Coverage Report

Created: 2025-11-24 06:22

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/proc/self/cwd/libfaad/ps_dec.c
Line
Count
Source
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: ps_dec.c,v 1.16 2009/01/26 22:32:31 menno Exp $
29
**/
30
31
#include "common.h"
32
33
#ifdef PS_DEC
34
35
#include <stdlib.h>
36
#include <stdio.h>
37
#include "ps_dec.h"
38
#include "ps_tables.h"
39
40
/* constants */
41
14.2M
#define NEGATE_IPD_MASK            (0x1000)
42
107k
#define DECAY_SLOPE                FRAC_CONST(0.05)
43
#define COEF_SQRT2                 COEF_CONST(1.4142135623731)
44
45
/* tables */
46
/* filters are mirrored in coef 6, second half left out */
47
static const real_t p8_13_20[7] =
48
{
49
    FRAC_CONST(0.00746082949812),
50
    FRAC_CONST(0.02270420949825),
51
    FRAC_CONST(0.04546865930473),
52
    FRAC_CONST(0.07266113929591),
53
    FRAC_CONST(0.09885108575264),
54
    FRAC_CONST(0.11793710567217),
55
    FRAC_CONST(0.125)
56
};
57
58
static const real_t p2_13_20[7] =
59
{
60
    FRAC_CONST(0.0),
61
    FRAC_CONST(0.01899487526049),
62
    FRAC_CONST(0.0),
63
    FRAC_CONST(-0.07293139167538),
64
    FRAC_CONST(0.0),
65
    FRAC_CONST(0.30596630545168),
66
    FRAC_CONST(0.5)
67
};
68
69
static const real_t p12_13_34[7] =
70
{
71
    FRAC_CONST(0.04081179924692),
72
    FRAC_CONST(0.03812810994926),
73
    FRAC_CONST(0.05144908135699),
74
    FRAC_CONST(0.06399831151592),
75
    FRAC_CONST(0.07428313801106),
76
    FRAC_CONST(0.08100347892914),
77
    FRAC_CONST(0.08333333333333)
78
};
79
80
static const real_t p8_13_34[7] =
81
{
82
    FRAC_CONST(0.01565675600122),
83
    FRAC_CONST(0.03752716391991),
84
    FRAC_CONST(0.05417891378782),
85
    FRAC_CONST(0.08417044116767),
86
    FRAC_CONST(0.10307344158036),
87
    FRAC_CONST(0.12222452249753),
88
    FRAC_CONST(0.125)
89
};
90
91
static const real_t p4_13_34[7] =
92
{
93
    FRAC_CONST(-0.05908211155639),
94
    FRAC_CONST(-0.04871498374946),
95
    FRAC_CONST(0.0),
96
    FRAC_CONST(0.07778723915851),
97
    FRAC_CONST(0.16486303567403),
98
    FRAC_CONST(0.23279856662996),
99
    FRAC_CONST(0.25)
100
};
101
102
#ifdef PARAM_32KHZ
103
static const uint8_t delay_length_d[2][NO_ALLPASS_LINKS] = {
104
    { 1, 2, 3 } /* d_24kHz */,
105
    { 3, 4, 5 } /* d_48kHz */
106
};
107
#else
108
static const uint8_t delay_length_d[NO_ALLPASS_LINKS] = {
109
    3, 4, 5 /* d_48kHz */
110
};
111
#endif
112
static const real_t filter_a[NO_ALLPASS_LINKS] = { /* a(m) = exp(-d_48kHz(m)/7) */
113
    FRAC_CONST(0.65143905753106),
114
    FRAC_CONST(0.56471812200776),
115
    FRAC_CONST(0.48954165955695)
116
};
117
118
static const uint8_t group_border20[10+12 + 1] =
119
{
120
    6, 7, 0, 1, 2, 3, /* 6 subqmf subbands */
121
    9, 8,             /* 2 subqmf subbands */
122
    10, 11,           /* 2 subqmf subbands */
123
    3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 35, 64
124
};
125
126
static const uint8_t group_border34[32+18 + 1] =
127
{
128
     0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, /* 12 subqmf subbands */
129
     12, 13, 14, 15, 16, 17, 18, 19,                 /*  8 subqmf subbands */
130
     20, 21, 22, 23,                                 /*  4 subqmf subbands */
131
     24, 25, 26, 27,                                 /*  4 subqmf subbands */
132
     28, 29, 30, 31,                                 /*  4 subqmf subbands */
133
     32-27, 33-27, 34-27, 35-27, 36-27, 37-27, 38-27, 40-27, 42-27, 44-27, 46-27, 48-27, 51-27, 54-27, 57-27, 60-27, 64-27, 68-27, 91-27
134
};
135
136
static const uint16_t map_group2bk20[10+12] =
137
{
138
    (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
139
    0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
140
};
141
142
static const uint16_t map_group2bk34[32+18] =
143
{
144
    0,  1,  2,  3,  4,  5,  6,  6,  7, (NEGATE_IPD_MASK | 2), (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
145
    10, 10, 4,  5,  6,  7,  8,  9,
146
    10, 11, 12, 9,
147
    14, 11, 12, 13,
148
    14, 15, 16, 13,
149
    16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33
150
};
151
152
/* type definitions */
153
typedef struct
154
{
155
    uint8_t frame_len;
156
    uint8_t resolution20[3];
157
    uint8_t resolution34[5];
158
159
    qmf_t *work;
160
    qmf_t **buffer;
161
    qmf_t **temp;
162
} hyb_info;
163
164
/* static function declarations */
165
static void ps_data_decode(ps_info *ps);
166
static hyb_info *hybrid_init(uint8_t numTimeSlotsRate);
167
static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
168
                            qmf_t *buffer, qmf_t **X_hybrid);
169
static void INLINE DCT3_4_unscaled(real_t *y, real_t *x);
170
static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
171
                            qmf_t *buffer, qmf_t **X_hybrid);
172
static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
173
                            uint8_t use34, uint8_t numTimeSlotsRate);
174
static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
175
                             uint8_t use34, uint8_t numTimeSlotsRate);
176
static int8_t delta_clip(int8_t i, int8_t min, int8_t max);
177
static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
178
                         uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
179
                         int8_t min_index, int8_t max_index);
180
static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
181
                                uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
182
                                int8_t and_modulo);
183
static void map20indexto34(int8_t *index, uint8_t bins);
184
#ifdef PS_LOW_POWER
185
static void map34indexto20(int8_t *index, uint8_t bins);
186
#endif
187
static void ps_data_decode(ps_info *ps);
188
static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
189
                           qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
190
static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
191
                         qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
192
193
/*  */
194
195
196
static hyb_info *hybrid_init(uint8_t numTimeSlotsRate)
197
9.37k
{
198
9.37k
    uint8_t i;
199
200
9.37k
    hyb_info *hyb = (hyb_info*)faad_malloc(sizeof(hyb_info));
201
202
9.37k
    hyb->resolution34[0] = 12;
203
9.37k
    hyb->resolution34[1] = 8;
204
9.37k
    hyb->resolution34[2] = 4;
205
9.37k
    hyb->resolution34[3] = 4;
206
9.37k
    hyb->resolution34[4] = 4;
207
208
9.37k
    hyb->resolution20[0] = 8;
209
9.37k
    hyb->resolution20[1] = 2;
210
9.37k
    hyb->resolution20[2] = 2;
211
212
9.37k
    hyb->frame_len = numTimeSlotsRate;
213
214
9.37k
    hyb->work = (qmf_t*)faad_malloc((hyb->frame_len+12) * sizeof(qmf_t));
215
9.37k
    memset(hyb->work, 0, (hyb->frame_len+12) * sizeof(qmf_t));
216
217
9.37k
    hyb->buffer = (qmf_t**)faad_malloc(5 * sizeof(qmf_t*));
218
56.2k
    for (i = 0; i < 5; i++)
219
46.8k
    {
220
46.8k
        hyb->buffer[i] = (qmf_t*)faad_malloc(hyb->frame_len * sizeof(qmf_t));
221
46.8k
        memset(hyb->buffer[i], 0, hyb->frame_len * sizeof(qmf_t));
222
46.8k
    }
223
224
9.37k
    hyb->temp = (qmf_t**)faad_malloc(hyb->frame_len * sizeof(qmf_t*));
225
306k
    for (i = 0; i < hyb->frame_len; i++)
226
296k
    {
227
296k
        hyb->temp[i] = (qmf_t*)faad_malloc(12 /*max*/ * sizeof(qmf_t));
228
296k
    }
229
230
9.37k
    return hyb;
231
9.37k
}
232
233
static void hybrid_free(hyb_info *hyb)
234
9.37k
{
235
9.37k
    uint8_t i;
236
237
9.37k
  if (!hyb) return;
238
239
9.37k
    if (hyb->work)
240
9.37k
        faad_free(hyb->work);
241
242
56.2k
    for (i = 0; i < 5; i++)
243
46.8k
    {
244
46.8k
        if (hyb->buffer[i])
245
46.8k
            faad_free(hyb->buffer[i]);
246
46.8k
    }
247
9.37k
    if (hyb->buffer)
248
9.37k
        faad_free(hyb->buffer);
249
250
306k
    for (i = 0; i < hyb->frame_len; i++)
251
296k
    {
252
296k
        if (hyb->temp[i])
253
296k
            faad_free(hyb->temp[i]);
254
296k
    }
255
9.37k
    if (hyb->temp)
256
9.37k
        faad_free(hyb->temp);
257
258
9.37k
    faad_free(hyb);
259
9.37k
}
260
261
/* real filter, size 2 */
262
static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
263
                            qmf_t *buffer, qmf_t **X_hybrid)
264
7.01k
{
265
7.01k
    uint8_t i;
266
7.01k
    (void)hyb;  /* TODO: remove parameter? */
267
268
227k
    for (i = 0; i < frame_len; i++)
269
220k
    {
270
220k
        real_t r0 = MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i])));
271
220k
        real_t r1 = MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i])));
272
220k
        real_t r2 = MUL_F(filter[2],(QMF_RE(buffer[2+i]) + QMF_RE(buffer[10+i])));
273
220k
        real_t r3 = MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
274
220k
        real_t r4 = MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
275
220k
        real_t r5 = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
276
220k
        real_t r6 = MUL_F(filter[6],QMF_RE(buffer[6+i]));
277
220k
        real_t i0 = MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i])));
278
220k
        real_t i1 = MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i])));
279
220k
        real_t i2 = MUL_F(filter[2],(QMF_IM(buffer[2+i]) + QMF_IM(buffer[10+i])));
280
220k
        real_t i3 = MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
281
220k
        real_t i4 = MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
282
220k
        real_t i5 = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
283
220k
        real_t i6 = MUL_F(filter[6],QMF_IM(buffer[6+i]));
284
285
        /* q = 0 */
286
220k
        QMF_RE(X_hybrid[i][0]) = r0 + r1 + r2 + r3 + r4 + r5 + r6;
287
220k
        QMF_IM(X_hybrid[i][0]) = i0 + i1 + i2 + i3 + i4 + i5 + i6;
288
289
        /* q = 1 */
290
220k
        QMF_RE(X_hybrid[i][1]) = r0 - r1 + r2 - r3 + r4 - r5 + r6;
291
220k
        QMF_IM(X_hybrid[i][1]) = i0 - i1 + i2 - i3 + i4 - i5 + i6;
292
220k
    }
293
7.01k
}
294
295
/* complex filter, size 4 */
296
static void channel_filter4(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
297
                            qmf_t *buffer, qmf_t **X_hybrid)
298
6.43k
{
299
6.43k
    uint8_t i;
300
6.43k
    real_t input_re1[2], input_re2[2], input_im1[2], input_im2[2];
301
6.43k
    (void)hyb;  /* TODO: remove parameter? */
302
303
204k
    for (i = 0; i < frame_len; i++)
304
198k
    {
305
198k
        input_re1[0] = -MUL_F(filter[2], (QMF_RE(buffer[i+2]) + QMF_RE(buffer[i+10]))) +
306
198k
            MUL_F(filter[6], QMF_RE(buffer[i+6]));
307
198k
        input_re1[1] = MUL_F(FRAC_CONST(-0.70710678118655),
308
198k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) + QMF_RE(buffer[i+11]))) +
309
198k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) + QMF_RE(buffer[i+9]))) -
