Coverage Report

Created: 2025-11-16 06:18

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/proc/self/cwd/libfaad/ps_dec.c
Line
Count
Source
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: ps_dec.c,v 1.16 2009/01/26 22:32:31 menno Exp $
29
**/
30
31
#include "common.h"
32
33
#ifdef PS_DEC
34
35
#include <stdlib.h>
36
#include <stdio.h>
37
#include "ps_dec.h"
38
#include "ps_tables.h"
39
40
/* constants */
41
13.6M
#define NEGATE_IPD_MASK            (0x1000)
42
103k
#define DECAY_SLOPE                FRAC_CONST(0.05)
43
#define COEF_SQRT2                 COEF_CONST(1.4142135623731)
44
45
/* tables */
46
/* filters are mirrored in coef 6, second half left out */
47
static const real_t p8_13_20[7] =
48
{
49
    FRAC_CONST(0.00746082949812),
50
    FRAC_CONST(0.02270420949825),
51
    FRAC_CONST(0.04546865930473),
52
    FRAC_CONST(0.07266113929591),
53
    FRAC_CONST(0.09885108575264),
54
    FRAC_CONST(0.11793710567217),
55
    FRAC_CONST(0.125)
56
};
57
58
static const real_t p2_13_20[7] =
59
{
60
    FRAC_CONST(0.0),
61
    FRAC_CONST(0.01899487526049),
62
    FRAC_CONST(0.0),
63
    FRAC_CONST(-0.07293139167538),
64
    FRAC_CONST(0.0),
65
    FRAC_CONST(0.30596630545168),
66
    FRAC_CONST(0.5)
67
};
68
69
static const real_t p12_13_34[7] =
70
{
71
    FRAC_CONST(0.04081179924692),
72
    FRAC_CONST(0.03812810994926),
73
    FRAC_CONST(0.05144908135699),
74
    FRAC_CONST(0.06399831151592),
75
    FRAC_CONST(0.07428313801106),
76
    FRAC_CONST(0.08100347892914),
77
    FRAC_CONST(0.08333333333333)
78
};
79
80
static const real_t p8_13_34[7] =
81
{
82
    FRAC_CONST(0.01565675600122),
83
    FRAC_CONST(0.03752716391991),
84
    FRAC_CONST(0.05417891378782),
85
    FRAC_CONST(0.08417044116767),
86
    FRAC_CONST(0.10307344158036),
87
    FRAC_CONST(0.12222452249753),
88
    FRAC_CONST(0.125)
89
};
90
91
static const real_t p4_13_34[7] =
92
{
93
    FRAC_CONST(-0.05908211155639),
94
    FRAC_CONST(-0.04871498374946),
95
    FRAC_CONST(0.0),
96
    FRAC_CONST(0.07778723915851),
97
    FRAC_CONST(0.16486303567403),
98
    FRAC_CONST(0.23279856662996),
99
    FRAC_CONST(0.25)
100
};
101
102
#ifdef PARAM_32KHZ
103
static const uint8_t delay_length_d[2][NO_ALLPASS_LINKS] = {
104
    { 1, 2, 3 } /* d_24kHz */,
105
    { 3, 4, 5 } /* d_48kHz */
106
};
107
#else
108
static const uint8_t delay_length_d[NO_ALLPASS_LINKS] = {
109
    3, 4, 5 /* d_48kHz */
110
};
111
#endif
112
static const real_t filter_a[NO_ALLPASS_LINKS] = { /* a(m) = exp(-d_48kHz(m)/7) */
113
    FRAC_CONST(0.65143905753106),
114
    FRAC_CONST(0.56471812200776),
115
    FRAC_CONST(0.48954165955695)
116
};
117
118
static const uint8_t group_border20[10+12 + 1] =
119
{
120
    6, 7, 0, 1, 2, 3, /* 6 subqmf subbands */
121
    9, 8,             /* 2 subqmf subbands */
122
    10, 11,           /* 2 subqmf subbands */
123
    3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 35, 64
124
};
125
126
static const uint8_t group_border34[32+18 + 1] =
127
{
128
     0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, /* 12 subqmf subbands */
129
     12, 13, 14, 15, 16, 17, 18, 19,                 /*  8 subqmf subbands */
130
     20, 21, 22, 23,                                 /*  4 subqmf subbands */
131
     24, 25, 26, 27,                                 /*  4 subqmf subbands */
132
     28, 29, 30, 31,                                 /*  4 subqmf subbands */
133
     32-27, 33-27, 34-27, 35-27, 36-27, 37-27, 38-27, 40-27, 42-27, 44-27, 46-27, 48-27, 51-27, 54-27, 57-27, 60-27, 64-27, 68-27, 91-27
134
};
135
136
static const uint16_t map_group2bk20[10+12] =
137
{
138
    (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
139
    0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
140
};
141
142
static const uint16_t map_group2bk34[32+18] =
143
{
144
    0,  1,  2,  3,  4,  5,  6,  6,  7, (NEGATE_IPD_MASK | 2), (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
145
    10, 10, 4,  5,  6,  7,  8,  9,
146
    10, 11, 12, 9,
147
    14, 11, 12, 13,
148
    14, 15, 16, 13,
149
    16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33
150
};
151
152
/* type definitions */
153
typedef struct
154
{
155
    uint8_t frame_len;
156
    uint8_t resolution20[3];
157
    uint8_t resolution34[5];
158
159
    qmf_t *work;
160
    qmf_t **buffer;
161
    qmf_t **temp;
162
} hyb_info;
163
164
/* static function declarations */
165
static void ps_data_decode(ps_info *ps);
166
static hyb_info *hybrid_init(uint8_t numTimeSlotsRate);
167
static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
168
                            qmf_t *buffer, qmf_t **X_hybrid);
169
static void INLINE DCT3_4_unscaled(real_t *y, real_t *x);
170
static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
171
                            qmf_t *buffer, qmf_t **X_hybrid);
172
static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
173
                            uint8_t use34, uint8_t numTimeSlotsRate);
174
static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
175
                             uint8_t use34, uint8_t numTimeSlotsRate);
176
static int8_t delta_clip(int8_t i, int8_t min, int8_t max);
177
static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
178
                         uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
179
                         int8_t min_index, int8_t max_index);
180
static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
181
                                uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
182
                                int8_t and_modulo);
183
static void map20indexto34(int8_t *index, uint8_t bins);
184
#ifdef PS_LOW_POWER
185
static void map34indexto20(int8_t *index, uint8_t bins);
186
#endif
187
static void ps_data_decode(ps_info *ps);
188
static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
189
                           qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
190
static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
191
                         qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
192
193
/*  */
194
195
196
static hyb_info *hybrid_init(uint8_t numTimeSlotsRate)
197
8.89k
{
198
8.89k
    uint8_t i;
199
200
8.89k
    hyb_info *hyb = (hyb_info*)faad_malloc(sizeof(hyb_info));
201
202
8.89k
    hyb->resolution34[0] = 12;
203
8.89k
    hyb->resolution34[1] = 8;
204
8.89k
    hyb->resolution34[2] = 4;
205
8.89k
    hyb->resolution34[3] = 4;
206
8.89k
    hyb->resolution34[4] = 4;
207
208
8.89k
    hyb->resolution20[0] = 8;
209
8.89k
    hyb->resolution20[1] = 2;
210
8.89k
    hyb->resolution20[2] = 2;
211
212
8.89k
    hyb->frame_len = numTimeSlotsRate;
213
214
8.89k
    hyb->work = (qmf_t*)faad_malloc((hyb->frame_len+12) * sizeof(qmf_t));
215
8.89k
    memset(hyb->work, 0, (hyb->frame_len+12) * sizeof(qmf_t));
216
217
8.89k
    hyb->buffer = (qmf_t**)faad_malloc(5 * sizeof(qmf_t*));
218
53.3k
    for (i = 0; i < 5; i++)
219
44.4k
    {
220
44.4k
        hyb->buffer[i] = (qmf_t*)faad_malloc(hyb->frame_len * sizeof(qmf_t));
221
44.4k
        memset(hyb->buffer[i], 0, hyb->frame_len * sizeof(qmf_t));
222
44.4k
    }
223
224
8.89k
    hyb->temp = (qmf_t**)faad_malloc(hyb->frame_len * sizeof(qmf_t*));
225
290k
    for (i = 0; i < hyb->frame_len; i++)
226
281k
    {
227
281k
        hyb->temp[i] = (qmf_t*)faad_malloc(12 /*max*/ * sizeof(qmf_t));
228
281k
    }
229
230
8.89k
    return hyb;
231
8.89k
}
232
233
static void hybrid_free(hyb_info *hyb)
234
8.89k
{
235
8.89k
    uint8_t i;
236
237
8.89k
  if (!hyb) return;
238
239
8.89k
    if (hyb->work)
240
8.89k
        faad_free(hyb->work);
241
242
53.3k
    for (i = 0; i < 5; i++)
243
44.4k
    {
244
44.4k
        if (hyb->buffer[i])
245
44.4k
            faad_free(hyb->buffer[i]);
246
44.4k
    }
247
8.89k
    if (hyb->buffer)
248
8.89k
        faad_free(hyb->buffer);
249
250
290k
    for (i = 0; i < hyb->frame_len; i++)
251
281k
    {
252
281k
        if (hyb->temp[i])
253
281k
            faad_free(hyb->temp[i]);
254
281k
    }
255
8.89k
    if (hyb->temp)
256
8.89k
        faad_free(hyb->temp);
257
258
8.89k
    faad_free(hyb);
259
8.89k
}
260
261
/* real filter, size 2 */
262
static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
263
                            qmf_t *buffer, qmf_t **X_hybrid)
264
7.17k
{
265
7.17k
    uint8_t i;
266
7.17k
    (void)hyb;  /* TODO: remove parameter? */
267
268
232k
    for (i = 0; i < frame_len; i++)
269
225k
    {
270
225k
        real_t r0 = MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i])));
271
225k
        real_t r1 = MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i])));
272
225k
        real_t r2 = MUL_F(filter[2],(QMF_RE(buffer[2+i]) + QMF_RE(buffer[10+i])));
273
225k
        real_t r3 = MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
274
225k
        real_t r4 = MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
275
225k
        real_t r5 = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
276
225k
        real_t r6 = MUL_F(filter[6],QMF_RE(buffer[6+i]));
277
225k
        real_t i0 = MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i])));
278
225k
        real_t i1 = MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i])));
279
225k
        real_t i2 = MUL_F(filter[2],(QMF_IM(buffer[2+i]) + QMF_IM(buffer[10+i])));
280
225k
        real_t i3 = MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
281
225k
        real_t i4 = MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
282
225k
        real_t i5 = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
283
225k
        real_t i6 = MUL_F(filter[6],QMF_IM(buffer[6+i]));
284
285
        /* q = 0 */
286
225k
        QMF_RE(X_hybrid[i][0]) = r0 + r1 + r2 + r3 + r4 + r5 + r6;
287
225k
        QMF_IM(X_hybrid[i][0]) = i0 + i1 + i2 + i3 + i4 + i5 + i6;
288
289
        /* q = 1 */
290
225k
        QMF_RE(X_hybrid[i][1]) = r0 - r1 + r2 - r3 + r4 - r5 + r6;
291
225k
        QMF_IM(X_hybrid[i][1]) = i0 - i1 + i2 - i3 + i4 - i5 + i6;
292
225k
    }
293
7.17k
}
294
295
/* complex filter, size 4 */
296
static void channel_filter4(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
297
                            qmf_t *buffer, qmf_t **X_hybrid)
298
5.63k
{
299
5.63k
    uint8_t i;
300
5.63k
    real_t input_re1[2], input_re2[2], input_im1[2], input_im2[2];
301
5.63k
    (void)hyb;  /* TODO: remove parameter? */
302
303
178k
    for (i = 0; i < frame_len; i++)
304
173k
    {
305
173k
        input_re1[0] = -MUL_F(filter[2], (QMF_RE(buffer[i+2]) + QMF_RE(buffer[i+10]))) +
306
173k
            MUL_F(filter[6], QMF_RE(buffer[i+6]));
307
173k
        input_re1[1] = MUL_F(FRAC_CONST(-0.70710678118655),
308
173k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) + QMF_RE(buffer[i+11]))) +
309
173k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) + QMF_RE(buffer[i+9]))) -
