Coverage Report

Created: 2025-08-03 06:05

/proc/self/cwd/libfaad/ps_dec.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: ps_dec.c,v 1.16 2009/01/26 22:32:31 menno Exp $
29
**/
30
31
#include "common.h"
32
33
#ifdef PS_DEC
34
35
#include <stdlib.h>
36
#include <stdio.h>
37
#include "ps_dec.h"
38
#include "ps_tables.h"
39
40
/* constants */
41
14.7M
#define NEGATE_IPD_MASK            (0x1000)
42
111k
#define DECAY_SLOPE                FRAC_CONST(0.05)
43
#define COEF_SQRT2                 COEF_CONST(1.4142135623731)
44
45
/* tables */
46
/* filters are mirrored in coef 6, second half left out */
47
static const real_t p8_13_20[7] =
48
{
49
    FRAC_CONST(0.00746082949812),
50
    FRAC_CONST(0.02270420949825),
51
    FRAC_CONST(0.04546865930473),
52
    FRAC_CONST(0.07266113929591),
53
    FRAC_CONST(0.09885108575264),
54
    FRAC_CONST(0.11793710567217),
55
    FRAC_CONST(0.125)
56
};
57
58
static const real_t p2_13_20[7] =
59
{
60
    FRAC_CONST(0.0),
61
    FRAC_CONST(0.01899487526049),
62
    FRAC_CONST(0.0),
63
    FRAC_CONST(-0.07293139167538),
64
    FRAC_CONST(0.0),
65
    FRAC_CONST(0.30596630545168),
66
    FRAC_CONST(0.5)
67
};
68
69
static const real_t p12_13_34[7] =
70
{
71
    FRAC_CONST(0.04081179924692),
72
    FRAC_CONST(0.03812810994926),
73
    FRAC_CONST(0.05144908135699),
74
    FRAC_CONST(0.06399831151592),
75
    FRAC_CONST(0.07428313801106),
76
    FRAC_CONST(0.08100347892914),
77
    FRAC_CONST(0.08333333333333)
78
};
79
80
static const real_t p8_13_34[7] =
81
{
82
    FRAC_CONST(0.01565675600122),
83
    FRAC_CONST(0.03752716391991),
84
    FRAC_CONST(0.05417891378782),
85
    FRAC_CONST(0.08417044116767),
86
    FRAC_CONST(0.10307344158036),
87
    FRAC_CONST(0.12222452249753),
88
    FRAC_CONST(0.125)
89
};
90
91
static const real_t p4_13_34[7] =
92
{
93
    FRAC_CONST(-0.05908211155639),
94
    FRAC_CONST(-0.04871498374946),
95
    FRAC_CONST(0.0),
96
    FRAC_CONST(0.07778723915851),
97
    FRAC_CONST(0.16486303567403),
98
    FRAC_CONST(0.23279856662996),
99
    FRAC_CONST(0.25)
100
};
101
102
#ifdef PARAM_32KHZ
103
static const uint8_t delay_length_d[2][NO_ALLPASS_LINKS] = {
104
    { 1, 2, 3 } /* d_24kHz */,
105
    { 3, 4, 5 } /* d_48kHz */
106
};
107
#else
108
static const uint8_t delay_length_d[NO_ALLPASS_LINKS] = {
109
    3, 4, 5 /* d_48kHz */
110
};
111
#endif
112
static const real_t filter_a[NO_ALLPASS_LINKS] = { /* a(m) = exp(-d_48kHz(m)/7) */
113
    FRAC_CONST(0.65143905753106),
114
    FRAC_CONST(0.56471812200776),
115
    FRAC_CONST(0.48954165955695)
116
};
117
118
static const uint8_t group_border20[10+12 + 1] =
119
{
120
    6, 7, 0, 1, 2, 3, /* 6 subqmf subbands */
121
    9, 8,             /* 2 subqmf subbands */
122
    10, 11,           /* 2 subqmf subbands */
123
    3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 35, 64
124
};
125
126
static const uint8_t group_border34[32+18 + 1] =
127
{
128
     0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, /* 12 subqmf subbands */
129
     12, 13, 14, 15, 16, 17, 18, 19,                 /*  8 subqmf subbands */
130
     20, 21, 22, 23,                                 /*  4 subqmf subbands */
131
     24, 25, 26, 27,                                 /*  4 subqmf subbands */
132
     28, 29, 30, 31,                                 /*  4 subqmf subbands */
133
     32-27, 33-27, 34-27, 35-27, 36-27, 37-27, 38-27, 40-27, 42-27, 44-27, 46-27, 48-27, 51-27, 54-27, 57-27, 60-27, 64-27, 68-27, 91-27
134
};
135
136
static const uint16_t map_group2bk20[10+12] =
137
{
138
    (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
139
    0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
140
};
141
142
static const uint16_t map_group2bk34[32+18] =
143
{
144
    0,  1,  2,  3,  4,  5,  6,  6,  7, (NEGATE_IPD_MASK | 2), (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
145
    10, 10, 4,  5,  6,  7,  8,  9,
146
    10, 11, 12, 9,
147
    14, 11, 12, 13,
148
    14, 15, 16, 13,
149
    16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33
150
};
151
152
/* type definitions */
153
typedef struct
154
{
155
    uint8_t frame_len;
156
    uint8_t resolution20[3];
157
    uint8_t resolution34[5];
158
159
    qmf_t *work;
160
    qmf_t **buffer;
161
    qmf_t **temp;
162
} hyb_info;
163
164
/* static function declarations */
165
static void ps_data_decode(ps_info *ps);
166
static hyb_info *hybrid_init(uint8_t numTimeSlotsRate);
167
static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
168
                            qmf_t *buffer, qmf_t **X_hybrid);
169
static void INLINE DCT3_4_unscaled(real_t *y, real_t *x);
170
static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
171
                            qmf_t *buffer, qmf_t **X_hybrid);
172
static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
173
                            uint8_t use34, uint8_t numTimeSlotsRate);
174
static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
175
                             uint8_t use34, uint8_t numTimeSlotsRate);
176
static int8_t delta_clip(int8_t i, int8_t min, int8_t max);
177
static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
178
                         uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
179
                         int8_t min_index, int8_t max_index);
180
static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
181
                                uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
182
                                int8_t and_modulo);
183
static void map20indexto34(int8_t *index, uint8_t bins);
184
#ifdef PS_LOW_POWER
185
static void map34indexto20(int8_t *index, uint8_t bins);
186
#endif
187
static void ps_data_decode(ps_info *ps);
188
static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
189
                           qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
190
static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
191
                         qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
192
193
/*  */
194
195
196
static hyb_info *hybrid_init(uint8_t numTimeSlotsRate)
197
9.29k
{
198
9.29k
    uint8_t i;
199
200
9.29k
    hyb_info *hyb = (hyb_info*)faad_malloc(sizeof(hyb_info));
201
202
9.29k
    hyb->resolution34[0] = 12;
203
9.29k
    hyb->resolution34[1] = 8;
204
9.29k
    hyb->resolution34[2] = 4;
205
9.29k
    hyb->resolution34[3] = 4;
206
9.29k
    hyb->resolution34[4] = 4;
207
208
9.29k
    hyb->resolution20[0] = 8;
209
9.29k
    hyb->resolution20[1] = 2;
210
9.29k
    hyb->resolution20[2] = 2;
211
212
9.29k
    hyb->frame_len = numTimeSlotsRate;
213
214
9.29k
    hyb->work = (qmf_t*)faad_malloc((hyb->frame_len+12) * sizeof(qmf_t));
215
9.29k
    memset(hyb->work, 0, (hyb->frame_len+12) * sizeof(qmf_t));
216
217
9.29k
    hyb->buffer = (qmf_t**)faad_malloc(5 * sizeof(qmf_t*));
218
55.7k
    for (i = 0; i < 5; i++)
219
46.4k
    {
220
46.4k
        hyb->buffer[i] = (qmf_t*)faad_malloc(hyb->frame_len * sizeof(qmf_t));
221
46.4k
        memset(hyb->buffer[i], 0, hyb->frame_len * sizeof(qmf_t));
222
46.4k
    }
223
224
9.29k
    hyb->temp = (qmf_t**)faad_malloc(hyb->frame_len * sizeof(qmf_t*));
225
303k
    for (i = 0; i < hyb->frame_len; i++)
226
294k
    {
227
294k
        hyb->temp[i] = (qmf_t*)faad_malloc(12 /*max*/ * sizeof(qmf_t));
228
294k
    }
229
230
9.29k
    return hyb;
231
9.29k
}
232
233
static void hybrid_free(hyb_info *hyb)
234
9.29k
{
235
9.29k
    uint8_t i;
236
237
9.29k
  if (!hyb) return;
238
239
9.29k
    if (hyb->work)
240
9.29k
        faad_free(hyb->work);
241
242
55.7k
    for (i = 0; i < 5; i++)
243
46.4k
    {
244
46.4k
        if (hyb->buffer[i])
245
46.4k
            faad_free(hyb->buffer[i]);
246
46.4k
    }
247
9.29k
    if (hyb->buffer)
248
9.29k
        faad_free(hyb->buffer);
249
250
303k
    for (i = 0; i < hyb->frame_len; i++)
251
294k
    {
252
294k
        if (hyb->temp[i])
253
294k
            faad_free(hyb->temp[i]);
254
294k
    }
255
9.29k
    if (hyb->temp)
256
9.29k
        faad_free(hyb->temp);
257
258
9.29k
    faad_free(hyb);
259
9.29k
}
260
261
/* real filter, size 2 */
262
static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
263
                            qmf_t *buffer, qmf_t **X_hybrid)
264
7.39k
{
265
7.39k
    uint8_t i;
266
7.39k
    (void)hyb;  /* TODO: remove parameter? */
267
268
240k
    for (i = 0; i < frame_len; i++)
269
232k
    {
270
232k
        real_t r0 = MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i])));
271
232k
        real_t r1 = MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i])));
272
232k
        real_t r2 = MUL_F(filter[2],(QMF_RE(buffer[2+i]) + QMF_RE(buffer[10+i])));
273
232k
        real_t r3 = MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
274
232k
        real_t r4 = MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
275
232k
        real_t r5 = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
276
232k
        real_t r6 = MUL_F(filter[6],QMF_RE(buffer[6+i]));
277
232k
        real_t i0 = MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i])));
278
232k
        real_t i1 = MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i])));
279
232k
        real_t i2 = MUL_F(filter[2],(QMF_IM(buffer[2+i]) + QMF_IM(buffer[10+i])));
280
232k
        real_t i3 = MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
281
232k
        real_t i4 = MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
282
232k
        real_t i5 = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
283
232k
        real_t i6 = MUL_F(filter[6],QMF_IM(buffer[6+i]));
284
285
        /* q = 0 */
286
232k
        QMF_RE(X_hybrid[i][0]) = r0 + r1 + r2 + r3 + r4 + r5 + r6;
287
232k
        QMF_IM(X_hybrid[i][0]) = i0 + i1 + i2 + i3 + i4 + i5 + i6;
288
289
        /* q = 1 */
290
232k
        QMF_RE(X_hybrid[i][1]) = r0 - r1 + r2 - r3 + r4 - r5 + r6;
291
232k
        QMF_IM(X_hybrid[i][1]) = i0 - i1 + i2 - i3 + i4 - i5 + i6;
292
232k
    }
293
7.39k
}
294
295
/* complex filter, size 4 */
296
static void channel_filter4(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
297
                            qmf_t *buffer, qmf_t **X_hybrid)
298
6.48k
{
299
6.48k
    uint8_t i;
300
6.48k
    real_t input_re1[2], input_re2[2], input_im1[2], input_im2[2];
301
6.48k
    (void)hyb;  /* TODO: remove parameter? */
302
303
205k
    for (i = 0; i < frame_len; i++)
304
199k
    {
305
199k
        input_re1[0] = -MUL_F(filter[2], (QMF_RE(buffer[i+2]) + QMF_RE(buffer[i+10]))) +
306
199k
            MUL_F(filter[6], QMF_RE(buffer[i+6]));
307
199k
        input_re1[1] = MUL_F(FRAC_CONST(-0.70710678118655),
308
199k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) + QMF_RE(buffer[i+11]))) +
309
199k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) + QMF_RE(buffer[i+9]))) -
310
199k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) + QMF_RE(buffer[i+7])))));