310
198k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) + QMF_RE(buffer[i+7])))));
311
312
198k
        input_im1[0] = MUL_F(filter[0], (QMF_IM(buffer[i+0]) - QMF_IM(buffer[i+12]))) -
313
198k
            MUL_F(filter[4], (QMF_IM(buffer[i+4]) - QMF_IM(buffer[i+8])));
314
198k
        input_im1[1] = MUL_F(FRAC_CONST(0.70710678118655),
315
198k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) - QMF_IM(buffer[i+11]))) -
316
198k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) - QMF_IM(buffer[i+9]))) -
317
198k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) - QMF_IM(buffer[i+7])))));
318
319
198k
        input_re2[0] = MUL_F(filter[0], (QMF_RE(buffer[i+0]) - QMF_RE(buffer[i+12]))) -
320
198k
            MUL_F(filter[4], (QMF_RE(buffer[i+4]) - QMF_RE(buffer[i+8])));
321
198k
        input_re2[1] = MUL_F(FRAC_CONST(0.70710678118655),
322
198k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) - QMF_RE(buffer[i+11]))) -
323
198k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) - QMF_RE(buffer[i+9]))) -
324
198k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) - QMF_RE(buffer[i+7])))));
325
326
198k
        input_im2[0] = -MUL_F(filter[2], (QMF_IM(buffer[i+2]) + QMF_IM(buffer[i+10]))) +
327
198k
            MUL_F(filter[6], QMF_IM(buffer[i+6]));
328
198k
        input_im2[1] = MUL_F(FRAC_CONST(-0.70710678118655),
329
198k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) + QMF_IM(buffer[i+11]))) +
330
198k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) + QMF_IM(buffer[i+9]))) -
331
198k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) + QMF_IM(buffer[i+7])))));
332
333
        /* q == 0 */
334
198k
        QMF_RE(X_hybrid[i][0]) =  input_re1[0] + input_re1[1] + input_im1[0] + input_im1[1];
335
198k
        QMF_IM(X_hybrid[i][0]) = -input_re2[0] - input_re2[1] + input_im2[0] + input_im2[1];
336
337
        /* q == 1 */
338
198k
        QMF_RE(X_hybrid[i][1]) =  input_re1[0] - input_re1[1] - input_im1[0] + input_im1[1];
339
198k
        QMF_IM(X_hybrid[i][1]) =  input_re2[0] - input_re2[1] + input_im2[0] - input_im2[1];
340
341
        /* q == 2 */
342
198k
        QMF_RE(X_hybrid[i][2]) =  input_re1[0] - input_re1[1] + input_im1[0] - input_im1[1];
343
198k
        QMF_IM(X_hybrid[i][2]) = -input_re2[0] + input_re2[1] + input_im2[0] - input_im2[1];
344
345
        /* q == 3 */
346
198k
        QMF_RE(X_hybrid[i][3]) =  input_re1[0] + input_re1[1] - input_im1[0] - input_im1[1];
347
198k
        QMF_IM(X_hybrid[i][3]) =  input_re2[0] + input_re2[1] + input_im2[0] + input_im2[1];
348
198k
    }
349
6.43k
}
350
351
static void INLINE DCT3_4_unscaled(real_t *y, real_t *x)
352
704k
{
353
704k
    real_t f0, f1, f2, f3, f4, f5, f6, f7, f8;
354
355
704k
    f0 = MUL_F(x[2], FRAC_CONST(0.7071067811865476));
356
704k
    f1 = x[0] - f0;
357
704k
    f2 = x[0] + f0;
358
704k
    f3 = x[1] + x[3];
359
704k
    f4 = MUL_C(x[1], COEF_CONST(1.3065629648763766));
360
704k
    f5 = MUL_F(f3, FRAC_CONST(-0.9238795325112866));
361
704k
    f6 = MUL_F(x[3], FRAC_CONST(-0.5411961001461967));
362
704k
    f7 = f4 + f5;
363
704k
    f8 = f6 - f5;
364
704k
    y[3] = f2 - f8;
365
704k
    y[0] = f2 + f8;
366
704k
    y[2] = f1 - f7;
367
704k
    y[1] = f1 + f7;
368
704k
}
369
370
/* complex filter, size 8 */
371
static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
372
                            qmf_t *buffer, qmf_t **X_hybrid)
373
5.65k
{
374
5.65k
    uint8_t i, n;
375
5.65k
    real_t input_re1[4], input_re2[4], input_im1[4], input_im2[4];
376
5.65k
    real_t x[4];
377
5.65k
    (void)hyb;  /* TODO: remove parameter? */
378
379
181k
    for (i = 0; i < frame_len; i++)
380
176k
    {
381
176k
        input_re1[0] =  MUL_F(filter[6],QMF_RE(buffer[6+i]));
382
176k
        input_re1[1] =  MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
383
176k
        input_re1[2] = -MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i]))) + MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
384
176k
        input_re1[3] = -MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i]))) + MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
385
386
176k
        input_im1[0] = MUL_F(filter[5],(QMF_IM(buffer[7+i]) - QMF_IM(buffer[5+i])));
387
176k
        input_im1[1] = MUL_F(filter[0],(QMF_IM(buffer[12+i]) - QMF_IM(buffer[0+i]))) + MUL_F(filter[4],(QMF_IM(buffer[8+i]) - QMF_IM(buffer[4+i])));
388
176k
        input_im1[2] = MUL_F(filter[1],(QMF_IM(buffer[11+i]) - QMF_IM(buffer[1+i]))) + MUL_F(filter[3],(QMF_IM(buffer[9+i]) - QMF_IM(buffer[3+i])));
389
176k
        input_im1[3] = MUL_F(filter[2],(QMF_IM(buffer[10+i]) - QMF_IM(buffer[2+i])));
390
391
880k
        for (n = 0; n < 4; n++)
392
704k
        {
393
704k
            x[n] = input_re1[n] - input_im1[3-n];
394
704k
        }
395
176k
        DCT3_4_unscaled(x, x);
396
176k
        QMF_RE(X_hybrid[i][7]) = x[0];
397
176k
        QMF_RE(X_hybrid[i][5]) = x[2];
398
176k
        QMF_RE(X_hybrid[i][3]) = x[3];
399
176k
        QMF_RE(X_hybrid[i][1]) = x[1];
400
401
880k
        for (n = 0; n < 4; n++)
402
704k
        {
403
704k
            x[n] = input_re1[n] + input_im1[3-n];
404
704k
        }
405
176k
        DCT3_4_unscaled(x, x);
406
176k
        QMF_RE(X_hybrid[i][6]) = x[1];
407
176k
        QMF_RE(X_hybrid[i][4]) = x[3];
408
176k
        QMF_RE(X_hybrid[i][2]) = x[2];
409
176k
        QMF_RE(X_hybrid[i][0]) = x[0];
410
411
176k
        input_im2[0] =  MUL_F(filter[6],QMF_IM(buffer[6+i]));
412
176k
        input_im2[1] =  MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
413
176k
        input_im2[2] = -MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i]))) + MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
414
176k
        input_im2[3] = -MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i]))) + MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
415
416
176k
        input_re2[0] = MUL_F(filter[5],(QMF_RE(buffer[7+i]) - QMF_RE(buffer[5+i])));
417
176k
        input_re2[1] = MUL_F(filter[0],(QMF_RE(buffer[12+i]) - QMF_RE(buffer[0+i]))) + MUL_F(filter[4],(QMF_RE(buffer[8+i]) - QMF_RE(buffer[4+i])));
418
176k
        input_re2[2] = MUL_F(filter[1],(QMF_RE(buffer[11+i]) - QMF_RE(buffer[1+i]))) + MUL_F(filter[3],(QMF_RE(buffer[9+i]) - QMF_RE(buffer[3+i])));
419
176k
        input_re2[3] = MUL_F(filter[2],(QMF_RE(buffer[10+i]) - QMF_RE(buffer[2+i])));
420
421
880k
        for (n = 0; n < 4; n++)
422
704k
        {
423
704k
            x[n] = input_im2[n] + input_re2[3-n];
424
704k
        }
425
176k
        DCT3_4_unscaled(x, x);
426
176k
        QMF_IM(X_hybrid[i][7]) = x[0];
427
176k
        QMF_IM(X_hybrid[i][5]) = x[2];
428
176k
        QMF_IM(X_hybrid[i][3]) = x[3];
429
176k
        QMF_IM(X_hybrid[i][1]) = x[1];
430
431
880k
        for (n = 0; n < 4; n++)
432
704k
        {
433
704k
            x[n] = input_im2[n] - input_re2[3-n];
434
704k
        }
435
176k
        DCT3_4_unscaled(x, x);
436
176k
        QMF_IM(X_hybrid[i][6]) = x[1];
437
176k
        QMF_IM(X_hybrid[i][4]) = x[3];
438
176k
        QMF_IM(X_hybrid[i][2]) = x[2];
439
176k
        QMF_IM(X_hybrid[i][0]) = x[0];
440
176k
    }
441
5.65k
}
442
443
static void INLINE DCT3_6_unscaled(real_t *y, real_t *x)
444
264k
{
445
264k
    real_t f0, f1, f2, f3, f4, f5, f6, f7;
446
447
264k
    f0 = MUL_F(x[3], FRAC_CONST(0.70710678118655));
448
264k
    f1 = x[0] + f0;
449
264k
    f2 = x[0] - f0;
450
264k
    f3 = MUL_F((x[1] - x[5]), FRAC_CONST(0.70710678118655));
451
264k
    f4 = MUL_F(x[2], FRAC_CONST(0.86602540378444)) + MUL_F(x[4], FRAC_CONST(0.5));
452
264k
    f5 = f4 - x[4];
453
264k
    f6 = MUL_F(x[1], FRAC_CONST(0.96592582628907)) + MUL_F(x[5], FRAC_CONST(0.25881904510252));
454
264k
    f7 = f6 - f3;
455
264k
    y[0] = f1 + f6 + f4;
456
264k
    y[1] = f2 + f3 - x[4];
457
264k
    y[2] = f7 + f2 - f5;
458
264k
    y[3] = f1 - f7 - f5;
459
264k
    y[4] = f1 - f3 - x[4];
460
264k
    y[5] = f2 - f6 + f4;
461
264k
}
462
463
/* complex filter, size 12 */
464
static void channel_filter12(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
465
                             qmf_t *buffer, qmf_t **X_hybrid)
466
2.14k
{
467
2.14k
    uint8_t i, n;
468
2.14k
    real_t input_re1[6], input_re2[6], input_im1[6], input_im2[6];
469
2.14k
    real_t out_re1[6], out_re2[6], out_im1[6], out_im2[6];
470
2.14k
    (void)hyb;  /* TODO: remove parameter? */
471
472
68.1k
    for (i = 0; i < frame_len; i++)
473
66.0k
    {
474
462k
        for (n = 0; n < 6; n++)
475
396k
        {
476
396k
            if (n == 0)
477
66.0k
            {
478
66.0k
                input_re1[0] = MUL_F(QMF_RE(buffer[6+i]), filter[6]);
479
66.0k
                input_re2[0] = MUL_F(QMF_IM(buffer[6+i]), filter[6]);
480
330k
            } else {
481
330k
                input_re1[6-n] = MUL_F((QMF_RE(buffer[n+i]) + QMF_RE(buffer[12-n+i])), filter[n]);
482
330k
                input_re2[6-n] = MUL_F((QMF_IM(buffer[n+i]) + QMF_IM(buffer[12-n+i])), filter[n]);
483
330k
            }
484
396k
            input_im2[n] = MUL_F((QMF_RE(buffer[n+i]) - QMF_RE(buffer[12-n+i])), filter[n]);
485
396k
            input_im1[n] = MUL_F((QMF_IM(buffer[n+i]) - QMF_IM(buffer[12-n+i])), filter[n]);
486
396k
        }
487
488
66.0k
        DCT3_6_unscaled(out_re1, input_re1);
489
66.0k
        DCT3_6_unscaled(out_re2, input_re2);
490
491
66.0k
        DCT3_6_unscaled(out_im1, input_im1);
492
66.0k
        DCT3_6_unscaled(out_im2, input_im2);
493
494
264k
        for (n = 0; n < 6; n += 2)
495
198k
        {
496
198k
            QMF_RE(X_hybrid[i][n]) = out_re1[n] - out_im1[n];
497
198k
            QMF_IM(X_hybrid[i][n]) = out_re2[n] + out_im2[n];
498
198k
            QMF_RE(X_hybrid[i][n+1]) = out_re1[n+1] + out_im1[n+1];
499
198k
            QMF_IM(X_hybrid[i][n+1]) = out_re2[n+1] - out_im2[n+1];
500
501
198k
            QMF_RE(X_hybrid[i][10-n]) = out_re1[n+1] - out_im1[n+1];
502
198k
            QMF_IM(X_hybrid[i][10-n]) = out_re2[n+1] + out_im2[n+1];
503
198k
            QMF_RE(X_hybrid[i][11-n]) = out_re1[n] + out_im1[n];
504
198k
            QMF_IM(X_hybrid[i][11-n]) = out_re2[n] - out_im2[n];
505
198k
        }
506
66.0k
    }
507
2.14k
}
508
509
/* Hybrid analysis: further split up QMF subbands
510
 * to improve frequency resolution
511
 */
512
static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
513
                            uint8_t use34, uint8_t numTimeSlotsRate)
514
5.65k
{
515
5.65k
    uint8_t k, n, band;
516
5.65k
    uint8_t offset = 0;
517
5.65k
    uint8_t qmf_bands = (use34) ? 5 : 3;
518
5.65k
    uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
519
520
26.9k
    for (band = 0; band < qmf_bands; band++)
521
21.2k
    {
522
        /* build working buffer */
523
21.2k
        memcpy(hyb->work, hyb->buffer[band], 12 * sizeof(qmf_t));
524
525
        /* add new samples */