310
173k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) + QMF_RE(buffer[i+7])))));
311
312
173k
        input_im1[0] = MUL_F(filter[0], (QMF_IM(buffer[i+0]) - QMF_IM(buffer[i+12]))) -
313
173k
            MUL_F(filter[4], (QMF_IM(buffer[i+4]) - QMF_IM(buffer[i+8])));
314
173k
        input_im1[1] = MUL_F(FRAC_CONST(0.70710678118655),
315
173k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) - QMF_IM(buffer[i+11]))) -
316
173k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) - QMF_IM(buffer[i+9]))) -
317
173k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) - QMF_IM(buffer[i+7])))));
318
319
173k
        input_re2[0] = MUL_F(filter[0], (QMF_RE(buffer[i+0]) - QMF_RE(buffer[i+12]))) -
320
173k
            MUL_F(filter[4], (QMF_RE(buffer[i+4]) - QMF_RE(buffer[i+8])));
321
173k
        input_re2[1] = MUL_F(FRAC_CONST(0.70710678118655),
322
173k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) - QMF_RE(buffer[i+11]))) -
323
173k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) - QMF_RE(buffer[i+9]))) -
324
173k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) - QMF_RE(buffer[i+7])))));
325
326
173k
        input_im2[0] = -MUL_F(filter[2], (QMF_IM(buffer[i+2]) + QMF_IM(buffer[i+10]))) +
327
173k
            MUL_F(filter[6], QMF_IM(buffer[i+6]));
328
173k
        input_im2[1] = MUL_F(FRAC_CONST(-0.70710678118655),
329
173k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) + QMF_IM(buffer[i+11]))) +
330
173k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) + QMF_IM(buffer[i+9]))) -
331
173k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) + QMF_IM(buffer[i+7])))));
332
333
        /* q == 0 */
334
173k
        QMF_RE(X_hybrid[i][0]) =  input_re1[0] + input_re1[1] + input_im1[0] + input_im1[1];
335
173k
        QMF_IM(X_hybrid[i][0]) = -input_re2[0] - input_re2[1] + input_im2[0] + input_im2[1];
336
337
        /* q == 1 */
338
173k
        QMF_RE(X_hybrid[i][1]) =  input_re1[0] - input_re1[1] - input_im1[0] + input_im1[1];
339
173k
        QMF_IM(X_hybrid[i][1]) =  input_re2[0] - input_re2[1] + input_im2[0] - input_im2[1];
340
341
        /* q == 2 */
342
173k
        QMF_RE(X_hybrid[i][2]) =  input_re1[0] - input_re1[1] + input_im1[0] - input_im1[1];
343
173k
        QMF_IM(X_hybrid[i][2]) = -input_re2[0] + input_re2[1] + input_im2[0] - input_im2[1];
344
345
        /* q == 3 */
346
173k
        QMF_RE(X_hybrid[i][3]) =  input_re1[0] + input_re1[1] - input_im1[0] - input_im1[1];
347
173k
        QMF_IM(X_hybrid[i][3]) =  input_re2[0] + input_re2[1] + input_im2[0] + input_im2[1];
348
173k
    }
349
5.63k
}
350
351
static void INLINE DCT3_4_unscaled(real_t *y, real_t *x)
352
681k
{
353
681k
    real_t f0, f1, f2, f3, f4, f5, f6, f7, f8;
354
355
681k
    f0 = MUL_F(x[2], FRAC_CONST(0.7071067811865476));
356
681k
    f1 = x[0] - f0;
357
681k
    f2 = x[0] + f0;
358
681k
    f3 = x[1] + x[3];
359
681k
    f4 = MUL_C(x[1], COEF_CONST(1.3065629648763766));
360
681k
    f5 = MUL_F(f3, FRAC_CONST(-0.9238795325112866));
361
681k
    f6 = MUL_F(x[3], FRAC_CONST(-0.5411961001461967));
362
681k
    f7 = f4 + f5;
363
681k
    f8 = f6 - f5;
364
681k
    y[3] = f2 - f8;
365
681k
    y[0] = f2 + f8;
366
681k
    y[2] = f1 - f7;
367
681k
    y[1] = f1 + f7;
368
681k
}
369
370
/* complex filter, size 8 */
371
static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
372
                            qmf_t *buffer, qmf_t **X_hybrid)
373
5.46k
{
374
5.46k
    uint8_t i, n;
375
5.46k
    real_t input_re1[4], input_re2[4], input_im1[4], input_im2[4];
376
5.46k
    real_t x[4];
377
5.46k
    (void)hyb;  /* TODO: remove parameter? */
378
379
175k
    for (i = 0; i < frame_len; i++)
380
170k
    {
381
170k
        input_re1[0] =  MUL_F(filter[6],QMF_RE(buffer[6+i]));
382
170k
        input_re1[1] =  MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
383
170k
        input_re1[2] = -MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i]))) + MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
384
170k
        input_re1[3] = -MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i]))) + MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
385
386
170k
        input_im1[0] = MUL_F(filter[5],(QMF_IM(buffer[7+i]) - QMF_IM(buffer[5+i])));
387
170k
        input_im1[1] = MUL_F(filter[0],(QMF_IM(buffer[12+i]) - QMF_IM(buffer[0+i]))) + MUL_F(filter[4],(QMF_IM(buffer[8+i]) - QMF_IM(buffer[4+i])));
388
170k
        input_im1[2] = MUL_F(filter[1],(QMF_IM(buffer[11+i]) - QMF_IM(buffer[1+i]))) + MUL_F(filter[3],(QMF_IM(buffer[9+i]) - QMF_IM(buffer[3+i])));
389
170k
        input_im1[3] = MUL_F(filter[2],(QMF_IM(buffer[10+i]) - QMF_IM(buffer[2+i])));
390
391
851k
        for (n = 0; n < 4; n++)
392
681k
        {
393
681k
            x[n] = input_re1[n] - input_im1[3-n];
394
681k
        }
395
170k
        DCT3_4_unscaled(x, x);
396
170k
        QMF_RE(X_hybrid[i][7]) = x[0];
397
170k
        QMF_RE(X_hybrid[i][5]) = x[2];
398
170k
        QMF_RE(X_hybrid[i][3]) = x[3];
399
170k
        QMF_RE(X_hybrid[i][1]) = x[1];
400
401
851k
        for (n = 0; n < 4; n++)
402
681k
        {
403
681k
            x[n] = input_re1[n] + input_im1[3-n];
404
681k
        }
405
170k
        DCT3_4_unscaled(x, x);
406
170k
        QMF_RE(X_hybrid[i][6]) = x[1];
407
170k
        QMF_RE(X_hybrid[i][4]) = x[3];
408
170k
        QMF_RE(X_hybrid[i][2]) = x[2];
409
170k
        QMF_RE(X_hybrid[i][0]) = x[0];
410
411
170k
        input_im2[0] =  MUL_F(filter[6],QMF_IM(buffer[6+i]));
412
170k
        input_im2[1] =  MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
413
170k
        input_im2[2] = -MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i]))) + MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
414
170k
        input_im2[3] = -MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i]))) + MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
415
416
170k
        input_re2[0] = MUL_F(filter[5],(QMF_RE(buffer[7+i]) - QMF_RE(buffer[5+i])));
417
170k
        input_re2[1] = MUL_F(filter[0],(QMF_RE(buffer[12+i]) - QMF_RE(buffer[0+i]))) + MUL_F(filter[4],(QMF_RE(buffer[8+i]) - QMF_RE(buffer[4+i])));
418
170k
        input_re2[2] = MUL_F(filter[1],(QMF_RE(buffer[11+i]) - QMF_RE(buffer[1+i]))) + MUL_F(filter[3],(QMF_RE(buffer[9+i]) - QMF_RE(buffer[3+i])));
419
170k
        input_re2[3] = MUL_F(filter[2],(QMF_RE(buffer[10+i]) - QMF_RE(buffer[2+i])));
420
421
851k
        for (n = 0; n < 4; n++)
422
681k
        {
423
681k
            x[n] = input_im2[n] + input_re2[3-n];
424
681k
        }
425
170k
        DCT3_4_unscaled(x, x);
426
170k
        QMF_IM(X_hybrid[i][7]) = x[0];
427
170k
        QMF_IM(X_hybrid[i][5]) = x[2];
428
170k
        QMF_IM(X_hybrid[i][3]) = x[3];
429
170k
        QMF_IM(X_hybrid[i][1]) = x[1];
430
431
851k
        for (n = 0; n < 4; n++)
432
681k
        {
433
681k
            x[n] = input_im2[n] - input_re2[3-n];
434
681k
        }
435
170k
        DCT3_4_unscaled(x, x);
436
170k
        QMF_IM(X_hybrid[i][6]) = x[1];
437
170k
        QMF_IM(X_hybrid[i][4]) = x[3];
438
170k
        QMF_IM(X_hybrid[i][2]) = x[2];
439
170k
        QMF_IM(X_hybrid[i][0]) = x[0];
440
170k
    }
441
5.46k
}
442
443
static void INLINE DCT3_6_unscaled(real_t *y, real_t *x)
444
231k
{
445
231k
    real_t f0, f1, f2, f3, f4, f5, f6, f7;
446
447
231k
    f0 = MUL_F(x[3], FRAC_CONST(0.70710678118655));
448
231k
    f1 = x[0] + f0;
449
231k
    f2 = x[0] - f0;
450
231k
    f3 = MUL_F((x[1] - x[5]), FRAC_CONST(0.70710678118655));
451
231k
    f4 = MUL_F(x[2], FRAC_CONST(0.86602540378444)) + MUL_F(x[4], FRAC_CONST(0.5));
452
231k
    f5 = f4 - x[4];
453
231k
    f6 = MUL_F(x[1], FRAC_CONST(0.96592582628907)) + MUL_F(x[5], FRAC_CONST(0.25881904510252));
454
231k
    f7 = f6 - f3;
455
231k
    y[0] = f1 + f6 + f4;
456
231k
    y[1] = f2 + f3 - x[4];
457
231k
    y[2] = f7 + f2 - f5;
458
231k
    y[3] = f1 - f7 - f5;
459
231k
    y[4] = f1 - f3 - x[4];
460
231k
    y[5] = f2 - f6 + f4;
461
231k
}
462
463
/* complex filter, size 12 */
464
static void channel_filter12(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
465
                             qmf_t *buffer, qmf_t **X_hybrid)
466
1.87k
{
467
1.87k
    uint8_t i, n;
468
1.87k
    real_t input_re1[6], input_re2[6], input_im1[6], input_im2[6];
469
1.87k
    real_t out_re1[6], out_re2[6], out_im1[6], out_im2[6];
470
1.87k
    (void)hyb;  /* TODO: remove parameter? */
471
472
59.6k
    for (i = 0; i < frame_len; i++)
473
57.7k
    {
474
404k
        for (n = 0; n < 6; n++)
475
346k
        {
476
346k
            if (n == 0)
477
57.7k
            {
478
57.7k
                input_re1[0] = MUL_F(QMF_RE(buffer[6+i]), filter[6]);
479
57.7k
                input_re2[0] = MUL_F(QMF_IM(buffer[6+i]), filter[6]);
480
288k
            } else {
481
288k
                input_re1[6-n] = MUL_F((QMF_RE(buffer[n+i]) + QMF_RE(buffer[12-n+i])), filter[n]);
482
288k
                input_re2[6-n] = MUL_F((QMF_IM(buffer[n+i]) + QMF_IM(buffer[12-n+i])), filter[n]);
483
288k
            }
484
346k
            input_im2[n] = MUL_F((QMF_RE(buffer[n+i]) - QMF_RE(buffer[12-n+i])), filter[n]);
485
346k
            input_im1[n] = MUL_F((QMF_IM(buffer[n+i]) - QMF_IM(buffer[12-n+i])), filter[n]);
486
346k
        }
487
488
57.7k
        DCT3_6_unscaled(out_re1, input_re1);
489
57.7k
        DCT3_6_unscaled(out_re2, input_re2);
490
491
57.7k
        DCT3_6_unscaled(out_im1, input_im1);
492
57.7k
        DCT3_6_unscaled(out_im2, input_im2);
493
494
231k
        for (n = 0; n < 6; n += 2)
495
173k
        {
496
173k
            QMF_RE(X_hybrid[i][n]) = out_re1[n] - out_im1[n];
497
173k
            QMF_IM(X_hybrid[i][n]) = out_re2[n] + out_im2[n];
498
173k
            QMF_RE(X_hybrid[i][n+1]) = out_re1[n+1] + out_im1[n+1];
499
173k
            QMF_IM(X_hybrid[i][n+1]) = out_re2[n+1] - out_im2[n+1];
500
501
173k
            QMF_RE(X_hybrid[i][10-n]) = out_re1[n+1] - out_im1[n+1];
502
173k
            QMF_IM(X_hybrid[i][10-n]) = out_re2[n+1] + out_im2[n+1];
503
173k
            QMF_RE(X_hybrid[i][11-n]) = out_re1[n] + out_im1[n];
504
173k
            QMF_IM(X_hybrid[i][11-n]) = out_re2[n] - out_im2[n];
505
173k
        }
506
57.7k
    }
507
1.87k
}
508
509
/* Hybrid analysis: further split up QMF subbands
510
 * to improve frequency resolution
511
 */
512
static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
513
                            uint8_t use34, uint8_t numTimeSlotsRate)
514
5.46k
{
515
5.46k
    uint8_t k, n, band;
516
5.46k
    uint8_t offset = 0;
517
5.46k
    uint8_t qmf_bands = (use34) ? 5 : 3;
518
5.46k
    uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
519
520
25.6k
    for (band = 0; band < qmf_bands; band++)
521
20.1k
    {
522
        /* build working buffer */
523
20.1k
        memcpy(hyb->work, hyb->buffer[band], 12 * sizeof(qmf_t));
524
525
        /* add new samples */
