RE(H22), IM(inRight));
1851
1852
                    /* only perform imaginary operations when needed */
1853
14.5M
                    if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1854
663k
                    {
1855
                        /* apply rotation */
1856
663k
                        RE(tempLeft)  -= MUL_C(IM(H11), IM(inLeft)) + MUL_C(IM(H21), IM(inRight));
1857
663k
                        IM(tempLeft)  += MUL_C(IM(H11), RE(inLeft)) + MUL_C(IM(H21), RE(inRight));
1858
663k
                        RE(tempRight) -= MUL_C(IM(H12), IM(inLeft)) + MUL_C(IM(H22), IM(inRight));
1859
663k
                        IM(tempRight) += MUL_C(IM(H12), RE(inLeft)) + MUL_C(IM(H22), RE(inRight));
1860
663k
                    }
1861
1862
                    /* store final samples */
1863
14.5M
                    if (gr < ps->num_hybrid_groups)
1864
3.34M
                    {
1865
3.34M
                        RE(X_hybrid_left[n][sb])  = RE(tempLeft);
1866
3.34M
                        IM(X_hybrid_left[n][sb])  = IM(tempLeft);
1867
3.34M
                        RE(X_hybrid_right[n][sb]) = RE(tempRight);
1868
3.34M
                        IM(X_hybrid_right[n][sb]) = IM(tempRight);
1869
11.2M
                    } else {
1870
11.2M
                        RE(X_left[n][sb])  = RE(tempLeft);
1871
11.2M
                        IM(X_left[n][sb])  = IM(tempLeft);
1872
11.2M
                        RE(X_right[n][sb]) = RE(tempRight);
1873
11.2M
                        IM(X_right[n][sb]) = IM(tempRight);
1874
11.2M
                    }
1875
14.5M
                }
1876
5.97M
            }
1877
1878
            /* shift phase smoother's circular buffer index */
1879
421k
            ps->phase_hist++;
1880
421k
            if (ps->phase_hist == 2)
1881
210k
            {
1882
210k
                ps->phase_hist = 0;
1883
210k
            }
1884
421k
        }
1885
192k
    }
1886
5.95k
}
1887
1888
void ps_free(ps_info *ps)
1889
9.34k
{
1890
    /* free hybrid filterbank structures */
1891
9.34k
    hybrid_free(ps->hyb);
1892
1893
9.34k
    faad_free(ps);
1894
9.34k
}
1895
1896
ps_info *ps_init(uint8_t sr_index, uint8_t numTimeSlotsRate)
1897
9.34k
{
1898
9.34k
    uint8_t i;
1899
9.34k
    uint8_t short_delay_band;
1900
1901
9.34k
    ps_info *ps = (ps_info*)faad_malloc(sizeof(ps_info));
1902
9.34k
    memset(ps, 0, sizeof(ps_info));
1903
1904
9.34k
    ps->hyb = hybrid_init(numTimeSlotsRate);
1905
9.34k
    ps->numTimeSlotsRate = numTimeSlotsRate;
1906
1907
9.34k
    ps->ps_data_available = 0;
1908
1909
    /* delay stuff*/
1910
9.34k
    ps->saved_delay = 0;
1911
1912
607k
    for (i = 0; i < 64; i++)
1913
598k
    {
1914
598k
        ps->delay_buf_index_delay[i] = 0;
1915
598k
    }
1916
1917
37.3k
    for (i = 0; i < NO_ALLPASS_LINKS; i++)
1918
28.0k
    {
1919
28.0k
        ps->delay_buf_index_ser[i] = 0;
1920
#ifdef PARAM_32KHZ
1921
        if (sr_index <= 5) /* >= 32 kHz*/
1922
        {
1923
            ps->num_sample_delay_ser[i] = delay_length_d[1][i];
1924
        } else {
1925
            ps->num_sample_delay_ser[i] = delay_length_d[0][i];
1926
        }
1927
#else
1928
28.0k
        (void)sr_index;
1929
        /* THESE ARE CONSTANTS NOW */
1930
28.0k
        ps->num_sample_delay_ser[i] = delay_length_d[i];
1931
28.0k
#endif
1932
28.0k
    }
1933
1934
#ifdef PARAM_32KHZ
1935
    if (sr_index <= 5) /* >= 32 kHz*/
1936
    {
1937
        short_delay_band = 35;
1938
        ps->nr_allpass_bands = 22;
1939
        ps->alpha_decay = FRAC_CONST(0.76592833836465);
1940
        ps->alpha_smooth = FRAC_CONST(0.25);
1941
    } else {
1942
        short_delay_band = 64;
1943