526
681k
        for (n = 0; n < hyb->frame_len; n++)
527
660k
        {
528
660k
            QMF_RE(hyb->work[12 + n]) = QMF_RE(X[n + 6 /*delay*/][band]);
529
660k
            QMF_IM(hyb->work[12 + n]) = QMF_IM(X[n + 6 /*delay*/][band]);
530
660k
        }
531
532
        /* store samples */
533
21.2k
        memcpy(hyb->buffer[band], hyb->work + hyb->frame_len, 12 * sizeof(qmf_t));
534
535
536
21.2k
        switch(resolution[band])
537
21.2k
        {
538
7.01k
        case 2:
539
            /* Type B real filter, Q[p] = 2 */
540
7.01k
            channel_filter2(hyb, hyb->frame_len, p2_13_20, hyb->work, hyb->temp);
541
7.01k
            break;
542
6.43k
        case 4:
543
            /* Type A complex filter, Q[p] = 4 */
544
6.43k
            channel_filter4(hyb, hyb->frame_len, p4_13_34, hyb->work, hyb->temp);
545
6.43k
            break;
546
5.65k
        case 8:
547
            /* Type A complex filter, Q[p] = 8 */
548
5.65k
            channel_filter8(hyb, hyb->frame_len, (use34) ? p8_13_34 : p8_13_20,
549
5.65k
                hyb->work, hyb->temp);
550
5.65k
            break;
551
2.14k
        case 12:
552
            /* Type A complex filter, Q[p] = 12 */
553
2.14k
            channel_filter12(hyb, hyb->frame_len, p12_13_34, hyb->work, hyb->temp);
554
2.14k
            break;
555
21.2k
        }
556
557
681k
        for (n = 0; n < hyb->frame_len; n++)
558
660k
        {
559
4.09M
            for (k = 0; k < resolution[band]; k++)
560
3.43M
            {
561
3.43M
                QMF_RE(X_hybrid[n][offset + k]) = QMF_RE(hyb->temp[n][k]);
562
3.43M
                QMF_IM(X_hybrid[n][offset + k]) = QMF_IM(hyb->temp[n][k]);
563
3.43M
            }
564
660k
        }
565
21.2k
        offset += resolution[band];
566
21.2k
    }
567
568
    /* group hybrid channels */
569
5.65k
    if (!use34)
570
3.50k
    {
571
113k
        for (n = 0; n < numTimeSlotsRate; n++)
572
110k
        {
573
110k
            QMF_RE(X_hybrid[n][3]) += QMF_RE(X_hybrid[n][4]);
574
110k
            QMF_IM(X_hybrid[n][3]) += QMF_IM(X_hybrid[n][4]);
575
110k
            QMF_RE(X_hybrid[n][4]) = 0;
576
110k
            QMF_IM(X_hybrid[n][4]) = 0;
577
578
110k
            QMF_RE(X_hybrid[n][2]) += QMF_RE(X_hybrid[n][5]);
579
110k
            QMF_IM(X_hybrid[n][2]) += QMF_IM(X_hybrid[n][5]);
580
110k
            QMF_RE(X_hybrid[n][5]) = 0;
581
110k
            QMF_IM(X_hybrid[n][5]) = 0;
582
110k
        }
583
3.50k
    }
584
5.65k
}
585
586
static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
587
                             uint8_t use34, uint8_t numTimeSlotsRate)
588
11.3k
{
589
11.3k
    uint8_t k, n, band;
590
11.3k
    uint8_t offset = 0;
591
11.3k
    uint8_t qmf_bands = (use34) ? 5 : 3;
592
11.3k
    uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
593
11.3k
    (void)numTimeSlotsRate;  /* TODO: remove parameter? */
594
595
53.8k
    for(band = 0; band < qmf_bands; band++)
596
42.5k
    {
597
1.36M
        for (n = 0; n < hyb->frame_len; n++)
598
1.32M
        {
599
1.32M
            QMF_RE(X[n][band]) = 0;
600
1.32M
            QMF_IM(X[n][band]) = 0;
601
602
8.19M
            for (k = 0; k < resolution[band]; k++)
603
6.86M
            {
604
6.86M
                QMF_RE(X[n][band]) += QMF_RE(X_hybrid[n][offset + k]);
605
6.86M
                QMF_IM(X[n][band]) += QMF_IM(X_hybrid[n][offset + k]);
606
6.86M
            }
607
1.32M
        }
608
42.5k
        offset += resolution[band];
609
42.5k
    }
610
11.3k
}
611
612
/* limits the value i to the range [min,max] */
613
static int8_t delta_clip(int8_t i, int8_t min, int8_t max)
614
80.8k
{
615
80.8k
    if (i < min)
616
8.30k
        return min;
617
72.5k
    else if (i > max)
618
2.38k
        return max;
619
70.1k
    else
620
70.1k
        return i;
621
80.8k
}
622
623
//int iid = 0;
624
625
/* delta decode array */
626
static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
627
                         uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
628
                         int8_t min_index, int8_t max_index)
629
17.4k
{
630
17.4k
    int8_t i;
631
632
17.4k
    if (enable == 1)
633
7.92k
    {
634
7.92k
        if (dt_flag == 0)
635
4.99k
        {
636
            /* delta coded in frequency direction */
637
4.99k
            index[0] = 0 + index[0];
638
4.99k
            index[0] = delta_clip(index[0], min_index, max_index);
639
640
56.7k
            for (i = 1; i < nr_par; i++)
641
51.7k
            {
642
51.7k
                index[i] = index[i-1] + index[i];
643
51.7k
                index[i] = delta_clip(index[i], min_index, max_index);
644
51.7k
            }
645
4.99k
        } else {
646
            /* delta coded in time direction */
647
26.9k
            for (i = 0; i < nr_par; i++)
648
24.0k
            {
649
                //int8_t tmp2;
650
                //int8_t tmp = index[i];
651
652
                //printf("%d %d\n", index_prev[i*stride], index[i]);
653
                //printf("%d\n", index[i]);
654
655
24.0k
                index[i] = index_prev[i*stride] + index[i];
656
                //tmp2 = index[i];
657
24.0k
                index[i] = delta_clip(index[i], min_index, max_index);
658
659
                //if (iid)
660
                //{
661
                //    if (index[i] == 7)
662
                //    {
663
                //        printf("%d %d %d\n", index_prev[i*stride], tmp, tmp2);
664
                //    }
665
                //}
666
24.0k
            }
667
2.92k
        }
668
9.57k
    } else {
669
        /* set indices to zero */
670
19.3k
        for (i = 0; i < nr_par; i++)
671
9.75k
        {
672
9.75k
            index[i] = 0;
673
9.75k
        }
674
9.57k
    }
675
676
    /* coarse */
677
17.4k
    if (stride == 2)
678
10.1k
    {
679
30.7k
        for (i = (nr_par<<1)-1; i > 0; i--)
680
20.6k
        {
681
20.6k
            index[i] = index[i>>1];
682
20.6k
        }
683
10.1k
    }
684
17.4k
}
685
686
/* delta modulo decode array */
687
/* in: log2 value of the modulo value to allow using AND instead of MOD */
688
static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
689
                                uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
690
                                int8_t and_modulo)
691
17.4k
{
692
17.4k
    int8_t i;
693
694
17.4k
    if (enable == 1)
695
4.44k
    {
696
4.44k
        if (dt_flag == 0)
697
1.81k
        {
698
            /* delta coded in frequency direction */
699
1.81k
            index[0] = 0 + index[0];
700
1.81k
            index[0] &= and_modulo;
701
702
7.20k
            for (i = 1; i < nr_par; i++)
703
5.39k
            {
704
5.39k
                index[i] = index[i-1] + index[i];
705
5.39k
                index[i] &= and_modulo;
706
5.39k
            }
707
2.63k
        } else {
708
            /* delta coded in time direction */
709
7.41k
            for (i = 0; i < nr_par; i++)
710
4.78k
            {
711
4.78k
                index[i] = index_prev[i*stride] + index[i];
712
4.78k
                index[i] &= and_modulo;
713
4.78k
            }
714
2.63k
        }
715
13.0k
    } else {
716
        /* set indices to zero */
717
52.6k
        for (i = 0; i < nr_par; i++)
718
39.6k
        {
719
39.6k
            index[i] = 0;
720
39.6k
        }
721
13.0k
    }
722
723
    /* coarse */
724
17.4k
    if (stride == 2)
725
0
    {
726
0
        index[0] = 0;
727
0
        for (i = (nr_par<<1)-1; i > 0; i--)
728
0
        {
729
0
            index[i] = index[i>>1];
730
0
        }
731
0
    }
732
17.4k
}
733
734
#ifdef PS_LOW_POWER
735
static void map34indexto20(int8_t *index, uint8_t bins)
736
{
737
    index[0] = (2*index[0]+index[1])/3;
738
    index[1] = (index[1]+2*index[2])/3;
739
    index[2] = (2*index[3]+index[4])/3;
740
    index[3] = (index[4]+2*index[5])/3;
741
    index[4] = (index[6]+index[7])/2;
742
    index[5] = (index[8]+index[9])/2;
743
    index[6] = index[10];
744
    index[7] = index[11];
745
    index[8] = (index[12]+index[13])/2;
746
    index[9] = (index[14]+index[15])/2;
747
    index[10] = index[16];
748
749
    if (bins == 34)
750
    {
751
        index[11] = index[17];
752
        index[12] = index[18];
753
        index[13] = index[19];
754
        index[14] = (index[20]+index[21])/2;
755
        index[15] = (index[22]+index[23])/2;
756
        index[16] = (index[24]+index[25])/2;
757
        index[17] = (index[26]+index[27])/2;
758
        index[18] = (index[28]+index[29]+index[30]+index[31])/4;
759
        index[19] = (index[32]+index[33])/2;
760
    }
761
}
762
#endif
763
764
static void map20indexto34(int8_t *index, uint8_t bins)
765
7.54k
{
766
7.54k
    index[0] = index[0];
767
7.54k
    index[1] = (index[0] + index[1])/2;
768
7.54k
    index[2] = index[1];
769
7.54k
    index[3] = index[2];
770
7.54k
    index[4] = (index[2] + index[3])/2;
771
7.54k
    index[5] = index[3];
772
7.54k
    index[6] = index[4];
773
7.54k
    index[7] = index[4];
774
7.54k
    index[8] = index[5];
775
7.54k
    index[9] = index[5];
776
7.54k
    index[10] = index[6];
777
7.54k
    index[11] = index[7];
778
7.54k
    index[12] = index[8];
779
7.54k
    index[13] = index[8];
780
7.54k
    index[14] = index[9];
781
7.54k
    index[15] = index[9];
782
7.54k
    index[16] = index[10];
783
784
7.54k
    if (bins == 34)
785
3.61k
    {
786
3.61k
        index[17] = index[11];
787
3.61k
        index[18] = index[12];
788
3.61k
        index[19] = index[13];
789
3.61k
        index[20] = index[14];
790
3.61k
        index[21] = index[14];
791
3.61k
        index[22] = index[15];
792
3.61k
        index[23] = index[15];
793
3.61k
        index[24] = index[16];
794
3.61k
        index[25] = index[16];
795
3.61k
        index[26] = index[17];
796
3.61k
        index[27] = index[17];
797
3.61k
        index[28] = index[18];
798
3.61k
        index[29] = index[18];
799
3.61k
        index[30] = index[18];
800
3.61k
        index[31] = index[18];
801
3.61k
        index[32] = index[19];
802
3.61k
        index[33] = index[19];
803
3.61k
    }
804
7.54k
}
805
806
/* parse the bitstream data decoded in ps_data() */
807
static void ps_data_decode(ps_info *ps)
808
5.65k
{
809
5.65k
    uint8_t env, bin;
810
811
    /* ps data not available, use data from previous frame */
812
5.65k
    if (ps->ps_data_available == 0)
813
1.45k
    {
814
1.45k
        ps->num_env = 0;
815
1.45k
    }
816
817
14.4k
    for (env = 0; env < ps->num_env; env++)
818
8.74k
    {
819
8.74k
        int8_t *iid_index_prev;
820
8.74k
        int8_t *icc_index_prev;
821
8.74k
        int8_t *ipd_index_prev;
822
8.74k
        int8_t *opd_index_prev;
823
824
8.74k
        int8_t num_iid_steps = (ps->iid_mode < 3) ? 7 : 15 /*fine quant*/;
825
826
8.74k
        if (env == 0)
827
2.72k
        {
828
            /* take last envelope from previous frame */
829
2.72k
