Coverage Report

Created: 2025-12-31 06:11

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/proc/self/cwd/libfaad/ps_dec.c
Line
Count
Source
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: ps_dec.c,v 1.16 2009/01/26 22:32:31 menno Exp $
29
**/
30
31
#include "common.h"
32
33
#ifdef PS_DEC
34
35
#include <stdlib.h>
36
#include <stdio.h>
37
#include "ps_dec.h"
38
#include "ps_tables.h"
39
40
/* constants */
41
14.5M
#define NEGATE_IPD_MASK            (0x1000)
42
108k
#define DECAY_SLOPE                FRAC_CONST(0.05)
43
#define COEF_SQRT2                 COEF_CONST(1.4142135623731)
44
45
/* tables */
46
/* filters are mirrored in coef 6, second half left out */
47
static const real_t p8_13_20[7] =
48
{
49
    FRAC_CONST(0.00746082949812),
50
    FRAC_CONST(0.02270420949825),
51
    FRAC_CONST(0.04546865930473),
52
    FRAC_CONST(0.07266113929591),
53
    FRAC_CONST(0.09885108575264),
54
    FRAC_CONST(0.11793710567217),
55
    FRAC_CONST(0.125)
56
};
57
58
static const real_t p2_13_20[7] =
59
{
60
    FRAC_CONST(0.0),
61
    FRAC_CONST(0.01899487526049),
62
    FRAC_CONST(0.0),
63
    FRAC_CONST(-0.07293139167538),
64
    FRAC_CONST(0.0),
65
    FRAC_CONST(0.30596630545168),
66
    FRAC_CONST(0.5)
67
};
68
69
static const real_t p12_13_34[7] =
70
{
71
    FRAC_CONST(0.04081179924692),
72
    FRAC_CONST(0.03812810994926),
73
    FRAC_CONST(0.05144908135699),
74
    FRAC_CONST(0.06399831151592),
75
    FRAC_CONST(0.07428313801106),
76
    FRAC_CONST(0.08100347892914),
77
    FRAC_CONST(0.08333333333333)
78
};
79
80
static const real_t p8_13_34[7] =
81
{
82
    FRAC_CONST(0.01565675600122),
83
    FRAC_CONST(0.03752716391991),
84
    FRAC_CONST(0.05417891378782),
85
    FRAC_CONST(0.08417044116767),
86
    FRAC_CONST(0.10307344158036),
87
    FRAC_CONST(0.12222452249753),
88
    FRAC_CONST(0.125)
89
};
90
91
static const real_t p4_13_34[7] =
92
{
93
    FRAC_CONST(-0.05908211155639),
94
    FRAC_CONST(-0.04871498374946),
95
    FRAC_CONST(0.0),
96
    FRAC_CONST(0.07778723915851),
97
    FRAC_CONST(0.16486303567403),
98
    FRAC_CONST(0.23279856662996),
99
    FRAC_CONST(0.25)
100
};
101
102
#ifdef PARAM_32KHZ
103
static const uint8_t delay_length_d[2][NO_ALLPASS_LINKS] = {
104
    { 1, 2, 3 } /* d_24kHz */,
105
    { 3, 4, 5 } /* d_48kHz */
106
};
107
#else
108
static const uint8_t delay_length_d[NO_ALLPASS_LINKS] = {
109
    3, 4, 5 /* d_48kHz */
110
};
111
#endif
112
static const real_t filter_a[NO_ALLPASS_LINKS] = { /* a(m) = exp(-d_48kHz(m)/7) */
113
    FRAC_CONST(0.65143905753106),
114
    FRAC_CONST(0.56471812200776),
115
    FRAC_CONST(0.48954165955695)
116
};
117
118
static const uint8_t group_border20[10+12 + 1] =
119
{
120
    6, 7, 0, 1, 2, 3, /* 6 subqmf subbands */
121
    9, 8,             /* 2 subqmf subbands */
122
    10, 11,           /* 2 subqmf subbands */
123
    3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 35, 64
124
};
125
126
static const uint8_t group_border34[32+18 + 1] =
127
{
128
     0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, /* 12 subqmf subbands */
129
     12, 13, 14, 15, 16, 17, 18, 19,                 /*  8 subqmf subbands */
130
     20, 21, 22, 23,                                 /*  4 subqmf subbands */
131
     24, 25, 26, 27,                                 /*  4 subqmf subbands */
132
     28, 29, 30, 31,                                 /*  4 subqmf subbands */
133
     32-27, 33-27, 34-27, 35-27, 36-27, 37-27, 38-27, 40-27, 42-27, 44-27, 46-27, 48-27, 51-27, 54-27, 57-27, 60-27, 64-27, 68-27, 91-27
134
};
135
136
static const uint16_t map_group2bk20[10+12] =
137
{
138
    (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
139
    0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
140
};
141
142
static const uint16_t map_group2bk34[32+18] =
143
{
144
    0,  1,  2,  3,  4,  5,  6,  6,  7, (NEGATE_IPD_MASK | 2), (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
145
    10, 10, 4,  5,  6,  7,  8,  9,
146
    10, 11, 12, 9,
147
    14, 11, 12, 13,
148
    14, 15, 16, 13,
149
    16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33
150
};
151
152
/* type definitions */
153
typedef struct
154
{
155
    uint8_t frame_len;
156
    uint8_t resolution20[3];
157
    uint8_t resolution34[5];
158
159
    qmf_t *work;
160
    qmf_t **buffer;
161
    qmf_t **temp;
162
} hyb_info;
163
164
/* static function declarations */
165
static void ps_data_decode(ps_info *ps);
166
static hyb_info *hybrid_init(uint8_t numTimeSlotsRate);
167
static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
168
                            qmf_t *buffer, qmf_t **X_hybrid);
169
static void INLINE DCT3_4_unscaled(real_t *y, real_t *x);
170
static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
171
                            qmf_t *buffer, qmf_t **X_hybrid);
172
static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
173
                            uint8_t use34, uint8_t numTimeSlotsRate);
174
static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
175
                             uint8_t use34, uint8_t numTimeSlotsRate);
176
static int8_t delta_clip(int8_t i, int8_t min, int8_t max);
177
static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
178
                         uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
179
                         int8_t min_index, int8_t max_index);
180
static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
181
                                uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
182
                                int8_t and_modulo);
183
static void map20indexto34(int8_t *index, uint8_t bins);
184
#ifdef PS_LOW_POWER
185
static void map34indexto20(int8_t *index, uint8_t bins);
186
#endif
187
static void ps_data_decode(ps_info *ps);
188
static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
189
                           qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
190
static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
191
                         qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
192
193
/*  */
194
195
196
static hyb_info *hybrid_init(uint8_t numTimeSlotsRate)
197
9.40k
{
198
9.40k
    uint8_t i;
199
200
9.40k
    hyb_info *hyb = (hyb_info*)faad_malloc(sizeof(hyb_info));
201
202
9.40k
    hyb->resolution34[0] = 12;
203
9.40k
    hyb->resolution34[1] = 8;
204
9.40k
    hyb->resolution34[2] = 4;
205
9.40k
    hyb->resolution34[3] = 4;
206
9.40k
    hyb->resolution34[4] = 4;
207
208
9.40k
    hyb->resolution20[0] = 8;
209
9.40k
    hyb->resolution20[1] = 2;
210
9.40k
    hyb->resolution20[2] = 2;
211
212
9.40k
    hyb->frame_len = numTimeSlotsRate;
213
214
9.40k
    hyb->work = (qmf_t*)faad_malloc((hyb->frame_len+12) * sizeof(qmf_t));
215
9.40k
    memset(hyb->work, 0, (hyb->frame_len+12) * sizeof(qmf_t));
216
217
9.40k
    hyb->buffer = (qmf_t**)faad_malloc(5 * sizeof(qmf_t*));
218
56.4k
    for (i = 0; i < 5; i++)
219
47.0k
    {
220
47.0k
        hyb->buffer[i] = (qmf_t*)faad_malloc(hyb->frame_len * sizeof(qmf_t));
221
47.0k
        memset(hyb->buffer[i], 0, hyb->frame_len * sizeof(qmf_t));
222
47.0k
    }
223
224
9.40k
    hyb->temp = (qmf_t**)faad_malloc(hyb->frame_len * sizeof(qmf_t*));
225
308k
    for (i = 0; i < hyb->frame_len; i++)
226
298k
    {
227
298k
        hyb->temp[i] = (qmf_t*)faad_malloc(12 /*max*/ * sizeof(qmf_t));
228
298k
    }
229
230
9.40k
    return hyb;
231
9.40k
}
232
233
static void hybrid_free(hyb_info *hyb)
234
9.40k
{
235
9.40k
    uint8_t i;
236
237
9.40k
  if (!hyb) return;
238
239
9.40k
    if (hyb->work)
240
9.40k
        faad_free(hyb->work);
241
242
56.4k
    for (i = 0; i < 5; i++)
243
47.0k
    {
244
47.0k
        if (hyb->buffer[i])
245
47.0k
            faad_free(hyb->buffer[i]);
246
47.0k
    }
247
9.40k
    if (hyb->buffer)
248
9.40k
        faad_free(hyb->buffer);
249
250
308k
    for (i = 0; i < hyb->frame_len; i++)
251
298k
    {
252
298k
        if (hyb->temp[i])
253
298k
            faad_free(hyb->temp[i]);
254
298k
    }
255
9.40k
    if (hyb->temp)
256
9.40k
        faad_free(hyb->temp);
257
258
9.40k
    faad_free(hyb);
259
9.40k
}
260
261
/* real filter, size 2 */
262
static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
263
                            qmf_t *buffer, qmf_t **X_hybrid)
264
6.79k
{
265
6.79k
    uint8_t i;
266
6.79k
    (void)hyb;  /* TODO: remove parameter? */
267
268
221k
    for (i = 0; i < frame_len; i++)
269
214k
    {
270
214k
        real_t r0 = MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i])));
271
214k
        real_t r1 = MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i])));
272
214k
        real_t r2 = MUL_F(filter[2],(QMF_RE(buffer[2+i]) + QMF_RE(buffer[10+i])));
273
214k
        real_t r3 = MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
274
214k
        real_t r4 = MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
275
214k
        real_t r5 = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
276
214k
        real_t r6 = MUL_F(filter[6],QMF_RE(buffer[6+i]));
277
214k
        real_t i0 = MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i])));
278
214k
        real_t i1 = MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i])));
279
214k
        real_t i2 = MUL_F(filter[2],(QMF_IM(buffer[2+i]) + QMF_IM(buffer[10+i])));
280
214k
        real_t i3 = MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
281
214k
        real_t i4 = MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
282
214k
        real_t i5 = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
283
214k
        real_t i6 = MUL_F(filter[6],QMF_IM(buffer[6+i]));
284
285
        /* q = 0 */
286
214k
        QMF_RE(X_hybrid[i][0]) = r0 + r1 + r2 + r3 + r4 + r5 + r6;
287
214k
        QMF_IM(X_hybrid[i][0]) = i0 + i1 + i2 + i3 + i4 + i5 + i6;
288
289
        /* q = 1 */
290
214k
        QMF_RE(X_hybrid[i][1]) = r0 - r1 + r2 - r3 + r4 - r5 + r6;
291
214k
        QMF_IM(X_hybrid[i][1]) = i0 - i1 + i2 - i3 + i4 - i5 + i6;
292
214k
    }
293
6.79k
}
294
295
/* complex filter, size 4 */
296
static void channel_filter4(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