526
646k
        for (n = 0; n < hyb->frame_len; n++)
527
626k
        {
528
626k
            QMF_RE(hyb->work[12 + n]) = QMF_RE(X[n + 6 /*delay*/][band]);
529
626k
            QMF_IM(hyb->work[12 + n]) = QMF_IM(X[n + 6 /*delay*/][band]);
530
626k
        }
531
532
        /* store samples */
533
20.1k
        memcpy(hyb->buffer[band], hyb->work + hyb->frame_len, 12 * sizeof(qmf_t));
534
535
536
20.1k
        switch(resolution[band])
537
20.1k
        {
538
7.17k
        case 2:
539
            /* Type B real filter, Q[p] = 2 */
540
7.17k
            channel_filter2(hyb, hyb->frame_len, p2_13_20, hyb->work, hyb->temp);
541
7.17k
            break;
542
5.63k
        case 4:
543
            /* Type A complex filter, Q[p] = 4 */
544
5.63k
            channel_filter4(hyb, hyb->frame_len, p4_13_34, hyb->work, hyb->temp);
545
5.63k
            break;
546
5.46k
        case 8:
547
            /* Type A complex filter, Q[p] = 8 */
548
5.46k
            channel_filter8(hyb, hyb->frame_len, (use34) ? p8_13_34 : p8_13_20,
549
5.46k
                hyb->work, hyb->temp);
550
5.46k
            break;
551
1.87k
        case 12:
552
            /* Type A complex filter, Q[p] = 12 */
553
1.87k
            channel_filter12(hyb, hyb->frame_len, p12_13_34, hyb->work, hyb->temp);
554
1.87k
            break;
555
20.1k
        }
556
557
646k
        for (n = 0; n < hyb->frame_len; n++)
558
626k
        {
559
3.82M
            for (k = 0; k < resolution[band]; k++)
560
3.19M
            {
561
3.19M
                QMF_RE(X_hybrid[n][offset + k]) = QMF_RE(hyb->temp[n][k]);
562
3.19M
                QMF_IM(X_hybrid[n][offset + k]) = QMF_IM(hyb->temp[n][k]);
563
3.19M
            }
564
626k
        }
565
20.1k
        offset += resolution[band];
566
20.1k
    }
567
568
    /* group hybrid channels */
569
5.46k
    if (!use34)
570
3.58k
    {
571
116k
        for (n = 0; n < numTimeSlotsRate; n++)
572
112k
        {
573
112k
            QMF_RE(X_hybrid[n][3]) += QMF_RE(X_hybrid[n][4]);
574
112k
            QMF_IM(X_hybrid[n][3]) += QMF_IM(X_hybrid[n][4]);
575
112k
            QMF_RE(X_hybrid[n][4]) = 0;
576
112k
            QMF_IM(X_hybrid[n][4]) = 0;
577
578
112k
            QMF_RE(X_hybrid[n][2]) += QMF_RE(X_hybrid[n][5]);
579
112k
            QMF_IM(X_hybrid[n][2]) += QMF_IM(X_hybrid[n][5]);
580
112k
            QMF_RE(X_hybrid[n][5]) = 0;
581
112k
            QMF_IM(X_hybrid[n][5]) = 0;
582
112k
        }
583
3.58k
    }
584
5.46k
}
585
586
static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
587
                             uint8_t use34, uint8_t numTimeSlotsRate)
588
10.9k
{
589
10.9k
    uint8_t k, n, band;
590
10.9k
    uint8_t offset = 0;
591
10.9k
    uint8_t qmf_bands = (use34) ? 5 : 3;
592
10.9k
    uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
593
10.9k
    (void)numTimeSlotsRate;  /* TODO: remove parameter? */
594
595
51.2k
    for(band = 0; band < qmf_bands; band++)
596
40.3k
    {
597
1.29M
        for (n = 0; n < hyb->frame_len; n++)
598
1.25M
        {
599
1.25M
            QMF_RE(X[n][band]) = 0;
600
1.25M
            QMF_IM(X[n][band]) = 0;
601
602
7.65M
            for (k = 0; k < resolution[band]; k++)
603
6.39M
            {
604
6.39M
                QMF_RE(X[n][band]) += QMF_RE(X_hybrid[n][offset + k]);
605
6.39M
                QMF_IM(X[n][band]) += QMF_IM(X_hybrid[n][offset + k]);
606
6.39M
            }
607
1.25M
        }
608
40.3k
        offset += resolution[band];
609
40.3k
    }
610
10.9k
}
611
612
/* limits the value i to the range [min,max] */
613
static int8_t delta_clip(int8_t i, int8_t min, int8_t max)
614
73.1k
{
615
73.1k
    if (i < min)
616
8.56k
        return min;
617
64.5k
    else if (i > max)
618
2.23k
        return max;
619
62.3k
    else
620
62.3k
        return i;
621
73.1k
}
622
623
//int iid = 0;
624
625
/* delta decode array */
626
static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
627
                         uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
628
                         int8_t min_index, int8_t max_index)
629
18.7k
{
630
18.7k
    int8_t i;
631
632
18.7k
    if (enable == 1)
633
8.40k
    {
634
8.40k
        if (dt_flag == 0)
635
5.72k
        {
636
            /* delta coded in frequency direction */
637
5.72k
            index[0] = 0 + index[0];
638
5.72k
            index[0] = delta_clip(index[0], min_index, max_index);
639
640
51.0k
            for (i = 1; i < nr_par; i++)
641
45.3k
            {
642
45.3k
                index[i] = index[i-1] + index[i];
643
45.3k
                index[i] = delta_clip(index[i], min_index, max_index);
644
45.3k
            }
645
5.72k
        } else {
646
            /* delta coded in time direction */
647
24.7k
            for (i = 0; i < nr_par; i++)
648
22.0k
            {
649
                //int8_t tmp2;
650
                //int8_t tmp = index[i];
651
652
                //printf("%d %d\n", index_prev[i*stride], index[i]);
653
                //printf("%d\n", index[i]);
654
655
22.0k
                index[i] = index_prev[i*stride] + index[i];
656
                //tmp2 = index[i];
657
22.0k
                index[i] = delta_clip(index[i], min_index, max_index);
658
659
                //if (iid)
660
                //{
661
                //    if (index[i] == 7)
662
                //    {
663
                //        printf("%d %d %d\n", index_prev[i*stride], tmp, tmp2);
664
                //    }
665
                //}
666
22.0k
            }
667
2.67k
        }
668
10.3k
    } else {
669
        /* set indices to zero */
670
16.1k
        for (i = 0; i < nr_par; i++)
671
5.86k
        {
672
5.86k
            index[i] = 0;
673
5.86k
        }
674
10.3k
    }
675
676
    /* coarse */
677
18.7k
    if (stride == 2)
678
11.0k
    {
679
31.2k
        for (i = (nr_par<<1)-1; i > 0; i--)
680
20.2k
        {
681
20.2k
            index[i] = index[i>>1];
682
20.2k
        }
683
11.0k
    }
684
18.7k
}
685
686
/* delta modulo decode array */
687
/* in: log2 value of the modulo value to allow using AND instead of MOD */
688
static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
689
                                uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
690
                                int8_t and_modulo)
691
18.7k
{
692
18.7k
    int8_t i;
693
694
18.7k
    if (enable == 1)
695
4.16k
    {
696
4.16k
        if (dt_flag == 0)
697
1.73k
        {
698
            /* delta coded in frequency direction */
699
1.73k
            index[0] = 0 + index[0];
700
1.73k
            index[0] &= and_modulo;
701
702
6.17k
            for (i = 1; i < nr_par; i++)
703
4.44k
            {
704
4.44k
                index[i] = index[i-1] + index[i];
705
4.44k
                index[i] &= and_modulo;
706
4.44k
            }
707
2.42k
        } else {
708
            /* delta coded in time direction */
709
5.44k
            for (i = 0; i < nr_par; i++)
710
3.01k
            {
711
3.01k
                index[i] = index_prev[i*stride] + index[i];
712
3.01k
                index[i] &= and_modulo;
713
3.01k
            }
714
2.42k
        }
715
14.5k
    } else {
716
        /* set indices to zero */
717
51.0k
        for (i = 0; i < nr_par; i++)
718
36.5k
        {
719
36.5k
            index[i] = 0;
720
36.5k
        }
721
14.5k
    }
722
723
    /* coarse */
724
18.7k
    if (stride == 2)
725
0
    {
726
0
        index[0] = 0;
727
0
        for (i = (nr_par<<1)-1; i > 0; i--)
728
0
        {
729
0
            index[i] = index[i>>1];
730
0
        }
731
0
    }
732
18.7k
}
733
734
#ifdef PS_LOW_POWER
735
static void map34indexto20(int8_t *index, uint8_t bins)
736
{
737
    index[0] = (2*index[0]+index[1])/3;
738
    index[1] = (index[1]+2*index[2])/3;
739
    index[2] = (2*index[3]+index[4])/3;
740
    index[3] = (index[4]+2*index[5])/3;
741
    index[4] = (index[6]+index[7])/2;
742
    index[5] = (index[8]+index[9])/2;
743
    index[6] = index[10];
744
    index[7] = index[11];
745
    index[8] = (index[12]+index[13])/2;
746
    index[9] = (index[14]+index[15])/2;
747
    index[10] = index[16];
748
749
    if (bins == 34)
750
    {
751
        index[11] = index[17];
752
        index[12] = index[18];
753
        index[13] = index[19];
754
        index[14] = (index[20]+index[21])/2;
755
        index[15] = (index[22]+index[23])/2;
756
        index[16] = (index[24]+index[25])/2;
757
        index[17] = (index[26]+index[27])/2;
758
        index[18] = (index[28]+index[29]+index[30]+index[31])/4;
759
        index[19] = (index[32]+index[33])/2;
760
    }
761
}
762
#endif
763
764
static void map20indexto34(int8_t *index, uint8_t bins)
765
6.65k
{
766
6.65k
    index[0] = index[0];
767
6.65k
    index[1] = (index[0] + index[1])/2;
768
6.65k
    index[2] = index[1];
769
6.65k
    index[3] = index[2];
770
6.65k
    index[4] = (index[2] + index[3])/2;
771
6.65k
    index[5] = index[3];
772
6.65k
    index[6] = index[4];
773
6.65k
    index[7] = index[4];
774
6.65k
    index[8] = index[5];
775
6.65k
    index[9] = index[5];
776
6.65k
    index[10] = index[6];
777
6.65k
    index[11] = index[7];
778
6.65k
    index[12] = index[8];
779
6.65k
    index[13] = index[8];
780
6.65k
    index[14] = index[9];
781
6.65k
    index[15] = index[9];
782
6.65k
    index[16] = index[10];
783
784
6.65k
    if (bins == 34)
785
3.11k
    {
786
3.11k
        index[17] = index[11];
787
3.11k
        index[18] = index[12];
788
3.11k
        index[19] = index[13];
789
3.11k
        index[20] = index[14];
790
3.11k
        index[21] = index[14];
791
3.11k
        index[22] = index[15];
792
3.11k
        index[23] = index[15];
793
3.11k
        index[24] = index[16];
794
3.11k
        index[25] = index[16];
795
3.11k
        index[26] = index[17];
796
3.11k
        index[27] = index[17];
797
3.11k
        index[28] = index[18];
798
3.11k
        index[29] = index[18];
799
3.11k
        index[30] = index[18];
800
3.11k
        index[31] = index[18];
801
3.11k
        index[32] = index[19];
802
3.11k
        index[33] = index[19];
803
3.11k
    }
804
6.65k
}
805
806
/* parse the bitstream data decoded in ps_data() */
807
static void ps_data_decode(ps_info *ps)
808
5.46k
{
809
5.46k
    uint8_t env, bin;
810
811
    /* ps data not available, use data from previous frame */
812
5.46k
    if (ps->ps_data_available == 0)
813
1.35k
    {
814
1.35k
        ps->num_env = 0;
815
1.35k
    }
816
817
14.8k
    for (env = 0; env < ps->num_env; env++)
818
9.36k
    {
819
9.36k
        int8_t *iid_index_prev;
820
9.36k
        int8_t *icc_index_prev;
821
9.36k
        int8_t *ipd_index_prev;
822
9.36k
        int8_t *opd_index_prev;
823
824
9.36k
        int8_t num_iid_steps = (ps->iid_mode < 3) ? 7 : 15 /*fine quant*/;
825
826
9.36k
        if (env == 0)
827
2.80k
        {
828
            /* take last envelope from previous frame */
829
2.80k