            iid_index_prev = ps->iid_index_prev;
830
2.72k
            icc_index_prev = ps->icc_index_prev;
831
2.72k
            ipd_index_prev = ps->ipd_index_prev;
832
2.72k
            opd_index_prev = ps->opd_index_prev;
833
6.02k
        } else {
834
            /* take index values from previous envelope */
835
6.02k
            iid_index_prev = ps->iid_index[env - 1];
836
6.02k
            icc_index_prev = ps->icc_index[env - 1];
837
6.02k
            ipd_index_prev = ps->ipd_index[env - 1];
838
6.02k
            opd_index_prev = ps->opd_index[env - 1];
839
6.02k
        }
840
841
//        iid = 1;
842
        /* delta decode iid parameters */
843
8.74k
        delta_decode(ps->enable_iid, ps->iid_index[env], iid_index_prev,
844
8.74k
            ps->iid_dt[env], ps->nr_iid_par,
845
8.74k
            (ps->iid_mode == 0 || ps->iid_mode == 3) ? 2 : 1,
846
8.74k
            -num_iid_steps, num_iid_steps);
847
//        iid = 0;
848
849
        /* delta decode icc parameters */
850
8.74k
        delta_decode(ps->enable_icc, ps->icc_index[env], icc_index_prev,
851
8.74k
            ps->icc_dt[env], ps->nr_icc_par,
852
8.74k
            (ps->icc_mode == 0 || ps->icc_mode == 3) ? 2 : 1,
853
8.74k
            0, 7);
854
855
        /* delta modulo decode ipd parameters */
856
8.74k
        delta_modulo_decode(ps->enable_ipdopd, ps->ipd_index[env], ipd_index_prev,
857
8.74k
            ps->ipd_dt[env], ps->nr_ipdopd_par, 1, 7);
858
859
        /* delta modulo decode opd parameters */
860
8.74k
        delta_modulo_decode(ps->enable_ipdopd, ps->opd_index[env], opd_index_prev,
861
8.74k
            ps->opd_dt[env], ps->nr_ipdopd_par, 1, 7);
862
8.74k
    }
863
864
    /* handle error case */
865
5.65k
    if (ps->num_env == 0)
866
2.93k
    {
867
        /* force to 1 */
868
2.93k
        ps->num_env = 1;
869
870
2.93k
        if (ps->enable_iid)
871
2.13k
        {
872
74.6k
            for (bin = 0; bin < 34; bin++)
873
72.4k
                ps->iid_index[0][bin] = ps->iid_index_prev[bin];
874
2.13k
        } else {
875
27.9k
            for (bin = 0; bin < 34; bin++)
876
27.1k
                ps->iid_index[0][bin] = 0;
877
799
        }
878
879
2.93k
        if (ps->enable_icc)
880
1.82k
        {
881
63.7k
            for (bin = 0; bin < 34; bin++)
882
61.9k
                ps->icc_index[0][bin] = ps->icc_index_prev[bin];
883
1.82k
        } else {
884
38.8k
            for (bin = 0; bin < 34; bin++)
885
37.7k
                ps->icc_index[0][bin] = 0;
886
1.11k
        }
887
888
2.93k
        if (ps->enable_ipdopd)
889
355
        {
890
6.39k
            for (bin = 0; bin < 17; bin++)
891
6.03k
            {
892
6.03k
                ps->ipd_index[0][bin] = ps->ipd_index_prev[bin];
893
6.03k
                ps->opd_index[0][bin] = ps->opd_index_prev[bin];
894
6.03k
            }
895
2.57k
        } else {
896
46.3k
            for (bin = 0; bin < 17; bin++)
897
43.7k
            {
898
43.7k
                ps->ipd_index[0][bin] = 0;
899
43.7k
                ps->opd_index[0][bin] = 0;
900
43.7k
            }
901
2.57k
        }
902
2.93k
    }
903
904
    /* update previous indices */
905
197k
    for (bin = 0; bin < 34; bin++)
906
192k
        ps->iid_index_prev[bin] = ps->iid_index[ps->num_env-1][bin];
907
197k
    for (bin = 0; bin < 34; bin++)
908
192k
        ps->icc_index_prev[bin] = ps->icc_index[ps->num_env-1][bin];
909
101k
    for (bin = 0; bin < 17; bin++)
910
96.1k
    {
911
96.1k
        ps->ipd_index_prev[bin] = ps->ipd_index[ps->num_env-1][bin];
912
96.1k
        ps->opd_index_prev[bin] = ps->opd_index[ps->num_env-1][bin];
913
96.1k
    }
914
915
5.65k
    ps->ps_data_available = 0;
916
917
5.65k
    if (ps->frame_class == 0)
918
3.71k
    {
919
3.71k
        ps->border_position[0] = 0;
920
6.81k
        for (env = 1; env < ps->num_env; env++)
921
3.10k
        {
922
3.10k
            ps->border_position[env] = (env * ps->numTimeSlotsRate) / ps->num_env;
923
3.10k
        }
924
3.71k
        ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
925
3.71k
    } else {
926
1.94k
        ps->border_position[0] = 0;
927
928
1.94k
        if (ps->border_position[ps->num_env] < ps->numTimeSlotsRate)
929
1.60k
        {
930
56.1k
            for (bin = 0; bin < 34; bin++)
931
54.5k
            {
932
54.5k
                ps->iid_index[ps->num_env][bin] = ps->iid_index[ps->num_env-1][bin];
933
54.5k
                ps->icc_index[ps->num_env][bin] = ps->icc_index[ps->num_env-1][bin];
934
54.5k
            }
935
28.8k
            for (bin = 0; bin < 17; bin++)
936
27.2k
            {
937
27.2k
                ps->ipd_index[ps->num_env][bin] = ps->ipd_index[ps->num_env-1][bin];
938
27.2k
                ps->opd_index[ps->num_env][bin] = ps->opd_index[ps->num_env-1][bin];
939
27.2k
            }
940
1.60k
            ps->num_env++;
941
1.60k
            ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
942
1.60k
        }
943
944
6.47k
        for (env = 1; env < ps->num_env; env++)
945
4.52k
        {
946
4.52k
            int8_t thr = ps->numTimeSlotsRate - (ps->num_env - env);
947
948
4.52k
            if (ps->border_position[env] > thr)
949
738
            {
950
738
                ps->border_position[env] = thr;
951
3.79k
            } else {
952
3.79k
                thr = ps->border_position[env-1]+1;
953
3.79k
                if (ps->border_position[env] < thr)
954
1.61k
                {
955
1.61k
                    ps->border_position[env] = thr;
956
1.61k
                }
957
3.79k
            }
958
4.52k
        }
959
1.94k
    }
960
961
    /* make sure that the indices of all parameters can be mapped
962
     * to the same hybrid synthesis filterbank
963
     */
964
#ifdef PS_LOW_POWER
965
    for (env = 0; env < ps->num_env; env++)
966
    {
967
        if (ps->iid_mode == 2 || ps->iid_mode == 5)
968
            map34indexto20(ps->iid_index[env], 34);
969
        if (ps->icc_mode == 2 || ps->icc_mode == 5)
970
            map34indexto20(ps->icc_index[env], 34);
971
972
        /* disable ipd/opd */
973
        for (bin = 0; bin < 17; bin++)
974
        {
975
            ps->aaIpdIndex[env][bin] = 0;
976
            ps->aaOpdIndex[env][bin] = 0;
977
        }
978
    }
979
#else
980
5.65k
    if (ps->use34hybrid_bands)
981
2.14k
    {
982
5.82k
        for (env = 0; env < ps->num_env; env++)
983
3.67k
        {
984
3.67k
            if (ps->iid_mode != 2 && ps->iid_mode != 5)
985
1.96k
                map20indexto34(ps->iid_index[env], 34);
986
3.67k
            if (ps->icc_mode != 2 && ps->icc_mode != 5)
987
1.65k
                map20indexto34(ps->icc_index[env], 34);
988
3.67k
            if (ps->ipd_mode != 2 && ps->ipd_mode != 5)
989
1.96k
            {
990
1.96k
                map20indexto34(ps->ipd_index[env], 17);
991
1.96k
                map20indexto34(ps->opd_index[env], 17);
992
1.96k
            }
993
3.67k
        }
994
2.14k
    }
995
5.65k
#endif
996
997
#if 0
998
    for (env = 0; env < ps->num_env; env++)
999
    {
1000
        printf("iid[env:%d]:", env);
1001
        for (bin = 0; bin < 34; bin++)
1002
        {
1003
            printf(" %d", ps->iid_index[env][bin]);
1004
        }
1005
        printf("\n");
1006
    }
1007
    for (env = 0; env < ps->num_env; env++)
1008
    {
1009
        printf("icc[env:%d]:", env);
1010
        for (bin = 0; bin < 34; bin++)
1011
        {
1012
            printf(" %d", ps->icc_index[env][bin]);
1013
        }
1014
        printf("\n");
1015
    }
1016
    for (env = 0; env < ps->num_env; env++)
1017
    {
1018
        printf("ipd[env:%d]:", env);
1019
        for (bin = 0; bin < 17; bin++)
1020
        {
1021
            printf(" %d", ps->ipd_index[env][bin]);
1022
        }
1023
        printf("\n");
1024
    }
1025
    for (env = 0; env < ps->num_env; env++)
1026
    {
1027
        printf("opd[env:%d]:", env);
1028
        for (bin = 0; bin < 17; bin++)
1029
        {
1030
            printf(" %d", ps->opd_index[env][bin]);
1031
        }
1032
        printf("\n");
1033
    }
1034
    printf("\n");
1035
#endif
1036
5.65k
}
1037
1038
/* decorrelate the mono signal using an allpass filter */
1039
static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
1040
                           qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
1041
5.65k
{
1042
5.65k
    uint8_t gr, n, bk;
1043
5.65k
    uint8_t temp_delay = 0;
1044
5.65k
    uint8_t sb, maxsb;
1045
5.65k
    const complex_t *Phi_Fract_SubQmf;
1046
5.65k
    uint8_t temp_delay_ser[NO_ALLPASS_LINKS];
1047
5.65k
    real_t P_SmoothPeakDecayDiffNrg, nrg;
1048
5.65k
    real_t P[32][34];
1049
5.65k
    real_t G_TransientRatio[32][34] = {{0}};
1050
5.65k
    complex_t inputLeft;
1051
1052
1053
    /* chose hybrid filterbank: 20 or 34 band case */
1054
5.65k
    if (ps->use34hybrid_bands)
1055
2.14k
    {
1056
2.14k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf34;
1057
3.50k
    } else{
1058
3.50k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf20;
1059
3.50k
    }
1060
1061
    /* clear the energy values */
1062
186k
    for (n = 0; n < 32; n++)
1063
180k
    {
1064
6.33M
        for (bk = 0; bk < 34; bk++)
1065
6.15M
        {
1066
6.15M
            P[n][bk] = 0;
1067
6.15M
        }
1068
180k
    }
1069
1070
    /* calculate the energy in each parameter band b(k) */
1071
190k
    for (gr = 0; gr < ps->num_groups; gr++)
1072
184k
    {
1073
        /* select the parameter index b(k) to which this group belongs */
1074
184k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1075
1076
        /* select the upper subband border for this group */
1077
184k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr]+1 : ps->group_border[gr+1];
1078
1079
628k
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1080
444k
        {
1081
14.3M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1082
13.8M
            {
1083
#ifdef FIXED_POINT
1084
                uint32_t in_re, in_im;
1085
#endif
1086
1087
                /* input from hybrid subbands or QMF subbands */
1088
13.8M
                if (gr < ps->num_hybrid_groups)
1089
3.21M
                {
1090
3.21M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1091
3.21M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1092
10.6M
                } else {
1093
10.6M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1094
10.6M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1095
10.6M
                }
1096
1097
                /* accumulate energy */
1098
#ifdef FIXED_POINT
1099
                /* NOTE: all input is scaled by 2^(-5) because of fixed point QMF
1100
                 * meaning that P will be scaled by 2^(-10) compared to floating point version
1101
                 */
1102
                in_re = ((abs(RE(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1103