311
312
199k
        input_im1[0] = MUL_F(filter[0], (QMF_IM(buffer[i+0]) - QMF_IM(buffer[i+12]))) -
313
199k
            MUL_F(filter[4], (QMF_IM(buffer[i+4]) - QMF_IM(buffer[i+8])));
314
199k
        input_im1[1] = MUL_F(FRAC_CONST(0.70710678118655),
315
199k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) - QMF_IM(buffer[i+11]))) -
316
199k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) - QMF_IM(buffer[i+9]))) -
317
199k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) - QMF_IM(buffer[i+7])))));
318
319
199k
        input_re2[0] = MUL_F(filter[0], (QMF_RE(buffer[i+0]) - QMF_RE(buffer[i+12]))) -
320
199k
            MUL_F(filter[4], (QMF_RE(buffer[i+4]) - QMF_RE(buffer[i+8])));
321
199k
        input_re2[1] = MUL_F(FRAC_CONST(0.70710678118655),
322
199k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) - QMF_RE(buffer[i+11]))) -
323
199k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) - QMF_RE(buffer[i+9]))) -
324
199k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) - QMF_RE(buffer[i+7])))));
325
326
199k
        input_im2[0] = -MUL_F(filter[2], (QMF_IM(buffer[i+2]) + QMF_IM(buffer[i+10]))) +
327
199k
            MUL_F(filter[6], QMF_IM(buffer[i+6]));
328
199k
        input_im2[1] = MUL_F(FRAC_CONST(-0.70710678118655),
329
199k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) + QMF_IM(buffer[i+11]))) +
330
199k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) + QMF_IM(buffer[i+9]))) -
331
199k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) + QMF_IM(buffer[i+7])))));
332
333
        /* q == 0 */
334
199k
        QMF_RE(X_hybrid[i][0]) =  input_re1[0] + input_re1[1] + input_im1[0] + input_im1[1];
335
199k
        QMF_IM(X_hybrid[i][0]) = -input_re2[0] - input_re2[1] + input_im2[0] + input_im2[1];
336
337
        /* q == 1 */
338
199k
        QMF_RE(X_hybrid[i][1]) =  input_re1[0] - input_re1[1] - input_im1[0] + input_im1[1];
339
199k
        QMF_IM(X_hybrid[i][1]) =  input_re2[0] - input_re2[1] + input_im2[0] - input_im2[1];
340
341
        /* q == 2 */
342
199k
        QMF_RE(X_hybrid[i][2]) =  input_re1[0] - input_re1[1] + input_im1[0] - input_im1[1];
343
199k
        QMF_IM(X_hybrid[i][2]) = -input_re2[0] + input_re2[1] + input_im2[0] - input_im2[1];
344
345
        /* q == 3 */
346
199k
        QMF_RE(X_hybrid[i][3]) =  input_re1[0] + input_re1[1] - input_im1[0] - input_im1[1];
347
199k
        QMF_IM(X_hybrid[i][3]) =  input_re2[0] + input_re2[1] + input_im2[0] + input_im2[1];
348
199k
    }
349
6.48k
}
350
351
static void INLINE DCT3_4_unscaled(real_t *y, real_t *x)
352
730k
{
353
730k
    real_t f0, f1, f2, f3, f4, f5, f6, f7, f8;
354
355
730k
    f0 = MUL_F(x[2], FRAC_CONST(0.7071067811865476));
356
730k
    f1 = x[0] - f0;
357
730k
    f2 = x[0] + f0;
358
730k
    f3 = x[1] + x[3];
359
730k
    f4 = MUL_C(x[1], COEF_CONST(1.3065629648763766));
360
730k
    f5 = MUL_F(f3, FRAC_CONST(-0.9238795325112866));
361
730k
    f6 = MUL_F(x[3], FRAC_CONST(-0.5411961001461967));
362
730k
    f7 = f4 + f5;
363
730k
    f8 = f6 - f5;
364
730k
    y[3] = f2 - f8;
365
730k
    y[0] = f2 + f8;
366
730k
    y[2] = f1 - f7;
367
730k
    y[1] = f1 + f7;
368
730k
}
369
370
/* complex filter, size 8 */
371
static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
372
                            qmf_t *buffer, qmf_t **X_hybrid)
373
5.85k
{
374
5.85k
    uint8_t i, n;
375
5.85k
    real_t input_re1[4], input_re2[4], input_im1[4], input_im2[4];
376
5.85k
    real_t x[4];
377
5.85k
    (void)hyb;  /* TODO: remove parameter? */
378
379
188k
    for (i = 0; i < frame_len; i++)
380
182k
    {
381
182k
        input_re1[0] =  MUL_F(filter[6],QMF_RE(buffer[6+i]));
382
182k
        input_re1[1] =  MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
383
182k
        input_re1[2] = -MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i]))) + MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
384
182k
        input_re1[3] = -MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i]))) + MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
385
386
182k
        input_im1[0] = MUL_F(filter[5],(QMF_IM(buffer[7+i]) - QMF_IM(buffer[5+i])));
387
182k
        input_im1[1] = MUL_F(filter[0],(QMF_IM(buffer[12+i]) - QMF_IM(buffer[0+i]))) + MUL_F(filter[4],(QMF_IM(buffer[8+i]) - QMF_IM(buffer[4+i])));
388
182k
        input_im1[2] = MUL_F(filter[1],(QMF_IM(buffer[11+i]) - QMF_IM(buffer[1+i]))) + MUL_F(filter[3],(QMF_IM(buffer[9+i]) - QMF_IM(buffer[3+i])));
389
182k
        input_im1[3] = MUL_F(filter[2],(QMF_IM(buffer[10+i]) - QMF_IM(buffer[2+i])));
390
391
913k
        for (n = 0; n < 4; n++)
392
730k
        {
393
730k
            x[n] = input_re1[n] - input_im1[3-n];
394
730k
        }
395
182k
        DCT3_4_unscaled(x, x);
396
182k
        QMF_RE(X_hybrid[i][7]) = x[0];
397
182k
        QMF_RE(X_hybrid[i][5]) = x[2];
398
182k
        QMF_RE(X_hybrid[i][3]) = x[3];
399
182k
        QMF_RE(X_hybrid[i][1]) = x[1];
400
401
913k
        for (n = 0; n < 4; n++)
402
730k
        {
403
730k
            x[n] = input_re1[n] + input_im1[3-n];
404
730k
        }
405
182k
        DCT3_4_unscaled(x, x);
406
182k
        QMF_RE(X_hybrid[i][6]) = x[1];
407
182k
        QMF_RE(X_hybrid[i][4]) = x[3];
408
182k
        QMF_RE(X_hybrid[i][2]) = x[2];
409
182k
        QMF_RE(X_hybrid[i][0]) = x[0];
410
411
182k
        input_im2[0] =  MUL_F(filter[6],QMF_IM(buffer[6+i]));
412
182k
        input_im2[1] =  MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
413
182k
        input_im2[2] = -MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i]))) + MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
414
182k
        input_im2[3] = -MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i]))) + MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
415
416
182k
        input_re2[0] = MUL_F(filter[5],(QMF_RE(buffer[7+i]) - QMF_RE(buffer[5+i])));
417
182k
        input_re2[1] = MUL_F(filter[0],(QMF_RE(buffer[12+i]) - QMF_RE(buffer[0+i]))) + MUL_F(filter[4],(QMF_RE(buffer[8+i]) - QMF_RE(buffer[4+i])));
418
182k
        input_re2[2] = MUL_F(filter[1],(QMF_RE(buffer[11+i]) - QMF_RE(buffer[1+i]))) + MUL_F(filter[3],(QMF_RE(buffer[9+i]) - QMF_RE(buffer[3+i])));
419
182k
        input_re2[3] = MUL_F(filter[2],(QMF_RE(buffer[10+i]) - QMF_RE(buffer[2+i])));
420
421
913k
        for (n = 0; n < 4; n++)
422
730k
        {
423
730k
            x[n] = input_im2[n] + input_re2[3-n];
424
730k
        }
425
182k
        DCT3_4_unscaled(x, x);
426
182k
        QMF_IM(X_hybrid[i][7]) = x[0];
427
182k
        QMF_IM(X_hybrid[i][5]) = x[2];
428
182k
        QMF_IM(X_hybrid[i][3]) = x[3];
429
182k
        QMF_IM(X_hybrid[i][1]) = x[1];
430
431
913k
        for (n = 0; n < 4; n++)
432
730k
        {
433
730k
            x[n] = input_im2[n] - input_re2[3-n];
434
730k
        }
435
182k
        DCT3_4_unscaled(x, x);
436
182k
        QMF_IM(X_hybrid[i][6]) = x[1];
437
182k
        QMF_IM(X_hybrid[i][4]) = x[3];
438
182k
        QMF_IM(X_hybrid[i][2]) = x[2];
439
182k
        QMF_IM(X_hybrid[i][0]) = x[0];
440
182k
    }
441
5.85k
}
442
443
static void INLINE DCT3_6_unscaled(real_t *y, real_t *x)
444
265k
{
445
265k
    real_t f0, f1, f2, f3, f4, f5, f6, f7;
446
447
265k
    f0 = MUL_F(x[3], FRAC_CONST(0.70710678118655));
448
265k
    f1 = x[0] + f0;
449
265k
    f2 = x[0] - f0;
450
265k
    f3 = MUL_F((x[1] - x[5]), FRAC_CONST(0.70710678118655));
451
265k
    f4 = MUL_F(x[2], FRAC_CONST(0.86602540378444)) + MUL_F(x[4], FRAC_CONST(0.5));
452
265k
    f5 = f4 - x[4];
453
265k
    f6 = MUL_F(x[1], FRAC_CONST(0.96592582628907)) + MUL_F(x[5], FRAC_CONST(0.25881904510252));
454
265k
    f7 = f6 - f3;
455
265k
    y[0] = f1 + f6 + f4;
456
265k
    y[1] = f2 + f3 - x[4];
457
265k
    y[2] = f7 + f2 - f5;
458
265k
    y[3] = f1 - f7 - f5;
459
265k
    y[4] = f1 - f3 - x[4];
460
265k
    y[5] = f2 - f6 + f4;
461
265k
}
462
463
/* complex filter, size 12 */
464
static void channel_filter12(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
465
                             qmf_t *buffer, qmf_t **X_hybrid)
466
2.16k
{
467
2.16k
    uint8_t i, n;
468
2.16k
    real_t input_re1[6], input_re2[6], input_im1[6], input_im2[6];
469
2.16k
    real_t out_re1[6], out_re2[6], out_im1[6], out_im2[6];
470
2.16k
    (void)hyb;  /* TODO: remove parameter? */
471
472
68.5k
    for (i = 0; i < frame_len; i++)
473
66.4k
    {
474
464k
        for (n = 0; n < 6; n++)
475
398k
        {
476
398k
            if (n == 0)
477
66.4k
            {
478
66.4k
                input_re1[0] = MUL_F(QMF_RE(buffer[6+i]), filter[6]);
479
66.4k
                input_re2[0] = MUL_F(QMF_IM(buffer[6+i]), filter[6]);
480
332k
            } else {
481
332k
                input_re1[6-n] = MUL_F((QMF_RE(buffer[n+i]) + QMF_RE(buffer[12-n+i])), filter[n]);
482
332k
                input_re2[6-n] = MUL_F((QMF_IM(buffer[n+i]) + QMF_IM(buffer[12-n+i])), filter[n]);
483
332k
            }
484
398k
            input_im2[n] = MUL_F((QMF_RE(buffer[n+i]) - QMF_RE(buffer[12-n+i])), filter[n]);
485
398k
            input_im1[n] = MUL_F((QMF_IM(buffer[n+i]) - QMF_IM(buffer[12-n+i])), filter[n]);
486
398k
        }
487
488
66.4k
        DCT3_6_unscaled(out_re1, input_re1);
489
66.4k
        DCT3_6_unscaled(out_re2, input_re2);
490
491
66.4k
        DCT3_6_unscaled(out_im1, input_im1);
492
66.4k
        DCT3_6_unscaled(out_im2, input_im2);
493
494
265k
        for (n = 0; n < 6; n += 2)
495
199k
        {
496
199k
            QMF_RE(X_hybrid[i][n]) = out_re1[n] - out_im1[n];
497
199k
            QMF_IM(X_hybrid[i][n]) = out_re2[n] + out_im2[n];
498
199k
            QMF_RE(X_hybrid[i][n+1]) = out_re1[n+1] + out_im1[n+1];
499
199k
            QMF_IM(X_hybrid[i][n+1]) = out_re2[n+1] - out_im2[n+1];
500
501
199k
            QMF_RE(X_hybrid[i][10-n]) = out_re1[n+1] - out_im1[n+1];
502
199k
            QMF_IM(X_hybrid[i][10-n]) = out_re2[n+1] + out_im2[n+1];
503
199k
            QMF_RE(X_hybrid[i][11-n]) = out_re1[n] + out_im1[n];
504
199k
            QMF_IM(X_hybrid[i][11-n]) = out_re2[n] - out_im2[n];
505
199k
        }
506
66.4k
    }
507
2.16k
}
508
509
/* Hybrid analysis: further split up QMF subbands
510
 * to improve frequency resolution
511
 */
512
static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
513
                            uint8_t use34, uint8_t numTimeSlotsRate)
514
5.85k
{
515
5.85k
    uint8_t k, n, band;
516
5.85k
    uint8_t offset = 0;
517
5.85k
    uint8_t qmf_bands = (use34) ? 5 : 3;
518
5.85k
    uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
519
520
27.7k
    for (band = 0; band < qmf_bands; band++)
521
21.8k
    {
522
        /* build working buffer */
523
21.8k
        memcpy(hyb->work, hyb->buffer[band], 12 * sizeof(qmf_t));
524
525
        /* add new samples */
526
702k
        for (n = 0; n < hyb->frame_len; n++)