            iid_index_prev = ps->iid_index_prev;
830
2.80k
            icc_index_prev = ps->icc_index_prev;
831
2.80k
            ipd_index_prev = ps->ipd_index_prev;
832
2.80k
            opd_index_prev = ps->opd_index_prev;
833
6.55k
        } else {
834
            /* take index values from previous envelope */
835
6.55k
            iid_index_prev = ps->iid_index[env - 1];
836
6.55k
            icc_index_prev = ps->icc_index[env - 1];
837
6.55k
            ipd_index_prev = ps->ipd_index[env - 1];
838
6.55k
            opd_index_prev = ps->opd_index[env - 1];
839
6.55k
        }
840
841
//        iid = 1;
842
        /* delta decode iid parameters */
843
9.36k
        delta_decode(ps->enable_iid, ps->iid_index[env], iid_index_prev,
844
9.36k
            ps->iid_dt[env], ps->nr_iid_par,
845
9.36k
            (ps->iid_mode == 0 || ps->iid_mode == 3) ? 2 : 1,
846
9.36k
            -num_iid_steps, num_iid_steps);
847
//        iid = 0;
848
849
        /* delta decode icc parameters */
850
9.36k
        delta_decode(ps->enable_icc, ps->icc_index[env], icc_index_prev,
851
9.36k
            ps->icc_dt[env], ps->nr_icc_par,
852
9.36k
            (ps->icc_mode == 0 || ps->icc_mode == 3) ? 2 : 1,
853
9.36k
            0, 7);
854
855
        /* delta modulo decode ipd parameters */
856
9.36k
        delta_modulo_decode(ps->enable_ipdopd, ps->ipd_index[env], ipd_index_prev,
857
9.36k
            ps->ipd_dt[env], ps->nr_ipdopd_par, 1, 7);
858
859
        /* delta modulo decode opd parameters */
860
9.36k
        delta_modulo_decode(ps->enable_ipdopd, ps->opd_index[env], opd_index_prev,
861
9.36k
            ps->opd_dt[env], ps->nr_ipdopd_par, 1, 7);
862
9.36k
    }
863
864
    /* handle error case */
865
5.46k
    if (ps->num_env == 0)
866
2.66k
    {
867
        /* force to 1 */
868
2.66k
        ps->num_env = 1;
869
870
2.66k
        if (ps->enable_iid)
871
1.88k
        {
872
65.8k
            for (bin = 0; bin < 34; bin++)
873
63.9k
                ps->iid_index[0][bin] = ps->iid_index_prev[bin];
874
1.88k
        } else {
875
27.3k
            for (bin = 0; bin < 34; bin++)
876
26.5k
                ps->iid_index[0][bin] = 0;
877
781
        }
878
879
2.66k
        if (ps->enable_icc)
880
1.72k
        {
881
60.2k
            for (bin = 0; bin < 34; bin++)
882
58.5k
                ps->icc_index[0][bin] = ps->icc_index_prev[bin];
883
1.72k
        } else {
884
32.9k
            for (bin = 0; bin < 34; bin++)
885
31.9k
                ps->icc_index[0][bin] = 0;
886
941
        }
887
888
2.66k
        if (ps->enable_ipdopd)
889
307
        {
890
5.52k
            for (bin = 0; bin < 17; bin++)
891
5.21k
            {
892
5.21k
                ps->ipd_index[0][bin] = ps->ipd_index_prev[bin];
893
5.21k
                ps->opd_index[0][bin] = ps->opd_index_prev[bin];
894
5.21k
            }
895
2.35k
        } else {
896
42.3k
            for (bin = 0; bin < 17; bin++)
897
40.0k
            {
898
40.0k
                ps->ipd_index[0][bin] = 0;
899
40.0k
                ps->opd_index[0][bin] = 0;
900
40.0k
            }
901
2.35k
        }
902
2.66k
    }
903
904
    /* update previous indices */
905
191k
    for (bin = 0; bin < 34; bin++)
906
185k
        ps->iid_index_prev[bin] = ps->iid_index[ps->num_env-1][bin];
907
191k
    for (bin = 0; bin < 34; bin++)
908
185k
        ps->icc_index_prev[bin] = ps->icc_index[ps->num_env-1][bin];
909
98.4k
    for (bin = 0; bin < 17; bin++)
910
92.9k
    {
911
92.9k
        ps->ipd_index_prev[bin] = ps->ipd_index[ps->num_env-1][bin];
912
92.9k
        ps->opd_index_prev[bin] = ps->opd_index[ps->num_env-1][bin];
913
92.9k
    }
914
915
5.46k
    ps->ps_data_available = 0;
916
917
5.46k
    if (ps->frame_class == 0)
918
3.29k
    {
919
3.29k
        ps->border_position[0] = 0;
920
5.98k
        for (env = 1; env < ps->num_env; env++)
921
2.69k
        {
922
2.69k
            ps->border_position[env] = (env * ps->numTimeSlotsRate) / ps->num_env;
923
2.69k
        }
924
3.29k
        ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
925
3.29k
    } else {
926
2.17k
        ps->border_position[0] = 0;
927
928
2.17k
        if (ps->border_position[ps->num_env] < ps->numTimeSlotsRate)
929
1.87k
        {
930
65.5k
            for (bin = 0; bin < 34; bin++)
931
63.7k
            {
932
63.7k
                ps->iid_index[ps->num_env][bin] = ps->iid_index[ps->num_env-1][bin];
933
63.7k
                ps->icc_index[ps->num_env][bin] = ps->icc_index[ps->num_env-1][bin];
934
63.7k
            }
935
33.7k
            for (bin = 0; bin < 17; bin++)
936
31.8k
            {
937
31.8k
                ps->ipd_index[ps->num_env][bin] = ps->ipd_index[ps->num_env-1][bin];
938
31.8k
                ps->opd_index[ps->num_env][bin] = ps->opd_index[ps->num_env-1][bin];
939
31.8k
            }
940
1.87k
            ps->num_env++;
941
1.87k
            ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
942
1.87k
        }
943
944
7.91k
        for (env = 1; env < ps->num_env; env++)
945
5.74k
        {
946
5.74k
            int8_t thr = ps->numTimeSlotsRate - (ps->num_env - env);
947
948
5.74k
            if (ps->border_position[env] > thr)
949
1.00k
            {
950
1.00k
                ps->border_position[env] = thr;
951
4.73k
            } else {
952
4.73k
                thr = ps->border_position[env-1]+1;
953
4.73k
                if (ps->border_position[env] < thr)
954
1.95k
                {
955
1.95k
                    ps->border_position[env] = thr;
956
1.95k
                }
957
4.73k
            }
958
5.74k
        }
959
2.17k
    }
960
961
    /* make sure that the indices of all parameters can be mapped
962
     * to the same hybrid synthesis filterbank
963
     */
964
#ifdef PS_LOW_POWER
965
    for (env = 0; env < ps->num_env; env++)
966
    {
967
        if (ps->iid_mode == 2 || ps->iid_mode == 5)
968
            map34indexto20(ps->iid_index[env], 34);
969
        if (ps->icc_mode == 2 || ps->icc_mode == 5)
970
            map34indexto20(ps->icc_index[env], 34);
971
972
        /* disable ipd/opd */
973
        for (bin = 0; bin < 17; bin++)
974
        {
975
            ps->aaIpdIndex[env][bin] = 0;
976
            ps->aaOpdIndex[env][bin] = 0;
977
        }
978
    }
979
#else
980
5.46k
    if (ps->use34hybrid_bands)
981
1.87k
    {
982
5.06k
        for (env = 0; env < ps->num_env; env++)
983
3.18k
        {
984
3.18k
            if (ps->iid_mode != 2 && ps->iid_mode != 5)
985
1.76k
                map20indexto34(ps->iid_index[env], 34);
986
3.18k
            if (ps->icc_mode != 2 && ps->icc_mode != 5)
987
1.35k
                map20indexto34(ps->icc_index[env], 34);
988
3.18k
            if (ps->ipd_mode != 2 && ps->ipd_mode != 5)
989
1.76k
            {
990
1.76k
                map20indexto34(ps->ipd_index[env], 17);
991
1.76k
                map20indexto34(ps->opd_index[env], 17);
992
1.76k
            }
993
3.18k
        }
994
1.87k
    }
995
5.46k
#endif
996
997
#if 0
998
    for (env = 0; env < ps->num_env; env++)
999
    {
1000
        printf("iid[env:%d]:", env);
1001
        for (bin = 0; bin < 34; bin++)
1002
        {
1003
            printf(" %d", ps->iid_index[env][bin]);
1004
        }
1005
        printf("\n");
1006
    }
1007
    for (env = 0; env < ps->num_env; env++)
1008
    {
1009
        printf("icc[env:%d]:", env);
1010
        for (bin = 0; bin < 34; bin++)
1011
        {
1012
            printf(" %d", ps->icc_index[env][bin]);
1013
        }
1014
        printf("\n");
1015
    }
1016
    for (env = 0; env < ps->num_env; env++)
1017
    {
1018
        printf("ipd[env:%d]:", env);
1019
        for (bin = 0; bin < 17; bin++)
1020
        {
1021
            printf(" %d", ps->ipd_index[env][bin]);
1022
        }
1023
        printf("\n");
1024
    }
1025
    for (env = 0; env < ps->num_env; env++)
1026
    {
1027
        printf("opd[env:%d]:", env);
1028
        for (bin = 0; bin < 17; bin++)
1029
        {
1030
            printf(" %d", ps->opd_index[env][bin]);
1031
        }
1032
        printf("\n");
1033
    }
1034
    printf("\n");
1035
#endif
1036
5.46k
}
1037
1038
/* decorrelate the mono signal using an allpass filter */
1039
static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
1040
                           qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
1041
5.46k
{
1042
5.46k
    uint8_t gr, n, bk;
1043
5.46k
    uint8_t temp_delay = 0;
1044
5.46k
    uint8_t sb, maxsb;
1045
5.46k
    const complex_t *Phi_Fract_SubQmf;
1046
5.46k
    uint8_t temp_delay_ser[NO_ALLPASS_LINKS];
1047
5.46k
    real_t P_SmoothPeakDecayDiffNrg, nrg;
1048
5.46k
    real_t P[32][34];
1049
5.46k
    real_t G_TransientRatio[32][34] = {{0}};
1050
5.46k
    complex_t inputLeft;
1051
1052
1053
    /* chose hybrid filterbank: 20 or 34 band case */
1054
5.46k
    if (ps->use34hybrid_bands)
1055
1.87k
    {
1056
1.87k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf34;
1057
3.58k
    } else{
1058
3.58k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf20;
1059
3.58k
    }
1060
1061
    /* clear the energy values */
1062
180k
    for (n = 0; n < 32; n++)
1063
174k
    {
1064
6.12M
        for (bk = 0; bk < 34; bk++)
1065
5.94M
        {
1066
5.94M
            P[n][bk] = 0;
1067
5.94M
        }
1068
174k
    }
1069
1070
    /* calculate the energy in each parameter band b(k) */
1071
178k
    for (gr = 0; gr < ps->num_groups; gr++)
1072
172k
    {
1073
        /* select the parameter index b(k) to which this group belongs */
1074
172k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1075
1076
        /* select the upper subband border for this group */
1077
172k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr]+1 : ps->group_border[gr+1];
1078
1079
598k
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1080
425k
        {
1081
13.6M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1082
13.2M
            {
1083
#ifdef FIXED_POINT
1084
                uint32_t in_re, in_im;
1085
#endif
1086
1087
                /* input from hybrid subbands or QMF subbands */
1088
13.2M
                if (gr < ps->num_hybrid_groups)
1089
2.97M
                {
1090
2.97M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1091
2.97M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1092
10.2M
                } else {
1093
10.2M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1094
10.2M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1095
10.2M
                }
1096
1097
                /* accumulate energy */
1098
#ifdef FIXED_POINT
1099
                /* NOTE: all input is scaled by 2^(-5) because of fixed point QMF
1100
                 * meaning that P will be scaled by 2^(-10) compared to floating point version
1101
                 */
1102
                in_re = ((abs(RE(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1103