297
                            qmf_t *buffer, qmf_t **X_hybrid)
298
6.87k
{
299
6.87k
    uint8_t i;
300
6.87k
    real_t input_re1[2], input_re2[2], input_im1[2], input_im2[2];
301
6.87k
    (void)hyb;  /* TODO: remove parameter? */
302
303
220k
    for (i = 0; i < frame_len; i++)
304
213k
    {
305
213k
        input_re1[0] = -MUL_F(filter[2], (QMF_RE(buffer[i+2]) + QMF_RE(buffer[i+10]))) +
306
213k
            MUL_F(filter[6], QMF_RE(buffer[i+6]));
307
213k
        input_re1[1] = MUL_F(FRAC_CONST(-0.70710678118655),
308
213k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) + QMF_RE(buffer[i+11]))) +
309
213k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) + QMF_RE(buffer[i+9]))) -
310
213k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) + QMF_RE(buffer[i+7])))));
311
312
213k
        input_im1[0] = MUL_F(filter[0], (QMF_IM(buffer[i+0]) - QMF_IM(buffer[i+12]))) -
313
213k
            MUL_F(filter[4], (QMF_IM(buffer[i+4]) - QMF_IM(buffer[i+8])));
314
213k
        input_im1[1] = MUL_F(FRAC_CONST(0.70710678118655),
315
213k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) - QMF_IM(buffer[i+11]))) -
316
213k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) - QMF_IM(buffer[i+9]))) -
317
213k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) - QMF_IM(buffer[i+7])))));
318
319
213k
        input_re2[0] = MUL_F(filter[0], (QMF_RE(buffer[i+0]) - QMF_RE(buffer[i+12]))) -
320
213k
            MUL_F(filter[4], (QMF_RE(buffer[i+4]) - QMF_RE(buffer[i+8])));
321
213k
        input_re2[1] = MUL_F(FRAC_CONST(0.70710678118655),
322
213k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) - QMF_RE(buffer[i+11]))) -
323
213k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) - QMF_RE(buffer[i+9]))) -
324
213k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) - QMF_RE(buffer[i+7])))));
325
326
213k
        input_im2[0] = -MUL_F(filter[2], (QMF_IM(buffer[i+2]) + QMF_IM(buffer[i+10]))) +
327
213k
            MUL_F(filter[6], QMF_IM(buffer[i+6]));
328
213k
        input_im2[1] = MUL_F(FRAC_CONST(-0.70710678118655),
329
213k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) + QMF_IM(buffer[i+11]))) +
330
213k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) + QMF_IM(buffer[i+9]))) -
331
213k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) + QMF_IM(buffer[i+7])))));
332
333
        /* q == 0 */
334
213k
        QMF_RE(X_hybrid[i][0]) =  input_re1[0] + input_re1[1] + input_im1[0] + input_im1[1];
335
213k
        QMF_IM(X_hybrid[i][0]) = -input_re2[0] - input_re2[1] + input_im2[0] + input_im2[1];
336
337
        /* q == 1 */
338
213k
        QMF_RE(X_hybrid[i][1]) =  input_re1[0] - input_re1[1] - input_im1[0] + input_im1[1];
339
213k
        QMF_IM(X_hybrid[i][1]) =  input_re2[0] - input_re2[1] + input_im2[0] - input_im2[1];
340
341
        /* q == 2 */
342
213k
        QMF_RE(X_hybrid[i][2]) =  input_re1[0] - input_re1[1] + input_im1[0] - input_im1[1];
343
213k
        QMF_IM(X_hybrid[i][2]) = -input_re2[0] + input_re2[1] + input_im2[0] - input_im2[1];
344
345
        /* q == 3 */
346
213k
        QMF_RE(X_hybrid[i][3]) =  input_re1[0] + input_re1[1] - input_im1[0] - input_im1[1];
347
213k
        QMF_IM(X_hybrid[i][3]) =  input_re2[0] + input_re2[1] + input_im2[0] + input_im2[1];
348
213k
    }
349
6.87k
}
350
351
static void INLINE DCT3_4_unscaled(real_t *y, real_t *x)
352
713k
{
353
713k
    real_t f0, f1, f2, f3, f4, f5, f6, f7, f8;
354
355
713k
    f0 = MUL_F(x[2], FRAC_CONST(0.7071067811865476));
356
713k
    f1 = x[0] - f0;
357
713k
    f2 = x[0] + f0;
358
713k
    f3 = x[1] + x[3];
359
713k
    f4 = MUL_C(x[1], COEF_CONST(1.3065629648763766));
360
713k
    f5 = MUL_F(f3, FRAC_CONST(-0.9238795325112866));
361
713k
    f6 = MUL_F(x[3], FRAC_CONST(-0.5411961001461967));
362
713k
    f7 = f4 + f5;
363
713k
    f8 = f6 - f5;
364
713k
    y[3] = f2 - f8;
365
713k
    y[0] = f2 + f8;
366
713k
    y[2] = f1 - f7;
367
713k
    y[1] = f1 + f7;
368
713k
}
369
370
/* complex filter, size 8 */
371
static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
372
                            qmf_t *buffer, qmf_t **X_hybrid)
373
5.68k
{
374
5.68k
    uint8_t i, n;
375
5.68k
    real_t input_re1[4], input_re2[4], input_im1[4], input_im2[4];
376
5.68k
    real_t x[4];
377
5.68k
    (void)hyb;  /* TODO: remove parameter? */
378
379
184k
    for (i = 0; i < frame_len; i++)
380
178k
    {
381
178k
        input_re1[0] =  MUL_F(filter[6],QMF_RE(buffer[6+i]));
382
178k
        input_re1[1] =  MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
383
178k
        input_re1[2] = -MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i]))) + MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
384
178k
        input_re1[3] = -MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i]))) + MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
385
386
178k
        input_im1[0] = MUL_F(filter[5],(QMF_IM(buffer[7+i]) - QMF_IM(buffer[5+i])));
387
178k
        input_im1[1] = MUL_F(filter[0],(QMF_IM(buffer[12+i]) - QMF_IM(buffer[0+i]))) + MUL_F(filter[4],(QMF_IM(buffer[8+i]) - QMF_IM(buffer[4+i])));
388
178k
        input_im1[2] = MUL_F(filter[1],(QMF_IM(buffer[11+i]) - QMF_IM(buffer[1+i]))) + MUL_F(filter[3],(QMF_IM(buffer[9+i]) - QMF_IM(buffer[3+i])));
389
178k
        input_im1[3] = MUL_F(filter[2],(QMF_IM(buffer[10+i]) - QMF_IM(buffer[2+i])));
390
391
891k
        for (n = 0; n < 4; n++)
392
713k
        {
393
713k
            x[n] = input_re1[n] - input_im1[3-n];
394
713k
        }
395
178k
        DCT3_4_unscaled(x, x);
396
178k
        QMF_RE(X_hybrid[i][7]) = x[0];
397
178k
        QMF_RE(X_hybrid[i][5]) = x[2];
398
178k
        QMF_RE(X_hybrid[i][3]) = x[3];
399
178k
        QMF_RE(X_hybrid[i][1]) = x[1];
400
401
891k
        for (n = 0; n < 4; n++)
402
713k
        {
403
713k
            x[n] = input_re1[n] + input_im1[3-n];
404
713k
        }
405
178k
        DCT3_4_unscaled(x, x);
406
178k
        QMF_RE(X_hybrid[i][6]) = x[1];
407
178k
        QMF_RE(X_hybrid[i][4]) = x[3];
408
178k
        QMF_RE(X_hybrid[i][2]) = x[2];
409
178k
        QMF_RE(X_hybrid[i][0]) = x[0];
410
411
178k
        input_im2[0] =  MUL_F(filter[6],QMF_IM(buffer[6+i]));
412
178k
        input_im2[1] =  MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
413
178k
        input_im2[2] = -MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i]))) + MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
414
178k
        input_im2[3] = -MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i]))) + MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
415
416
178k
        input_re2[0] = MUL_F(filter[5],(QMF_RE(buffer[7+i]) - QMF_RE(buffer[5+i])));
417
178k
        input_re2[1] = MUL_F(filter[0],(QMF_RE(buffer[12+i]) - QMF_RE(buffer[0+i]))) + MUL_F(filter[4],(QMF_RE(buffer[8+i]) - QMF_RE(buffer[4+i])));
418
178k
        input_re2[2] = MUL_F(filter[1],(QMF_RE(buffer[11+i]) - QMF_RE(buffer[1+i]))) + MUL_F(filter[3],(QMF_RE(buffer[9+i]) - QMF_RE(buffer[3+i])));
419
178k
        input_re2[3] = MUL_F(filter[2],(QMF_RE(buffer[10+i]) - QMF_RE(buffer[2+i])));
420
421
891k
        for (n = 0; n < 4; n++)
422
713k
        {
423
713k
            x[n] = input_im2[n] + input_re2[3-n];
424
713k
        }
425
178k
        DCT3_4_unscaled(x, x);
426
178k
        QMF_IM(X_hybrid[i][7]) = x[0];
427
178k
        QMF_IM(X_hybrid[i][5]) = x[2];
428
178k
        QMF_IM(X_hybrid[i][3]) = x[3];
429
178k
        QMF_IM(X_hybrid[i][1]) = x[1];
430
431
891k
        for (n = 0; n < 4; n++)
432
713k
        {
433
713k
            x[n] = input_im2[n] - input_re2[3-n];
434
713k
        }
435
178k
        DCT3_4_unscaled(x, x);
436
178k
        QMF_IM(X_hybrid[i][6]) = x[1];
437
178k
        QMF_IM(X_hybrid[i][4]) = x[3];
438
178k
        QMF_IM(X_hybrid[i][2]) = x[2];
439
178k
        QMF_IM(X_hybrid[i][0]) = x[0];
440
178k
    }
441
5.68k
}
442
443
static void INLINE DCT3_6_unscaled(real_t *y, real_t *x)
444
284k
{
445
284k
    real_t f0, f1, f2, f3, f4, f5, f6, f7;
446
447
284k
    f0 = MUL_F(x[3], FRAC_CONST(0.70710678118655));
448
284k
    f1 = x[0] + f0;
449
284k
    f2 = x[0] - f0;
450
284k
    f3 = MUL_F((x[1] - x[5]), FRAC_CONST(0.70710678118655));
451
284k
    f4 = MUL_F(x[2], FRAC_CONST(0.86602540378444)) + MUL_F(x[4], FRAC_CONST(0.5));
452
284k
    f5 = f4 - x[4];
453
284k
    f6 = MUL_F(x[1], FRAC_CONST(0.96592582628907)) + MUL_F(x[5], FRAC_CONST(0.25881904510252));
454
284k
    f7 = f6 - f3;
455
284k
    y[0] = f1 + f6 + f4;
456
284k
    y[1] = f2 + f3 - x[4];
457
284k
    y[2] = f7 + f2 - f5;
458
284k
    y[3] = f1 - f7 - f5;
459
284k
    y[4] = f1 - f3 - x[4];
460
284k
    y[5] = f2 - f6 + f4;
461
284k
}
462
463
/* complex filter, size 12 */
464
static void channel_filter12(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
465
                             qmf_t *buffer, qmf_t **X_hybrid)
466
2.29k
{
467
2.29k
    uint8_t i, n;
468
2.29k
    real_t input_re1[6], input_re2[6], input_im1[6], input_im2[6];
469
2.29k
    real_t out_re1[6], out_re2[6], out_im1[6], out_im2[6];
470
2.29k
    (void)hyb;  /* TODO: remove parameter? */
471
472
73.4k
    for (i = 0; i < frame_len; i++)
473
71.1k
    {
474
497k
        for (n = 0; n < 6; n++)
475
426k
        {
476
426k
            if (n == 0)
477
71.1k
            {
478
71.1k
                input_re1[0] = MUL_F(QMF_RE(buffer[6+i]), filter[6]);
479
71.1k
                input_re2[0] = MUL_F(QMF_IM(buffer[6+i]), filter[6]);
480
355k
            } else {
481
355k
                input_re1[6-n] = MUL_F((QMF_RE(buffer[n+i]) + QMF_RE(buffer[12-n+i])), filter[n]);
482
355k
                input_re2[6-n] = MUL_F((QMF_IM(buffer[n+i]) + QMF_IM(buffer[12-n+i])), filter[n]);
483
355k
            }
484
426k
            input_im2[n] = MUL_F((QMF_RE(buffer[n+i]) - QMF_RE(buffer[12-n+i])), filter[n]);
485
426k
            input_im1[n] = MUL_F((QMF_IM(buffer[n+i]) - QMF_IM(buffer[12-n+i])), filter[n]);
486
426k
        }
487
488
71.1k
        DCT3_6_unscaled(out_re1, input_re1);
489
71.1k
        DCT3_6_unscaled(out_re2, input_re2);
490
491
71.1k
        DCT3_6_unscaled(out_im1, input_im1);
492
71.1k
        DCT3_6_unscaled(out_im2, input_im2);