527
681k
        {
528
681k
            QMF_RE(hyb->work[12 + n]) = QMF_RE(X[n + 6 /*delay*/][band]);
529
681k
            QMF_IM(hyb->work[12 + n]) = QMF_IM(X[n + 6 /*delay*/][band]);
530
681k
        }
531
532
        /* store samples */
533
21.8k
        memcpy(hyb->buffer[band], hyb->work + hyb->frame_len, 12 * sizeof(qmf_t));
534
535
536
21.8k
        switch(resolution[band])
537
21.8k
        {
538
7.39k
        case 2:
539
            /* Type B real filter, Q[p] = 2 */
540
7.39k
            channel_filter2(hyb, hyb->frame_len, p2_13_20, hyb->work, hyb->temp);
541
7.39k
            break;
542
6.48k
        case 4:
543
            /* Type A complex filter, Q[p] = 4 */
544
6.48k
            channel_filter4(hyb, hyb->frame_len, p4_13_34, hyb->work, hyb->temp);
545
6.48k
            break;
546
5.85k
        case 8:
547
            /* Type A complex filter, Q[p] = 8 */
548
5.85k
            channel_filter8(hyb, hyb->frame_len, (use34) ? p8_13_34 : p8_13_20,
549
5.85k
                hyb->work, hyb->temp);
550
5.85k
            break;
551
2.16k
        case 12:
552
            /* Type A complex filter, Q[p] = 12 */
553
2.16k
            channel_filter12(hyb, hyb->frame_len, p12_13_34, hyb->work, hyb->temp);
554
2.16k
            break;
555
21.8k
        }
556
557
702k
        for (n = 0; n < hyb->frame_len; n++)
558
681k
        {
559
4.20M
            for (k = 0; k < resolution[band]; k++)
560
3.52M
            {
561
3.52M
                QMF_RE(X_hybrid[n][offset + k]) = QMF_RE(hyb->temp[n][k]);
562
3.52M
                QMF_IM(X_hybrid[n][offset + k]) = QMF_IM(hyb->temp[n][k]);
563
3.52M
            }
564
681k
        }
565
21.8k
        offset += resolution[band];
566
21.8k
    }
567
568
    /* group hybrid channels */
569
5.85k
    if (!use34)
570
3.69k
    {
571
120k
        for (n = 0; n < numTimeSlotsRate; n++)
572
116k
        {
573
116k
            QMF_RE(X_hybrid[n][3]) += QMF_RE(X_hybrid[n][4]);
574
116k
            QMF_IM(X_hybrid[n][3]) += QMF_IM(X_hybrid[n][4]);
575
116k
            QMF_RE(X_hybrid[n][4]) = 0;
576
116k
            QMF_IM(X_hybrid[n][4]) = 0;
577
578
116k
            QMF_RE(X_hybrid[n][2]) += QMF_RE(X_hybrid[n][5]);
579
116k
            QMF_IM(X_hybrid[n][2]) += QMF_IM(X_hybrid[n][5]);
580
116k
            QMF_RE(X_hybrid[n][5]) = 0;
581
116k
            QMF_IM(X_hybrid[n][5]) = 0;
582
116k
        }
583
3.69k
    }
584
5.85k
}
585
586
static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
587
                             uint8_t use34, uint8_t numTimeSlotsRate)
588
11.7k
{
589
11.7k
    uint8_t k, n, band;
590
11.7k
    uint8_t offset = 0;
591
11.7k
    uint8_t qmf_bands = (use34) ? 5 : 3;
592
11.7k
    uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
593
11.7k
    (void)numTimeSlotsRate;  /* TODO: remove parameter? */
594
595
55.4k
    for(band = 0; band < qmf_bands; band++)
596
43.7k
    {
597
1.40M
        for (n = 0; n < hyb->frame_len; n++)
598
1.36M
        {
599
1.36M
            QMF_RE(X[n][band]) = 0;
600
1.36M
            QMF_IM(X[n][band]) = 0;
601
602
8.40M
            for (k = 0; k < resolution[band]; k++)
603
7.04M
            {
604
7.04M
                QMF_RE(X[n][band]) += QMF_RE(X_hybrid[n][offset + k]);
605
7.04M
                QMF_IM(X[n][band]) += QMF_IM(X_hybrid[n][offset + k]);
606
7.04M
            }
607
1.36M
        }
608
43.7k
        offset += resolution[band];
609
43.7k
    }
610
11.7k
}
611
612
/* limits the value i to the range [min,max] */
613
static int8_t delta_clip(int8_t i, int8_t min, int8_t max)
614
99.3k
{
615
99.3k
    if (i < min)
616
9.80k
        return min;
617
89.5k
    else if (i > max)
618
3.54k
        return max;
619
86.0k
    else
620
86.0k
        return i;
621
99.3k
}
622
623
//int iid = 0;
624
625
/* delta decode array */
626
static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
627
                         uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
628
                         int8_t min_index, int8_t max_index)
629
19.4k
{
630
19.4k
    int8_t i;
631
632
19.4k
    if (enable == 1)
633
8.89k
    {
634
8.89k
        if (dt_flag == 0)
635
6.08k
        {
636
            /* delta coded in frequency direction */
637
6.08k
            index[0] = 0 + index[0];
638
6.08k
            index[0] = delta_clip(index[0], min_index, max_index);
639
640
69.8k
            for (i = 1; i < nr_par; i++)
641
63.8k
            {
642
63.8k
                index[i] = index[i-1] + index[i];
643
63.8k
                index[i] = delta_clip(index[i], min_index, max_index);
644
63.8k
            }
645
6.08k
        } else {
646
            /* delta coded in time direction */
647
32.2k
            for (i = 0; i < nr_par; i++)
648
29.4k
            {
649
                //int8_t tmp2;
650
                //int8_t tmp = index[i];
651
652
                //printf("%d %d\n", index_prev[i*stride], index[i]);
653
                //printf("%d\n", index[i]);
654
655
29.4k
                index[i] = index_prev[i*stride] + index[i];
656
                //tmp2 = index[i];
657
29.4k
                index[i] = delta_clip(index[i], min_index, max_index);
658
659
                //if (iid)
660
                //{
661
                //    if (index[i] == 7)
662
                //    {
663
                //        printf("%d %d %d\n", index_prev[i*stride], tmp, tmp2);
664
                //    }
665
                //}
666
29.4k
            }
667
2.81k
        }
668
10.5k
    } else {
669
        /* set indices to zero */
670
17.6k
        for (i = 0; i < nr_par; i++)
671
7.08k
        {
672
7.08k
            index[i] = 0;
673
7.08k
        }
674
10.5k
    }
675
676
    /* coarse */
677
19.4k
    if (stride == 2)
678
11.8k
    {
679
43.9k
        for (i = (nr_par<<1)-1; i > 0; i--)
680
32.1k
        {
681
32.1k
            index[i] = index[i>>1];
682
32.1k
        }
683
11.8k
    }
684
19.4k
}
685
686
/* delta modulo decode array */
687
/* in: log2 value of the modulo value to allow using AND instead of MOD */
688
static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
689
                                uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
690
                                int8_t and_modulo)
691
19.4k
{
692
19.4k
    int8_t i;
693
694
19.4k
    if (enable == 1)
695
5.49k
    {
696
5.49k
        if (dt_flag == 0)
697
2.21k
        {
698
            /* delta coded in frequency direction */
699
2.21k
            index[0] = 0 + index[0];
700
2.21k
            index[0] &= and_modulo;
701
702
7.34k
            for (i = 1; i < nr_par; i++)
703
5.13k
            {
704
5.13k
                index[i] = index[i-1] + index[i];
705
5.13k
                index[i] &= and_modulo;
706
5.13k
            }
707
3.28k
        } else {
708
            /* delta coded in time direction */
709
9.20k
            for (i = 0; i < nr_par; i++)
710
5.91k
            {
711
5.91k
                index[i] = index_prev[i*stride] + index[i];
712
5.91k
                index[i] &= and_modulo;
713
5.91k
            }
714
3.28k
        }
715
13.9k
    } else {
716
        /* set indices to zero */
717
60.7k
        for (i = 0; i < nr_par; i++)
718
46.8k
        {
719
46.8k
            index[i] = 0;
720
46.8k
        }
721
13.9k
    }
722
723
    /* coarse */
724
19.4k
    if (stride == 2)
725
0
    {
726
0
        index[0] = 0;
727
0
        for (i = (nr_par<<1)-1; i > 0; i--)
728
0
        {
729
0
            index[i] = index[i>>1];
730
0
        }
731
0
    }
732
19.4k
}
733
734
#ifdef PS_LOW_POWER
735
static void map34indexto20(int8_t *index, uint8_t bins)
736
{
737
    index[0] = (2*index[0]+index[1])/3;
738
    index[1] = (index[1]+2*index[2])/3;
739
    index[2] = (2*index[3]+index[4])/3;
740
    index[3] = (index[4]+2*index[5])/3;
741
    index[4] = (index[6]+index[7])/2;
742
    index[5] = (index[8]+index[9])/2;
743
    index[6] = index[10];
744
    index[7] = index[11];
745
    index[8] = (index[12]+index[13])/2;
746
    index[9] = (index[14]+index[15])/2;
747
    index[10] = index[16];
748
749
    if (bins == 34)
750
    {
751
        index[11] = index[17];
752
        index[12] = index[18];
753
        index[13] = index[19];
754
        index[14] = (index[20]+index[21])/2;
755
        index[15] = (index[22]+index[23])/2;
756
        index[16] = (index[24]+index[25])/2;
757
        index[17] = (index[26]+index[27])/2;
758
        index[18] = (index[28]+index[29]+index[30]+index[31])/4;
759
        index[19] = (index[32]+index[33])/2;
760
    }
761
}
762
#endif
763
764
static void map20indexto34(int8_t *index, uint8_t bins)
765
8.17k
{
766
8.17k
    index[0] = index[0];
767
8.17k
    index[1] = (index[0] + index[1])/2;
768
8.17k
    index[2] = index[1];
769
8.17k
    index[3] = index[2];
770
8.17k
    index[4] = (index[2] + index[3])/2;
771
8.17k
    index[5] = index[3];
772
8.17k
    index[6] = index[4];
773
8.17k
    index[7] = index[4];
774
8.17k
    index[8] = index[5];
775
8.17k
    index[9] = index[5];
776
8.17k
    index[10] = index[6];
777
8.17k
    index[11] = index[7];
778
8.17k
    index[12] = index[8];
779
8.17k
    index[13] = index[8];
780
8.17k
    index[14] = index[9];
781
8.17k
    index[15] = index[9];
782
8.17k
    index[16] = index[10];
783
784
8.17k
    if (bins == 34)
785
3.85k
    {
786
3.85k
        index[17] = index[11];
787
3.85k
        index[18] = index[12];
788
3.85k
        index[19] = index[13];
789
3.85k
        index[20] = index[14];
790
3.85k
        index[21] = index[14];
791
3.85k
        index[22] = index[15];
792
3.85k
        index[23] = index[15];
793
3.85k
        index[24] = index[16];
794
3.85k
        index[25] = index[16];
795
3.85k
        index[26] = index[17];
796
3.85k
        index[27] = index[17];
797
3.85k
        index[28] = index[18];
798
3.85k
        index[29] = index[18];
799
3.85k
        index[30] = index[18];
800
3.85k
        index[31] = index[18];
801
3.85k
        index[32] = index[19];
802
3.85k
        index[33] = index[19];
803
3.85k
    }
804
8.17k
}
805
806
/* parse the bitstream data decoded in ps_data() */
807
static void ps_data_decode(ps_info *ps)
808
5.85k
{
809
5.85k
    uint8_t env, bin;
810
811
    /* ps data not available, use data from previous frame */
812
5.85k
    if (ps->ps_data_available == 0)
813
1.64k
    {
814
1.64k
        ps->num_env = 0;
815
1.64k
    }
816
817
15.5k
    for (env = 0; env < ps->num_env; env++)
818
9.72k
    {
819
9.72k
        int8_t *iid_index_prev;
820
9.72k
        int8_t *icc_index_prev;
821
9.72k
        int8_t *ipd_index_prev;
822
9.72k
        int8_t *opd_index_prev;
823
824
9.72k
        int8_t num_iid_steps = (ps->iid_mode < 3) ? 7 : 15 /*fine quant*/;
825
826
9.72k
        if (env == 0)
827
2.82k
        {
828
            /* take last envelope from previous frame */
829
2.82k
            iid_index_prev = ps->iid_index_prev;