                in_im = ((abs(IM(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1104
                P[n][bk] += in_re*in_re + in_im*in_im;
1105
#else
1106
13.2M
                P[n][bk] += MUL_R(RE(inputLeft),RE(inputLeft)) + MUL_R(IM(inputLeft),IM(inputLeft));
1107
13.2M
#endif
1108
13.2M
            }
1109
425k
        }
1110
172k
    }
1111
1112
#if 0
1113
    for (n = 0; n < 32; n++)
1114
    {
1115
        for (bk = 0; bk < 34; bk++)
1116
        {
1117
#ifdef FIXED_POINT
1118
            printf("%d %d: %d\n", n, bk, P[n][bk] /*/(float)REAL_PRECISION*/);
1119
#else
1120
            printf("%d %d: %f\n", n, bk, P[n][bk]/1024.0);
1121
#endif
1122
        }
1123
    }
1124
#endif
1125
1126
    /* calculate transient reduction ratio for each parameter band b(k) */
1127
141k
    for (bk = 0; bk < ps->nr_par_bands; bk++)
1128
135k
    {
1129
4.35M
        for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1130
4.22M
        {
1131
4.22M
            const real_t gamma = COEF_CONST(1.5);
1132
1133
4.22M
            ps->P_PeakDecayNrg[bk] = MUL_F(ps->P_PeakDecayNrg[bk], ps->alpha_decay);
1134
4.22M
            if (ps->P_PeakDecayNrg[bk] < P[n][bk])
1135
47.6k
                ps->P_PeakDecayNrg[bk] = P[n][bk];
1136
1137
            /* apply smoothing filter to peak decay energy */
1138
4.22M
            P_SmoothPeakDecayDiffNrg = ps->P_SmoothPeakDecayDiffNrg_prev[bk];
1139
4.22M
            P_SmoothPeakDecayDiffNrg += MUL_F((ps->P_PeakDecayNrg[bk] - P[n][bk] - ps->P_SmoothPeakDecayDiffNrg_prev[bk]), ps->alpha_smooth);
1140
4.22M
            ps->P_SmoothPeakDecayDiffNrg_prev[bk] = P_SmoothPeakDecayDiffNrg;
1141
1142
            /* apply smoothing filter to energy */
1143
4.22M
            nrg = ps->P_prev[bk];
1144
4.22M
            nrg += MUL_F((P[n][bk] - ps->P_prev[bk]), ps->alpha_smooth);
1145
4.22M
            ps->P_prev[bk] = nrg;
1146
1147
            /* calculate transient ratio */
1148
4.22M
            if (MUL_C(P_SmoothPeakDecayDiffNrg, gamma) <= nrg)
1149
4.18M
            {
1150
4.18M
                G_TransientRatio[n][bk] = REAL_CONST(1.0);
1151
4.18M
            } else {
1152
33.8k
                G_TransientRatio[n][bk] = DIV_R(nrg, (MUL_C(P_SmoothPeakDecayDiffNrg, gamma)));
1153
33.8k
            }
1154
4.22M
        }
1155
135k
    }
1156
1157
#if 0
1158
    for (n = 0; n < 32; n++)
1159
    {
1160
        for (bk = 0; bk < 34; bk++)
1161
        {
1162
#ifdef FIXED_POINT
1163
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]/(float)REAL_PRECISION);
1164
#else
1165
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]);
1166
#endif
1167
        }
1168
    }
1169
#endif
1170
1171
    /* apply stereo decorrelation filter to the signal */
1172
178k
    for (gr = 0; gr < ps->num_groups; gr++)
1173
172k
    {
1174
172k
        if (gr < ps->num_hybrid_groups)
1175
96.0k
            maxsb = ps->group_border[gr] + 1;
1176
76.8k
        else
1177
76.8k
            maxsb = ps->group_border[gr + 1];
1178
1179
        /* QMF channel */
1180
598k
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1181
425k
        {
1182
425k
            real_t g_DecaySlope;
1183
425k
            real_t g_DecaySlope_filt[NO_ALLPASS_LINKS];
1184
1185
            /* g_DecaySlope: [0..1] */
1186
425k
            if (gr < ps->num_hybrid_groups || sb <= ps->decay_cutoff)
1187
101k
            {
1188
101k
                g_DecaySlope = FRAC_CONST(1.0);
1189
324k
            } else {
1190
324k
                int8_t decay = ps->decay_cutoff - sb;
1191
324k
                if (decay <= -20 /* -1/DECAY_SLOPE */)
1192
220k
                {
1193
220k
                    g_DecaySlope = 0;
1194
220k
                } else {
1195
                    /* decay(int)*decay_slope(frac) = g_DecaySlope(frac) */
1196
103k
                    g_DecaySlope = FRAC_CONST(1.0) + DECAY_SLOPE * decay;
1197
103k
                }
1198
324k
            }
1199
1200
            /* calculate g_DecaySlope_filt for every n multiplied by filter_a[n] */
1201
1.70M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1202
1.27M
            {
1203
1.27M
                g_DecaySlope_filt[n] = MUL_F(g_DecaySlope, filter_a[n]);
1204
1.27M
            }
1205
1206
1207
            /* set delay indices */
1208
425k
            temp_delay = ps->saved_delay;
1209
1.70M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1210
1.27M
                temp_delay_ser[n] = ps->delay_buf_index_ser[n];
1211
1212
13.6M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1213
13.2M
            {
1214
13.2M
                complex_t tmp, tmp0, R0;
1215
13.2M
                uint8_t m;
1216
1217
13.2M
                if (gr < ps->num_hybrid_groups)
1218
2.97M
                {
1219
                    /* hybrid filterbank input */
1220
2.97M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1221
2.97M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1222
10.2M
                } else {
1223
                    /* QMF filterbank input */
1224
10.2M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1225
10.2M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1226
10.2M
                }
1227
1228
13.2M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1229
6.99M
                {
1230
                    /* delay */
1231
1232
                    /* never hybrid subbands here, always QMF subbands */
1233
6.99M
                    RE(tmp) = RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1234
6.99M
                    IM(tmp) = IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1235
6.99M
                    RE(R0) = RE(tmp);
1236
6.99M
                    IM(R0) = IM(tmp);
1237
6.99M
                    RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = RE(inputLeft);
1238
6.99M
                    IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = IM(inputLeft);
1239
6.99M
                } else {
1240
                    /* allpass filter */
1241
6.27M
                    complex_t Phi_Fract;
1242
1243
                    /* fetch parameters */
1244
6.27M
                    if (gr < ps->num_hybrid_groups)
1245
2.97M
                    {
1246
                        /* select data from the hybrid subbands */
1247
2.97M
                        RE(tmp0) = RE(ps->delay_SubQmf[temp_delay][sb]);
1248
2.97M
                        IM(tmp0) = IM(ps->delay_SubQmf[temp_delay][sb]);
1249
1250
2.97M
                        RE(ps->delay_SubQmf[temp_delay][sb]) = RE(inputLeft);
1251
2.97M
                        IM(ps->delay_SubQmf[temp_delay][sb]) = IM(inputLeft);
1252
1253
2.97M
                        RE(Phi_Fract) = RE(Phi_Fract_SubQmf[sb]);
1254
2.97M
                        IM(Phi_Fract) = IM(Phi_Fract_SubQmf[sb]);
1255
3.29M
                    } else {
1256
                        /* select data from the QMF subbands */
1257
3.29M
                        RE(tmp0) = RE(ps->delay_Qmf[temp_delay][sb]);
1258
3.29M
                        IM(tmp0) = IM(ps->delay_Qmf[temp_delay][sb]);
1259
1260
3.29M
                        RE(ps->delay_Qmf[temp_delay][sb]) = RE(inputLeft);
1261
3.29M
                        IM(ps->delay_Qmf[temp_delay][sb]) = IM(inputLeft);
1262
1263
3.29M
                        RE(Phi_Fract) = RE(Phi_Fract_Qmf[sb]);
1264
3.29M
                        IM(Phi_Fract) = IM(Phi_Fract_Qmf[sb]);
1265
3.29M
                    }
1266
1267
                    /* z^(-2) * Phi_Fract[k] */
1268
6.27M
                    ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Phi_Fract), IM(Phi_Fract));
1269
1270
6.27M
                    RE(R0) = RE(tmp);
1271
6.27M
                    IM(R0) = IM(tmp);
1272
25.1M
                    for (m = 0; m < NO_ALLPASS_LINKS; m++)
1273
18.8M
                    {
1274
18.8M
                        complex_t Q_Fract_allpass, tmp2;
1275
1276
                        /* fetch parameters */
1277
18.8M
                        if (gr < ps->num_hybrid_groups)
1278
8.93M
                        {
1279
                            /* select data from the hybrid subbands */
1280
8.93M
                            RE(tmp0) = RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1281
8.93M
                            IM(tmp0) = IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1282
1283
8.93M
                            if (ps->use34hybrid_bands)
1284
5.54M
                            {
1285
5.54M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf34[sb][m]);
1286
5.54M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf34[sb][m]);
1287
5.54M
                            } else {
1288
3.38M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf20[sb][m]);
1289
3.38M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf20[sb][m]);
1290
3.38M
                            }
1291
9.89M
                        } else {
1292
                            /* select data from the QMF subbands */
1293
9.89M
                            RE(tmp0) = RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1294
9.89M
                            IM(tmp0) = IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1295
1296
9.89M
                            RE(Q_Fract_allpass) = RE(Q_Fract_allpass_Qmf[sb][m]);
1297
9.89M
                            IM(Q_Fract_allpass) = IM(Q_Fract_allpass_Qmf[sb][m]);
1298
9.89M
                        }
1299
1300
                        /* delay by a fraction */
1301
                        /* z^(-d(m)) * Q_Fract_allpass[k,m] */
1302
18.8M
                        ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Q_Fract_allpass), IM(Q_Fract_allpass));
1303
1304
                        /* -a(m) * g_DecaySlope[k] */
1305
18.8M
                        RE(tmp) += -MUL_F(g_DecaySlope_filt[m], RE(R0));
1306
18.8M
                        IM(tmp) += -MUL_F(g_DecaySlope_filt[m], IM(R0));
1307
1308
                        /* -a(m) * g_DecaySlope[k] * Q_Fract_allpass[k,m] * z^(-d(m)) */
1309
18.8M
                        RE(tmp2) = RE(R0) + MUL_F(g_DecaySlope_filt[m], RE(tmp));
1310
18.8M
                        IM(tmp2) = IM(R0) + MUL_F(g_DecaySlope_filt[m], IM(tmp));
1311
1312
                        /* store sample */
1313
18.8M
                        if (gr < ps->num_hybrid_groups)
1314
8.93M
                        {
1315
8.93M
                            RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1316
8.93M
                            IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1317
9.89M
                        } else {
1318
9.89M
                            RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1319
9.89M
                            IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1320
9.89M
                        }
1321
1322
                        /* store for next iteration (or as output value if last iteration) */
1323
18.8M
                        RE(R0) = RE(tmp);
1324
18.8M
                        IM(R0) = IM(tmp);