493
494
284k
        for (n = 0; n < 6; n += 2)
495
213k
        {
496
213k
            QMF_RE(X_hybrid[i][n]) = out_re1[n] - out_im1[n];
497
213k
            QMF_IM(X_hybrid[i][n]) = out_re2[n] + out_im2[n];
498
213k
            QMF_RE(X_hybrid[i][n+1]) = out_re1[n+1] + out_im1[n+1];
499
213k
            QMF_IM(X_hybrid[i][n+1]) = out_re2[n+1] - out_im2[n+1];
500
501
213k
            QMF_RE(X_hybrid[i][10-n]) = out_re1[n+1] - out_im1[n+1];
502
213k
            QMF_IM(X_hybrid[i][10-n]) = out_re2[n+1] + out_im2[n+1];
503
213k
            QMF_RE(X_hybrid[i][11-n]) = out_re1[n] + out_im1[n];
504
213k
            QMF_IM(X_hybrid[i][11-n]) = out_re2[n] - out_im2[n];
505
213k
        }
506
71.1k
    }
507
2.29k
}
508
509
/* Hybrid analysis: further split up QMF subbands
510
 * to improve frequency resolution
511
 */
512
static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
513
                            uint8_t use34, uint8_t numTimeSlotsRate)
514
5.68k
{
515
5.68k
    uint8_t k, n, band;
516
5.68k
    uint8_t offset = 0;
517
5.68k
    uint8_t qmf_bands = (use34) ? 5 : 3;
518
5.68k
    uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
519
520
27.3k
    for (band = 0; band < qmf_bands; band++)
521
21.6k
    {
522
        /* build working buffer */
523
21.6k
        memcpy(hyb->work, hyb->buffer[band], 12 * sizeof(qmf_t));
524
525
        /* add new samples */
526
698k
        for (n = 0; n < hyb->frame_len; n++)
527
677k
        {
528
677k
            QMF_RE(hyb->work[12 + n]) = QMF_RE(X[n + 6 /*delay*/][band]);
529
677k
            QMF_IM(hyb->work[12 + n]) = QMF_IM(X[n + 6 /*delay*/][band]);
530
677k
        }
531
532
        /* store samples */
533
21.6k
        memcpy(hyb->buffer[band], hyb->work + hyb->frame_len, 12 * sizeof(qmf_t));
534
535
536
21.6k
        switch(resolution[band])
537
21.6k
        {
538
6.79k
        case 2:
539
            /* Type B real filter, Q[p] = 2 */
540
6.79k
            channel_filter2(hyb, hyb->frame_len, p2_13_20, hyb->work, hyb->temp);
541
6.79k
            break;
542
6.87k
        case 4:
543
            /* Type A complex filter, Q[p] = 4 */
544
6.87k
            channel_filter4(hyb, hyb->frame_len, p4_13_34, hyb->work, hyb->temp);
545
6.87k
            break;
546
5.68k
        case 8:
547
            /* Type A complex filter, Q[p] = 8 */
548
5.68k
            channel_filter8(hyb, hyb->frame_len, (use34) ? p8_13_34 : p8_13_20,
549
5.68k
                hyb->work, hyb->temp);
550
5.68k
            break;
551
2.29k
        case 12:
552
            /* Type A complex filter, Q[p] = 12 */
553
2.29k
            channel_filter12(hyb, hyb->frame_len, p12_13_34, hyb->work, hyb->temp);
554
2.29k
            break;
555
21.6k
        }
556
557
698k
        for (n = 0; n < hyb->frame_len; n++)
558
677k
        {
559
4.23M
            for (k = 0; k < resolution[band]; k++)
560
3.56M
            {
561
3.56M
                QMF_RE(X_hybrid[n][offset + k]) = QMF_RE(hyb->temp[n][k]);
562
3.56M
                QMF_IM(X_hybrid[n][offset + k]) = QMF_IM(hyb->temp[n][k]);
563
3.56M
            }
564
677k
        }
565
21.6k
        offset += resolution[band];
566
21.6k
    }
567
568
    /* group hybrid channels */
569
5.68k
    if (!use34)
570
3.39k
    {
571
110k
        for (n = 0; n < numTimeSlotsRate; n++)
572
107k
        {
573
107k
            QMF_RE(X_hybrid[n][3]) += QMF_RE(X_hybrid[n][4]);
574
107k
            QMF_IM(X_hybrid[n][3]) += QMF_IM(X_hybrid[n][4]);
575
107k
            QMF_RE(X_hybrid[n][4]) = 0;
576
107k
            QMF_IM(X_hybrid[n][4]) = 0;
577
578
107k
            QMF_RE(X_hybrid[n][2]) += QMF_RE(X_hybrid[n][5]);
579
107k
            QMF_IM(X_hybrid[n][2]) += QMF_IM(X_hybrid[n][5]);
580
107k
            QMF_RE(X_hybrid[n][5]) = 0;
581
107k
            QMF_IM(X_hybrid[n][5]) = 0;
582
107k
        }
583
3.39k
    }
584
5.68k
}
585
586
static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
587
                             uint8_t use34, uint8_t numTimeSlotsRate)
588
11.3k
{
589
11.3k
    uint8_t k, n, band;
590
11.3k
    uint8_t offset = 0;
591
11.3k
    uint8_t qmf_bands = (use34) ? 5 : 3;
592
11.3k
    uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
593
11.3k
    (void)numTimeSlotsRate;  /* TODO: remove parameter? */
594
595
54.6k
    for(band = 0; band < qmf_bands; band++)
596
43.2k
    {
597
1.39M
        for (n = 0; n < hyb->frame_len; n++)
598
1.35M
        {
599
1.35M
            QMF_RE(X[n][band]) = 0;
600
1.35M
            QMF_IM(X[n][band]) = 0;
601
602
8.47M
            for (k = 0; k < resolution[band]; k++)
603
7.12M
            {
604
7.12M
                QMF_RE(X[n][band]) += QMF_RE(X_hybrid[n][offset + k]);
605
7.12M
                QMF_IM(X[n][band]) += QMF_IM(X_hybrid[n][offset + k]);
606
7.12M
            }
607
1.35M
        }
608
43.2k
        offset += resolution[band];
609
43.2k
    }
610
11.3k
}
611
612
/* limits the value i to the range [min,max] */
613
static int8_t delta_clip(int8_t i, int8_t min, int8_t max)
614
88.0k
{
615
88.0k
    if (i < min)
616
8.58k
        return min;
617
79.4k
    else if (i > max)
618
1.37k
        return max;
619
78.0k
    else
620
78.0k
        return i;
621
88.0k
}
622
623
//int iid = 0;
624
625
/* delta decode array */
626
static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
627
                         uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
628
                         int8_t min_index, int8_t max_index)
629
17.2k
{
630
17.2k
    int8_t i;
631
632
17.2k
    if (enable == 1)
633
7.76k
    {
634
7.76k
        if (dt_flag == 0)
635
4.99k
        {
636
            /* delta coded in frequency direction */
637
4.99k
            index[0] = 0 + index[0];
638
4.99k
            index[0] = delta_clip(index[0], min_index, max_index);
639
640
60.4k
            for (i = 1; i < nr_par; i++)
641
55.4k
            {
642
55.4k
                index[i] = index[i-1] + index[i];
643
55.4k
                index[i] = delta_clip(index[i], min_index, max_index);
644
55.4k
            }
645
4.99k
        } else {
646
            /* delta coded in time direction */
647
30.3k
            for (i = 0; i < nr_par; i++)
648
27.5k
            {
649
                //int8_t tmp2;
650
                //int8_t tmp = index[i];
651
652
                //printf("%d %d\n", index_prev[i*stride], index[i]);
653
                //printf("%d\n", index[i]);
654
655
27.5k
                index[i] = index_prev[i*stride] + index[i];
656
                //tmp2 = index[i];
657
27.5k
                index[i] = delta_clip(index[i], min_index, max_index);
658
659
                //if (iid)
660
                //{
661
                //    if (index[i] == 7)
662
                //    {
663
                //        printf("%d %d %d\n", index_prev[i*stride], tmp, tmp2);
664
                //    }
665
                //}
666
27.5k
            }
667
2.77k
        }
668
9.50k
    } else {
669
        /* set indices to zero */
670
18.2k
        for (i = 0; i < nr_par; i++)
671
8.71k
        {
672
8.71k
            index[i] = 0;
673
8.71k
        }
674
9.50k
    }
675
676
    /* coarse */
677
17.2k
    if (stride == 2)
678
10.3k
    {
679
34.3k
        for (i = (nr_par<<1)-1; i > 0; i--)
680
24.0k
        {
681
24.0k
            index[i] = index[i>>1];
682
24.0k
        }
683
10.3k
    }
684
17.2k
}
685
686
/* delta modulo decode array */
687
/* in: log2 value of the modulo value to allow using AND instead of MOD */
688
static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
689
                                uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
690
                                int8_t and_modulo)
691
17.2k
{
692
17.2k
    int8_t i;
693
694
17.2k
    if (enable == 1)
695
4.81k
    {
696
4.81k
        if (dt_flag == 0)
697
1.96k
        {
698
            /* delta coded in frequency direction */
699
1.96k
            index[0] = 0 + index[0];
700
1.96k
            index[0] &= and_modulo;
701
702
7.67k
            for (i = 1; i < nr_par; i++)
703
5.71k
            {
704
5.71k
                index[i] = index[i-1] + index[i];
705
5.71k
                index[i] &= and_modulo;
706
5.71k
            }
707
2.85k
        } else {
708
            /* delta coded in time direction */
709
8.36k
            for (i = 0; i < nr_par; i++)
710
5.51k
            {
711
5.51k
                index[i] = index_prev[i*stride] + index[i];
712
5.51k
                index[i] &= and_modulo;
713
5.51k
            }
714
2.85k
        }
715
12.4k
    } else {
716
        /* set indices to zero */
717
56.7k
        for (i = 0; i < nr_par; i++)
718
44.3k
        {
719
44.3k
            index[i] = 0;
720
44.3k
        }
721
12.4k
    }
722
723
    /* coarse */
724
17.2k
    if (stride == 2)
725
0
    {
726
0
        index[0] = 0;
727
0
        for (i = (nr_par<<1)-1; i > 0; i--)
728
0
        {
729
0
            index[i] = index[i>>1];
730
0
        }
731
0
    }
732
17.2k
}
733
734
#ifdef PS_LOW_POWER
735
static void map34indexto20(int8_t *index, uint8_t bins)
736
{
737
    index[0] = (2*index[0]+index[1])/3;
738
    index[1] = (index[1]+2*index[2])/3;
739
    index[2] = (2*index[3]+index[4])/3;
740
    index[3] = (index[4]+2*index[5])/3;
741
    index[4] = (index[6]+index[7])/2;
742
    index[5] = (index[8]+index[9])/2;
743
    index[6] = index[10];
744
    index[7] = index[11];
745
    index[8] = (index[12]+index[13])/2;
746
    index[9] = (index[14]+index[15])/2;
747
    index[10] = index[16];
748
749
    if (bins == 34)
750
    {
751
        index[11] = index[17];
752
        index[12] = index[18];
753
        index[13] = index[19];
754
        index[14] = (index[20]+index[21])/2;
755
        index[15] = (index[22]+index[23])/2;
756
        index[16] = (index[24]+index[25])/2;
757
        index[17] = (index[26]+index[27])/2;
758
        index[18] = (index[28]+index[29]+index[30]+index[31])/4;
759
        index[19] = (index[32]+index[33])/2;
760
    }
761
}
762
#endif
763
764
static void map20indexto34(int8_t *index, uint8_t bins)
765
7.27k
{
766
7.27k
    index[0] = index[0];
767
7.27k
    index[1] = (index[0] + index[1])/2;
768
7.27k