830
2.82k
            icc_index_prev = ps->icc_index_prev;
831
2.82k
            ipd_index_prev = ps->ipd_index_prev;
832
2.82k
            opd_index_prev = ps->opd_index_prev;
833
6.90k
        } else {
834
            /* take index values from previous envelope */
835
6.90k
            iid_index_prev = ps->iid_index[env - 1];
836
6.90k
            icc_index_prev = ps->icc_index[env - 1];
837
6.90k
            ipd_index_prev = ps->ipd_index[env - 1];
838
6.90k
            opd_index_prev = ps->opd_index[env - 1];
839
6.90k
        }
840
841
//        iid = 1;
842
        /* delta decode iid parameters */
843
9.72k
        delta_decode(ps->enable_iid, ps->iid_index[env], iid_index_prev,
844
9.72k
            ps->iid_dt[env], ps->nr_iid_par,
845
9.72k
            (ps->iid_mode == 0 || ps->iid_mode == 3) ? 2 : 1,
846
9.72k
            -num_iid_steps, num_iid_steps);
847
//        iid = 0;
848
849
        /* delta decode icc parameters */
850
9.72k
        delta_decode(ps->enable_icc, ps->icc_index[env], icc_index_prev,
851
9.72k
            ps->icc_dt[env], ps->nr_icc_par,
852
9.72k
            (ps->icc_mode == 0 || ps->icc_mode == 3) ? 2 : 1,
853
9.72k
            0, 7);
854
855
        /* delta modulo decode ipd parameters */
856
9.72k
        delta_modulo_decode(ps->enable_ipdopd, ps->ipd_index[env], ipd_index_prev,
857
9.72k
            ps->ipd_dt[env], ps->nr_ipdopd_par, 1, 7);
858
859
        /* delta modulo decode opd parameters */
860
9.72k
        delta_modulo_decode(ps->enable_ipdopd, ps->opd_index[env], opd_index_prev,
861
9.72k
            ps->opd_dt[env], ps->nr_ipdopd_par, 1, 7);
862
9.72k
    }
863
864
    /* handle error case */
865
5.85k
    if (ps->num_env == 0)
866
3.03k
    {
867
        /* force to 1 */
868
3.03k
        ps->num_env = 1;
869
870
3.03k
        if (ps->enable_iid)
871
2.07k
        {
872
72.5k
            for (bin = 0; bin < 34; bin++)
873
70.5k
                ps->iid_index[0][bin] = ps->iid_index_prev[bin];
874
2.07k
        } else {
875
33.6k
            for (bin = 0; bin < 34; bin++)
876
32.7k
                ps->iid_index[0][bin] = 0;
877
962
        }
878
879
3.03k
        if (ps->enable_icc)
880
1.73k
        {
881
60.5k
            for (bin = 0; bin < 34; bin++)
882
58.8k
                ps->icc_index[0][bin] = ps->icc_index_prev[bin];
883
1.73k
        } else {
884
45.7k
            for (bin = 0; bin < 34; bin++)
885
44.4k
                ps->icc_index[0][bin] = 0;
886
1.30k
        }
887
888
3.03k
        if (ps->enable_ipdopd)
889
450
        {
890
8.10k
            for (bin = 0; bin < 17; bin++)
891
7.65k
            {
892
7.65k
                ps->ipd_index[0][bin] = ps->ipd_index_prev[bin];
893
7.65k
                ps->opd_index[0][bin] = ps->opd_index_prev[bin];
894
7.65k
            }
895
2.58k
        } else {
896
46.5k
            for (bin = 0; bin < 17; bin++)
897
43.9k
            {
898
43.9k
                ps->ipd_index[0][bin] = 0;
899
43.9k
                ps->opd_index[0][bin] = 0;
900
43.9k
            }
901
2.58k
        }
902
3.03k
    }
903
904
    /* update previous indices */
905
204k
    for (bin = 0; bin < 34; bin++)
906
199k
        ps->iid_index_prev[bin] = ps->iid_index[ps->num_env-1][bin];
907
204k
    for (bin = 0; bin < 34; bin++)
908
199k
        ps->icc_index_prev[bin] = ps->icc_index[ps->num_env-1][bin];
909
105k
    for (bin = 0; bin < 17; bin++)
910
99.5k
    {
911
99.5k
        ps->ipd_index_prev[bin] = ps->ipd_index[ps->num_env-1][bin];
912
99.5k
        ps->opd_index_prev[bin] = ps->opd_index[ps->num_env-1][bin];
913
99.5k
    }
914
915
5.85k
    ps->ps_data_available = 0;
916
917
5.85k
    if (ps->frame_class == 0)
918
3.84k
    {
919
3.84k
        ps->border_position[0] = 0;
920
6.89k
        for (env = 1; env < ps->num_env; env++)
921
3.05k
        {
922
3.05k
            ps->border_position[env] = (env * ps->numTimeSlotsRate) / ps->num_env;
923
3.05k
        }
924
3.84k
        ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
925
3.84k
    } else {
926
2.01k
        ps->border_position[0] = 0;
927
928
2.01k
        if (ps->border_position[ps->num_env] < ps->numTimeSlotsRate)
929
1.77k
        {
930
61.9k
            for (bin = 0; bin < 34; bin++)
931
60.1k
            {
932
60.1k
                ps->iid_index[ps->num_env][bin] = ps->iid_index[ps->num_env-1][bin];
933
60.1k
                ps->icc_index[ps->num_env][bin] = ps->icc_index[ps->num_env-1][bin];
934
60.1k
            }
935
31.8k
            for (bin = 0; bin < 17; bin++)
936
30.0k
            {
937
30.0k
                ps->ipd_index[ps->num_env][bin] = ps->ipd_index[ps->num_env-1][bin];
938
30.0k
                ps->opd_index[ps->num_env][bin] = ps->opd_index[ps->num_env-1][bin];
939
30.0k
            }
940
1.77k
            ps->num_env++;
941
1.77k
            ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
942
1.77k
        }
943
944
7.62k
        for (env = 1; env < ps->num_env; env++)
945
5.61k
        {
946
5.61k
            int8_t thr = ps->numTimeSlotsRate - (ps->num_env - env);
947
948
5.61k
            if (ps->border_position[env] > thr)
949
959
            {
950
959
                ps->border_position[env] = thr;
951
4.65k
            } else {
952
4.65k
                thr = ps->border_position[env-1]+1;
953
4.65k
                if (ps->border_position[env] < thr)
954
2.33k
                {
955
2.33k
                    ps->border_position[env] = thr;
956
2.33k
                }
957
4.65k
            }
958
5.61k
        }
959
2.01k
    }
960
961
    /* make sure that the indices of all parameters can be mapped
962
     * to the same hybrid synthesis filterbank
963
     */
964
#ifdef PS_LOW_POWER
965
    for (env = 0; env < ps->num_env; env++)
966
    {
967
        if (ps->iid_mode == 2 || ps->iid_mode == 5)
968
            map34indexto20(ps->iid_index[env], 34);
969
        if (ps->icc_mode == 2 || ps->icc_mode == 5)
970
            map34indexto20(ps->icc_index[env], 34);
971
972
        /* disable ipd/opd */
973
        for (bin = 0; bin < 17; bin++)
974
        {
975
            ps->aaIpdIndex[env][bin] = 0;
976
            ps->aaOpdIndex[env][bin] = 0;
977
        }
978
    }
979
#else
980
5.85k
    if (ps->use34hybrid_bands)
981
2.16k
    {
982
6.15k
        for (env = 0; env < ps->num_env; env++)
983
3.99k
        {
984
3.99k
            if (ps->iid_mode != 2 && ps->iid_mode != 5)
985
2.15k
                map20indexto34(ps->iid_index[env], 34);
986
3.99k
            if (ps->icc_mode != 2 && ps->icc_mode != 5)
987
1.69k
                map20indexto34(ps->icc_index[env], 34);
988
3.99k
            if (ps->ipd_mode != 2 && ps->ipd_mode != 5)
989
2.15k
            {
990
2.15k
                map20indexto34(ps->ipd_index[env], 17);
991
2.15k
                map20indexto34(ps->opd_index[env], 17);
992
2.15k
            }
993
3.99k
        }
994
2.16k
    }
995
5.85k
#endif
996
997
#if 0
998
    for (env = 0; env < ps->num_env; env++)
999
    {
1000
        printf("iid[env:%d]:", env);
1001
        for (bin = 0; bin < 34; bin++)
1002
        {
1003
            printf(" %d", ps->iid_index[env][bin]);
1004
        }
1005
        printf("\n");
1006
    }
1007
    for (env = 0; env < ps->num_env; env++)
1008
    {
1009
        printf("icc[env:%d]:", env);
1010
        for (bin = 0; bin < 34; bin++)
1011
        {
1012
            printf(" %d", ps->icc_index[env][bin]);
1013
        }
1014
        printf("\n");
1015
    }
1016
    for (env = 0; env < ps->num_env; env++)
1017
    {
1018
        printf("ipd[env:%d]:", env);
1019
        for (bin = 0; bin < 17; bin++)
1020
        {
1021
            printf(" %d", ps->ipd_index[env][bin]);
1022
        }
1023
        printf("\n");
1024
    }
1025
    for (env = 0; env < ps->num_env; env++)
1026
    {
1027
        printf("opd[env:%d]:", env);
1028
        for (bin = 0; bin < 17; bin++)
1029
        {
1030
            printf(" %d", ps->opd_index[env][bin]);
1031
        }
1032
        printf("\n");
1033
    }
1034
    printf("\n");
1035
#endif
1036
5.85k
}
1037
1038
/* decorrelate the mono signal using an allpass filter */
1039
static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
1040
                           qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
1041
5.85k
{
1042
5.85k
    uint8_t gr, n, bk;
1043
5.85k
    uint8_t temp_delay = 0;
1044
5.85k
    uint8_t sb, maxsb;
1045
5.85k
    const complex_t *Phi_Fract_SubQmf;
1046
5.85k
    uint8_t temp_delay_ser[NO_ALLPASS_LINKS];
1047
5.85k
    real_t P_SmoothPeakDecayDiffNrg, nrg;
1048
5.85k
    real_t P[32][34];
1049
5.85k
    real_t G_TransientRatio[32][34] = {{0}};
1050
5.85k
    complex_t inputLeft;
1051
1052
1053
    /* chose hybrid filterbank: 20 or 34 band case */
1054
5.85k
    if (ps->use34hybrid_bands)
1055
2.16k
    {
1056
2.16k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf34;
1057
3.69k
    } else{
1058
3.69k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf20;
1059
3.69k
    }
1060
1061
    /* clear the energy values */
1062
193k
    for (n = 0; n < 32; n++)
1063
187k
    {
1064
6.55M
        for (bk = 0; bk < 34; bk++)
1065
6.37M
        {
1066
6.37M
            P[n][bk] = 0;
1067
6.37M
        }
1068
187k
    }
1069
1070
    /* calculate the energy in each parameter band b(k) */
1071
195k
    for (gr = 0; gr < ps->num_groups; gr++)
1072
189k
    {
1073
        /* select the parameter index b(k) to which this group belongs */
1074
189k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1075
1076
        /* select the upper subband border for this group */
1077
189k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr]+1 : ps->group_border[gr+1];
1078
1079
648k
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1080
459k
        {
1081
14.7M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1082
14.3M
            {
1083
#ifdef FIXED_POINT
1084
                uint32_t in_re, in_im;
1085
#endif
1086
1087
                /* input from hybrid subbands or QMF subbands */
1088
14.3M
                if (gr < ps->num_hybrid_groups)
1089
3.29M
                {
1090
3.29M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1091
3.29M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1092
11.0M
                } else {
1093
11.0M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1094
11.0M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1095
11.0M
                }
1096
1097
                /* accumulate energy */
1098
#ifdef FIXED_POINT
1099
                /* NOTE: all input is scaled by 2^(-5) because of fixed point QMF
1100
                 * meaning that P will be scaled by 2^(-10) compared to floating point version
1101
                 */
1102
                in_re = ((abs(RE(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1103
                in_im = ((abs(IM(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1104