        ps->nr_allpass_bands = 45;
1944
        ps->alpha_decay = FRAC_CONST(0.58664621951003);
1945
        ps->alpha_smooth = FRAC_CONST(0.6);
1946
    }
1947
#else
1948
    /* THESE ARE CONSTANTS NOW */
1949
9.34k
    short_delay_band = 35;
1950
9.34k
    ps->nr_allpass_bands = 22;
1951
9.34k
    ps->alpha_decay = FRAC_CONST(0.76592833836465);
1952
9.34k
    ps->alpha_smooth = FRAC_CONST(0.25);
1953
9.34k
#endif
1954
1955
    /* THESE ARE CONSTANT NOW IF PS IS INDEPENDANT OF SAMPLERATE */
1956
336k
    for (i = 0; i < short_delay_band; i++)
1957
327k
    {
1958
327k
        ps->delay_D[i] = 14;
1959
327k
    }
1960
280k
    for (i = short_delay_band; i < 64; i++)
1961
271k
    {
1962
271k
        ps->delay_D[i] = 1;
1963
271k
    }
1964
1965
    /* mixing and phase */
1966
476k
    for (i = 0; i < 50; i++)
1967
467k
    {
1968
467k
        RE(ps->h11_prev[i]) = 1;
1969
467k
        IM(ps->h11_prev[i]) = 1;
1970
467k
        RE(ps->h12_prev[i]) = 1;
1971
467k
        IM(ps->h12_prev[i]) = 1;
1972
467k
    }
1973
1974
9.34k
    ps->phase_hist = 0;
1975
1976
196k
    for (i = 0; i < 20; i++)
1977
186k
    {
1978
186k
        RE(ps->ipd_prev[i][0]) = 0;
1979
186k
        IM(ps->ipd_prev[i][0]) = 0;
1980
186k
        RE(ps->ipd_prev[i][1]) = 0;
1981
186k
        IM(ps->ipd_prev[i][1]) = 0;
1982
186k
        RE(ps->opd_prev[i][0]) = 0;
1983
186k
        IM(ps->opd_prev[i][0]) = 0;
1984
186k
        RE(ps->opd_prev[i][1]) = 0;
1985
186k
        IM(ps->opd_prev[i][1]) = 0;
1986
186k
    }
1987
1988
9.34k
    return ps;
1989
9.34k
}
1990
1991
/* main Parametric Stereo decoding function */
1992
uint8_t ps_decode(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64])
1993
5.95k
{
1994
5.95k
    qmf_t X_hybrid_left[32][32] = {{{0}}};
1995
5.95k
    qmf_t X_hybrid_right[32][32] = {{{0}}};
1996
1997
    /* delta decoding of the bitstream data */
1998
5.95k
    ps_data_decode(ps);
1999
2000
    /* set up some parameters depending on filterbank type */
2001
5.95k
    if (ps->use34hybrid_bands)
2002
2.19k
    {
2003
2.19k
        ps->group_border = (uint8_t*)group_border34;
2004
2.19k
        ps->map_group2bk = (uint16_t*)map_group2bk34;
2005
2.19k
        ps->num_groups = 32+18;
2006
2.19k
        ps->num_hybrid_groups = 32;
2007
2.19k
        ps->nr_par_bands = 34;
2008
2.19k
        ps->decay_cutoff = 5;
2009
3.76k
    } else {
2010
3.76k
        ps->group_border = (uint8_t*)group_border20;
2011
3.76k
        ps->map_group2bk = (uint16_t*)map_group2bk20;
2012
3.76k
        ps->num_groups = 10+12;
2013
3.76k
        ps->num_hybrid_groups = 10;
2014
3.76k
        ps->nr_par_bands = 20;
2015
3.76k
        ps->decay_cutoff = 3;
2016
3.76k
    }
2017
2018
    /* Perform further analysis on the lowest subbands to get a higher
2019
     * frequency resolution
2020
     */
2021
5.95k
    hybrid_analysis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
2022
5.95k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2023
2024
    /* decorrelate mono signal */
2025
5.95k
    ps_decorrelate(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
2026
2027
    /* apply mixing and phase parameters */
2028
5.95k
    ps_mix_phase(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
2029
2030
    /* hybrid synthesis, to rebuild the SBR QMF matrices */
2031
5.95k
    hybrid_synthesis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
2032
5.95k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2033
2034
5.95k
    hybrid_synthesis((hyb_info*)ps->hyb, X_right, X_hybrid_right,
2035
5.95k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2036
2037
5.95k
    return 0;
2038
5.95k
}
2039
2040
#endif