    index[2] = index[1];
769
7.27k
    index[3] = index[2];
770
7.27k
    index[4] = (index[2] + index[3])/2;
771
7.27k
    index[5] = index[3];
772
7.27k
    index[6] = index[4];
773
7.27k
    index[7] = index[4];
774
7.27k
    index[8] = index[5];
775
7.27k
    index[9] = index[5];
776
7.27k
    index[10] = index[6];
777
7.27k
    index[11] = index[7];
778
7.27k
    index[12] = index[8];
779
7.27k
    index[13] = index[8];
780
7.27k
    index[14] = index[9];
781
7.27k
    index[15] = index[9];
782
7.27k
    index[16] = index[10];
783
784
7.27k
    if (bins == 34)
785
3.77k
    {
786
3.77k
        index[17] = index[11];
787
3.77k
        index[18] = index[12];
788
3.77k
        index[19] = index[13];
789
3.77k
        index[20] = index[14];
790
3.77k
        index[21] = index[14];
791
3.77k
        index[22] = index[15];
792
3.77k
        index[23] = index[15];
793
3.77k
        index[24] = index[16];
794
3.77k
        index[25] = index[16];
795
3.77k
        index[26] = index[17];
796
3.77k
        index[27] = index[17];
797
3.77k
        index[28] = index[18];
798
3.77k
        index[29] = index[18];
799
3.77k
        index[30] = index[18];
800
3.77k
        index[31] = index[18];
801
3.77k
        index[32] = index[19];
802
3.77k
        index[33] = index[19];
803
3.77k
    }
804
7.27k
}
805
806
/* parse the bitstream data decoded in ps_data() */
807
static void ps_data_decode(ps_info *ps)
808
5.68k
{
809
5.68k
    uint8_t env, bin;
810
811
    /* ps data not available, use data from previous frame */
812
5.68k
    if (ps->ps_data_available == 0)
813
1.51k
    {
814
1.51k
        ps->num_env = 0;
815
1.51k
    }
816
817
14.3k
    for (env = 0; env < ps->num_env; env++)
818
8.63k
    {
819
8.63k
        int8_t *iid_index_prev;
820
8.63k
        int8_t *icc_index_prev;
821
8.63k
        int8_t *ipd_index_prev;
822
8.63k
        int8_t *opd_index_prev;
823
824
8.63k
        int8_t num_iid_steps = (ps->iid_mode < 3) ? 7 : 15 /*fine quant*/;
825
826
8.63k
        if (env == 0)
827
2.67k
        {
828
            /* take last envelope from previous frame */
829
2.67k
            iid_index_prev = ps->iid_index_prev;
830
2.67k
            icc_index_prev = ps->icc_index_prev;
831
2.67k
            ipd_index_prev = ps->ipd_index_prev;
832
2.67k
            opd_index_prev = ps->opd_index_prev;
833
5.96k
        } else {
834
            /* take index values from previous envelope */
835
5.96k
            iid_index_prev = ps->iid_index[env - 1];
836
5.96k
            icc_index_prev = ps->icc_index[env - 1];
837
5.96k
            ipd_index_prev = ps->ipd_index[env - 1];
838
5.96k
            opd_index_prev = ps->opd_index[env - 1];
839
5.96k
        }
840
841
//        iid = 1;
842
        /* delta decode iid parameters */
843
8.63k
        delta_decode(ps->enable_iid, ps->iid_index[env], iid_index_prev,
844
8.63k
            ps->iid_dt[env], ps->nr_iid_par,
845
8.63k
            (ps->iid_mode == 0 || ps->iid_mode == 3) ? 2 : 1,
846
8.63k
            -num_iid_steps, num_iid_steps);
847
//        iid = 0;
848
849
        /* delta decode icc parameters */
850
8.63k
        delta_decode(ps->enable_icc, ps->icc_index[env], icc_index_prev,
851
8.63k
            ps->icc_dt[env], ps->nr_icc_par,
852
8.63k
            (ps->icc_mode == 0 || ps->icc_mode == 3) ? 2 : 1,
853
8.63k
            0, 7);
854
855
        /* delta modulo decode ipd parameters */
856
8.63k
        delta_modulo_decode(ps->enable_ipdopd, ps->ipd_index[env], ipd_index_prev,
857
8.63k
            ps->ipd_dt[env], ps->nr_ipdopd_par, 1, 7);
858
859
        /* delta modulo decode opd parameters */
860
8.63k
        delta_modulo_decode(ps->enable_ipdopd, ps->opd_index[env], opd_index_prev,
861
8.63k
            ps->opd_dt[env], ps->nr_ipdopd_par, 1, 7);
862
8.63k
    }
863
864
    /* handle error case */
865
5.68k
    if (ps->num_env == 0)
866
3.01k
    {
867
        /* force to 1 */
868
3.01k
        ps->num_env = 1;
869
870
3.01k
        if (ps->enable_iid)
871
2.15k
        {
872
75.4k
            for (bin = 0; bin < 34; bin++)
873
73.3k
                ps->iid_index[0][bin] = ps->iid_index_prev[bin];
874
2.15k
        } else {
875
29.8k
            for (bin = 0; bin < 34; bin++)
876
29.0k
                ps->iid_index[0][bin] = 0;
877
854
        }
878
879
3.01k
        if (ps->enable_icc)
880
1.59k
        {
881
55.7k
            for (bin = 0; bin < 34; bin++)
882
54.1k
                ps->icc_index[0][bin] = ps->icc_index_prev[bin];
883
1.59k
        } else {
884
49.5k
            for (bin = 0; bin < 34; bin++)
885
48.1k
                ps->icc_index[0][bin] = 0;
886
1.41k
        }
887
888
3.01k
        if (ps->enable_ipdopd)
889
360
        {
890
6.48k
            for (bin = 0; bin < 17; bin++)
891
6.12k
            {
892
6.12k
                ps->ipd_index[0][bin] = ps->ipd_index_prev[bin];
893
6.12k
                ps->opd_index[0][bin] = ps->opd_index_prev[bin];
894
6.12k
            }
895
2.65k
        } else {
896
47.7k
            for (bin = 0; bin < 17; bin++)
897
45.0k
            {
898
45.0k
                ps->ipd_index[0][bin] = 0;
899
45.0k
                ps->opd_index[0][bin] = 0;
900
45.0k
            }
901
2.65k
        }
902
3.01k
    }
903
904
    /* update previous indices */
905
199k
    for (bin = 0; bin < 34; bin++)
906
193k
        ps->iid_index_prev[bin] = ps->iid_index[ps->num_env-1][bin];
907
199k
    for (bin = 0; bin < 34; bin++)
908
193k
        ps->icc_index_prev[bin] = ps->icc_index[ps->num_env-1][bin];
909
102k
    for (bin = 0; bin < 17; bin++)
910
96.6k
    {
911
96.6k
        ps->ipd_index_prev[bin] = ps->ipd_index[ps->num_env-1][bin];
912
96.6k
        ps->opd_index_prev[bin] = ps->opd_index[ps->num_env-1][bin];
913
96.6k
    }
914
915
5.68k
    ps->ps_data_available = 0;
916
917
5.68k
    if (ps->frame_class == 0)
918
3.83k
    {
919
3.83k
        ps->border_position[0] = 0;
920
6.88k
        for (env = 1; env < ps->num_env; env++)
921
3.05k
        {
922
3.05k
            ps->border_position[env] = (env * ps->numTimeSlotsRate) / ps->num_env;
923
3.05k
        }
924
3.83k
        ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
925
3.83k
    } else {
926
1.85k
        ps->border_position[0] = 0;
927
928
1.85k
        if (ps->border_position[ps->num_env] < ps->numTimeSlotsRate)
929
1.57k
        {
930
55.0k
            for (bin = 0; bin < 34; bin++)
931
53.4k
            {
932
53.4k
                ps->iid_index[ps->num_env][bin] = ps->iid_index[ps->num_env-1][bin];
933
53.4k
                ps->icc_index[ps->num_env][bin] = ps->icc_index[ps->num_env-1][bin];
934
53.4k
            }
935
28.2k
            for (bin = 0; bin < 17; bin++)
936
26.7k
            {
937
26.7k
                ps->ipd_index[ps->num_env][bin] = ps->ipd_index[ps->num_env-1][bin];
938
26.7k
                ps->opd_index[ps->num_env][bin] = ps->opd_index[ps->num_env-1][bin];
939
26.7k
            }
940
1.57k
            ps->num_env++;
941
1.57k
            ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
942
1.57k
        }
943
944
6.33k
        for (env = 1; env < ps->num_env; env++)
945
4.48k
        {
946
4.48k
            int8_t thr = ps->numTimeSlotsRate - (ps->num_env - env);
947
948
4.48k
            if (ps->border_position[env] > thr)
949
659
            {
950
659
                ps->border_position[env] = thr;
951
3.82k
            } else {
952
3.82k
                thr = ps->border_position[env-1]+1;
953
3.82k
                if (ps->border_position[env] < thr)
954
1.79k
                {
955
1.79k
                    ps->border_position[env] = thr;
956
1.79k
                }
957
3.82k
            }
958
4.48k
        }
959
1.85k
    }
960
961
    /* make sure that the indices of all parameters can be mapped
962
     * to the same hybrid synthesis filterbank
963
     */
964
#ifdef PS_LOW_POWER
965
    for (env = 0; env < ps->num_env; env++)
966
    {
967
        if (ps->iid_mode == 2 || ps->iid_mode == 5)
968
            map34indexto20(ps->iid_index[env], 34);
969
        if (ps->icc_mode == 2 || ps->icc_mode == 5)
970
            map34indexto20(ps->icc_index[env], 34);
971
972
        /* disable ipd/opd */
973
        for (bin = 0; bin < 17; bin++)
974
        {
975
            ps->aaIpdIndex[env][bin] = 0;
976
            ps->aaOpdIndex[env][bin] = 0;
977
        }
978
    }
979
#else
980
5.68k
    if (ps->use34hybrid_bands)
981
2.29k
    {
982
6.20k
        for (env = 0; env < ps->num_env; env++)
983
3.91k
        {
984
3.91k
            if (ps->iid_mode != 2 && ps->iid_mode != 5)
985
1.74k
                map20indexto34(ps->iid_index[env], 34);
986
3.91k
            if (ps->icc_mode != 2 && ps->icc_mode != 5)
987
2.03k
                map20indexto34(ps->icc_index[env], 34);
988
3.91k
            if (ps->ipd_mode != 2 && ps->ipd_mode != 5)
989
1.74k
            {
990
1.74k
                map20indexto34(ps->ipd_index[env], 17);
991
1.74k
                map20indexto34(ps->opd_index[env], 17);
992
1.74k
            }
993
3.91k
        }
994
2.29k
    }
995
5.68k
#endif
996
997
#if 0
998
    for (env = 0; env < ps->num_env; env++)
999
    {
1000
        printf("iid[env:%d]:", env);
1001
        for (bin = 0; bin < 34; bin++)
1002
        {
1003
            printf(" %d", ps->iid_index[env][bin]);
1004
        }
1005
        printf("\n");
1006
    }
1007
    for (env = 0; env < ps->num_env; env++)
1008
    {
1009
        printf("icc[env:%d]:", env);
1010
        for (bin = 0; bin < 34; bin++)
1011
        {
1012
            printf(" %d", ps->icc_index[env][bin]);
1013
        }
1014
        printf("\n");
1015
    }
1016
    for (env = 0; env < ps->num_env; env++)
1017
    {
1018
        printf("ipd[env:%d]:", env);
1019
        for (bin = 0; bin < 17; bin++)
1020
        {
1021
            printf(" %d", ps->ipd_index[env][bin]);
1022
        }
1023
        printf("\n");
1024
    }
1025
    for (env = 0; env < ps->num_env; env++)
1026
    {
1027
        printf("opd[env:%d]:", env);
1028
        for (bin = 0; bin < 17; bin++)
1029
        {
1030
            printf(" %d", ps->opd_index[env][bin]);
1031
        }
1032
        printf("\n");
1033
    }