                P[n][bk] += in_re*in_re + in_im*in_im;
1105
#else
1106
14.3M
                P[n][bk] += MUL_R(RE(inputLeft),RE(inputLeft)) + MUL_R(IM(inputLeft),IM(inputLeft));
1107
14.3M
#endif
1108
14.3M
            }
1109
459k
        }
1110
189k
    }
1111
1112
#if 0
1113
    for (n = 0; n < 32; n++)
1114
    {
1115
        for (bk = 0; bk < 34; bk++)
1116
        {
1117
#ifdef FIXED_POINT
1118
            printf("%d %d: %d\n", n, bk, P[n][bk] /*/(float)REAL_PRECISION*/);
1119
#else
1120
            printf("%d %d: %f\n", n, bk, P[n][bk]/1024.0);
1121
#endif
1122
        }
1123
    }
1124
#endif
1125
1126
    /* calculate transient reduction ratio for each parameter band b(k) */
1127
153k
    for (bk = 0; bk < ps->nr_par_bands; bk++)
1128
147k
    {
1129
4.73M
        for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1130
4.59M
        {
1131
4.59M
            const real_t gamma = COEF_CONST(1.5);
1132
1133
4.59M
            ps->P_PeakDecayNrg[bk] = MUL_F(ps->P_PeakDecayNrg[bk], ps->alpha_decay);
1134
4.59M
            if (ps->P_PeakDecayNrg[bk] < P[n][bk])
1135
47.7k
                ps->P_PeakDecayNrg[bk] = P[n][bk];
1136
1137
            /* apply smoothing filter to peak decay energy */
1138
4.59M
            P_SmoothPeakDecayDiffNrg = ps->P_SmoothPeakDecayDiffNrg_prev[bk];
1139
4.59M
            P_SmoothPeakDecayDiffNrg += MUL_F((ps->P_PeakDecayNrg[bk] - P[n][bk] - ps->P_SmoothPeakDecayDiffNrg_prev[bk]), ps->alpha_smooth);
1140
4.59M
            ps->P_SmoothPeakDecayDiffNrg_prev[bk] = P_SmoothPeakDecayDiffNrg;
1141
1142
            /* apply smoothing filter to energy */
1143
4.59M
            nrg = ps->P_prev[bk];
1144
4.59M
            nrg += MUL_F((P[n][bk] - ps->P_prev[bk]), ps->alpha_smooth);
1145
4.59M
            ps->P_prev[bk] = nrg;
1146
1147
            /* calculate transient ratio */
1148
4.59M
            if (MUL_C(P_SmoothPeakDecayDiffNrg, gamma) <= nrg)
1149
4.55M
            {
1150
4.55M
                G_TransientRatio[n][bk] = REAL_CONST(1.0);
1151
4.55M
            } else {
1152
36.3k
                G_TransientRatio[n][bk] = DIV_R(nrg, (MUL_C(P_SmoothPeakDecayDiffNrg, gamma)));
1153
36.3k
            }
1154
4.59M
        }
1155
147k
    }
1156
1157
#if 0
1158
    for (n = 0; n < 32; n++)
1159
    {
1160
        for (bk = 0; bk < 34; bk++)
1161
        {
1162
#ifdef FIXED_POINT
1163
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]/(float)REAL_PRECISION);
1164
#else
1165
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]);
1166
#endif
1167
        }
1168
    }
1169
#endif
1170
1171
    /* apply stereo decorrelation filter to the signal */
1172
195k
    for (gr = 0; gr < ps->num_groups; gr++)
1173
189k
    {
1174
189k
        if (gr < ps->num_hybrid_groups)
1175
106k
            maxsb = ps->group_border[gr] + 1;
1176
83.2k
        else
1177
83.2k
            maxsb = ps->group_border[gr + 1];
1178
1179
        /* QMF channel */
1180
648k
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1181
459k
        {
1182
459k
            real_t g_DecaySlope;
1183
459k
            real_t g_DecaySlope_filt[NO_ALLPASS_LINKS];
1184
1185
            /* g_DecaySlope: [0..1] */
1186
459k
            if (gr < ps->num_hybrid_groups || sb <= ps->decay_cutoff)
1187
111k
            {
1188
111k
                g_DecaySlope = FRAC_CONST(1.0);
1189
347k
            } else {
1190
347k
                int8_t decay = ps->decay_cutoff - sb;
1191
347k
                if (decay <= -20 /* -1/DECAY_SLOPE */)
1192
235k
                {
1193
235k
                    g_DecaySlope = 0;
1194
235k
                } else {
1195
                    /* decay(int)*decay_slope(frac) = g_DecaySlope(frac) */
1196
111k
                    g_DecaySlope = FRAC_CONST(1.0) + DECAY_SLOPE * decay;
1197
111k
                }
1198
347k
            }
1199
1200
            /* calculate g_DecaySlope_filt for every n multiplied by filter_a[n] */
1201
1.83M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1202
1.37M
            {
1203
1.37M
                g_DecaySlope_filt[n] = MUL_F(g_DecaySlope, filter_a[n]);
1204
1.37M
            }
1205
1206
1207
            /* set delay indices */
1208
459k
            temp_delay = ps->saved_delay;
1209
1.83M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1210
1.37M
                temp_delay_ser[n] = ps->delay_buf_index_ser[n];
1211
1212
14.7M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1213
14.3M
            {
1214
14.3M
                complex_t tmp, tmp0, R0;
1215
14.3M
                uint8_t m;
1216
1217
14.3M
                if (gr < ps->num_hybrid_groups)
1218
3.29M
                {
1219
                    /* hybrid filterbank input */
1220
3.29M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1221
3.29M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1222
11.0M
                } else {
1223
                    /* QMF filterbank input */
1224
11.0M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1225
11.0M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1226
11.0M
                }
1227
1228
14.3M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1229
7.50M
                {
1230
                    /* delay */
1231
1232
                    /* never hybrid subbands here, always QMF subbands */
1233
7.50M
                    RE(tmp) = RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1234
7.50M
                    IM(tmp) = IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1235
7.50M
                    RE(R0) = RE(tmp);
1236
7.50M
                    IM(R0) = IM(tmp);
1237
7.50M
                    RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = RE(inputLeft);
1238
7.50M
                    IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = IM(inputLeft);
1239
7.50M
                } else {
1240
                    /* allpass filter */
1241
6.82M
                    complex_t Phi_Fract;
1242
1243
                    /* fetch parameters */
1244
6.82M
                    if (gr < ps->num_hybrid_groups)
1245
3.29M
                    {
1246
                        /* select data from the hybrid subbands */
1247
3.29M
                        RE(tmp0) = RE(ps->delay_SubQmf[temp_delay][sb]);
1248
3.29M
                        IM(tmp0) = IM(ps->delay_SubQmf[temp_delay][sb]);
1249
1250
3.29M
                        RE(ps->delay_SubQmf[temp_delay][sb]) = RE(inputLeft);
1251
3.29M
                        IM(ps->delay_SubQmf[temp_delay][sb]) = IM(inputLeft);
1252
1253
3.29M
                        RE(Phi_Fract) = RE(Phi_Fract_SubQmf[sb]);
1254
3.29M
                        IM(Phi_Fract) = IM(Phi_Fract_SubQmf[sb]);
1255
3.52M
                    } else {
1256
                        /* select data from the QMF subbands */
1257
3.52M
                        RE(tmp0) = RE(ps->delay_Qmf[temp_delay][sb]);
1258
3.52M
                        IM(tmp0) = IM(ps->delay_Qmf[temp_delay][sb]);
1259
1260
3.52M
                        RE(ps->delay_Qmf[temp_delay][sb]) = RE(inputLeft);
1261
3.52M
                        IM(ps->delay_Qmf[temp_delay][sb]) = IM(inputLeft);
1262
1263
3.52M
                        RE(Phi_Fract) = RE(Phi_Fract_Qmf[sb]);
1264
3.52M
                        IM(Phi_Fract) = IM(Phi_Fract_Qmf[sb]);
1265
3.52M
                    }
1266
1267
                    /* z^(-2) * Phi_Fract[k] */
1268
6.82M
                    ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Phi_Fract), IM(Phi_Fract));
1269
1270
6.82M
                    RE(R0) = RE(tmp);
1271
6.82M
                    IM(R0) = IM(tmp);
1272
27.2M
                    for (m = 0; m < NO_ALLPASS_LINKS; m++)
1273
20.4M
                    {
1274
20.4M
                        complex_t Q_Fract_allpass, tmp2;
1275
1276
                        /* fetch parameters */
1277
20.4M
                        if (gr < ps->num_hybrid_groups)
1278
9.87M
                        {
1279
                            /* select data from the hybrid subbands */
1280
9.87M
                            RE(tmp0) = RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1281
9.87M
                            IM(tmp0) = IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1282
1283
9.87M
                            if (ps->use34hybrid_bands)
1284
6.38M
                            {
1285
6.38M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf34[sb][m]);
1286
6.38M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf34[sb][m]);
1287
6.38M
                            } else {
1288
3.49M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf20[sb][m]);
1289
3.49M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf20[sb][m]);
1290
3.49M
                            }
1291
10.5M
                        } else {
1292
                            /* select data from the QMF subbands */
1293
10.5M
                            RE(tmp0) = RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1294
10.5M
                            IM(tmp0) = IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1295
1296
10.5M
                            RE(Q_Fract_allpass) = RE(Q_Fract_allpass_Qmf[sb][m]);
1297
10.5M
                            IM(Q_Fract_allpass) = IM(Q_Fract_allpass_Qmf[sb][m]);
1298
10.5M
                        }
1299
1300
                        /* delay by a fraction */
1301
                        /* z^(-d(m)) * Q_Fract_allpass[k,m] */
1302
20.4M
                        ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Q_Fract_allpass), IM(Q_Fract_allpass));
1303
1304
                        /* -a(m) * g_DecaySlope[k] */
1305
20.4M
                        RE(tmp) += -MUL_F(g_DecaySlope_filt[m], RE(R0));
1306
20.4M
                        IM(tmp) += -MUL_F(g_DecaySlope_filt[m], IM(R0));
1307
1308
                        /* -a(m) * g_DecaySlope[k] * Q_Fract_allpass[k,m] * z^(-d(m)) */
1309
20.4M
                        RE(tmp2) = RE(R0) + MUL_F(g_DecaySlope_filt[m], RE(tmp));
1310
20.4M
                        IM(tmp2) = IM(R0) + MUL_F(g_DecaySlope_filt[m], IM(tmp));
1311
1312
                        /* store sample */
1313
20.4M
                        if (gr < ps->num_hybrid_groups)
1314
9.87M
                        {
1315
9.87M
                            RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1316
9.87M
                            IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1317
10.5M
                        } else {
1318
10.5M
                            RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1319
10.5M
                            IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1320
10.5M
                        }
1321
1322
                        /* store for next iteration (or as output value if last iteration) */
1323
20.4M
                        RE(R0) = RE(tmp);
1324
20.4M
                        IM(R0) = IM(tmp);