                in_im = ((abs(IM(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1104
                P[n][bk] += in_re*in_re + in_im*in_im;
1105
#else
1106
13.8M
                P[n][bk] += MUL_R(RE(inputLeft),RE(inputLeft)) + MUL_R(IM(inputLeft),IM(inputLeft));
1107
13.8M
#endif
1108
13.8M
            }
1109
444k
        }
1110
184k
    }
1111
1112
#if 0
1113
    for (n = 0; n < 32; n++)
1114
    {
1115
        for (bk = 0; bk < 34; bk++)
1116
        {
1117
#ifdef FIXED_POINT
1118
            printf("%d %d: %d\n", n, bk, P[n][bk] /*/(float)REAL_PRECISION*/);
1119
#else
1120
            printf("%d %d: %f\n", n, bk, P[n][bk]/1024.0);
1121
#endif
1122
        }
1123
    }
1124
#endif
1125
1126
    /* calculate transient reduction ratio for each parameter band b(k) */
1127
148k
    for (bk = 0; bk < ps->nr_par_bands; bk++)
1128
143k
    {
1129
4.60M
        for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1130
4.45M
        {
1131
4.45M
            const real_t gamma = COEF_CONST(1.5);
1132
1133
4.45M
            ps->P_PeakDecayNrg[bk] = MUL_F(ps->P_PeakDecayNrg[bk], ps->alpha_decay);
1134
4.45M
            if (ps->P_PeakDecayNrg[bk] < P[n][bk])
1135
51.9k
                ps->P_PeakDecayNrg[bk] = P[n][bk];
1136
1137
            /* apply smoothing filter to peak decay energy */
1138
4.45M
            P_SmoothPeakDecayDiffNrg = ps->P_SmoothPeakDecayDiffNrg_prev[bk];
1139
4.45M
            P_SmoothPeakDecayDiffNrg += MUL_F((ps->P_PeakDecayNrg[bk] - P[n][bk] - ps->P_SmoothPeakDecayDiffNrg_prev[bk]), ps->alpha_smooth);
1140
4.45M
            ps->P_SmoothPeakDecayDiffNrg_prev[bk] = P_SmoothPeakDecayDiffNrg;
1141
1142
            /* apply smoothing filter to energy */
1143
4.45M
            nrg = ps->P_prev[bk];
1144
4.45M
            nrg += MUL_F((P[n][bk] - ps->P_prev[bk]), ps->alpha_smooth);
1145
4.45M
            ps->P_prev[bk] = nrg;
1146
1147
            /* calculate transient ratio */
1148
4.45M
            if (MUL_C(P_SmoothPeakDecayDiffNrg, gamma) <= nrg)
1149
4.42M
            {
1150
4.42M
                G_TransientRatio[n][bk] = REAL_CONST(1.0);
1151
4.42M
            } else {
1152
35.2k
                G_TransientRatio[n][bk] = DIV_R(nrg, (MUL_C(P_SmoothPeakDecayDiffNrg, gamma)));
1153
35.2k
            }
1154
4.45M
        }
1155
143k
    }
1156
1157
#if 0
1158
    for (n = 0; n < 32; n++)
1159
    {
1160
        for (bk = 0; bk < 34; bk++)
1161
        {
1162
#ifdef FIXED_POINT
1163
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]/(float)REAL_PRECISION);
1164
#else
1165
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]);
1166
#endif
1167
        }
1168
    }
1169
#endif
1170
1171
    /* apply stereo decorrelation filter to the signal */
1172
190k
    for (gr = 0; gr < ps->num_groups; gr++)
1173
184k
    {
1174
184k
        if (gr < ps->num_hybrid_groups)
1175
103k
            maxsb = ps->group_border[gr] + 1;
1176
80.7k
        else
1177
80.7k
            maxsb = ps->group_border[gr + 1];
1178
1179
        /* QMF channel */
1180
628k
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1181
444k
        {
1182
444k
            real_t g_DecaySlope;
1183
444k
            real_t g_DecaySlope_filt[NO_ALLPASS_LINKS];
1184
1185
            /* g_DecaySlope: [0..1] */
1186
444k
            if (gr < ps->num_hybrid_groups || sb <= ps->decay_cutoff)
1187
109k
            {
1188
109k
                g_DecaySlope = FRAC_CONST(1.0);
1189
335k
            } else {
1190
335k
                int8_t decay = ps->decay_cutoff - sb;
1191
335k
                if (decay <= -20 /* -1/DECAY_SLOPE */)
1192
227k
                {
1193
227k
                    g_DecaySlope = 0;
1194
227k
                } else {
1195
                    /* decay(int)*decay_slope(frac) = g_DecaySlope(frac) */
1196
107k
                    g_DecaySlope = FRAC_CONST(1.0) + DECAY_SLOPE * decay;
1197
107k
                }
1198
335k
            }
1199
1200
            /* calculate g_DecaySlope_filt for every n multiplied by filter_a[n] */
1201
1.77M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1202
1.33M
            {
1203
1.33M
                g_DecaySlope_filt[n] = MUL_F(g_DecaySlope, filter_a[n]);
1204
1.33M
            }
1205
1206
1207
            /* set delay indices */
1208
444k
            temp_delay = ps->saved_delay;
1209
1.77M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1210
1.33M
                temp_delay_ser[n] = ps->delay_buf_index_ser[n];
1211
1212
14.3M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1213
13.8M
            {
1214
13.8M
                complex_t tmp, tmp0, R0;
1215
13.8M
                uint8_t m;
1216
1217
13.8M
                if (gr < ps->num_hybrid_groups)
1218
3.21M
                {
1219
                    /* hybrid filterbank input */
1220
3.21M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1221
3.21M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1222
10.6M
                } else {
1223
                    /* QMF filterbank input */
1224
10.6M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1225
10.6M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1226
10.6M
                }
1227
1228
13.8M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1229
7.24M
                {
1230
                    /* delay */
1231
1232
                    /* never hybrid subbands here, always QMF subbands */
1233
7.24M
                    RE(tmp) = RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1234
7.24M
                    IM(tmp) = IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1235
7.24M
                    RE(R0) = RE(tmp);
1236
7.24M
                    IM(R0) = IM(tmp);
1237
7.24M
                    RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = RE(inputLeft);
1238
7.24M
                    IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = IM(inputLeft);
1239
7.24M
                } else {
1240
                    /* allpass filter */
1241
6.62M
                    complex_t Phi_Fract;
1242
1243
                    /* fetch parameters */
1244
6.62M
                    if (gr < ps->num_hybrid_groups)
1245
3.21M
                    {
1246
                        /* select data from the hybrid subbands */
1247
3.21M
                        RE(tmp0) = RE(ps->delay_SubQmf[temp_delay][sb]);
1248
3.21M
                        IM(tmp0) = IM(ps->delay_SubQmf[temp_delay][sb]);
1249
1250
3.21M
                        RE(ps->delay_SubQmf[temp_delay][sb]) = RE(inputLeft);
1251
3.21M
                        IM(ps->delay_SubQmf[temp_delay][sb]) = IM(inputLeft);
1252
1253
3.21M
                        RE(Phi_Fract) = RE(Phi_Fract_SubQmf[sb]);
1254
3.21M
                        IM(Phi_Fract) = IM(Phi_Fract_SubQmf[sb]);
1255
3.40M
                    } else {
1256
                        /* select data from the QMF subbands */
1257
3.40M
                        RE(tmp0) = RE(ps->delay_Qmf[temp_delay][sb]);
1258
3.40M
                        IM(tmp0) = IM(ps->delay_Qmf[temp_delay][sb]);
1259
1260
3.40M
                        RE(ps->delay_Qmf[temp_delay][sb]) = RE(inputLeft);
1261
3.40M
                        IM(ps->delay_Qmf[temp_delay][sb]) = IM(inputLeft);
1262
1263
3.40M
                        RE(Phi_Fract) = RE(Phi_Fract_Qmf[sb]);
1264
3.40M
                        IM(Phi_Fract) = IM(Phi_Fract_Qmf[sb]);
1265
3.40M
                    }
1266
1267
                    /* z^(-2) * Phi_Fract[k] */
1268
6.62M
                    ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Phi_Fract), IM(Phi_Fract));
1269
1270
6.62M
                    RE(R0) = RE(tmp);
1271
6.62M
                    IM(R0) = IM(tmp);
1272
26.4M
                    for (m = 0; m < NO_ALLPASS_LINKS; m++)
1273
19.8M
                    {
1274
19.8M
                        complex_t Q_Fract_allpass, tmp2;
1275
1276
                        /* fetch parameters */
1277
19.8M
                        if (gr < ps->num_hybrid_groups)
1278
9.65M
                        {
1279
                            /* select data from the hybrid subbands */
1280
9.65M
                            RE(tmp0) = RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1281
9.65M
                            IM(tmp0) = IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1282
1283
9.65M
                            if (ps->use34hybrid_bands)
1284
6.34M
                            {
1285
6.34M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf34[sb][m]);
1286
6.34M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf34[sb][m]);
1287
6.34M
                            } else {
1288
3.31M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf20[sb][m]);
1289
3.31M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf20[sb][m]);
1290
3.31M
                            }
1291
10.2M
                        } else {
1292
                            /* select data from the QMF subbands */
1293
10.2M
                            RE(tmp0) = RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1294
10.2M
                            IM(tmp0) = IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1295
1296
10.2M
                            RE(Q_Fract_allpass) = RE(Q_Fract_allpass_Qmf[sb][m]);
1297
10.2M
                            IM(Q_Fract_allpass) = IM(Q_Fract_allpass_Qmf[sb][m]);
1298
10.2M
                        }
1299
1300
                        /* delay by a fraction */
1301
                        /* z^(-d(m)) * Q_Fract_allpass[k,m] */
1302
19.8M
                        ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Q_Fract_allpass), IM(Q_Fract_allpass));
1303
1304
                        /* -a(m) * g_DecaySlope[k] */
1305
19.8M
                        RE(tmp) += -MUL_F(g_DecaySlope_filt[m], RE(R0));
1306
19.8M
                        IM(tmp) += -MUL_F(g_DecaySlope_filt[m], IM(R0));
1307
1308
                        /* -a(m) * g_DecaySlope[k] * Q_Fract_allpass[k,m] * z^(-d(m)) */
1309
19.8M
                        RE(tmp2) = RE(R0) + MUL_F(g_DecaySlope_filt[m], RE(tmp));
1310
19.8M
                        IM(tmp2) = IM(R0) + MUL_F(g_DecaySlope_filt[m], IM(tmp));
1311
1312
                        /* store sample */
1313
19.8M
                        if (gr < ps->num_hybrid_groups)
1314
9.65M
                        {
1315
9.65M
                            RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1316
9.65M
                            IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1317
10.2M
                        } else {
1318
10.2M
                            RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1319
10.2M
                            IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1320
10.2M
                        }
1321
1322
                        /* store for next iteration (or as output value if last iteration) */
1323
19.8M
                        RE(R0) = RE(tmp);
1324
19.8M