1034
    printf("\n");
1035
#endif
1036
5.68k
}
1037
1038
/* decorrelate the mono signal using an allpass filter */
1039
static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
1040
                           qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
1041
5.68k
{
1042
5.68k
    uint8_t gr, n, bk;
1043
5.68k
    uint8_t temp_delay = 0;
1044
5.68k
    uint8_t sb, maxsb;
1045
5.68k
    const complex_t *Phi_Fract_SubQmf;
1046
5.68k
    uint8_t temp_delay_ser[NO_ALLPASS_LINKS];
1047
5.68k
    real_t P_SmoothPeakDecayDiffNrg, nrg;
1048
5.68k
    real_t P[32][34];
1049
5.68k
    real_t G_TransientRatio[32][34] = {{0}};
1050
5.68k
    complex_t inputLeft;
1051
1052
1053
    /* chose hybrid filterbank: 20 or 34 band case */
1054
5.68k
    if (ps->use34hybrid_bands)
1055
2.29k
    {
1056
2.29k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf34;
1057
3.39k
    } else{
1058
3.39k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf20;
1059
3.39k
    }
1060
1061
    /* clear the energy values */
1062
187k
    for (n = 0; n < 32; n++)
1063
181k
    {
1064
6.36M
        for (bk = 0; bk < 34; bk++)
1065
6.18M
        {
1066
6.18M
            P[n][bk] = 0;
1067
6.18M
        }
1068
181k
    }
1069
1070
    /* calculate the energy in each parameter band b(k) */
1071
194k
    for (gr = 0; gr < ps->num_groups; gr++)
1072
189k
    {
1073
        /* select the parameter index b(k) to which this group belongs */
1074
189k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1075
1076
        /* select the upper subband border for this group */
1077
189k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr]+1 : ps->group_border[gr+1];
1078
1079
638k
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1080
449k
        {
1081
14.5M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1082
14.1M
            {
1083
#ifdef FIXED_POINT
1084
                uint32_t in_re, in_im;
1085
#endif
1086
1087
                /* input from hybrid subbands or QMF subbands */
1088
14.1M
                if (gr < ps->num_hybrid_groups)
1089
3.35M
                {
1090
3.35M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1091
3.35M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1092
10.7M
                } else {
1093
10.7M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1094
10.7M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1095
10.7M
                }
1096
1097
                /* accumulate energy */
1098
#ifdef FIXED_POINT
1099
                /* NOTE: all input is scaled by 2^(-5) because of fixed point QMF
1100
                 * meaning that P will be scaled by 2^(-10) compared to floating point version
1101
                 */
1102
                in_re = ((abs(RE(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1103
                in_im = ((abs(IM(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1104
                P[n][bk] += in_re*in_re + in_im*in_im;
1105
#else
1106
14.1M
                P[n][bk] += MUL_R(RE(inputLeft),RE(inputLeft)) + MUL_R(IM(inputLeft),IM(inputLeft));
1107
14.1M
#endif
1108
14.1M
            }
1109
449k
        }
1110
189k
    }
1111
1112
#if 0
1113
    for (n = 0; n < 32; n++)
1114
    {
1115
        for (bk = 0; bk < 34; bk++)
1116
        {
1117
#ifdef FIXED_POINT
1118
            printf("%d %d: %d\n", n, bk, P[n][bk] /*/(float)REAL_PRECISION*/);
1119
#else
1120
            printf("%d %d: %f\n", n, bk, P[n][bk]/1024.0);
1121
#endif
1122
        }
1123
    }
1124
#endif
1125
1126
    /* calculate transient reduction ratio for each parameter band b(k) */
1127
151k
    for (bk = 0; bk < ps->nr_par_bands; bk++)
1128
145k
    {
1129
4.71M
        for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1130
4.56M
        {
1131
4.56M
            const real_t gamma = COEF_CONST(1.5);
1132
1133
4.56M
            ps->P_PeakDecayNrg[bk] = MUL_F(ps->P_PeakDecayNrg[bk], ps->alpha_decay);
1134
4.56M
            if (ps->P_PeakDecayNrg[bk] < P[n][bk])
1135
47.7k
                ps->P_PeakDecayNrg[bk] = P[n][bk];
1136
1137
            /* apply smoothing filter to peak decay energy */
1138
4.56M
            P_SmoothPeakDecayDiffNrg = ps->P_SmoothPeakDecayDiffNrg_prev[bk];
1139
4.56M
            P_SmoothPeakDecayDiffNrg += MUL_F((ps->P_PeakDecayNrg[bk] - P[n][bk] - ps->P_SmoothPeakDecayDiffNrg_prev[bk]), ps->alpha_smooth);
1140
4.56M
            ps->P_SmoothPeakDecayDiffNrg_prev[bk] = P_SmoothPeakDecayDiffNrg;
1141
1142
            /* apply smoothing filter to energy */
1143
4.56M
            nrg = ps->P_prev[bk];
1144
4.56M
            nrg += MUL_F((P[n][bk] - ps->P_prev[bk]), ps->alpha_smooth);
1145
4.56M
            ps->P_prev[bk] = nrg;
1146
1147
            /* calculate transient ratio */
1148
4.56M
            if (MUL_C(P_SmoothPeakDecayDiffNrg, gamma) <= nrg)
1149
4.53M
            {
1150
4.53M
                G_TransientRatio[n][bk] = REAL_CONST(1.0);
1151
4.53M
            } else {
1152
34.1k
                G_TransientRatio[n][bk] = DIV_R(nrg, (MUL_C(P_SmoothPeakDecayDiffNrg, gamma)));
1153
34.1k
            }
1154
4.56M
        }
1155
145k
    }
1156
1157
#if 0
1158
    for (n = 0; n < 32; n++)
1159
    {
1160
        for (bk = 0; bk < 34; bk++)
1161
        {
1162
#ifdef FIXED_POINT
1163
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]/(float)REAL_PRECISION);
1164
#else
1165
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]);
1166
#endif
1167
        }
1168
    }
1169
#endif
1170
1171
    /* apply stereo decorrelation filter to the signal */
1172
194k
    for (gr = 0; gr < ps->num_groups; gr++)
1173
189k
    {
1174
189k
        if (gr < ps->num_hybrid_groups)
1175
107k
            maxsb = ps->group_border[gr] + 1;
1176
81.9k
        else
1177
81.9k
            maxsb = ps->group_border[gr + 1];
1178
1179
        /* QMF channel */
1180
638k
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1181
449k
        {
1182
449k
            real_t g_DecaySlope;
1183
449k
            real_t g_DecaySlope_filt[NO_ALLPASS_LINKS];
1184
1185
            /* g_DecaySlope: [0..1] */
1186
449k
            if (gr < ps->num_hybrid_groups || sb <= ps->decay_cutoff)
1187
112k
            {
1188
112k
                g_DecaySlope = FRAC_CONST(1.0);
1189
336k
            } else {
1190
336k
                int8_t decay = ps->decay_cutoff - sb;
1191
336k
                if (decay <= -20 /* -1/DECAY_SLOPE */)
1192
228k
                {
1193
228k
                    g_DecaySlope = 0;
1194
228k
                } else {
1195
                    /* decay(int)*decay_slope(frac) = g_DecaySlope(frac) */
1196
108k
                    g_DecaySlope = FRAC_CONST(1.0) + DECAY_SLOPE * decay;
1197
108k
                }
1198
336k
            }
1199
1200
            /* calculate g_DecaySlope_filt for every n multiplied by filter_a[n] */
1201
1.79M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1202
1.34M
            {
1203
1.34M
                g_DecaySlope_filt[n] = MUL_F(g_DecaySlope, filter_a[n]);
1204
1.34M
            }
1205
1206
1207
            /* set delay indices */
1208
449k
            temp_delay = ps->saved_delay;
1209
1.79M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1210
1.34M
                temp_delay_ser[n] = ps->delay_buf_index_ser[n];
1211
1212
14.5M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1213
14.1M
            {
1214
14.1M
                complex_t tmp, tmp0, R0;
1215
14.1M
                uint8_t m;
1216
1217
14.1M
                if (gr < ps->num_hybrid_groups)
1218
3.35M
                {
1219
                    /* hybrid filterbank input */
1220
3.35M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1221
3.35M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1222
10.7M
                } else {
1223
                    /* QMF filterbank input */
1224
10.7M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1225
10.7M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1226
10.7M
                }
1227
1228
14.1M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1229
7.32M
                {
1230
                    /* delay */
1231
1232
                    /* never hybrid subbands here, always QMF subbands */
1233
7.32M
                    RE(tmp) = RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1234
7.32M
                    IM(tmp) = IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1235
7.32M
                    RE(R0) = RE(tmp);
1236
7.32M
                    IM(R0) = IM(tmp);
1237
7.32M
                    RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = RE(inputLeft);
1238
7.32M
                    IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = IM(inputLeft);
1239
7.32M
                } else {
1240
                    /* allpass filter */
1241
6.78M
                    complex_t Phi_Fract;
1242
1243
                    /* fetch parameters */
1244
6.78M
                    if (gr < ps->num_hybrid_groups)
1245
3.35M
                    {
1246
                        /* select data from the hybrid subbands */
1247
3.35M
                        RE(tmp0) = RE(ps->delay_SubQmf[temp_delay][sb]);
1248
3.35M
                        IM(tmp0) = IM(ps->delay_SubQmf[temp_delay][sb]);
1249
1250
3.35M
                        RE(ps->delay_SubQmf[temp_delay][sb]) = RE(inputLeft);
1251
3.35M
                        IM(ps->delay_SubQmf[temp_delay][sb]) = IM(inputLeft);
1252
1253
3.35M
                        RE(Phi_Fract) = RE(Phi_Fract_SubQmf[sb]);
1254
3.35M
                        IM(Phi_Fract) = IM(Phi_Fract_SubQmf[sb]);
1255
3.43M
                    } else {
1256
                        /* select data from the QMF subbands */
1257
3.43M
                        RE(tmp0) = RE(ps->delay_Qmf[temp_delay][sb]);
1258
3.43M
                        IM(tmp0) = IM(ps->delay_Qmf[temp_delay][sb]);
1259
1260
3.43M
                        RE(ps->delay_Qmf[temp_delay][sb]) = RE(inputLeft);
1261
3.43M
                        IM(ps->delay_Qmf[temp_delay][sb]) = IM(inputLeft);
1262
1263
3.43M
                        RE(Phi_Fract) = RE(Phi_Fract_Qmf[sb]);
1264
3.43M
                        IM(Phi_Fract) = IM(Phi_Fract_Qmf[sb]);
1265
3.43M
                    }