1325
20.4M
                    }
1326
6.82M
                }
1327
1328
                /* select b(k) for reading the transient ratio */
1329
14.3M
                bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1330
1331
                /* duck if a past transient is found */
1332
14.3M
                RE(R0) = MUL_R(G_TransientRatio[n][bk], RE(R0));
1333
14.3M
                IM(R0) = MUL_R(G_TransientRatio[n][bk], IM(R0));
1334
1335
14.3M
                if (gr < ps->num_hybrid_groups)
1336
3.29M
                {
1337
                    /* hybrid */
1338
3.29M
                    QMF_RE(X_hybrid_right[n][sb]) = RE(R0);
1339
3.29M
                    QMF_IM(X_hybrid_right[n][sb]) = IM(R0);
1340
11.0M
                } else {
1341
                    /* QMF */
1342
11.0M
                    QMF_RE(X_right[n][sb]) = RE(R0);
1343
11.0M
                    QMF_IM(X_right[n][sb]) = IM(R0);
1344
11.0M
                }
1345
1346
                /* Update delay buffer index */
1347
14.3M
                if (++temp_delay >= 2)
1348
7.15M
                {
1349
7.15M
                    temp_delay = 0;
1350
7.15M
                }
1351
1352
                /* update delay indices */
1353
14.3M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1354
7.50M
                {
1355
                    /* delay_D depends on the samplerate, it can hold the values 14 and 1 */
1356
7.50M
                    if (++ps->delay_buf_index_delay[sb] >= ps->delay_D[sb])
1357
5.44M
                    {
1358
5.44M
                        ps->delay_buf_index_delay[sb] = 0;
1359
5.44M
                    }
1360
7.50M
                }
1361
1362
57.2M
                for (m = 0; m < NO_ALLPASS_LINKS; m++)
1363
42.9M
                {
1364
42.9M
                    if (++temp_delay_ser[m] >= ps->num_sample_delay_ser[m])
1365
11.0M
                    {
1366
11.0M
                        temp_delay_ser[m] = 0;
1367
11.0M
                    }
1368
42.9M
                }
1369
14.3M
            }
1370
459k
        }
1371
189k
    }
1372
1373
    /* update delay indices */
1374
5.85k
    ps->saved_delay = temp_delay;
1375
23.4k
    for (n = 0; n < NO_ALLPASS_LINKS; n++)
1376
17.5k
        ps->delay_buf_index_ser[n] = temp_delay_ser[n];
1377
5.85k
}
1378
1379
#if 0
1380
#ifdef FIXED_POINT
1381
#define step(shift) \
1382
    if ((0x40000000l >> shift) + root <= value)       \
1383
    {                                                 \
1384
        value -= (0x40000000l >> shift) + root;       \
1385
        root = (root >> 1) | (0x40000000l >> shift);  \
1386
    } else {                                          \
1387
        root = root >> 1;                             \
1388
    }
1389
1390
/* fixed point square root approximation */
1391
static real_t ps_sqrt(real_t value)
1392
{
1393
    real_t root = 0;
1394
1395
    step( 0); step( 2); step( 4); step( 6);
1396
    step( 8); step(10); step(12); step(14);
1397
    step(16); step(18); step(20); step(22);
1398
    step(24); step(26); step(28); step(30);
1399
1400
    if (root < value)
1401
        ++root;
1402
1403
    root <<= (REAL_BITS/2);
1404
1405
    return root;
1406
}
1407
#else
1408
#define ps_sqrt(A) sqrt(A)
1409
#endif
1410
#endif
1411
1412
static const real_t ipdopd_cos_tab[] = {
1413
    FRAC_CONST(1.000000000000000),
1414
    FRAC_CONST(0.707106781186548),
1415
    FRAC_CONST(0.000000000000000),
1416
    FRAC_CONST(-0.707106781186547),
1417
    FRAC_CONST(-1.000000000000000),
1418
    FRAC_CONST(-0.707106781186548),
1419
    FRAC_CONST(-0.000000000000000),
1420
    FRAC_CONST(0.707106781186547),
1421
    FRAC_CONST(1.000000000000000)
1422
};
1423
1424
static const real_t ipdopd_sin_tab[] = {
1425
    FRAC_CONST(0.000000000000000),
1426
    FRAC_CONST(0.707106781186547),
1427
    FRAC_CONST(1.000000000000000),
1428
    FRAC_CONST(0.707106781186548),
1429
    FRAC_CONST(0.000000000000000),
1430
    FRAC_CONST(-0.707106781186547),
1431
    FRAC_CONST(-1.000000000000000),
1432
    FRAC_CONST(-0.707106781186548),
1433
    FRAC_CONST(-0.000000000000000)
1434
};
1435
1436
static real_t magnitude_c(complex_t c)
1437
101k
{
1438
#ifdef FIXED_POINT
1439
#define ps_abs(A) (((A) > 0) ? (A) : (-(A)))
1440
#define ALPHA FRAC_CONST(0.948059448969)
1441
#define BETA  FRAC_CONST(0.392699081699)
1442
1443
    real_t abs_inphase = ps_abs(RE(c));
1444
    real_t abs_quadrature = ps_abs(IM(c));
1445
1446
    if (abs_inphase > abs_quadrature) {
1447
        return MUL_F(abs_inphase, ALPHA) + MUL_F(abs_quadrature, BETA);
1448
    } else {
1449
        return MUL_F(abs_quadrature, ALPHA) + MUL_F(abs_inphase, BETA);
1450
    }
1451
#else
1452
101k
    return sqrt(RE(c)*RE(c) + IM(c)*IM(c));
1453
101k
#endif
1454
101k
}
1455
1456
static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
1457
                         qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
1458
5.85k
{
1459
5.85k
    uint8_t n;
1460
5.85k
    uint8_t gr;
1461
5.85k
    uint8_t bk = 0;
1462
5.85k
    uint8_t sb, maxsb;
1463
5.85k
    uint8_t env;
1464
5.85k
    uint8_t nr_ipdopd_par;
1465
5.85k
    complex_t h11, h12, h21, h22;  // COEF
1466
5.85k
    complex_t H11, H12, H21, H22;  // COEF
1467
5.85k
    complex_t deltaH11, deltaH12, deltaH21, deltaH22;  // COEF
1468
5.85k
    complex_t tempLeft, tempRight; // FRAC
1469
5.85k
    complex_t phaseLeft, phaseRight; // FRAC
1470
5.85k
    real_t L;
1471
5.85k
    const real_t *sf_iid;
1472
5.85k
    uint8_t no_iid_steps;
1473
1474
5.85k
    if (ps->iid_mode >= 3)
1475
2.48k
    {
1476
2.48k
        no_iid_steps = 15;
1477
2.48k
        sf_iid = sf_iid_fine;
1478
3.36k
    } else {
1479
3.36k
        no_iid_steps = 7;
1480
3.36k
        sf_iid = sf_iid_normal;
1481
3.36k
    }
1482
1483
5.85k
    if (ps->ipd_mode == 0 || ps->ipd_mode == 3)
1484
3.19k
    {
1485
3.19k
        nr_ipdopd_par = 11; /* resolution */
1486
3.19k
    } else {
1487
2.65k
        nr_ipdopd_par = ps->nr_ipdopd_par;
1488
2.65k
    }
1489
1490
195k
    for (gr = 0; gr < ps->num_groups; gr++)
1491
189k
    {
1492
189k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1493
1494
        /* use one channel per group in the subqmf domain */
1495
189k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr] + 1 : ps->group_border[gr + 1];
1496
1497
620k
        for (env = 0; env < ps->num_env; env++)
1498
431k
        {
1499
431k
            uint8_t abs_iid = (uint8_t)abs(ps->iid_index[env][bk]);
1500
            /* index range is supposed to be -7...7 or -15...15 depending on iid_mode
1501
                (Table 8.24, ISO/IEC 14496-3:2005).
1502
                if it is outside these boundaries, this is most likely an error. sanitize
1503
                it and try to process further. */
1504
431k
            if (ps->iid_index[env][bk] < -no_iid_steps) {
1505
149
                fprintf(stderr, "Warning: invalid iid_index: %d < %d\n", ps->iid_index[env][bk],
1506
149
                    -no_iid_steps);
1507
149
                ps->iid_index[env][bk] = -no_iid_steps;
1508
149
                abs_iid = no_iid_steps;
1509
431k
            } else if (ps->iid_index[env][bk] > no_iid_steps) {
1510
79
                fprintf(stderr, "Warning: invalid iid_index: %d > %d\n", ps->iid_index[env][bk],
1511
79
                    no_iid_steps);
1512
79
                ps->iid_index[env][bk] = no_iid_steps;
1513
79
                abs_iid = no_iid_steps;
1514
79
            }
1515
431k
            if (ps->icc_index[env][bk] < 0) {
1516
279
                fprintf(stderr, "Warning: invalid icc_index: %d < 0\n", ps->icc_index[env][bk]);
1517
279
                ps->icc_index[env][bk] = 0;
1518
431k
            } else if (ps->icc_index[env][bk] > 7) {
1519
0
                fprintf(stderr, "Warning: invalid icc_index: %d > 7\n", ps->icc_index[env][bk]);
1520
0
                ps->icc_index[env][bk] = 7;
1521
0
            }
1522
1523
431k
            if (ps->icc_mode < 3)
1524
266k
            {
1525
                /* type 'A' mixing as described in 8.6.4.6.2.1 */
1526
266k
                real_t c_1, c_2;  // COEF
1527
266k
                real_t cosa, sina;  // COEF
1528
266k
                real_t cosb, sinb;  // COEF
1529
266k
                real_t ab1, ab2;  // COEF
1530
266k
                real_t ab3, ab4;  // COEF
1531
1532
                /*
1533
                c_1 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps + iid_index] / 10.0)));
1534
                c_2 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps - iid_index] / 10.0)));
1535
                alpha = 0.5 * acos(quant_rho[icc_index]);
1536
                beta = alpha * ( c_1 - c_2 ) / sqrt(2.0);
1537
                */
1538
1539
                //printf("%d\n", ps->iid_index[env][bk]);
1540
1541
                /* calculate the scalefactors c_1 and c_2 from the intensity differences */
1542
266k
                c_1 = sf_iid[no_iid_steps + ps->iid_index[env][bk]];
1543
266k
                c_2 = sf_iid[no_iid_steps - ps->iid_index[env][bk]];
1544
1545
                /* calculate alpha and beta using the ICC parameters */
1546
266k
                cosa = cos_alphas[ps->icc_index[env][bk]];
1547
266k
                sina = sin_alphas[ps->icc_index[env][bk]];
1548
1549
266k
                if (ps->iid_mode >= 3)
1550
91.4k
                {
1551
91.4k
                    cosb = cos_betas_fine[abs_iid][ps->icc_index[env][bk]];
1552
91.4k
                    sinb = sin_betas_fine[abs_iid][ps->icc_index[env][bk]];
1553
174k
                } else {
1554
174k
                    cosb = cos_betas_normal[abs_iid][ps->icc_index[env][bk]];
1555
174k
                    sinb = sin_betas_normal[abs_iid][ps->icc_index[env][bk]];
1556
174k
                }
1557
1558
266k
                ab1 = MUL_C(cosb, cosa);
1559
266k
                ab2 = MUL_C(sinb, sina);
1560
266k
                ab3 = MUL_C(sinb, cosa);
1561
266k
                ab4 = MUL_C(cosb, sina);
1562
1563
                /* h_xy: COEF */
1564
266k
                RE(h11) = MUL_C(c_2, (ab1 - ab2));
1565
266k
                RE(h12) = MUL_C(c_1, (ab1 + ab2));
1566
266k
                RE(h21) = MUL_C(c_2, (ab3 + ab4));
1567
266k
                RE(h22) = MUL_C(c_1, (ab3 - ab4));
1568
266k
            } else {
1569
                /* type 'B' mixing as described in 8.6.4.6.2.2 */
1570
165k
                real_t sina, cosa;  // COEF
1571
165k
                real_t cosg, sing;  // COEF
1572
1573
                /*
1574
                real_t c, rho, mu, alpha, gamma;
1575
                uint8_t i;
1576
1577
                i = ps->iid_index[env][bk];
1578
                c = (real_t)pow(10.0, ((i)?(((i>0)?1:-1)*quant_iid[((i>0)?i:-i)-1]):0.)/20.0);
1579
                rho = quant_rho[ps->icc_index[env][bk]];
1580
1581
                if (rho == 0.0f && c == 1.)