                        IM(R0) = IM(tmp);
1325
19.8M
                    }
1326
6.62M
                }
1327
1328
                /* select b(k) for reading the transient ratio */
1329
13.8M
                bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1330
1331
                /* duck if a past transient is found */
1332
13.8M
                RE(R0) = MUL_R(G_TransientRatio[n][bk], RE(R0));
1333
13.8M
                IM(R0) = MUL_R(G_TransientRatio[n][bk], IM(R0));
1334
1335
13.8M
                if (gr < ps->num_hybrid_groups)
1336
3.21M
                {
1337
                    /* hybrid */
1338
3.21M
                    QMF_RE(X_hybrid_right[n][sb]) = RE(R0);
1339
3.21M
                    QMF_IM(X_hybrid_right[n][sb]) = IM(R0);
1340
10.6M
                } else {
1341
                    /* QMF */
1342
10.6M
                    QMF_RE(X_right[n][sb]) = RE(R0);
1343
10.6M
                    QMF_IM(X_right[n][sb]) = IM(R0);
1344
10.6M
                }
1345
1346
                /* Update delay buffer index */
1347
13.8M
                if (++temp_delay >= 2)
1348
6.92M
                {
1349
6.92M
                    temp_delay = 0;
1350
6.92M
                }
1351
1352
                /* update delay indices */
1353
13.8M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1354
7.24M
                {
1355
                    /* delay_D depends on the samplerate, it can hold the values 14 and 1 */
1356
7.24M
                    if (++ps->delay_buf_index_delay[sb] >= ps->delay_D[sb])
1357
5.25M
                    {
1358
5.25M
                        ps->delay_buf_index_delay[sb] = 0;
1359
5.25M
                    }
1360
7.24M
                }
1361
1362
55.4M
                for (m = 0; m < NO_ALLPASS_LINKS; m++)
1363
41.5M
                {
1364
41.5M
                    if (++temp_delay_ser[m] >= ps->num_sample_delay_ser[m])
1365
10.6M
                    {
1366
10.6M
                        temp_delay_ser[m] = 0;
1367
10.6M
                    }
1368
41.5M
                }
1369
13.8M
            }
1370
444k
        }
1371
184k
    }
1372
1373
    /* update delay indices */
1374
5.65k
    ps->saved_delay = temp_delay;
1375
22.6k
    for (n = 0; n < NO_ALLPASS_LINKS; n++)
1376
16.9k
        ps->delay_buf_index_ser[n] = temp_delay_ser[n];
1377
5.65k
}
1378
1379
#if 0
1380
#ifdef FIXED_POINT
1381
#define step(shift) \
1382
    if ((0x40000000l >> shift) + root <= value)       \
1383
    {                                                 \
1384
        value -= (0x40000000l >> shift) + root;       \
1385
        root = (root >> 1) | (0x40000000l >> shift);  \
1386
    } else {                                          \
1387
        root = root >> 1;                             \
1388
    }
1389
1390
/* fixed point square root approximation */
1391
static real_t ps_sqrt(real_t value)
1392
{
1393
    real_t root = 0;
1394
1395
    step( 0); step( 2); step( 4); step( 6);
1396
    step( 8); step(10); step(12); step(14);
1397
    step(16); step(18); step(20); step(22);
1398
    step(24); step(26); step(28); step(30);
1399
1400
    if (root < value)
1401
        ++root;
1402
1403
    root <<= (REAL_BITS/2);
1404
1405
    return root;
1406
}
1407
#else
1408
#define ps_sqrt(A) sqrt(A)
1409
#endif
1410
#endif
1411
1412
static const real_t ipdopd_cos_tab[] = {
1413
    FRAC_CONST(1.000000000000000),
1414
    FRAC_CONST(0.707106781186548),
1415
    FRAC_CONST(0.000000000000000),
1416
    FRAC_CONST(-0.707106781186547),
1417
    FRAC_CONST(-1.000000000000000),
1418
    FRAC_CONST(-0.707106781186548),
1419
    FRAC_CONST(-0.000000000000000),
1420
    FRAC_CONST(0.707106781186547),
1421
    FRAC_CONST(1.000000000000000)
1422
};
1423
1424
static const real_t ipdopd_sin_tab[] = {
1425
    FRAC_CONST(0.000000000000000),
1426
    FRAC_CONST(0.707106781186547),
1427
    FRAC_CONST(1.000000000000000),
1428
    FRAC_CONST(0.707106781186548),
1429
    FRAC_CONST(0.000000000000000),
1430
    FRAC_CONST(-0.707106781186547),
1431
    FRAC_CONST(-1.000000000000000),
1432
    FRAC_CONST(-0.707106781186548),
1433
    FRAC_CONST(-0.000000000000000)
1434
};
1435
1436
static real_t magnitude_c(complex_t c)
1437
85.0k
{
1438
#ifdef FIXED_POINT
1439
#define ps_abs(A) (((A) > 0) ? (A) : (-(A)))
1440
#define ALPHA FRAC_CONST(0.948059448969)
1441
#define BETA  FRAC_CONST(0.392699081699)
1442
1443
    real_t abs_inphase = ps_abs(RE(c));
1444
    real_t abs_quadrature = ps_abs(IM(c));
1445
1446
    if (abs_inphase > abs_quadrature) {
1447
        return MUL_F(abs_inphase, ALPHA) + MUL_F(abs_quadrature, BETA);
1448
    } else {
1449
        return MUL_F(abs_quadrature, ALPHA) + MUL_F(abs_inphase, BETA);
1450
    }
1451
#else
1452
85.0k
    return sqrt(RE(c)*RE(c) + IM(c)*IM(c));
1453
85.0k
#endif
1454
85.0k
}
1455
1456
static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
1457
                         qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
1458
5.65k
{
1459
5.65k
    uint8_t n;
1460
5.65k
    uint8_t gr;
1461
5.65k
    uint8_t bk = 0;
1462
5.65k
    uint8_t sb, maxsb;
1463
5.65k
    uint8_t env;
1464
5.65k
    uint8_t nr_ipdopd_par;
1465
5.65k
    complex_t h11, h12, h21, h22;  // COEF
1466
5.65k
    complex_t H11, H12, H21, H22;  // COEF
1467
5.65k
    complex_t deltaH11, deltaH12, deltaH21, deltaH22;  // COEF
1468
5.65k
    complex_t tempLeft, tempRight; // FRAC
1469
5.65k
    complex_t phaseLeft, phaseRight; // FRAC
1470
5.65k
    real_t L;
1471
5.65k
    const real_t *sf_iid;
1472
5.65k
    uint8_t no_iid_steps;
1473
1474
5.65k
    if (ps->iid_mode >= 3)
1475
2.55k
    {
1476
2.55k
        no_iid_steps = 15;
1477
2.55k
        sf_iid = sf_iid_fine;
1478
3.10k
    } else {
1479
3.10k
        no_iid_steps = 7;
1480
3.10k
        sf_iid = sf_iid_normal;
1481
3.10k
    }
1482
1483
5.65k
    if (ps->ipd_mode == 0 || ps->ipd_mode == 3)
1484
2.86k
    {
1485
2.86k
        nr_ipdopd_par = 11; /* resolution */
1486
2.86k
    } else {
1487
2.79k
        nr_ipdopd_par = ps->nr_ipdopd_par;
1488
2.79k
    }
1489
1490
190k
    for (gr = 0; gr < ps->num_groups; gr++)
1491
184k
    {
1492
184k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1493
1494
        /* use one channel per group in the subqmf domain */
1495
184k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr] + 1 : ps->group_border[gr + 1];
1496
1497
579k
        for (env = 0; env < ps->num_env; env++)
1498
395k
        {
1499
395k
            uint8_t abs_iid = (uint8_t)abs(ps->iid_index[env][bk]);
1500
            /* index range is supposed to be -7...7 or -15...15 depending on iid_mode
1501
                (Table 8.24, ISO/IEC 14496-3:2005).
1502
                if it is outside these boundaries, this is most likely an error. sanitize
1503
                it and try to process further. */
1504
395k
            if (ps->iid_index[env][bk] < -no_iid_steps) {
1505
104
                fprintf(stderr, "Warning: invalid iid_index: %d < %d\n", ps->iid_index[env][bk],
1506
104
                    -no_iid_steps);
1507
104
                ps->iid_index[env][bk] = -no_iid_steps;
1508
104
                abs_iid = no_iid_steps;
1509
395k
            } else if (ps->iid_index[env][bk] > no_iid_steps) {
1510
98
                fprintf(stderr, "Warning: invalid iid_index: %d > %d\n", ps->iid_index[env][bk],
1511
98
                    no_iid_steps);
1512
98
                ps->iid_index[env][bk] = no_iid_steps;
1513
98
                abs_iid = no_iid_steps;
1514
98
            }
1515
395k
            if (ps->icc_index[env][bk] < 0) {
1516
253
                fprintf(stderr, "Warning: invalid icc_index: %d < 0\n", ps->icc_index[env][bk]);
1517
253
                ps->icc_index[env][bk] = 0;
1518
394k
            } else if (ps->icc_index[env][bk] > 7) {
1519
0
                fprintf(stderr, "Warning: invalid icc_index: %d > 7\n", ps->icc_index[env][bk]);
1520
0
                ps->icc_index[env][bk] = 7;
1521
0
            }
1522
1523
395k
            if (ps->icc_mode < 3)
1524
252k
            {
1525
                /* type 'A' mixing as described in 8.6.4.6.2.1 */
1526
252k
                real_t c_1, c_2;  // COEF
1527
252k
                real_t cosa, sina;  // COEF
1528
252k
                real_t cosb, sinb;  // COEF
1529
252k
                real_t ab1, ab2;  // COEF
1530
252k
                real_t ab3, ab4;  // COEF
1531
1532
                /*
1533
                c_1 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps + iid_index] / 10.0)));
1534
                c_2 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps - iid_index] / 10.0)));
1535
                alpha = 0.5 * acos(quant_rho[icc_index]);
1536
                beta = alpha * ( c_1 - c_2 ) / sqrt(2.0);
1537
                */
1538
1539
                //printf("%d\n", ps->iid_index[env][bk]);
1540
1541
                /* calculate the scalefactors c_1 and c_2 from the intensity differences */
1542
252k
                c_1 = sf_iid[no_iid_steps + ps->iid_index[env][bk]];
1543
252k
                c_2 = sf_iid[no_iid_steps - ps->iid_index[env][bk]];
1544
1545
                /* calculate alpha and beta using the ICC parameters */
1546
252k
                cosa = cos_alphas[ps->icc_index[env][bk]];
1547
252k
                sina = sin_alphas[ps->icc_index[env][bk]];
1548
1549
252k
                if (ps->iid_mode >= 3)
1550
100k
                {
1551
100k
                    cosb = cos_betas_fine[abs_iid][ps->icc_index[env][bk]];
1552
100k
                    sinb = sin_betas_fine[abs_iid][ps->icc_index[env][bk]];
1553
151k
                } else {
1554
151k
                    cosb = cos_betas_normal[abs_iid][ps->icc_index[env][bk]];
1555
151k
                    sinb = sin_betas_normal[abs_iid][ps->icc_index[env][bk]];
1556
151k
                }
1557
1558
252k
                ab1 = MUL_C(cosb, cosa);
1559
252k
                ab2 = MUL_C(sinb, sina);
1560
252k
                ab3 = MUL_C(sinb, cosa);
1561
252k
                ab4 = MUL_C(cosb, sina);
1562
1563
                /* h_xy: COEF */
1564
252k
                RE(h11) = MUL_C(c_2, (ab1 - ab2));
1565
252k
                RE(h12) = MUL_C(c_1, (ab1 + ab2));
1566
252k
                RE(h21) = MUL_C(c_2, (ab3 + ab4));
1567
252k
                RE(h22) = MUL_C(c_1, (ab3 - ab4));
1568
252k
            } else {
1569
                /* type 'B' mixing as described in 8.6.4.6.2.2 */
1570
142k
                real_t sina, cosa;  // COEF
1571
142k
                real_t cosg, sing;  // COEF
1572
1573
                /*
1574
                real_t c, rho, mu, alpha, gamma;
1575
                uint8_t i;
1576
1577
                i = ps->iid_index[env][bk];
1578
                c = (real_t)pow(10.0, ((i)?(((i>0)?1:-1)*quant_iid[((i>0)?i:-i)-1]):0.)/20.0);
1579
                rho = quant_rho[ps->icc_index[env][bk]];
1580
1581
                if (rho == 0.0f && c == 1.)