1266
1267
                    /* z^(-2) * Phi_Fract[k] */
1268
6.78M
                    ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Phi_Fract), IM(Phi_Fract));
1269
1270
6.78M
                    RE(R0) = RE(tmp);
1271
6.78M
                    IM(R0) = IM(tmp);
1272
27.1M
                    for (m = 0; m < NO_ALLPASS_LINKS; m++)
1273
20.3M
                    {
1274
20.3M
                        complex_t Q_Fract_allpass, tmp2;
1275
1276
                        /* fetch parameters */
1277
20.3M
                        if (gr < ps->num_hybrid_groups)
1278
10.0M
                        {
1279
                            /* select data from the hybrid subbands */
1280
10.0M
                            RE(tmp0) = RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1281
10.0M
                            IM(tmp0) = IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1282
1283
10.0M
                            if (ps->use34hybrid_bands)
1284
6.83M
                            {
1285
6.83M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf34[sb][m]);
1286
6.83M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf34[sb][m]);
1287
6.83M
                            } else {
1288
3.22M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf20[sb][m]);
1289
3.22M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf20[sb][m]);
1290
3.22M
                            }
1291
10.2M
                        } else {
1292
                            /* select data from the QMF subbands */
1293
10.2M
                            RE(tmp0) = RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1294
10.2M
                            IM(tmp0) = IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1295
1296
10.2M
                            RE(Q_Fract_allpass) = RE(Q_Fract_allpass_Qmf[sb][m]);
1297
10.2M
                            IM(Q_Fract_allpass) = IM(Q_Fract_allpass_Qmf[sb][m]);
1298
10.2M
                        }
1299
1300
                        /* delay by a fraction */
1301
                        /* z^(-d(m)) * Q_Fract_allpass[k,m] */
1302
20.3M
                        ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Q_Fract_allpass), IM(Q_Fract_allpass));
1303
1304
                        /* -a(m) * g_DecaySlope[k] */
1305
20.3M
                        RE(tmp) += -MUL_F(g_DecaySlope_filt[m], RE(R0));
1306
20.3M
                        IM(tmp) += -MUL_F(g_DecaySlope_filt[m], IM(R0));
1307
1308
                        /* -a(m) * g_DecaySlope[k] * Q_Fract_allpass[k,m] * z^(-d(m)) */
1309
20.3M
                        RE(tmp2) = RE(R0) + MUL_F(g_DecaySlope_filt[m], RE(tmp));
1310
20.3M
                        IM(tmp2) = IM(R0) + MUL_F(g_DecaySlope_filt[m], IM(tmp));
1311
1312
                        /* store sample */
1313
20.3M
                        if (gr < ps->num_hybrid_groups)
1314
10.0M
                        {
1315
10.0M
                            RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1316
10.0M
                            IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1317
10.2M
                        } else {
1318
10.2M
                            RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1319
10.2M
                            IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1320
10.2M
                        }
1321
1322
                        /* store for next iteration (or as output value if last iteration) */
1323
20.3M
                        RE(R0) = RE(tmp);
1324
20.3M
                        IM(R0) = IM(tmp);
1325
20.3M
                    }
1326
6.78M
                }
1327
1328
                /* select b(k) for reading the transient ratio */
1329
14.1M
                bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1330
1331
                /* duck if a past transient is found */
1332
14.1M
                RE(R0) = MUL_R(G_TransientRatio[n][bk], RE(R0));
1333
14.1M
                IM(R0) = MUL_R(G_TransientRatio[n][bk], IM(R0));
1334
1335
14.1M
                if (gr < ps->num_hybrid_groups)
1336
3.35M
                {
1337
                    /* hybrid */
1338
3.35M
                    QMF_RE(X_hybrid_right[n][sb]) = RE(R0);
1339
3.35M
                    QMF_IM(X_hybrid_right[n][sb]) = IM(R0);
1340
10.7M
                } else {
1341
                    /* QMF */
1342
10.7M
                    QMF_RE(X_right[n][sb]) = RE(R0);
1343
10.7M
                    QMF_IM(X_right[n][sb]) = IM(R0);
1344
10.7M
                }
1345
1346
                /* Update delay buffer index */
1347
14.1M
                if (++temp_delay >= 2)
1348
7.05M
                {
1349
7.05M
                    temp_delay = 0;
1350
7.05M
                }
1351
1352
                /* update delay indices */
1353
14.1M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1354
7.32M
                {
1355
                    /* delay_D depends on the samplerate, it can hold the values 14 and 1 */
1356
7.32M
                    if (++ps->delay_buf_index_delay[sb] >= ps->delay_D[sb])
1357
5.31M
                    {
1358
5.31M
                        ps->delay_buf_index_delay[sb] = 0;
1359
5.31M
                    }
1360
7.32M
                }
1361
1362
56.4M
                for (m = 0; m < NO_ALLPASS_LINKS; m++)
1363
42.3M
                {
1364
42.3M
                    if (++temp_delay_ser[m] >= ps->num_sample_delay_ser[m])
1365
10.8M
                    {
1366
10.8M
                        temp_delay_ser[m] = 0;
1367
10.8M
                    }
1368
42.3M
                }
1369
14.1M
            }
1370
449k
        }
1371
189k
    }
1372
1373
    /* update delay indices */
1374
5.68k
    ps->saved_delay = temp_delay;
1375
22.7k
    for (n = 0; n < NO_ALLPASS_LINKS; n++)
1376
17.0k
        ps->delay_buf_index_ser[n] = temp_delay_ser[n];
1377
5.68k
}
1378
1379
#if 0
1380
#ifdef FIXED_POINT
1381
#define step(shift) \
1382
    if ((0x40000000l >> shift) + root <= value)       \
1383
    {                                                 \
1384
        value -= (0x40000000l >> shift) + root;       \
1385
        root = (root >> 1) | (0x40000000l >> shift);  \
1386
    } else {                                          \
1387
        root = root >> 1;                             \
1388
    }
1389
1390
/* fixed point square root approximation */
1391
static real_t ps_sqrt(real_t value)
1392
{
1393
    real_t root = 0;
1394
1395
    step( 0); step( 2); step( 4); step( 6);
1396
    step( 8); step(10); step(12); step(14);
1397
    step(16); step(18); step(20); step(22);
1398
    step(24); step(26); step(28); step(30);
1399
1400
    if (root < value)
1401
        ++root;
1402
1403
    root <<= (REAL_BITS/2);
1404
1405
    return root;
1406
}
1407
#else
1408
#define ps_sqrt(A) sqrt(A)
1409
#endif
1410
#endif
1411
1412
static const real_t ipdopd_cos_tab[] = {
1413
    FRAC_CONST(1.000000000000000),
1414
    FRAC_CONST(0.707106781186548),
1415
    FRAC_CONST(0.000000000000000),
1416
    FRAC_CONST(-0.707106781186547),
1417
    FRAC_CONST(-1.000000000000000),
1418
    FRAC_CONST(-0.707106781186548),
1419
    FRAC_CONST(-0.000000000000000),
1420
    FRAC_CONST(0.707106781186547),
1421
    FRAC_CONST(1.000000000000000)
1422
};
1423
1424
static const real_t ipdopd_sin_tab[] = {
1425
    FRAC_CONST(0.000000000000000),
1426
    FRAC_CONST(0.707106781186547),
1427
    FRAC_CONST(1.000000000000000),
1428
    FRAC_CONST(0.707106781186548),
1429
    FRAC_CONST(0.000000000000000),
1430
    FRAC_CONST(-0.707106781186547),
1431
    FRAC_CONST(-1.000000000000000),
1432
    FRAC_CONST(-0.707106781186548),
1433
    FRAC_CONST(-0.000000000000000)
1434
};
1435
1436
static real_t magnitude_c(complex_t c)
1437
93.4k
{
1438
#ifdef FIXED_POINT
1439
#define ps_abs(A) (((A) > 0) ? (A) : (-(A)))
1440
#define ALPHA FRAC_CONST(0.948059448969)
1441
#define BETA  FRAC_CONST(0.392699081699)
1442
1443
    real_t abs_inphase = ps_abs(RE(c));
1444
    real_t abs_quadrature = ps_abs(IM(c));
1445
1446
    if (abs_inphase > abs_quadrature) {
1447
        return MUL_F(abs_inphase, ALPHA) + MUL_F(abs_quadrature, BETA);
1448
    } else {
1449
        return MUL_F(abs_quadrature, ALPHA) + MUL_F(abs_inphase, BETA);
1450
    }
1451
#else
1452
93.4k
    return sqrt(RE(c)*RE(c) + IM(c)*IM(c));
1453
93.4k
#endif
1454
93.4k
}
1455
1456
static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
1457
                         qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
1458
5.68k
{
1459
5.68k
    uint8_t n;
1460
5.68k
    uint8_t gr;
1461
5.68k
    uint8_t bk = 0;
1462
5.68k
    uint8_t sb, maxsb;
1463
5.68k
    uint8_t env;
1464
5.68k
    uint8_t nr_ipdopd_par;
1465
5.68k
    complex_t h11, h12, h21, h22;  // COEF
1466
5.68k
    complex_t H11, H12, H21, H22;  // COEF
1467
5.68k
    complex_t deltaH11, deltaH12, deltaH21, deltaH22;  // COEF
1468
5.68k
    complex_t tempLeft, tempRight; // FRAC
1469
5.68k
    complex_t phaseLeft, phaseRight; // FRAC
1470
5.68k
    real_t L;
1471
5.68k
    const real_t *sf_iid;
1472
5.68k
    uint8_t no_iid_steps;
1473
1474
5.68k
    if (ps->iid_mode >= 3)
1475
2.32k
    {
1476
2.32k
        no_iid_steps = 15;
1477
2.32k
        sf_iid = sf_iid_fine;
1478
3.35k
    } else {
1479
3.35k
        no_iid_steps = 7;
1480
3.35k
        sf_iid = sf_iid_normal;
1481
3.35k
    }
1482
1483
5.68k
    if (ps->ipd_mode == 0 || ps->ipd_mode == 3)
1484
2.90k
    {
1485
2.90k
        nr_ipdopd_par = 11; /* resolution */
1486
2.90k
    } else {
1487
2.77k
        nr_ipdopd_par = ps->nr_ipdopd_par;
1488
2.77k
    }
1489
1490
194k
    for (gr = 0; gr < ps->num_groups; gr++)
1491
189k
    {
1492
189k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1493
1494
        /* use one channel per group in the subqmf domain */
1495
189k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr] + 1 : ps->group_border[gr + 1];
1496
1497
589k
        for (env = 0; env < ps->num_env; env++)
1498
400k
        {
1499
400k
            uint8_t abs_iid = (uint8_t)abs(ps->iid_index[env][bk]);
1500
            /* index range is supposed to be -7...7 or -15...15 depending on iid_mode
1501
                (Table 8.24, ISO/IEC 14496-3:2005).