1582
                {
1583
                    alpha = (real_t)M_PI/4.0f;
1584
                    rho = 0.05f;
1585
                } else {
1586
                    if (rho <= 0.05f)
1587
                    {
1588
                        rho = 0.05f;
1589
                    }
1590
                    alpha = 0.5f*(real_t)atan( (2.0f*c*rho) / (c*c-1.0f) );
1591
1592
                    if (alpha < 0.)
1593
                    {
1594
                        alpha += (real_t)M_PI/2.0f;
1595
                    }
1596
                    if (rho < 0.)
1597
                    {
1598
                        alpha += (real_t)M_PI;
1599
                    }
1600
                }
1601
                mu = c+1.0f/c;
1602
                mu = 1+(4.0f*rho*rho-4.0f)/(mu*mu);
1603
                gamma = (real_t)atan(sqrt((1.0f-sqrt(mu))/(1.0f+sqrt(mu))));
1604
                */
1605
1606
165k
                if (ps->iid_mode >= 3)
1607
84.7k
                {
1608
84.7k
                    cosa = sincos_alphas_B_fine[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1609
84.7k
                    sina = sincos_alphas_B_fine[30 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1610
84.7k
                    cosg = cos_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1611
84.7k
                    sing = sin_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1612
84.7k
                } else {
1613
80.8k
                    cosa = sincos_alphas_B_normal[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1614
80.8k
                    sina = sincos_alphas_B_normal[14 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1615
80.8k
                    cosg = cos_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1616
80.8k
                    sing = sin_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1617
80.8k
                }
1618
1619
165k
                RE(h11) = MUL_C(COEF_SQRT2, MUL_C(cosa, cosg));
1620
165k
                RE(h12) = MUL_C(COEF_SQRT2, MUL_C(sina, cosg));
1621
165k
                RE(h21) = MUL_C(COEF_SQRT2, MUL_C(-cosa, sing));
1622
165k
                RE(h22) = MUL_C(COEF_SQRT2, MUL_C(sina, sing));
1623
165k
            }
1624
431k
            IM(h11) = IM(h12) = IM(h21) = IM(h22) = 0;
1625
1626
            /* calculate phase rotation parameters H_xy */
1627
            /* note that the imaginary part of these parameters are only calculated when
1628
               IPD and OPD are enabled
1629
             */
1630
431k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1631
50.5k
            {
1632
50.5k
                int8_t i;
1633
50.5k
                real_t xy, pq, xypq;  // FRAC
1634
1635
                /* ringbuffer index */
1636
50.5k
                i = ps->phase_hist;
1637
1638
                /* previous value */
1639
#ifdef FIXED_POINT
1640
                /* divide by 4*2, shift right 3 bits;
1641
                   extra halving to avoid overflows; it is ok, because result is normalized */
1642
                RE(tempLeft)  = RE(ps->ipd_prev[bk][i]) >> 3;
1643
                IM(tempLeft)  = IM(ps->ipd_prev[bk][i]) >> 3;
1644
                RE(tempRight) = RE(ps->opd_prev[bk][i]) >> 3;
1645
                IM(tempRight) = IM(ps->opd_prev[bk][i]) >> 3;
1646
#else
1647
50.5k
                RE(tempLeft)  = MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1648
50.5k
                IM(tempLeft)  = MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1649
50.5k
                RE(tempRight) = MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1650
50.5k
                IM(tempRight) = MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1651
50.5k
#endif
1652
1653
                /* save current value */
1654
50.5k
                RE(ps->ipd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->ipd_index[env][bk])];
1655
50.5k
                IM(ps->ipd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->ipd_index[env][bk])];
1656
50.5k
                RE(ps->opd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->opd_index[env][bk])];
1657
50.5k
                IM(ps->opd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->opd_index[env][bk])];
1658
1659
                /* add current value */
1660
#ifdef FIXED_POINT
1661
                /* extra halving to avoid overflows */
1662
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]) >> 1;
1663
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]) >> 1;
1664
                RE(tempRight) += RE(ps->opd_prev[bk][i]) >> 1;
1665
                IM(tempRight) += IM(ps->opd_prev[bk][i]) >> 1;
1666
#else
1667
50.5k
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]);
1668
50.5k
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]);
1669
50.5k
                RE(tempRight) += RE(ps->opd_prev[bk][i]);
1670
50.5k
                IM(tempRight) += IM(ps->opd_prev[bk][i]);
1671
50.5k
#endif
1672
1673
                /* ringbuffer index */
1674
50.5k
                if (i == 0)
1675
25.5k
                {
1676
25.5k
                    i = 2;
1677
25.5k
                }
1678
50.5k
                i--;
1679
1680
                /* get value before previous */
1681
#ifdef FIXED_POINT
1682
                /* dividing by 2*2, shift right 2 bits; extra halving to avoid overflows */
1683
                RE(tempLeft)  += (RE(ps->ipd_prev[bk][i]) >> 2);
1684
                IM(tempLeft)  += (IM(ps->ipd_prev[bk][i]) >> 2);
1685
                RE(tempRight) += (RE(ps->opd_prev[bk][i]) >> 2);
1686
                IM(tempRight) += (IM(ps->opd_prev[bk][i]) >> 2);
1687
#else
1688
50.5k
                RE(tempLeft)  += MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1689
50.5k
                IM(tempLeft)  += MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1690
50.5k
                RE(tempRight) += MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1691
50.5k
                IM(tempRight) += MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1692
50.5k
#endif
1693
1694
#if 0 /* original code */
1695
                ipd = (float)atan2(IM(tempLeft), RE(tempLeft));
1696
                opd = (float)atan2(IM(tempRight), RE(tempRight));
1697
1698
                /* phase rotation */
1699
                RE(phaseLeft) = (float)cos(opd);
1700
                IM(phaseLeft) = (float)sin(opd);
1701
                opd -= ipd;
1702
                RE(phaseRight) = (float)cos(opd);
1703
                IM(phaseRight) = (float)sin(opd);
1704
#else
1705
1706
                // x = IM(tempLeft)
1707
                // y = RE(tempLeft)
1708
                // p = IM(tempRight)
1709
                // q = RE(tempRight)
1710
                // cos(atan2(x,y)) = y/sqrt((x*x) + (y*y))
1711
                // sin(atan2(x,y)) = x/sqrt((x*x) + (y*y))
1712
                // cos(atan2(x,y)-atan2(p,q)) = (y*q + x*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1713
                // sin(atan2(x,y)-atan2(p,q)) = (x*q - y*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1714
1715
50.5k
                xy = magnitude_c(tempRight);
1716
50.5k
                pq = magnitude_c(tempLeft);
1717
1718
50.5k
                if (xy != 0)
1719
50.5k
                {
1720
50.5k
                    RE(phaseLeft) = DIV_F(RE(tempRight), xy);
1721
50.5k
                    IM(phaseLeft) = DIV_F(IM(tempRight), xy);
1722
50.5k
                } else {
1723
0
                    RE(phaseLeft) = 0;
1724
0
                    IM(phaseLeft) = 0;
1725
0
                }
1726
1727
50.5k
                xypq = MUL_F(xy, pq);
1728
1729
50.5k
                if (xypq != 0)
1730
50.5k
                {
1731
50.5k
                    real_t tmp1 = MUL_F(RE(tempRight), RE(tempLeft)) + MUL_F(IM(tempRight), IM(tempLeft));
1732
50.5k
                    real_t tmp2 = MUL_F(IM(tempRight), RE(tempLeft)) - MUL_F(RE(tempRight), IM(tempLeft));
1733
1734
50.5k
                    RE(phaseRight) = DIV_F(tmp1, xypq);
1735
50.5k
                    IM(phaseRight) = DIV_F(tmp2, xypq);
1736
50.5k
                } else {
1737
0
                    RE(phaseRight) = 0;
1738
0
                    IM(phaseRight) = 0;
1739
0
                }
1740
1741
50.5k
#endif
1742
1743
                /* MUL_F(COEF, REAL) = COEF */
1744
50.5k
                IM(h11) = MUL_F(RE(h11), IM(phaseLeft));
1745
50.5k
                IM(h12) = MUL_F(RE(h12), IM(phaseRight));
1746
50.5k
                IM(h21) = MUL_F(RE(h21), IM(phaseLeft));
1747
50.5k
                IM(h22) = MUL_F(RE(h22), IM(phaseRight));
1748
1749
50.5k
                RE(h11) = MUL_F(RE(h11), RE(phaseLeft));
1750
50.5k
                RE(h12) = MUL_F(RE(h12), RE(phaseRight));
1751
50.5k
                RE(h21) = MUL_F(RE(h21), RE(phaseLeft));
1752
50.5k
                RE(h22) = MUL_F(RE(h22), RE(phaseRight));
1753
50.5k
            }
1754
1755
            /* length of the envelope n_e+1 - n_e (in time samples) */
1756
            /* 0 < L <= 32: integer */
1757
431k
            L = (real_t)(ps->border_position[env + 1] - ps->border_position[env]);
1758
1759
            /* obtain final H_xy by means of linear interpolation */
1760
431k
            RE(deltaH11) = (RE(h11) - RE(ps->h11_prev[gr])) / L;
1761
431k
            RE(deltaH12) = (RE(h12) - RE(ps->h12_prev[gr])) / L;
1762
431k
            RE(deltaH21) = (RE(h21) - RE(ps->h21_prev[gr])) / L;
1763
431k
            RE(deltaH22) = (RE(h22) - RE(ps->h22_prev[gr])) / L;
1764
1765
431k
            RE(H11) = RE(ps->h11_prev[gr]);
1766
431k
            RE(H12) = RE(ps->h12_prev[gr]);
1767
431k
            RE(H21) = RE(ps->h21_prev[gr]);
1768
431k
            RE(H22) = RE(ps->h22_prev[gr]);
1769
431k
            IM(H11) = IM(H12) = IM(H21) = IM(H22) = 0;
1770
1771
431k
            RE(ps->h11_prev[gr]) = RE(h11);
1772
431k
            RE(ps->h12_prev[gr]) = RE(h12);
1773
431k
            RE(ps->h21_prev[gr]) = RE(h21);
1774
431k
            RE(ps->h22_prev[gr]) = RE(h22);
1775
1776
            /* only calculate imaginary part when needed */
1777
431k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1778
50.5k
            {
1779
                /* obtain final H_xy by means of linear interpolation */
1780
50.5k
                IM(deltaH11) = (IM(h11) - IM(ps->h11_prev[gr])) / L;
1781
50.5k
                IM(deltaH12) = (IM(h12) - IM(ps->h12_prev[gr])) / L;
1782
50.5k
                IM(deltaH21) = (IM(h21) - IM(ps->h21_prev[gr])) / L;
1783
50.5k
                IM(deltaH22) = (IM(h22) - IM(ps->h22_prev[gr])) / L;
1784
1785
50.5k
                IM(H11) = IM(ps->h11_prev[gr]);
1786
50.5k
                IM(H12) = IM(ps->h12_prev[gr]);
1787
50.5k
                IM(H21) = IM(ps->h21_prev[gr]);
1788
50.5k