1582
                {
1583
                    alpha = (real_t)M_PI/4.0f;
1584
                    rho = 0.05f;
1585
                } else {
1586
                    if (rho <= 0.05f)
1587
                    {
1588
                        rho = 0.05f;
1589
                    }
1590
                    alpha = 0.5f*(real_t)atan( (2.0f*c*rho) / (c*c-1.0f) );
1591
1592
                    if (alpha < 0.)
1593
                    {
1594
                        alpha += (real_t)M_PI/2.0f;
1595
                    }
1596
                    if (rho < 0.)
1597
                    {
1598
                        alpha += (real_t)M_PI;
1599
                    }
1600
                }
1601
                mu = c+1.0f/c;
1602
                mu = 1+(4.0f*rho*rho-4.0f)/(mu*mu);
1603
                gamma = (real_t)atan(sqrt((1.0f-sqrt(mu))/(1.0f+sqrt(mu))));
1604
                */
1605
1606
142k
                if (ps->iid_mode >= 3)
1607
70.0k
                {
1608
70.0k
                    cosa = sincos_alphas_B_fine[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1609
70.0k
                    sina = sincos_alphas_B_fine[30 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1610
70.0k
                    cosg = cos_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1611
70.0k
                    sing = sin_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1612
72.4k
                } else {
1613
72.4k
                    cosa = sincos_alphas_B_normal[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1614
72.4k
                    sina = sincos_alphas_B_normal[14 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1615
72.4k
                    cosg = cos_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1616
72.4k
                    sing = sin_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1617
72.4k
                }
1618
1619
142k
                RE(h11) = MUL_C(COEF_SQRT2, MUL_C(cosa, cosg));
1620
142k
                RE(h12) = MUL_C(COEF_SQRT2, MUL_C(sina, cosg));
1621
142k
                RE(h21) = MUL_C(COEF_SQRT2, MUL_C(-cosa, sing));
1622
142k
                RE(h22) = MUL_C(COEF_SQRT2, MUL_C(sina, sing));
1623
142k
            }
1624
395k
            IM(h11) = IM(h12) = IM(h21) = IM(h22) = 0;
1625
1626
            /* calculate phase rotation parameters H_xy */
1627
            /* note that the imaginary part of these parameters are only calculated when
1628
               IPD and OPD are enabled
1629
             */
1630
395k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1631
42.5k
            {
1632
42.5k
                int8_t i;
1633
42.5k
                real_t xy, pq, xypq;  // FRAC
1634
1635
                /* ringbuffer index */
1636
42.5k
                i = ps->phase_hist;
1637
1638
                /* previous value */
1639
#ifdef FIXED_POINT
1640
                /* divide by 4*2, shift right 3 bits;
1641
                   extra halving to avoid overflows; it is ok, because result is normalized */
1642
                RE(tempLeft)  = RE(ps->ipd_prev[bk][i]) >> 3;
1643
                IM(tempLeft)  = IM(ps->ipd_prev[bk][i]) >> 3;
1644
                RE(tempRight) = RE(ps->opd_prev[bk][i]) >> 3;
1645
                IM(tempRight) = IM(ps->opd_prev[bk][i]) >> 3;
1646
#else
1647
42.5k
                RE(tempLeft)  = MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1648
42.5k
                IM(tempLeft)  = MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1649
42.5k
                RE(tempRight) = MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1650
42.5k
                IM(tempRight) = MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1651
42.5k
#endif
1652
1653
                /* save current value */
1654
42.5k
                RE(ps->ipd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->ipd_index[env][bk])];
1655
42.5k
                IM(ps->ipd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->ipd_index[env][bk])];
1656
42.5k
                RE(ps->opd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->opd_index[env][bk])];
1657
42.5k
                IM(ps->opd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->opd_index[env][bk])];
1658
1659
                /* add current value */
1660
#ifdef FIXED_POINT
1661
                /* extra halving to avoid overflows */
1662
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]) >> 1;
1663
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]) >> 1;
1664
                RE(tempRight) += RE(ps->opd_prev[bk][i]) >> 1;
1665
                IM(tempRight) += IM(ps->opd_prev[bk][i]) >> 1;
1666
#else
1667
42.5k
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]);
1668
42.5k
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]);
1669
42.5k
                RE(tempRight) += RE(ps->opd_prev[bk][i]);
1670
42.5k
                IM(tempRight) += IM(ps->opd_prev[bk][i]);
1671
42.5k
#endif
1672
1673
                /* ringbuffer index */
1674
42.5k
                if (i == 0)
1675
21.4k
                {
1676
21.4k
                    i = 2;
1677
21.4k
                }
1678
42.5k
                i--;
1679
1680
                /* get value before previous */
1681
#ifdef FIXED_POINT
1682
                /* dividing by 2*2, shift right 2 bits; extra halving to avoid overflows */
1683
                RE(tempLeft)  += (RE(ps->ipd_prev[bk][i]) >> 2);
1684
                IM(tempLeft)  += (IM(ps->ipd_prev[bk][i]) >> 2);
1685
                RE(tempRight) += (RE(ps->opd_prev[bk][i]) >> 2);
1686
                IM(tempRight) += (IM(ps->opd_prev[bk][i]) >> 2);
1687
#else
1688
42.5k
                RE(tempLeft)  += MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1689
42.5k
                IM(tempLeft)  += MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1690
42.5k
                RE(tempRight) += MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1691
42.5k
                IM(tempRight) += MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1692
42.5k
#endif
1693
1694
#if 0 /* original code */
1695
                ipd = (float)atan2(IM(tempLeft), RE(tempLeft));
1696
                opd = (float)atan2(IM(tempRight), RE(tempRight));
1697
1698
                /* phase rotation */
1699
                RE(phaseLeft) = (float)cos(opd);
1700
                IM(phaseLeft) = (float)sin(opd);
1701
                opd -= ipd;
1702
                RE(phaseRight) = (float)cos(opd);
1703
                IM(phaseRight) = (float)sin(opd);
1704
#else
1705
1706
                // x = IM(tempLeft)
1707
                // y = RE(tempLeft)
1708
                // p = IM(tempRight)
1709
                // q = RE(tempRight)
1710
                // cos(atan2(x,y)) = y/sqrt((x*x) + (y*y))
1711
                // sin(atan2(x,y)) = x/sqrt((x*x) + (y*y))
1712
                // cos(atan2(x,y)-atan2(p,q)) = (y*q + x*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1713
                // sin(atan2(x,y)-atan2(p,q)) = (x*q - y*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1714
1715
42.5k
                xy = magnitude_c(tempRight);
1716
42.5k
                pq = magnitude_c(tempLeft);
1717
1718
42.5k
                if (xy != 0)
1719
42.5k
                {
1720
42.5k
                    RE(phaseLeft) = DIV_F(RE(tempRight), xy);
1721
42.5k
                    IM(phaseLeft) = DIV_F(IM(tempRight), xy);
1722
42.5k
                } else {
1723
0
                    RE(phaseLeft) = 0;
1724
0
                    IM(phaseLeft) = 0;
1725
0
                }
1726
1727
42.5k
                xypq = MUL_F(xy, pq);
1728
1729
42.5k
                if (xypq != 0)
1730
42.5k
                {
1731
42.5k
                    real_t tmp1 = MUL_F(RE(tempRight), RE(tempLeft)) + MUL_F(IM(tempRight), IM(tempLeft));
1732
42.5k
                    real_t tmp2 = MUL_F(IM(tempRight), RE(tempLeft)) - MUL_F(RE(tempRight), IM(tempLeft));
1733
1734
42.5k
                    RE(phaseRight) = DIV_F(tmp1, xypq);
1735
42.5k
                    IM(phaseRight) = DIV_F(tmp2, xypq);
1736
42.5k
                } else {
1737
0
                    RE(phaseRight) = 0;
1738
0
                    IM(phaseRight) = 0;
1739
0
                }
1740
1741
42.5k
#endif
1742
1743
                /* MUL_F(COEF, REAL) = COEF */
1744
42.5k
                IM(h11) = MUL_F(RE(h11), IM(phaseLeft));
1745
42.5k
                IM(h12) = MUL_F(RE(h12), IM(phaseRight));
1746
42.5k
                IM(h21) = MUL_F(RE(h21), IM(phaseLeft));
1747
42.5k
                IM(h22) = MUL_F(RE(h22), IM(phaseRight));
1748
1749
42.5k
                RE(h11) = MUL_F(RE(h11), RE(phaseLeft));
1750
42.5k
                RE(h12) = MUL_F(RE(h12), RE(phaseRight));
1751
42.5k
                RE(h21) = MUL_F(RE(h21), RE(phaseLeft));
1752
42.5k
                RE(h22) = MUL_F(RE(h22), RE(phaseRight));
1753
42.5k
            }
1754
1755
            /* length of the envelope n_e+1 - n_e (in time samples) */
1756
            /* 0 < L <= 32: integer */
1757
395k
            L = (real_t)(ps->border_position[env + 1] - ps->border_position[env]);
1758
1759
            /* obtain final H_xy by means of linear interpolation */
1760
395k
            RE(deltaH11) = (RE(h11) - RE(ps->h11_prev[gr])) / L;
1761
395k
            RE(deltaH12) = (RE(h12) - RE(ps->h12_prev[gr])) / L;
1762
395k
            RE(deltaH21) = (RE(h21) - RE(ps->h21_prev[gr])) / L;
1763
395k
            RE(deltaH22) = (RE(h22) - RE(ps->h22_prev[gr])) / L;
1764
1765
395k
            RE(H11) = RE(ps->h11_prev[gr]);
1766
395k
            RE(H12) = RE(ps->h12_prev[gr]);
1767
395k
            RE(H21) = RE(ps->h21_prev[gr]);
1768
395k
            RE(H22) = RE(ps->h22_prev[gr]);
1769
395k
            IM(H11) = IM(H12) = IM(H21) = IM(H22) = 0;
1770
1771
395k
            RE(ps->h11_prev[gr]) = RE(h11);
1772
395k
            RE(ps->h12_prev[gr]) = RE(h12);
1773
395k
            RE(ps->h21_prev[gr]) = RE(h21);
1774
395k
            RE(ps->h22_prev[gr]) = RE(h22);
1775
1776
            /* only calculate imaginary part when needed */
1777
395k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1778
42.5k
            {
1779
                /* obtain final H_xy by means of linear interpolation */
1780
42.5k
                IM(deltaH11) = (IM(h11) - IM(ps->h11_prev[gr])) / L;
1781
42.5k
                IM(deltaH12) = (IM(h12) - IM(ps->h12_prev[gr])) / L;
1782
42.5k
                IM(deltaH21) = (IM(h21) - IM(ps->h21_prev[gr])) / L;
1783
42.5k
                IM(deltaH22) = (IM(h22) - IM(ps->h22_prev[gr])) / L;
1784
1785
42.5k
                IM(H11) = IM(ps->h11_prev[gr]);
1786
42.5k
                IM(H12) = IM(ps->h12_prev[gr]);
1787
42.5k
                IM(H21) = IM(ps->h21_prev[gr]);
1788
42.5k