1502
                if it is outside these boundaries, this is most likely an error. sanitize
1503
                it and try to process further. */
1504
400k
            if (ps->iid_index[env][bk] < -no_iid_steps) {
1505
157
                fprintf(stderr, "Warning: invalid iid_index: %d < %d\n", ps->iid_index[env][bk],
1506
157
                    -no_iid_steps);
1507
157
                ps->iid_index[env][bk] = -no_iid_steps;
1508
157
                abs_iid = no_iid_steps;
1509
400k
            } else if (ps->iid_index[env][bk] > no_iid_steps) {
1510
89
                fprintf(stderr, "Warning: invalid iid_index: %d > %d\n", ps->iid_index[env][bk],
1511
89
                    no_iid_steps);
1512
89
                ps->iid_index[env][bk] = no_iid_steps;
1513
89
                abs_iid = no_iid_steps;
1514
89
            }
1515
400k
            if (ps->icc_index[env][bk] < 0) {
1516
270
                fprintf(stderr, "Warning: invalid icc_index: %d < 0\n", ps->icc_index[env][bk]);
1517
270
                ps->icc_index[env][bk] = 0;
1518
400k
            } else if (ps->icc_index[env][bk] > 7) {
1519
0
                fprintf(stderr, "Warning: invalid icc_index: %d > 7\n", ps->icc_index[env][bk]);
1520
0
                ps->icc_index[env][bk] = 7;
1521
0
            }
1522
1523
400k
            if (ps->icc_mode < 3)
1524
258k
            {
1525
                /* type 'A' mixing as described in 8.6.4.6.2.1 */
1526
258k
                real_t c_1, c_2;  // COEF
1527
258k
                real_t cosa, sina;  // COEF
1528
258k
                real_t cosb, sinb;  // COEF
1529
258k
                real_t ab1, ab2;  // COEF
1530
258k
                real_t ab3, ab4;  // COEF
1531
1532
                /*
1533
                c_1 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps + iid_index] / 10.0)));
1534
                c_2 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps - iid_index] / 10.0)));
1535
                alpha = 0.5 * acos(quant_rho[icc_index]);
1536
                beta = alpha * ( c_1 - c_2 ) / sqrt(2.0);
1537
                */
1538
1539
                //printf("%d\n", ps->iid_index[env][bk]);
1540
1541
                /* calculate the scalefactors c_1 and c_2 from the intensity differences */
1542
258k
                c_1 = sf_iid[no_iid_steps + ps->iid_index[env][bk]];
1543
258k
                c_2 = sf_iid[no_iid_steps - ps->iid_index[env][bk]];
1544
1545
                /* calculate alpha and beta using the ICC parameters */
1546
258k
                cosa = cos_alphas[ps->icc_index[env][bk]];
1547
258k
                sina = sin_alphas[ps->icc_index[env][bk]];
1548
1549
258k
                if (ps->iid_mode >= 3)
1550
86.0k
                {
1551
86.0k
                    cosb = cos_betas_fine[abs_iid][ps->icc_index[env][bk]];
1552
86.0k
                    sinb = sin_betas_fine[abs_iid][ps->icc_index[env][bk]];
1553
172k
                } else {
1554
172k
                    cosb = cos_betas_normal[abs_iid][ps->icc_index[env][bk]];
1555
172k
                    sinb = sin_betas_normal[abs_iid][ps->icc_index[env][bk]];
1556
172k
                }
1557
1558
258k
                ab1 = MUL_C(cosb, cosa);
1559
258k
                ab2 = MUL_C(sinb, sina);
1560
258k
                ab3 = MUL_C(sinb, cosa);
1561
258k
                ab4 = MUL_C(cosb, sina);
1562
1563
                /* h_xy: COEF */
1564
258k
                RE(h11) = MUL_C(c_2, (ab1 - ab2));
1565
258k
                RE(h12) = MUL_C(c_1, (ab1 + ab2));
1566
258k
                RE(h21) = MUL_C(c_2, (ab3 + ab4));
1567
258k
                RE(h22) = MUL_C(c_1, (ab3 - ab4));
1568
258k
            } else {
1569
                /* type 'B' mixing as described in 8.6.4.6.2.2 */
1570
142k
                real_t sina, cosa;  // COEF
1571
142k
                real_t cosg, sing;  // COEF
1572
1573
                /*
1574
                real_t c, rho, mu, alpha, gamma;
1575
                uint8_t i;
1576
1577
                i = ps->iid_index[env][bk];
1578
                c = (real_t)pow(10.0, ((i)?(((i>0)?1:-1)*quant_iid[((i>0)?i:-i)-1]):0.)/20.0);
1579
                rho = quant_rho[ps->icc_index[env][bk]];
1580
1581
                if (rho == 0.0f && c == 1.)
1582
                {
1583
                    alpha = (real_t)M_PI/4.0f;
1584
                    rho = 0.05f;
1585
                } else {
1586
                    if (rho <= 0.05f)
1587
                    {
1588
                        rho = 0.05f;
1589
                    }
1590
                    alpha = 0.5f*(real_t)atan( (2.0f*c*rho) / (c*c-1.0f) );
1591
1592
                    if (alpha < 0.)
1593
                    {
1594
                        alpha += (real_t)M_PI/2.0f;
1595
                    }
1596
                    if (rho < 0.)
1597
                    {
1598
                        alpha += (real_t)M_PI;
1599
                    }
1600
                }
1601
                mu = c+1.0f/c;
1602
                mu = 1+(4.0f*rho*rho-4.0f)/(mu*mu);
1603
                gamma = (real_t)atan(sqrt((1.0f-sqrt(mu))/(1.0f+sqrt(mu))));
1604
                */
1605
1606
142k
                if (ps->iid_mode >= 3)
1607
79.0k
                {
1608
79.0k
                    cosa = sincos_alphas_B_fine[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1609
79.0k
                    sina = sincos_alphas_B_fine[30 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1610
79.0k
                    cosg = cos_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1611
79.0k
                    sing = sin_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1612
79.0k
                } else {
1613
62.9k
                    cosa = sincos_alphas_B_normal[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1614
62.9k
                    sina = sincos_alphas_B_normal[14 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1615
62.9k
                    cosg = cos_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1616
62.9k
                    sing = sin_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1617
62.9k
                }
1618
1619
142k
                RE(h11) = MUL_C(COEF_SQRT2, MUL_C(cosa, cosg));
1620
142k
                RE(h12) = MUL_C(COEF_SQRT2, MUL_C(sina, cosg));
1621
142k
                RE(h21) = MUL_C(COEF_SQRT2, MUL_C(-cosa, sing));
1622
142k
                RE(h22) = MUL_C(COEF_SQRT2, MUL_C(sina, sing));
1623
142k
            }
1624
400k
            IM(h11) = IM(h12) = IM(h21) = IM(h22) = 0;
1625
1626
            /* calculate phase rotation parameters H_xy */
1627
            /* note that the imaginary part of these parameters are only calculated when
1628
               IPD and OPD are enabled
1629
             */
1630
400k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1631
46.7k
            {
1632
46.7k
                int8_t i;
1633
46.7k
                real_t xy, pq, xypq;  // FRAC
1634
1635
                /* ringbuffer index */
1636
46.7k
                i = ps->phase_hist;
1637
1638
                /* previous value */
1639
#ifdef FIXED_POINT
1640
                /* divide by 4*2, shift right 3 bits;
1641
                   extra halving to avoid overflows; it is ok, because result is normalized */
1642
                RE(tempLeft)  = RE(ps->ipd_prev[bk][i]) >> 3;
1643
                IM(tempLeft)  = IM(ps->ipd_prev[bk][i]) >> 3;
1644
                RE(tempRight) = RE(ps->opd_prev[bk][i]) >> 3;
1645
                IM(tempRight) = IM(ps->opd_prev[bk][i]) >> 3;
1646
#else
1647
46.7k
                RE(tempLeft)  = MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1648
46.7k
                IM(tempLeft)  = MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1649
46.7k
                RE(tempRight) = MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1650
46.7k
                IM(tempRight) = MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1651
46.7k
#endif
1652
1653
                /* save current value */
1654
46.7k
                RE(ps->ipd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->ipd_index[env][bk])];
1655
46.7k
                IM(ps->ipd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->ipd_index[env][bk])];
1656
46.7k
                RE(ps->opd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->opd_index[env][bk])];
1657
46.7k
                IM(ps->opd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->opd_index[env][bk])];
1658
1659
                /* add current value */
1660
#ifdef FIXED_POINT
1661
                /* extra halving to avoid overflows */
1662
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]) >> 1;
1663
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]) >> 1;
1664
                RE(tempRight) += RE(ps->opd_prev[bk][i]) >> 1;
1665
                IM(tempRight) += IM(ps->opd_prev[bk][i]) >> 1;
1666
#else
1667
46.7k
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]);
1668
46.7k
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]);
1669
46.7k
                RE(tempRight) += RE(ps->opd_prev[bk][i]);
1670
46.7k
                IM(tempRight) += IM(ps->opd_prev[bk][i]);
1671
46.7k
#endif
1672
1673
                /* ringbuffer index */
1674
46.7k
                if (i == 0)
1675
23.5k
                {
1676
23.5k
                    i = 2;
1677
23.5k
                }
1678
46.7k
                i--;
1679
1680
                /* get value before previous */
1681
#ifdef FIXED_POINT
1682
                /* dividing by 2*2, shift right 2 bits; extra halving to avoid overflows */
1683
                RE(tempLeft)  += (RE(ps->ipd_prev[bk][i]) >> 2);
1684
                IM(tempLeft)  += (IM(ps->ipd_prev[bk][i]) >> 2);
1685
                RE(tempRight) += (RE(ps->opd_prev[bk][i]) >> 2);
1686
                IM(tempRight) += (IM(ps->opd_prev[bk][i]) >> 2);
1687
#else
1688
46.7k
                RE(tempLeft)  += MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1689
46.7k
                IM(tempLeft)  += MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1690
46.7k
                RE(tempRight) += MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1691
46.7k
                IM(tempRight) += MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1692
46.7k
#endif
1693
1694
#if 0 /* original code */
1695
                ipd = (float)atan2(IM(tempLeft), RE(tempLeft));
1696
                opd = (float)atan2(IM(tempRight), RE(tempRight));
1697
1698
                /* phase rotation */
1699
                RE(phaseLeft) = (float)cos(opd);
1700
                IM(phaseLeft) = (float)sin(opd);
1701
                opd -= ipd;
1702
                RE(phaseRight) = (float)cos(opd);
1703
                IM(phaseRight) = (float)sin(opd);
1704
#else
1705
1706
                // x = IM(tempLeft)
1707
                // y = RE(tempLeft)
1708
                // p = IM(tempRight)
1709
                // q = RE(tempRight)
1710
                // cos(atan2(x,y)) = y/sqrt((x*x) + (y*y))
1711
                // sin(atan2(x,y)) = x/sqrt((x*x) + (y*y))
1712
                // cos(atan2(x,y)-atan2(p,q)) = (y*q + x*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1713
                // sin(atan2(x,y)-atan2(p,q)) = (x*q - y*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1714
1715
46.7k
                xy = magnitude_c(tempRight);
1716
46.7k
                pq = magnitude_c(tempLeft);
1717
1718
46.7k
                if (xy != 0)
1719
46.7k