1325
18.8M
                    }
1326
6.27M
                }
1327
1328
                /* select b(k) for reading the transient ratio */
1329
13.2M
                bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1330
1331
                /* duck if a past transient is found */
1332
13.2M
                RE(R0) = MUL_R(G_TransientRatio[n][bk], RE(R0));
1333
13.2M
                IM(R0) = MUL_R(G_TransientRatio[n][bk], IM(R0));
1334
1335
13.2M
                if (gr < ps->num_hybrid_groups)
1336
2.97M
                {
1337
                    /* hybrid */
1338
2.97M
                    QMF_RE(X_hybrid_right[n][sb]) = RE(R0);
1339
2.97M
                    QMF_IM(X_hybrid_right[n][sb]) = IM(R0);
1340
10.2M
                } else {
1341
                    /* QMF */
1342
10.2M
                    QMF_RE(X_right[n][sb]) = RE(R0);
1343
10.2M
                    QMF_IM(X_right[n][sb]) = IM(R0);
1344
10.2M
                }
1345
1346
                /* Update delay buffer index */
1347
13.2M
                if (++temp_delay >= 2)
1348
6.63M
                {
1349
6.63M
                    temp_delay = 0;
1350
6.63M
                }
1351
1352
                /* update delay indices */
1353
13.2M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1354
6.99M
                {
1355
                    /* delay_D depends on the samplerate, it can hold the values 14 and 1 */
1356
6.99M
                    if (++ps->delay_buf_index_delay[sb] >= ps->delay_D[sb])
1357
5.08M
                    {
1358
5.08M
                        ps->delay_buf_index_delay[sb] = 0;
1359
5.08M
                    }
1360
6.99M
                }
1361
1362
53.0M
                for (m = 0; m < NO_ALLPASS_LINKS; m++)
1363
39.8M
                {
1364
39.8M
                    if (++temp_delay_ser[m] >= ps->num_sample_delay_ser[m])
1365
10.1M
                    {
1366
10.1M
                        temp_delay_ser[m] = 0;
1367
10.1M
                    }
1368
39.8M
                }
1369
13.2M
            }
1370
425k
        }
1371
172k
    }
1372
1373
    /* update delay indices */
1374
5.46k
    ps->saved_delay = temp_delay;
1375
21.8k
    for (n = 0; n < NO_ALLPASS_LINKS; n++)
1376
16.4k
        ps->delay_buf_index_ser[n] = temp_delay_ser[n];
1377
5.46k
}
1378
1379
#if 0
1380
#ifdef FIXED_POINT
1381
#define step(shift) \
1382
    if ((0x40000000l >> shift) + root <= value)       \
1383
    {                                                 \
1384
        value -= (0x40000000l >> shift) + root;       \
1385
        root = (root >> 1) | (0x40000000l >> shift);  \
1386
    } else {                                          \
1387
        root = root >> 1;                             \
1388
    }
1389
1390
/* fixed point square root approximation */
1391
static real_t ps_sqrt(real_t value)
1392
{
1393
    real_t root = 0;
1394
1395
    step( 0); step( 2); step( 4); step( 6);
1396
    step( 8); step(10); step(12); step(14);
1397
    step(16); step(18); step(20); step(22);
1398
    step(24); step(26); step(28); step(30);
1399
1400
    if (root < value)
1401
        ++root;
1402
1403
    root <<= (REAL_BITS/2);
1404
1405
    return root;
1406
}
1407
#else
1408
#define ps_sqrt(A) sqrt(A)
1409
#endif
1410
#endif
1411
1412
static const real_t ipdopd_cos_tab[] = {
1413
    FRAC_CONST(1.000000000000000),
1414
    FRAC_CONST(0.707106781186548),
1415
    FRAC_CONST(0.000000000000000),
1416
    FRAC_CONST(-0.707106781186547),
1417
    FRAC_CONST(-1.000000000000000),
1418
    FRAC_CONST(-0.707106781186548),
1419
    FRAC_CONST(-0.000000000000000),
1420
    FRAC_CONST(0.707106781186547),
1421
    FRAC_CONST(1.000000000000000)
1422
};
1423
1424
static const real_t ipdopd_sin_tab[] = {
1425
    FRAC_CONST(0.000000000000000),
1426
    FRAC_CONST(0.707106781186547),
1427
    FRAC_CONST(1.000000000000000),
1428
    FRAC_CONST(0.707106781186548),
1429
    FRAC_CONST(0.000000000000000),
1430
    FRAC_CONST(-0.707106781186547),
1431
    FRAC_CONST(-1.000000000000000),
1432
    FRAC_CONST(-0.707106781186548),
1433
    FRAC_CONST(-0.000000000000000)
1434
};
1435
1436
static real_t magnitude_c(complex_t c)
1437
74.9k
{
1438
#ifdef FIXED_POINT
1439
#define ps_abs(A) (((A) > 0) ? (A) : (-(A)))
1440
#define ALPHA FRAC_CONST(0.948059448969)
1441
#define BETA  FRAC_CONST(0.392699081699)
1442
1443
    real_t abs_inphase = ps_abs(RE(c));
1444
    real_t abs_quadrature = ps_abs(IM(c));
1445
1446
    if (abs_inphase > abs_quadrature) {
1447
        return MUL_F(abs_inphase, ALPHA) + MUL_F(abs_quadrature, BETA);
1448
    } else {
1449
        return MUL_F(abs_quadrature, ALPHA) + MUL_F(abs_inphase, BETA);
1450
    }
1451
#else
1452
74.9k
    return sqrt(RE(c)*RE(c) + IM(c)*IM(c));
1453
74.9k
#endif
1454
74.9k
}
1455
1456
static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
1457
                         qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
1458
5.46k
{
1459
5.46k
    uint8_t n;
1460
5.46k
    uint8_t gr;
1461
5.46k
    uint8_t bk = 0;
1462
5.46k
    uint8_t sb, maxsb;
1463
5.46k
    uint8_t env;
1464
5.46k
    uint8_t nr_ipdopd_par;
1465
5.46k
    complex_t h11, h12, h21, h22;  // COEF
1466
5.46k
    complex_t H11, H12, H21, H22;  // COEF
1467
5.46k
    complex_t deltaH11, deltaH12, deltaH21, deltaH22;  // COEF
1468
5.46k
    complex_t tempLeft, tempRight; // FRAC
1469
5.46k
    complex_t phaseLeft, phaseRight; // FRAC
1470
5.46k
    real_t L;
1471
5.46k
    const real_t *sf_iid;
1472
5.46k
    uint8_t no_iid_steps;
1473
1474
5.46k
    if (ps->iid_mode >= 3)
1475
2.29k
    {
1476
2.29k
        no_iid_steps = 15;
1477
2.29k
        sf_iid = sf_iid_fine;
1478
3.17k
    } else {
1479
3.17k
        no_iid_steps = 7;
1480
3.17k
        sf_iid = sf_iid_normal;
1481
3.17k
    }
1482
1483
5.46k
    if (ps->ipd_mode == 0 || ps->ipd_mode == 3)
1484
3.05k
    {
1485
3.05k
        nr_ipdopd_par = 11; /* resolution */
1486
3.05k
    } else {
1487
2.41k
        nr_ipdopd_par = ps->nr_ipdopd_par;
1488
2.41k
    }
1489
1490
178k
    for (gr = 0; gr < ps->num_groups; gr++)
1491
172k
    {
1492
172k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1493
1494
        /* use one channel per group in the subqmf domain */
1495
172k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr] + 1 : ps->group_border[gr + 1];
1496
1497
567k
        for (env = 0; env < ps->num_env; env++)
1498
394k
        {
1499
394k
            uint8_t abs_iid = (uint8_t)abs(ps->iid_index[env][bk]);
1500
            /* index range is supposed to be -7...7 or -15...15 depending on iid_mode
1501
                (Table 8.24, ISO/IEC 14496-3:2005).
1502
                if it is outside these boundaries, this is most likely an error. sanitize
1503
                it and try to process further. */
1504
394k
            if (ps->iid_index[env][bk] < -no_iid_steps) {
1505
106
                fprintf(stderr, "Warning: invalid iid_index: %d < %d\n", ps->iid_index[env][bk],
1506
106
                    -no_iid_steps);
1507
106
                ps->iid_index[env][bk] = -no_iid_steps;
1508
106
                abs_iid = no_iid_steps;
1509
394k
            } else if (ps->iid_index[env][bk] > no_iid_steps) {
1510
92
                fprintf(stderr, "Warning: invalid iid_index: %d > %d\n", ps->iid_index[env][bk],
1511
92
                    no_iid_steps);
1512
92
                ps->iid_index[env][bk] = no_iid_steps;
1513
92
                abs_iid = no_iid_steps;
1514
92
            }
1515
394k
            if (ps->icc_index[env][bk] < 0) {
1516
139
                fprintf(stderr, "Warning: invalid icc_index: %d < 0\n", ps->icc_index[env][bk]);
1517
139
                ps->icc_index[env][bk] = 0;
1518
394k
            } else if (ps->icc_index[env][bk] > 7) {
1519
0
                fprintf(stderr, "Warning: invalid icc_index: %d > 7\n", ps->icc_index[env][bk]);
1520
0
                ps->icc_index[env][bk] = 7;
1521
0
            }
1522
1523
394k
            if (ps->icc_mode < 3)
1524
228k
            {
1525
                /* type 'A' mixing as described in 8.6.4.6.2.1 */
1526
228k
                real_t c_1, c_2;  // COEF
1527
228k
                real_t cosa, sina;  // COEF
1528
228k
                real_t cosb, sinb;  // COEF
1529
228k
                real_t ab1, ab2;  // COEF
1530
228k
                real_t ab3, ab4;  // COEF
1531
1532
                /*
1533
                c_1 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps + iid_index] / 10.0)));
1534
                c_2 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps - iid_index] / 10.0)));
1535
                alpha = 0.5 * acos(quant_rho[icc_index]);
1536
                beta = alpha * ( c_1 - c_2 ) / sqrt(2.0);
1537
                */
1538
1539
                //printf("%d\n", ps->iid_index[env][bk]);
1540
1541
                /* calculate the scalefactors c_1 and c_2 from the intensity differences */
1542
228k
                c_1 = sf_iid[no_iid_steps + ps->iid_index[env][bk]];
1543
228k
                c_2 = sf_iid[no_iid_steps - ps->iid_index[env][bk]];
1544
1545
                /* calculate alpha and beta using the ICC parameters */
1546
228k
                cosa = cos_alphas[ps->icc_index[env][bk]];
1547
228k
                sina = sin_alphas[ps->icc_index[env][bk]];
1548
1549
228k
                if (ps->iid_mode >= 3)
1550
92.4k
                {
1551
92.4k
                    cosb = cos_betas_fine[abs_iid][ps->icc_index[env][bk]];
1552
92.4k
                    sinb = sin_betas_fine[abs_iid][ps->icc_index[env][bk]];
1553
135k
                } else {
1554
135k
                    cosb = cos_betas_normal[abs_iid][ps->icc_index[env][bk]];
1555
135k
                    sinb = sin_betas_normal[abs_iid][ps->icc_index[env][bk]];
1556
135k
                }
1557
1558
228k
                ab1 = MUL_C(cosb, cosa);
1559
228k
                ab2 = MUL_C(sinb, sina);
1560
228k
                ab3 = MUL_C(sinb, cosa);
1561
228k
                ab4 = MUL_C(cosb, sina);
1562
1563
                /* h_xy: COEF */
1564
228k
                RE(h11) = MUL_C(c_2, (ab1 - ab2));
1565
228k
                RE(h12) = MUL_C(c_1, (ab1 + ab2));
1566
228k
                RE(h21) = MUL_C(c_2, (ab3 + ab4));
1567
228k
                RE(h22) = MUL_C(c_1, (ab3 - ab4));
1568
228k
            } else {
1569
                /* type 'B' mixing as described in 8.6.4.6.2.2 */
1570
166k
                real_t sina, cosa;  // COEF
1571
166k
                real_t cosg, sing;  // COEF
1572
1573
                /*
1574
                real_t c, rho, mu, alpha, gamma;
1575
                uint8_t i;
1576
1577
                i = ps->iid_index[env][bk];
1578
                c = (real_t)pow(10.0, ((i)?(((i>0)?1:-1)*quant_iid[((i>0)?i:-i)-1]):0.)/20.0);
1579
                rho = quant_rho[ps->icc_index[env][bk]];
1580
1581
                if (rho == 0.0f && c == 1.)