                IM(H22) = IM(ps->h22_prev[gr]);
1789
1790
50.5k
                if ((NEGATE_IPD_MASK & ps->map_group2bk[gr]) != 0)
1791
7.09k
                {
1792
7.09k
                    IM(deltaH11) = -IM(deltaH11);
1793
7.09k
                    IM(deltaH12) = -IM(deltaH12);
1794
7.09k
                    IM(deltaH21) = -IM(deltaH21);
1795
7.09k
                    IM(deltaH22) = -IM(deltaH22);
1796
1797
7.09k
                    IM(H11) = -IM(H11);
1798
7.09k
                    IM(H12) = -IM(H12);
1799
7.09k
                    IM(H21) = -IM(H21);
1800
7.09k
                    IM(H22) = -IM(H22);
1801
7.09k
                }
1802
1803
50.5k
                IM(ps->h11_prev[gr]) = IM(h11);
1804
50.5k
                IM(ps->h12_prev[gr]) = IM(h12);
1805
50.5k
                IM(ps->h21_prev[gr]) = IM(h21);
1806
50.5k
                IM(ps->h22_prev[gr]) = IM(h22);
1807
50.5k
            }
1808
1809
            /* apply H_xy to the current envelope band of the decorrelated subband */
1810
6.31M
            for (n = ps->border_position[env]; n < ps->border_position[env + 1]; n++)
1811
5.88M
            {
1812
                /* addition finalises the interpolation over every n */
1813
5.88M
                RE(H11) += RE(deltaH11);
1814
5.88M
                RE(H12) += RE(deltaH12);
1815
5.88M
                RE(H21) += RE(deltaH21);
1816
5.88M
                RE(H22) += RE(deltaH22);
1817
5.88M
                if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1818
598k
                {
1819
598k
                    IM(H11) += IM(deltaH11);
1820
598k
                    IM(H12) += IM(deltaH12);
1821
598k
                    IM(H21) += IM(deltaH21);
1822
598k
                    IM(H22) += IM(deltaH22);
1823
598k
                }
1824
1825
                /* channel is an alias to the subband */
1826
20.2M
                for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1827
14.3M
                {
1828
14.3M
                    complex_t inLeft, inRight;  // precision_of in(Left|Right) == precision_of X_(left|right)
1829
1830
                    /* load decorrelated samples */
1831
14.3M
                    if (gr < ps->num_hybrid_groups)
1832
3.29M
                    {
1833
3.29M
                        RE(inLeft) =  RE(X_hybrid_left[n][sb]);
1834
3.29M
                        IM(inLeft) =  IM(X_hybrid_left[n][sb]);
1835
3.29M
                        RE(inRight) = RE(X_hybrid_right[n][sb]);
1836
3.29M
                        IM(inRight) = IM(X_hybrid_right[n][sb]);
1837
11.0M
                    } else {
1838
11.0M
                        RE(inLeft) =  RE(X_left[n][sb]);
1839
11.0M
                        IM(inLeft) =  IM(X_left[n][sb]);
1840
11.0M
                        RE(inRight) = RE(X_right[n][sb]);
1841
11.0M
                        IM(inRight) = IM(X_right[n][sb]);
1842
11.0M
                    }
1843
1844
                    /* precision_of temp(Left|Right) == precision_of X_(left|right) */
1845
1846
                    /* apply mixing */
1847
14.3M
                    RE(tempLeft) =  MUL_C(RE(H11), RE(inLeft)) + MUL_C(RE(H21), RE(inRight));
1848
14.3M
                    IM(tempLeft) =  MUL_C(RE(H11), IM(inLeft)) + MUL_C(RE(H21), IM(inRight));
1849
14.3M
                    RE(tempRight) = MUL_C(RE(H12), RE(inLeft)) + MUL_C(RE(H22), RE(inRight));
1850
14.3M
                    IM(tempRight) = MUL_C(RE(H12), IM(inLeft)) + MUL_C(RE(H22), IM(inRight));
1851
1852
                    /* only perform imaginary operations when needed */
1853
14.3M
                    if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1854
599k
                    {
1855
                        /* apply rotation */
1856
599k
                        RE(tempLeft)  -= MUL_C(IM(H11), IM(inLeft)) + MUL_C(IM(H21), IM(inRight));
1857
599k
                        IM(tempLeft)  += MUL_C(IM(H11), RE(inLeft)) + MUL_C(IM(H21), RE(inRight));
1858
599k
                        RE(tempRight) -= MUL_C(IM(H12), IM(inLeft)) + MUL_C(IM(H22), IM(inRight));
1859
599k
                        IM(tempRight) += MUL_C(IM(H12), RE(inLeft)) + MUL_C(IM(H22), RE(inRight));
1860
599k
                    }
1861
1862
                    /* store final samples */
1863
14.3M
                    if (gr < ps->num_hybrid_groups)
1864
3.29M
                    {
1865
3.29M
                        RE(X_hybrid_left[n][sb])  = RE(tempLeft);
1866
3.29M
                        IM(X_hybrid_left[n][sb])  = IM(tempLeft);
1867
3.29M
                        RE(X_hybrid_right[n][sb]) = RE(tempRight);
1868
3.29M
                        IM(X_hybrid_right[n][sb]) = IM(tempRight);
1869
11.0M
                    } else {
1870
11.0M
                        RE(X_left[n][sb])  = RE(tempLeft);
1871
11.0M
                        IM(X_left[n][sb])  = IM(tempLeft);
1872
11.0M
                        RE(X_right[n][sb]) = RE(tempRight);
1873
11.0M
                        IM(X_right[n][sb]) = IM(tempRight);
1874
11.0M
                    }
1875
14.3M
                }
1876
5.88M
            }
1877
1878
            /* shift phase smoother's circular buffer index */
1879
431k
            ps->phase_hist++;
1880
431k
            if (ps->phase_hist == 2)
1881
215k
            {
1882
215k
                ps->phase_hist = 0;
1883
215k
            }
1884
431k
        }
1885
189k
    }
1886
5.85k
}
1887
1888
void ps_free(ps_info *ps)
1889
9.29k
{
1890
    /* free hybrid filterbank structures */
1891
9.29k
    hybrid_free(ps->hyb);
1892
1893
9.29k
    faad_free(ps);
1894
9.29k
}
1895
1896
ps_info *ps_init(uint8_t sr_index, uint8_t numTimeSlotsRate)
1897
9.29k
{
1898
9.29k
    uint8_t i;
1899
9.29k
    uint8_t short_delay_band;
1900
1901
9.29k
    ps_info *ps = (ps_info*)faad_malloc(sizeof(ps_info));
1902
9.29k
    memset(ps, 0, sizeof(ps_info));
1903
1904
9.29k
    ps->hyb = hybrid_init(numTimeSlotsRate);
1905
9.29k
    ps->numTimeSlotsRate = numTimeSlotsRate;
1906
1907
9.29k
    ps->ps_data_available = 0;
1908
1909
    /* delay stuff*/
1910
9.29k
    ps->saved_delay = 0;
1911
1912
604k
    for (i = 0; i < 64; i++)
1913
595k
    {
1914
595k
        ps->delay_buf_index_delay[i] = 0;
1915
595k
    }
1916
1917
37.1k
    for (i = 0; i < NO_ALLPASS_LINKS; i++)
1918
27.8k
    {
1919
27.8k
        ps->delay_buf_index_ser[i] = 0;
1920
#ifdef PARAM_32KHZ
1921
        if (sr_index <= 5) /* >= 32 kHz*/
1922
        {
1923
            ps->num_sample_delay_ser[i] = delay_length_d[1][i];
1924
        } else {
1925
            ps->num_sample_delay_ser[i] = delay_length_d[0][i];
1926
        }
1927
#else
1928
27.8k
        (void)sr_index;
1929
        /* THESE ARE CONSTANTS NOW */
1930
27.8k
        ps->num_sample_delay_ser[i] = delay_length_d[i];
1931
27.8k
#endif
1932
27.8k
    }
1933
1934
#ifdef PARAM_32KHZ
1935
    if (sr_index <= 5) /* >= 32 kHz*/
1936
    {
1937
        short_delay_band = 35;
1938
        ps->nr_allpass_bands = 22;
1939
        ps->alpha_decay = FRAC_CONST(0.76592833836465);
1940
        ps->alpha_smooth = FRAC_CONST(0.25);
1941
    } else {
1942
        short_delay_band = 64;
1943
        ps->nr_allpass_bands = 45;
1944
        ps->alpha_decay = FRAC_CONST(0.58664621951003);
1945
        ps->alpha_smooth = FRAC_CONST(0.6);
1946
    }
1947
#else
1948
    /* THESE ARE CONSTANTS NOW */
1949
9.29k
    short_delay_band = 35;
1950
9.29k
    ps->nr_allpass_bands = 22;
1951
9.29k
    ps->alpha_decay = FRAC_CONST(0.76592833836465);
1952
9.29k
    ps->alpha_smooth = FRAC_CONST(0.25);
1953
9.29k
#endif
1954
1955
    /* THESE ARE CONSTANT NOW IF PS IS INDEPENDANT OF SAMPLERATE */
1956
334k
    for (i = 0; i < short_delay_band; i++)
1957
325k
    {
1958
325k
        ps->delay_D[i] = 14;
1959
325k
    }
1960
278k
    for (i = short_delay_band; i < 64; i++)
1961
269k
    {
1962
269k
        ps->delay_D[i] = 1;
1963
269k
    }
1964
1965
    /* mixing and phase */
1966
474k
    for (i = 0; i < 50; i++)
1967
464k
    {
1968
464k
        RE(ps->h11_prev[i]) = 1;
1969
464k
        IM(ps->h11_prev[i]) = 1;
1970
464k
        RE(ps->h12_prev[i]) = 1;
1971
464k
        IM(ps->h12_prev[i]) = 1;
1972
464k
    }
1973
1974
9.29k
    ps->phase_hist = 0;
1975
1976
195k
    for (i = 0; i < 20; i++)
1977
185k
    {
1978
185k
        RE(ps->ipd_prev[i][0]) = 0;
1979
185k
        IM(ps->ipd_prev[i][0]) = 0;
1980
185k
        RE(ps->ipd_prev[i][1]) = 0;
1981
185k
        IM(ps->ipd_prev[i][1]) = 0;
1982
185k
        RE(ps->opd_prev[i][0]) = 0;
1983
185k
        IM(ps->opd_prev[i][0]) = 0;
1984
185k
        RE(ps->opd_prev[i][1]) = 0;
1985
185k
        IM(ps->opd_prev[i][1]) = 0;
1986
185k
    }
1987
1988
9.29k
    return ps;
1989
9.29k
}
1990
1991
/* main Parametric Stereo decoding function */
1992
uint8_t ps_decode(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64])
1993
5.85k
{
1994
5.85k
    qmf_t X_hybrid_left[32][32] = {{{0}}};
1995
5.85k
    qmf_t X_hybrid_right[32][32] = {{{0}}};
1996
1997
    /* delta decoding of the bitstream data */
1998
5.85k
    ps_data_decode(ps);
1999
2000
    /* set up some parameters depending on filterbank type */
2001
5.85k
    if (ps->use34hybrid_bands)
2002
2.16k
    {
2003
2.16k
        ps->group_border = (uint8_t*)group_border34;
2004
2.16k
        ps->map_group2bk = (uint16_t*)map_group2bk34;
2005
2.16k
        ps->num_groups = 32+18;
2006
2.16k
        ps->num_hybrid_groups = 32;
2007
2.16k
        ps->nr_par_bands = 34;
2008
2.16k
        ps->decay_cutoff = 5;
2009
3.69k
    } else {
2010
3.69k
        ps->group_border = (uint8_t*)group_border20;
2011
3.69k
        ps->map_group2bk = (uint16_t*)map_group2bk20;
2012
3.69k
        ps->num_groups = 10+12;
2013
3.69k
        ps->num_hybrid_groups = 10;
2014
3.69k
        ps->nr_par_bands = 20;
2015
3.69k
        ps->decay_cutoff = 3;
2016
3.69k
    }
2017
2018
    /* Perform further analysis on the lowest subbands to get a higher
2019
     * frequency resolution
2020
     */
2021
5.85k
    hybrid_analysis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
2022
5.85k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2023
2024
    /* decorrelate mono signal */
2025
5.85k
    ps_decorrelate(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
2026
2027
    /* apply mixing and phase parameters */
2028
5.85k
    ps_mix_phase(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
2029
2030
    /* hybrid synthesis, to rebuild the SBR QMF matrices */
2031
5.85k
    hybrid_synthesis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
2032
5.85k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2033
2034
5.85k
    hybrid_synthesis((hyb_info*)ps->hyb, X_right, X_hybrid_right,
2035
5.85k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2036
2037
5.85k
    return 0;
2038
5.85k
}
2039
2040
#endif