                IM(H22) = IM(ps->h22_prev[gr]);
1789
1790
42.5k
                if ((NEGATE_IPD_MASK & ps->map_group2bk[gr]) != 0)
1791
5.84k
                {
1792
5.84k
                    IM(deltaH11) = -IM(deltaH11);
1793
5.84k
                    IM(deltaH12) = -IM(deltaH12);
1794
5.84k
                    IM(deltaH21) = -IM(deltaH21);
1795
5.84k
                    IM(deltaH22) = -IM(deltaH22);
1796
1797
5.84k
                    IM(H11) = -IM(H11);
1798
5.84k
                    IM(H12) = -IM(H12);
1799
5.84k
                    IM(H21) = -IM(H21);
1800
5.84k
                    IM(H22) = -IM(H22);
1801
5.84k
                }
1802
1803
42.5k
                IM(ps->h11_prev[gr]) = IM(h11);
1804
42.5k
                IM(ps->h12_prev[gr]) = IM(h12);
1805
42.5k
                IM(ps->h21_prev[gr]) = IM(h21);
1806
42.5k
                IM(ps->h22_prev[gr]) = IM(h22);
1807
42.5k
            }
1808
1809
            /* apply H_xy to the current envelope band of the decorrelated subband */
1810
6.13M
            for (n = ps->border_position[env]; n < ps->border_position[env + 1]; n++)
1811
5.73M
            {
1812
                /* addition finalises the interpolation over every n */
1813
5.73M
                RE(H11) += RE(deltaH11);
1814
5.73M
                RE(H12) += RE(deltaH12);
1815
5.73M
                RE(H21) += RE(deltaH21);
1816
5.73M
                RE(H22) += RE(deltaH22);
1817
5.73M
                if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1818
528k
                {
1819
528k
                    IM(H11) += IM(deltaH11);
1820
528k
                    IM(H12) += IM(deltaH12);
1821
528k
                    IM(H21) += IM(deltaH21);
1822
528k
                    IM(H22) += IM(deltaH22);
1823
528k
                }
1824
1825
                /* channel is an alias to the subband */
1826
19.5M
                for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1827
13.8M
                {
1828
13.8M
                    complex_t inLeft, inRight;  // precision_of in(Left|Right) == precision_of X_(left|right)
1829
1830
                    /* load decorrelated samples */
1831
13.8M
                    if (gr < ps->num_hybrid_groups)
1832
3.21M
                    {
1833
3.21M
                        RE(inLeft) =  RE(X_hybrid_left[n][sb]);
1834
3.21M
                        IM(inLeft) =  IM(X_hybrid_left[n][sb]);
1835
3.21M
                        RE(inRight) = RE(X_hybrid_right[n][sb]);
1836
3.21M
                        IM(inRight) = IM(X_hybrid_right[n][sb]);
1837
10.6M
                    } else {
1838
10.6M
                        RE(inLeft) =  RE(X_left[n][sb]);
1839
10.6M
                        IM(inLeft) =  IM(X_left[n][sb]);
1840
10.6M
                        RE(inRight) = RE(X_right[n][sb]);
1841
10.6M
                        IM(inRight) = IM(X_right[n][sb]);
1842
10.6M
                    }
1843
1844
                    /* precision_of temp(Left|Right) == precision_of X_(left|right) */
1845
1846
                    /* apply mixing */
1847
13.8M
                    RE(tempLeft) =  MUL_C(RE(H11), RE(inLeft)) + MUL_C(RE(H21), RE(inRight));
1848
13.8M
                    IM(tempLeft) =  MUL_C(RE(H11), IM(inLeft)) + MUL_C(RE(H21), IM(inRight));
1849
13.8M
                    RE(tempRight) = MUL_C(RE(H12), RE(inLeft)) + MUL_C(RE(H22), RE(inRight));
1850
13.8M
                    IM(tempRight) = MUL_C(RE(H12), IM(inLeft)) + MUL_C(RE(H22), IM(inRight));
1851
1852
                    /* only perform imaginary operations when needed */
1853
13.8M
                    if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1854
532k
                    {
1855
                        /* apply rotation */
1856
532k
                        RE(tempLeft)  -= MUL_C(IM(H11), IM(inLeft)) + MUL_C(IM(H21), IM(inRight));
1857
532k
                        IM(tempLeft)  += MUL_C(IM(H11), RE(inLeft)) + MUL_C(IM(H21), RE(inRight));
1858
532k
                        RE(tempRight) -= MUL_C(IM(H12), IM(inLeft)) + MUL_C(IM(H22), IM(inRight));
1859
532k
                        IM(tempRight) += MUL_C(IM(H12), RE(inLeft)) + MUL_C(IM(H22), RE(inRight));
1860
532k
                    }
1861
1862
                    /* store final samples */
1863
13.8M
                    if (gr < ps->num_hybrid_groups)
1864
3.21M
                    {
1865
3.21M
                        RE(X_hybrid_left[n][sb])  = RE(tempLeft);
1866
3.21M
                        IM(X_hybrid_left[n][sb])  = IM(tempLeft);
1867
3.21M
                        RE(X_hybrid_right[n][sb]) = RE(tempRight);
1868
3.21M
                        IM(X_hybrid_right[n][sb]) = IM(tempRight);
1869
10.6M
                    } else {
1870
10.6M
                        RE(X_left[n][sb])  = RE(tempLeft);
1871
10.6M
                        IM(X_left[n][sb])  = IM(tempLeft);
1872
10.6M
                        RE(X_right[n][sb]) = RE(tempRight);
1873
10.6M
                        IM(X_right[n][sb]) = IM(tempRight);
1874
10.6M
                    }
1875
13.8M
                }
1876
5.73M
            }
1877
1878
            /* shift phase smoother's circular buffer index */
1879
395k
            ps->phase_hist++;
1880
395k
            if (ps->phase_hist == 2)
1881
197k
            {
1882
197k
                ps->phase_hist = 0;
1883
197k
            }
1884
395k
        }
1885
184k
    }
1886
5.65k
}
1887
1888
void ps_free(ps_info *ps)
1889
9.37k
{
1890
    /* free hybrid filterbank structures */
1891
9.37k
    hybrid_free(ps->hyb);
1892
1893
9.37k
    faad_free(ps);
1894
9.37k
}
1895
1896
ps_info *ps_init(uint8_t sr_index, uint8_t numTimeSlotsRate)
1897
9.37k
{
1898
9.37k
    uint8_t i;
1899
9.37k
    uint8_t short_delay_band;
1900
1901
9.37k
    ps_info *ps = (ps_info*)faad_malloc(sizeof(ps_info));
1902
9.37k
    memset(ps, 0, sizeof(ps_info));
1903
1904
9.37k
    ps->hyb = hybrid_init(numTimeSlotsRate);
1905
9.37k
    ps->numTimeSlotsRate = numTimeSlotsRate;
1906
1907
9.37k
    ps->ps_data_available = 0;
1908
1909
    /* delay stuff*/
1910
9.37k
    ps->saved_delay = 0;
1911
1912
609k
    for (i = 0; i < 64; i++)
1913
599k
    {
1914
599k
        ps->delay_buf_index_delay[i] = 0;
1915
599k
    }
1916
1917
37.4k
    for (i = 0; i < NO_ALLPASS_LINKS; i++)
1918
28.1k
    {
1919
28.1k
        ps->delay_buf_index_ser[i] = 0;
1920
#ifdef PARAM_32KHZ
1921
        if (sr_index <= 5) /* >= 32 kHz*/
1922
        {
1923
            ps->num_sample_delay_ser[i] = delay_length_d[1][i];
1924
        } else {
1925
            ps->num_sample_delay_ser[i] = delay_length_d[0][i];
1926
        }
1927
#else
1928
28.1k
        (void)sr_index;
1929
        /* THESE ARE CONSTANTS NOW */
1930
28.1k
        ps->num_sample_delay_ser[i] = delay_length_d[i];
1931
28.1k
#endif
1932
28.1k
    }
1933
1934
#ifdef PARAM_32KHZ
1935
    if (sr_index <= 5) /* >= 32 kHz*/
1936
    {
1937
        short_delay_band = 35;
1938
        ps->nr_allpass_bands = 22;
1939
        ps->alpha_decay = FRAC_CONST(0.76592833836465);
1940
        ps->alpha_smooth = FRAC_CONST(0.25);
1941
    } else {
1942
        short_delay_band = 64;
1943
        ps->nr_allpass_bands = 45;
1944
        ps->alpha_decay = FRAC_CONST(0.58664621951003);
1945
        ps->alpha_smooth = FRAC_CONST(0.6);
1946
    }
1947
#else
1948
    /* THESE ARE CONSTANTS NOW */
1949
9.37k
    short_delay_band = 35;
1950
9.37k
    ps->nr_allpass_bands = 22;
1951
9.37k
    ps->alpha_decay = FRAC_CONST(0.76592833836465);
1952
9.37k
    ps->alpha_smooth = FRAC_CONST(0.25);
1953
9.37k
#endif
1954
1955
    /* THESE ARE CONSTANT NOW IF PS IS INDEPENDANT OF SAMPLERATE */
1956
337k
    for (i = 0; i < short_delay_band; i++)
1957
328k
    {
1958
328k
        ps->delay_D[i] = 14;
1959
328k
    }
1960
281k
    for (i = short_delay_band; i < 64; i++)
1961
271k
    {
1962
271k
        ps->delay_D[i] = 1;
1963
271k
    }
1964
1965
    /* mixing and phase */
1966
478k
    for (i = 0; i < 50; i++)
1967
468k
    {
1968
468k
        RE(ps->h11_prev[i]) = 1;
1969
468k
        IM(ps->h11_prev[i]) = 1;
1970
468k
        RE(ps->h12_prev[i]) = 1;
1971
468k
        IM(ps->h12_prev[i]) = 1;
1972
468k
    }
1973
1974
9.37k
    ps->phase_hist = 0;
1975
1976
196k
    for (i = 0; i < 20; i++)
1977
187k
    {
1978
187k
        RE(ps->ipd_prev[i][0]) = 0;
1979
187k
        IM(ps->ipd_prev[i][0]) = 0;
1980
187k
        RE(ps->ipd_prev[i][1]) = 0;
1981
187k
        IM(ps->ipd_prev[i][1]) = 0;
1982
187k
        RE(ps->opd_prev[i][0]) = 0;
1983
187k
        IM(ps->opd_prev[i][0]) = 0;
1984
187k
        RE(ps->opd_prev[i][1]) = 0;
1985
187k
        IM(ps->opd_prev[i][1]) = 0;
1986
187k
    }
1987
1988
9.37k
    return ps;
1989
9.37k
}
1990
1991
/* main Parametric Stereo decoding function */
1992
uint8_t ps_decode(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64])
1993
5.65k
{
1994
5.65k
    qmf_t X_hybrid_left[32][32] = {{{0}}};
1995
5.65k
    qmf_t X_hybrid_right[32][32] = {{{0}}};
1996
1997
    /* delta decoding of the bitstream data */
1998
5.65k
    ps_data_decode(ps);
1999
2000
    /* set up some parameters depending on filterbank type */
2001
5.65k
    if (ps->use34hybrid_bands)
2002
2.14k
    {
2003
2.14k
        ps->group_border = (uint8_t*)group_border34;
2004
2.14k
        ps->map_group2bk = (uint16_t*)map_group2bk34;
2005
2.14k
        ps->num_groups = 32+18;
2006
2.14k
        ps->num_hybrid_groups = 32;
2007
2.14k
        ps->nr_par_bands = 34;
2008
2.14k
        ps->decay_cutoff = 5;
2009
3.50k
    } else {
2010
3.50k
        ps->group_border = (uint8_t*)group_border20;
2011
3.50k
        ps->map_group2bk = (uint16_t*)map_group2bk20;
2012
3.50k
        ps->num_groups = 10+12;
2013
3.50k
        ps->num_hybrid_groups = 10;
2014
3.50k
        ps->nr_par_bands = 20;
2015
3.50k
        ps->decay_cutoff = 3;
2016
3.50k
    }
2017
2018
    /* Perform further analysis on the lowest subbands to get a higher
2019
     * frequency resolution
2020
     */
2021
5.65k
    hybrid_analysis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
2022
5.65k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2023
2024
    /* decorrelate mono signal */
2025
5.65k
    ps_decorrelate(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
2026
2027
    /* apply mixing and phase parameters */
2028
5.65k
    ps_mix_phase(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
2029
2030
    /* hybrid synthesis, to rebuild the SBR QMF matrices */
2031
5.65k
    hybrid_synthesis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
2032
5.65k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2033
2034
5.65k
    hybrid_synthesis((hyb_info*)ps->hyb, X_right, X_hybrid_right,
2035
5.65k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2036
2037
5.65k
    return 0;
2038
5.65k
}
2039
2040
#endif