1582
                {
1583
                    alpha = (real_t)M_PI/4.0f;
1584
                    rho = 0.05f;
1585
                } else {
1586
                    if (rho <= 0.05f)
1587
                    {
1588
                        rho = 0.05f;
1589
                    }
1590
                    alpha = 0.5f*(real_t)atan( (2.0f*c*rho) / (c*c-1.0f) );
1591
1592
                    if (alpha < 0.)
1593
                    {
1594
                        alpha += (real_t)M_PI/2.0f;
1595
                    }
1596
                    if (rho < 0.)
1597
                    {
1598
                        alpha += (real_t)M_PI;
1599
                    }
1600
                }
1601
                mu = c+1.0f/c;
1602
                mu = 1+(4.0f*rho*rho-4.0f)/(mu*mu);
1603
                gamma = (real_t)atan(sqrt((1.0f-sqrt(mu))/(1.0f+sqrt(mu))));
1604
                */
1605
1606
166k
                if (ps->iid_mode >= 3)
1607
62.6k
                {
1608
62.6k
                    cosa = sincos_alphas_B_fine[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1609
62.6k
                    sina = sincos_alphas_B_fine[30 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1610
62.6k
                    cosg = cos_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1611
62.6k
                    sing = sin_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1612
104k
                } else {
1613
104k
                    cosa = sincos_alphas_B_normal[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1614
104k
                    sina = sincos_alphas_B_normal[14 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1615
104k
                    cosg = cos_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1616
104k
                    sing = sin_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1617
104k
                }
1618
1619
166k
                RE(h11) = MUL_C(COEF_SQRT2, MUL_C(cosa, cosg));
1620
166k
                RE(h12) = MUL_C(COEF_SQRT2, MUL_C(sina, cosg));
1621
166k
                RE(h21) = MUL_C(COEF_SQRT2, MUL_C(-cosa, sing));
1622
166k
                RE(h22) = MUL_C(COEF_SQRT2, MUL_C(sina, sing));
1623
166k
            }
1624
394k
            IM(h11) = IM(h12) = IM(h21) = IM(h22) = 0;
1625
1626
            /* calculate phase rotation parameters H_xy */
1627
            /* note that the imaginary part of these parameters are only calculated when
1628
               IPD and OPD are enabled
1629
             */
1630
394k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1631
37.4k
            {
1632
37.4k
                int8_t i;
1633
37.4k
                real_t xy, pq, xypq;  // FRAC
1634
1635
                /* ringbuffer index */
1636
37.4k
                i = ps->phase_hist;
1637
1638
                /* previous value */
1639
#ifdef FIXED_POINT
1640
                /* divide by 4*2, shift right 3 bits;
1641
                   extra halving to avoid overflows; it is ok, because result is normalized */
1642
                RE(tempLeft)  = RE(ps->ipd_prev[bk][i]) >> 3;
1643
                IM(tempLeft)  = IM(ps->ipd_prev[bk][i]) >> 3;
1644
                RE(tempRight) = RE(ps->opd_prev[bk][i]) >> 3;
1645
                IM(tempRight) = IM(ps->opd_prev[bk][i]) >> 3;
1646
#else
1647
37.4k
                RE(tempLeft)  = MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1648
37.4k
                IM(tempLeft)  = MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1649
37.4k
                RE(tempRight) = MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1650
37.4k
                IM(tempRight) = MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1651
37.4k
#endif
1652
1653
                /* save current value */
1654
37.4k
                RE(ps->ipd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->ipd_index[env][bk])];
1655
37.4k
                IM(ps->ipd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->ipd_index[env][bk])];
1656
37.4k
                RE(ps->opd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->opd_index[env][bk])];
1657
37.4k
                IM(ps->opd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->opd_index[env][bk])];
1658
1659
                /* add current value */
1660
#ifdef FIXED_POINT
1661
                /* extra halving to avoid overflows */
1662
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]) >> 1;
1663
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]) >> 1;
1664
                RE(tempRight) += RE(ps->opd_prev[bk][i]) >> 1;
1665
                IM(tempRight) += IM(ps->opd_prev[bk][i]) >> 1;
1666
#else
1667
37.4k
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]);
1668
37.4k
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]);
1669
37.4k
                RE(tempRight) += RE(ps->opd_prev[bk][i]);
1670
37.4k
                IM(tempRight) += IM(ps->opd_prev[bk][i]);
1671
37.4k
#endif
1672
1673
                /* ringbuffer index */
1674
37.4k
                if (i == 0)
1675
18.9k
                {
1676
18.9k
                    i = 2;
1677
18.9k
                }
1678
37.4k
                i--;
1679
1680
                /* get value before previous */
1681
#ifdef FIXED_POINT
1682
                /* dividing by 2*2, shift right 2 bits; extra halving to avoid overflows */
1683
                RE(tempLeft)  += (RE(ps->ipd_prev[bk][i]) >> 2);
1684
                IM(tempLeft)  += (IM(ps->ipd_prev[bk][i]) >> 2);
1685
                RE(tempRight) += (RE(ps->opd_prev[bk][i]) >> 2);
1686
                IM(tempRight) += (IM(ps->opd_prev[bk][i]) >> 2);
1687
#else
1688
37.4k
                RE(tempLeft)  += MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1689
37.4k
                IM(tempLeft)  += MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1690
37.4k
                RE(tempRight) += MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1691
37.4k
                IM(tempRight) += MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1692
37.4k
#endif
1693
1694
#if 0 /* original code */
1695
                ipd = (float)atan2(IM(tempLeft), RE(tempLeft));
1696
                opd = (float)atan2(IM(tempRight), RE(tempRight));
1697
1698
                /* phase rotation */
1699
                RE(phaseLeft) = (float)cos(opd);
1700
                IM(phaseLeft) = (float)sin(opd);
1701
                opd -= ipd;
1702
                RE(phaseRight) = (float)cos(opd);
1703
                IM(phaseRight) = (float)sin(opd);
1704
#else
1705
1706
                // x = IM(tempLeft)
1707
                // y = RE(tempLeft)
1708
                // p = IM(tempRight)
1709
                // q = RE(tempRight)
1710
                // cos(atan2(x,y)) = y/sqrt((x*x) + (y*y))
1711
                // sin(atan2(x,y)) = x/sqrt((x*x) + (y*y))
1712
                // cos(atan2(x,y)-atan2(p,q)) = (y*q + x*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1713
                // sin(atan2(x,y)-atan2(p,q)) = (x*q - y*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1714
1715
37.4k
                xy = magnitude_c(tempRight);
1716
37.4k
                pq = magnitude_c(tempLeft);
1717
1718
37.4k
                if (xy != 0)
1719
37.4k
                {
1720
37.4k
                    RE(phaseLeft) = DIV_F(RE(tempRight), xy);
1721
37.4k
                    IM(phaseLeft) = DIV_F(IM(tempRight), xy);
1722
37.4k
                } else {
1723
0
                    RE(phaseLeft) = 0;
1724
0
                    IM(phaseLeft) = 0;
1725
0
                }
1726
1727
37.4k
                xypq = MUL_F(xy, pq);
1728
1729
37.4k
                if (xypq != 0)
1730
37.4k
                {
1731
37.4k
                    real_t tmp1 = MUL_F(RE(tempRight), RE(tempLeft)) + MUL_F(IM(tempRight), IM(tempLeft));
1732
37.4k
                    real_t tmp2 = MUL_F(IM(tempRight), RE(tempLeft)) - MUL_F(RE(tempRight), IM(tempLeft));
1733
1734
37.4k
                    RE(phaseRight) = DIV_F(tmp1, xypq);
1735
37.4k
                    IM(phaseRight) = DIV_F(tmp2, xypq);
1736
37.4k
                } else {
1737
0
                    RE(phaseRight) = 0;
1738
0
                    IM(phaseRight) = 0;
1739
0
                }
1740
1741
37.4k
#endif
1742
1743
                /* MUL_F(COEF, REAL) = COEF */
1744
37.4k
                IM(h11) = MUL_F(RE(h11), IM(phaseLeft));
1745
37.4k
                IM(h12) = MUL_F(RE(h12), IM(phaseRight));
1746
37.4k
                IM(h21) = MUL_F(RE(h21), IM(phaseLeft));
1747
37.4k
                IM(h22) = MUL_F(RE(h22), IM(phaseRight));
1748
1749
37.4k
                RE(h11) = MUL_F(RE(h11), RE(phaseLeft));
1750
37.4k
                RE(h12) = MUL_F(RE(h12), RE(phaseRight));
1751
37.4k
                RE(h21) = MUL_F(RE(h21), RE(phaseLeft));
1752
37.4k
                RE(h22) = MUL_F(RE(h22), RE(phaseRight));
1753
37.4k
            }
1754
1755
            /* length of the envelope n_e+1 - n_e (in time samples) */
1756
            /* 0 < L <= 32: integer */
1757
394k
            L = (real_t)(ps->border_position[env + 1] - ps->border_position[env]);
1758
1759
            /* obtain final H_xy by means of linear interpolation */
1760
394k
            RE(deltaH11) = (RE(h11) - RE(ps->h11_prev[gr])) / L;
1761
394k
            RE(deltaH12) = (RE(h12) - RE(ps->h12_prev[gr])) / L;
1762
394k
            RE(deltaH21) = (RE(h21) - RE(ps->h21_prev[gr])) / L;
1763
394k
            RE(deltaH22) = (RE(h22) - RE(ps->h22_prev[gr])) / L;
1764
1765
394k
            RE(H11) = RE(ps->h11_prev[gr]);
1766
394k
            RE(H12) = RE(ps->h12_prev[gr]);
1767
394k
            RE(H21) = RE(ps->h21_prev[gr]);
1768
394k
            RE(H22) = RE(ps->h22_prev[gr]);
1769
394k
            IM(H11) = IM(H12) = IM(H21) = IM(H22) = 0;
1770
1771
394k
            RE(ps->h11_prev[gr]) = RE(h11);
1772
394k
            RE(ps->h12_prev[gr]) = RE(h12);
1773
394k
            RE(ps->h21_prev[gr]) = RE(h21);
1774
394k
            RE(ps->h22_prev[gr]) = RE(h22);
1775
1776
            /* only calculate imaginary part when needed */
1777
394k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1778
37.4k
            {
1779
                /* obtain final H_xy by means of linear interpolation */
1780
37.4k
                IM(deltaH11) = (IM(h11) - IM(ps->h11_prev[gr])) / L;
1781
37.4k
                IM(deltaH12) = (IM(h12) - IM(ps->h12_prev[gr])) / L;
1782
37.4k
                IM(deltaH21) = (IM(h21) - IM(ps->h21_prev[gr])) / L;
1783
37.4k
                IM(deltaH22) = (IM(h22) - IM(ps->h22_prev[gr])) / L;
1784
1785
37.4k
                IM(H11) = IM(ps->h11_prev[gr]);
1786
37.4k
                IM(H12) = IM(ps->h12_prev[gr]);
1787
37.4k
                IM(H21) = IM(ps->h21_prev[gr]);
1788
37.4k
                IM(H22) = IM(ps->h22_prev[gr]);
1789
1790
37.4k
                if ((NEGATE_IPD_MASK & ps->map_group2bk[gr]) != 0)
1791
5.28k
                {
1792
5.28k
                    IM(deltaH11) = -IM(deltaH11);
1793
5.28k
                    IM(deltaH12) = -IM(deltaH12);
1794
5.28k
                    IM(deltaH21) = -IM(deltaH21);
1795
5.28k
                    IM(deltaH22) = -IM(deltaH22);
1796
1797
5.28k
                    IM(H11) = -IM(H11);
1798
5.28k
                    IM(H12) = -IM(H12);
1799
5.28k
                    IM(H21) = -IM(H21);
1800
5.28k
                    IM(H22) = -IM(H22);
1801
5.28k
                }
1802
1803
37.4k
                IM(ps->h11_prev[gr]) = IM(h11);
1804
37.4k
                IM(ps->h12_prev[gr]) = IM(h12);
1805
37.4k
                IM(ps->h21_prev[gr]) = IM(h21);
1806
37.4k
                IM(ps->h22_prev[gr]) = IM(h22);
1807
37.4k
            }
1808
1809
            /* apply H_xy to the current envelope band of the decorrelated subband */
1810
5.76M
            for (n = ps->border_position[env]; n < ps->border_position[env + 1]; n++)
1811
5.37M
            {
1812
                /* addition finalises the interpolation over every n */
1813
5.37M
                RE(H11) += RE(deltaH11);
1814
5.37M
                RE(H12) += RE(deltaH12);
1815
5.37M
                RE(H21) += RE(deltaH21);
1816
5.37M
                RE(H22) += RE(deltaH22);
1817
5.37M
                if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1818
453k
                {
1819
453k
                    IM(H11) += IM(deltaH11);
1820
453k
                    IM(H12) += IM(deltaH12);
1821
453k
                    IM(H21) += IM(deltaH21);
1822
453k
                    IM(H22) += IM(deltaH22);
1823
453k
                }
1824
1825
                /* channel is an alias to the subband */
1826
18.6M
                for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1827
13.2M
                {
1828
13.2M
                    complex_t inLeft, inRight;  // precision_of in(Left|Right) == precision_of X_(left|right)
1829
1830
                    /* load decorrelated samples */
1831
13.2M
                    if (gr < ps->num_hybrid_groups)
1832
2.97M
                    {
1833
2.97M
                        RE(inLeft) =  RE(X_hybrid_left[n][sb]);
1834
2.97M
                        IM(inLeft) =  IM(X_hybrid_left[n][sb]);
1835
2.97M
                        RE(inRight) = RE(X_hybrid_right[n][sb]);
1836
2.97M
                        IM(inRight) = IM(X_hybrid_right[n][sb]);
1837
10.2M
                    } else {
1838
10.2M
                        RE(inLeft) =  RE(X_left[n][sb]);
1839
10.2M
                        IM(inLeft) =  IM(X_left[n][sb]);
1840
10.2M
                        RE(inRight) = RE(X_right[n][sb]);
1841
10.2M
                        IM(inRight) = IM(X_right[n][sb]);
1842
10.2M
                    }
1843
1844
                    /* precision_of temp(Left|Right) == precision_of X_(left|right) */
1845
1846
                    /* apply mixing */
1847
13.2M
                    RE(tempLeft) =  MUL_C(RE(H11), RE(inLeft)) + MUL_C(RE(H21), RE(inRight));
1848
13.2M
                    IM(tempLeft) =  MUL_C(RE(H11), IM(inLeft)) + MUL_C(RE(H21), IM(inRight));
1849
13.2M
                    RE(tempRight) = MUL_C(RE(H12), RE(inLeft)) + MUL_C(RE(H22), RE(inRight));
1850
13.2M
                    IM(tempRight) = MUL_C(RE(H12), IM(inLeft)) + MUL_C(RE(H22), IM(inRight));
1851
1852
                    /* only perform imaginary operations when needed */
1853
13.2M
                    if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1854
456k
                    {
1855
                        /* apply rotation */
1856
456k
                        RE(tempLeft)  -= MUL_C(IM(H11), IM(inLeft)) + MUL_C(IM(H21), IM(inRight));
1857
456k
                        IM(tempLeft)  += MUL_C(IM(H11), RE(inLeft)) + MUL_C(IM(H21), RE(inRight));
1858
456k
                        RE(tempRight) -= MUL_C(IM(H12), IM(inLeft)) + MUL_C(IM(H22), IM(inRight));
1859
456k
                        IM(tempRight) += MUL_C(IM(H12), RE(inLeft)) + MUL_C(IM(H22), RE(inRight));
1860
456k
                    }
1861
1862
                    /* store final samples */
1863
13.2M
                    if (gr < ps->num_hybrid_groups)
1864
2.97M
                    {
1865
2.97M
                        RE(X_hybrid_left[n][sb])  = RE(tempLeft);
1866
2.97M
                        IM(X_hybrid_left[n][sb])  = IM(tempLeft);
1867
2.97M
                        RE(X_hybrid_right[n][sb]) = RE(tempRight);
1868
2.97M
                        IM(X_hybrid_right[n][sb]) = IM(tempRight);
1869
10.2M
                    } else {
1870
10.2M
                        RE(X_left[n][sb])  = RE(tempLeft);
1871
10.2M
                        IM(X_left[n][sb])  = IM(tempLeft);
1872
10.2M
                        RE(X_right[n][sb]) = RE(tempRight);
1873
10.2M
                        IM(X_right[n][sb]) = IM(tempRight);
1874
10.2M
                    }
1875
13.2M
                }
1876
5.37M
            }
1877
1878
            /* shift phase smoother's circular buffer index */
1879
394k
            ps->phase_hist++;
1880
394k
            if (ps->phase_hist == 2)
1881
197k
            {
1882
197k
                ps->phase_hist = 0;
1883
197k
            }
1884
394k
        }
1885
172k
    }
1886
5.46k
}
1887
1888
void ps_free(ps_info *ps)
1889
8.89k
{
1890
    /* free hybrid filterbank structures */
1891
8.89k
    hybrid_free(ps->hyb);
1892
1893
8.89k
    faad_free(ps);
1894
8.89k
}
1895
1896
ps_info *ps_init(uint8_t sr_index, uint8_t numTimeSlotsRate)
1897
8.89k
{
1898
8.89k
    uint8_t i;
1899
8.89k
    uint8_t short_delay_band;
1900
1901
8.89k
    ps_info *ps = (ps_info*)faad_malloc(sizeof(ps_info));
1902
8.89k
    memset(ps, 0, sizeof(ps_info));
1903
1904
8.89k
    ps->hyb = hybrid_init(numTimeSlotsRate);
1905
8.89k
    ps->numTimeSlotsRate = numTimeSlotsRate;
1906
1907
8.89k
    ps->ps_data_available = 0;
1908
1909
    /* delay stuff*/
1910
8.89k
    ps->saved_delay = 0;
1911
1912
577k
    for (i = 0; i < 64; i++)
1913
568k
    {
1914
568k
        ps->delay_buf_index_delay[i] = 0;
1915
568k
    }
1916
1917
35.5k
    for (i = 0; i < NO_ALLPASS_LINKS; i++)
1918
26.6k
    {
1919
26.6k
        ps->delay_buf_index_ser[i] = 0;
1920
#ifdef PARAM_32KHZ
1921
        if (sr_index <= 5) /* >= 32 kHz*/
1922
        {
1923
            ps->num_sample_delay_ser[i] = delay_length_d[1][i];
1924
        } else {
1925
            ps->num_sample_delay_ser[i] = delay_length_d[0][i];
1926
        }
1927
#else
1928
26.6k
        (void)sr_index;
1929
        /* THESE ARE CONSTANTS NOW */
1930
26.6k
        ps->num_sample_delay_ser[i] = delay_length_d[i];
1931
26.6k
#endif
1932
26.6k
    }
1933
1934
#ifdef PARAM_32KHZ
1935
    if (sr_index <= 5) /* >= 32 kHz*/
1936
    {
1937
        short_delay_band = 35;
1938
        ps->nr_allpass_bands = 22;
1939
        ps->alpha_decay = FRAC_CONST(0.76592833836465);
1940
        ps->alpha_smooth = FRAC_CONST(0.25);
1941
    } else {
1942
        short_delay_band = 64;
1943
        ps->nr_allpass_bands = 45;
1944
        ps->alpha_decay = FRAC_CONST(0.58664621951003);
1945
        ps->alpha_smooth = FRAC_CONST(0.6);
1946
    }
1947
#else
1948
    /* THESE ARE CONSTANTS NOW */
1949
8.89k
    short_delay_band = 35;
1950
8.89k
    ps->nr_allpass_bands = 22;
1951
8.89k
    ps->alpha_decay = FRAC_CONST(0.76592833836465);
1952
8.89k
    ps->alpha_smooth = FRAC_CONST(0.25);
1953
8.89k
#endif
1954
1955
    /* THESE ARE CONSTANT NOW IF PS IS INDEPENDANT OF SAMPLERATE */
1956
320k
    for (i = 0; i < short_delay_band; i++)
1957
311k
    {
1958
311k
        ps->delay_D[i] = 14;
1959
311k
    }
1960
266k
    for (i = short_delay_band; i < 64; i++)
1961
257k
    {
1962
257k
        ps->delay_D[i] = 1;
1963
257k
    }
1964
1965
    /* mixing and phase */
1966
453k
    for (i = 0; i < 50; i++)
1967
444k
    {
1968
444k
        RE(ps->h11_prev[i]) = 1;
1969
444k
        IM(ps->h11_prev[i]) = 1;
1970
444k
        RE(ps->h12_prev[i]) = 1;
1971
444k
        IM(ps->h12_prev[i]) = 1;
1972
444k
    }
1973
1974
8.89k
    ps->phase_hist = 0;
1975
1976
186k
    for (i = 0; i < 20; i++)
1977
177k
    {
1978
177k
        RE(ps->ipd_prev[i][0]) = 0;
1979
177k
        IM(ps->ipd_prev[i][0]) = 0;
1980
177k
        RE(ps->ipd_prev[i][1]) = 0;
1981
177k
        IM(ps->ipd_prev[i][1]) = 0;
1982
177k
        RE(ps->opd_prev[i][0]) = 0;
1983
177k
        IM(ps->opd_prev[i][0]) = 0;
1984
177k
        RE(ps->opd_prev[i][1]) = 0;
1985
177k
        IM(ps->opd_prev[i][1]) = 0;
1986
177k
    }
1987
1988
8.89k
    return ps;
1989
8.89k
}
1990
1991
/* main Parametric Stereo decoding function */
1992
uint8_t ps_decode(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64])
1993
5.46k
{
1994
5.46k
    qmf_t X_hybrid_left[32][32] = {{{0}}};
1995
5.46k
    qmf_t X_hybrid_right[32][32] = {{{0}}};
1996
1997
    /* delta decoding of the bitstream data */
1998
5.46k
    ps_data_decode(ps);
1999
2000
    /* set up some parameters depending on filterbank type */
2001
5.46k
    if (ps->use34hybrid_bands)
2002
1.87k
    {
2003
1.87k
        ps->group_border = (uint8_t*)group_border34;
2004
1.87k
        ps->map_group2bk = (uint16_t*)map_group2bk34;
2005
1.87k
        ps->num_groups = 32+18;
2006
1.87k
        ps->num_hybrid_groups = 32;
2007
1.87k
        ps->nr_par_bands = 34;
2008
1.87k
        ps->decay_cutoff = 5;
2009
3.58k
    } else {
2010
3.58k
        ps->group_border = (uint8_t*)group_border20;
2011
3.58k
        ps->map_group2bk = (uint16_t*)map_group2bk20;
2012
3.58k
        ps->num_groups = 10+12;
2013
3.58k
        ps->num_hybrid_groups = 10;
2014
3.58k
        ps->nr_par_bands = 20;
2015
3.58k
        ps->decay_cutoff = 3;
2016
3.58k
    }
2017
2018
    /* Perform further analysis on the lowest subbands to get a higher
2019
     * frequency resolution
2020
     */
2021
5.46k
    hybrid_analysis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
2022
5.46k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2023
2024
    /* decorrelate mono signal */
2025
5.46k
    ps_decorrelate(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
2026
2027
    /* apply mixing and phase parameters */
2028
5.46k
    ps_mix_phase(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
2029
2030
    /* hybrid synthesis, to rebuild the SBR QMF matrices */
2031
5.46k
    hybrid_synthesis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
2032
5.46k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2033
2034
5.46k
    hybrid_synthesis((hyb_info*)ps->hyb, X_right, X_hybrid_right,
2035
5.46k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2036
2037
5.46k
    return 0;
2038
5.46k
}
2039
2040
#endif