                {
1720
46.7k
                    RE(phaseLeft) = DIV_F(RE(tempRight), xy);
1721
46.7k
                    IM(phaseLeft) = DIV_F(IM(tempRight), xy);
1722
46.7k
                } else {
1723
0
                    RE(phaseLeft) = 0;
1724
0
                    IM(phaseLeft) = 0;
1725
0
                }
1726
1727
46.7k
                xypq = MUL_F(xy, pq);
1728
1729
46.7k
                if (xypq != 0)
1730
46.7k
                {
1731
46.7k
                    real_t tmp1 = MUL_F(RE(tempRight), RE(tempLeft)) + MUL_F(IM(tempRight), IM(tempLeft));
1732
46.7k
                    real_t tmp2 = MUL_F(IM(tempRight), RE(tempLeft)) - MUL_F(RE(tempRight), IM(tempLeft));
1733
1734
46.7k
                    RE(phaseRight) = DIV_F(tmp1, xypq);
1735
46.7k
                    IM(phaseRight) = DIV_F(tmp2, xypq);
1736
46.7k
                } else {
1737
0
                    RE(phaseRight) = 0;
1738
0
                    IM(phaseRight) = 0;
1739
0
                }
1740
1741
46.7k
#endif
1742
1743
                /* MUL_F(COEF, REAL) = COEF */
1744
46.7k
                IM(h11) = MUL_F(RE(h11), IM(phaseLeft));
1745
46.7k
                IM(h12) = MUL_F(RE(h12), IM(phaseRight));
1746
46.7k
                IM(h21) = MUL_F(RE(h21), IM(phaseLeft));
1747
46.7k
                IM(h22) = MUL_F(RE(h22), IM(phaseRight));
1748
1749
46.7k
                RE(h11) = MUL_F(RE(h11), RE(phaseLeft));
1750
46.7k
                RE(h12) = MUL_F(RE(h12), RE(phaseRight));
1751
46.7k
                RE(h21) = MUL_F(RE(h21), RE(phaseLeft));
1752
46.7k
                RE(h22) = MUL_F(RE(h22), RE(phaseRight));
1753
46.7k
            }
1754
1755
            /* length of the envelope n_e+1 - n_e (in time samples) */
1756
            /* 0 < L <= 32: integer */
1757
400k
            L = (real_t)(ps->border_position[env + 1] - ps->border_position[env]);
1758
1759
            /* obtain final H_xy by means of linear interpolation */
1760
400k
            RE(deltaH11) = (RE(h11) - RE(ps->h11_prev[gr])) / L;
1761
400k
            RE(deltaH12) = (RE(h12) - RE(ps->h12_prev[gr])) / L;
1762
400k
            RE(deltaH21) = (RE(h21) - RE(ps->h21_prev[gr])) / L;
1763
400k
            RE(deltaH22) = (RE(h22) - RE(ps->h22_prev[gr])) / L;
1764
1765
400k
            RE(H11) = RE(ps->h11_prev[gr]);
1766
400k
            RE(H12) = RE(ps->h12_prev[gr]);
1767
400k
            RE(H21) = RE(ps->h21_prev[gr]);
1768
400k
            RE(H22) = RE(ps->h22_prev[gr]);
1769
400k
            IM(H11) = IM(H12) = IM(H21) = IM(H22) = 0;
1770
1771
400k
            RE(ps->h11_prev[gr]) = RE(h11);
1772
400k
            RE(ps->h12_prev[gr]) = RE(h12);
1773
400k
            RE(ps->h21_prev[gr]) = RE(h21);
1774
400k
            RE(ps->h22_prev[gr]) = RE(h22);
1775
1776
            /* only calculate imaginary part when needed */
1777
400k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1778
46.7k
            {
1779
                /* obtain final H_xy by means of linear interpolation */
1780
46.7k
                IM(deltaH11) = (IM(h11) - IM(ps->h11_prev[gr])) / L;
1781
46.7k
                IM(deltaH12) = (IM(h12) - IM(ps->h12_prev[gr])) / L;
1782
46.7k
                IM(deltaH21) = (IM(h21) - IM(ps->h21_prev[gr])) / L;
1783
46.7k
                IM(deltaH22) = (IM(h22) - IM(ps->h22_prev[gr])) / L;
1784
1785
46.7k
                IM(H11) = IM(ps->h11_prev[gr]);
1786
46.7k
                IM(H12) = IM(ps->h12_prev[gr]);
1787
46.7k
                IM(H21) = IM(ps->h21_prev[gr]);
1788
46.7k
                IM(H22) = IM(ps->h22_prev[gr]);
1789
1790
46.7k
                if ((NEGATE_IPD_MASK & ps->map_group2bk[gr]) != 0)
1791
6.38k
                {
1792
6.38k
                    IM(deltaH11) = -IM(deltaH11);
1793
6.38k
                    IM(deltaH12) = -IM(deltaH12);
1794
6.38k
                    IM(deltaH21) = -IM(deltaH21);
1795
6.38k
                    IM(deltaH22) = -IM(deltaH22);
1796
1797
6.38k
                    IM(H11) = -IM(H11);
1798
6.38k
                    IM(H12) = -IM(H12);
1799
6.38k
                    IM(H21) = -IM(H21);
1800
6.38k
                    IM(H22) = -IM(H22);
1801
6.38k
                }
1802
1803
46.7k
                IM(ps->h11_prev[gr]) = IM(h11);
1804
46.7k
                IM(ps->h12_prev[gr]) = IM(h12);
1805
46.7k
                IM(ps->h21_prev[gr]) = IM(h21);
1806
46.7k
                IM(ps->h22_prev[gr]) = IM(h22);
1807
46.7k
            }
1808
1809
            /* apply H_xy to the current envelope band of the decorrelated subband */
1810
6.32M
            for (n = ps->border_position[env]; n < ps->border_position[env + 1]; n++)
1811
5.92M
            {
1812
                /* addition finalises the interpolation over every n */
1813
5.92M
                RE(H11) += RE(deltaH11);
1814
5.92M
                RE(H12) += RE(deltaH12);
1815
5.92M
                RE(H21) += RE(deltaH21);
1816
5.92M
                RE(H22) += RE(deltaH22);
1817
5.92M
                if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1818
556k
                {
1819
556k
                    IM(H11) += IM(deltaH11);
1820
556k
                    IM(H12) += IM(deltaH12);
1821
556k
                    IM(H21) += IM(deltaH21);
1822
556k
                    IM(H22) += IM(deltaH22);
1823
556k
                }
1824
1825
                /* channel is an alias to the subband */
1826
20.0M
                for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1827
14.1M
                {
1828
14.1M
                    complex_t inLeft, inRight;  // precision_of in(Left|Right) == precision_of X_(left|right)
1829
1830
                    /* load decorrelated samples */
1831
14.1M
                    if (gr < ps->num_hybrid_groups)
1832
3.35M
                    {
1833
3.35M
                        RE(inLeft) =  RE(X_hybrid_left[n][sb]);
1834
3.35M
                        IM(inLeft) =  IM(X_hybrid_left[n][sb]);
1835
3.35M
                        RE(inRight) = RE(X_hybrid_right[n][sb]);
1836
3.35M
                        IM(inRight) = IM(X_hybrid_right[n][sb]);
1837
10.7M
                    } else {
1838
10.7M
                        RE(inLeft) =  RE(X_left[n][sb]);
1839
10.7M
                        IM(inLeft) =  IM(X_left[n][sb]);
1840
10.7M
                        RE(inRight) = RE(X_right[n][sb]);
1841
10.7M
                        IM(inRight) = IM(X_right[n][sb]);
1842
10.7M
                    }
1843
1844
                    /* precision_of temp(Left|Right) == precision_of X_(left|right) */
1845
1846
                    /* apply mixing */
1847
14.1M
                    RE(tempLeft) =  MUL_C(RE(H11), RE(inLeft)) + MUL_C(RE(H21), RE(inRight));
1848
14.1M
                    IM(tempLeft) =  MUL_C(RE(H11), IM(inLeft)) + MUL_C(RE(H21), IM(inRight));
1849
14.1M
                    RE(tempRight) = MUL_C(RE(H12), RE(inLeft)) + MUL_C(RE(H22), RE(inRight));
1850
14.1M
                    IM(tempRight) = MUL_C(RE(H12), IM(inLeft)) + MUL_C(RE(H22), IM(inRight));
1851
1852
                    /* only perform imaginary operations when needed */
1853
14.1M
                    if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1854
559k
                    {
1855
                        /* apply rotation */
1856
559k
                        RE(tempLeft)  -= MUL_C(IM(H11), IM(inLeft)) + MUL_C(IM(H21), IM(inRight));
1857
559k
                        IM(tempLeft)  += MUL_C(IM(H11), RE(inLeft)) + MUL_C(IM(H21), RE(inRight));
1858
559k
                        RE(tempRight) -= MUL_C(IM(H12), IM(inLeft)) + MUL_C(IM(H22), IM(inRight));
1859
559k
                        IM(tempRight) += MUL_C(IM(H12), RE(inLeft)) + MUL_C(IM(H22), RE(inRight));
1860
559k
                    }
1861
1862
                    /* store final samples */
1863
14.1M
                    if (gr < ps->num_hybrid_groups)
1864
3.35M
                    {
1865
3.35M
                        RE(X_hybrid_left[n][sb])  = RE(tempLeft);
1866
3.35M
                        IM(X_hybrid_left[n][sb])  = IM(tempLeft);
1867
3.35M
                        RE(X_hybrid_right[n][sb]) = RE(tempRight);
1868
3.35M
                        IM(X_hybrid_right[n][sb]) = IM(tempRight);
1869
10.7M
                    } else {
1870
10.7M
                        RE(X_left[n][sb])  = RE(tempLeft);
1871
10.7M
                        IM(X_left[n][sb])  = IM(tempLeft);
1872
10.7M
                        RE(X_right[n][sb]) = RE(tempRight);
1873
10.7M
                        IM(X_right[n][sb]) = IM(tempRight);
1874
10.7M
                    }
1875
14.1M
                }
1876
5.92M
            }
1877
1878
            /* shift phase smoother's circular buffer index */
1879
400k
            ps->phase_hist++;
1880
400k
            if (ps->phase_hist == 2)
1881
200k
            {
1882
200k
                ps->phase_hist = 0;
1883
200k
            }
1884
400k
        }
1885
189k
    }
1886
5.68k
}
1887
1888
void ps_free(ps_info *ps)
1889
9.40k
{
1890
    /* free hybrid filterbank structures */
1891
9.40k
    hybrid_free(ps->hyb);
1892
1893
9.40k
    faad_free(ps);
1894
9.40k
}
1895
1896
ps_info *ps_init(uint8_t sr_index, uint8_t numTimeSlotsRate)
1897
9.40k
{
1898
9.40k
    uint8_t i;
1899
9.40k
    uint8_t short_delay_band;
1900
1901
9.40k
    ps_info *ps = (ps_info*)faad_malloc(sizeof(ps_info));
1902
9.40k
    memset(ps, 0, sizeof(ps_info));
1903
1904
9.40k
    ps->hyb = hybrid_init(numTimeSlotsRate);
1905
9.40k
    ps->numTimeSlotsRate = numTimeSlotsRate;
1906
1907
9.40k
    ps->ps_data_available = 0;
1908
1909
    /* delay stuff*/
1910
9.40k
    ps->saved_delay = 0;
1911
1912
611k
    for (i = 0; i < 64; i++)
1913
601k
    {
1914
601k
        ps->delay_buf_index_delay[i] = 0;
1915
601k
    }
1916
1917
37.6k
    for (i = 0; i < NO_ALLPASS_LINKS; i++)
1918
28.2k
    {
1919
28.2k
        ps->delay_buf_index_ser[i] = 0;
1920
#ifdef PARAM_32KHZ
1921
        if (sr_index <= 5) /* >= 32 kHz*/
1922
        {
1923
            ps->num_sample_delay_ser[i] = delay_length_d[1][i];
1924
        } else {
1925
            ps->num_sample_delay_ser[i] = delay_length_d[0][i];
1926
        }
1927
#else
1928
28.2k
        (void)sr_index;
1929
        /* THESE ARE CONSTANTS NOW */
1930
28.2k
        ps->num_sample_delay_ser[i] = delay_length_d[i];
1931
28.2k
#endif
1932
28.2k
    }
1933
1934
#ifdef PARAM_32KHZ
1935
    if (sr_index <= 5) /* >= 32 kHz*/
1936
    {
1937
        short_delay_band = 35;
1938
        ps->nr_allpass_bands = 22;
1939
        ps->alpha_decay = FRAC_CONST(0.76592833836465);
1940
        ps->alpha_smooth = FRAC_CONST(0.25);
1941
    } else {
1942
        short_delay_band = 64;
1943
        ps->nr_allpass_bands = 45;
1944
        ps->alpha_decay = FRAC_CONST(0.58664621951003);
1945
        ps->alpha_smooth = FRAC_CONST(0.6);
1946
    }
1947
#else
1948
    /* THESE ARE CONSTANTS NOW */
1949
9.40k
    short_delay_band = 35;
1950
9.40k
    ps->nr_allpass_bands = 22;
1951
9.40k
    ps->alpha_decay = FRAC_CONST(0.76592833836465);
1952
9.40k
    ps->alpha_smooth = FRAC_CONST(0.25);
1953
9.40k
#endif
1954
1955
    /* THESE ARE CONSTANT NOW IF PS IS INDEPENDANT OF SAMPLERATE */
1956
338k
    for (i = 0; i < short_delay_band; i++)
1957
329k
    {
1958
329k
        ps->delay_D[i] = 14;
1959
329k
    }
1960
282k
    for (i = short_delay_band; i < 64; i++)
1961
272k
    {
1962
272k
        ps->delay_D[i] = 1;
1963
272k
    }
1964
1965
    /* mixing and phase */
1966
479k
    for (i = 0; i < 50; i++)
1967
470k
    {
1968
470k
        RE(ps->h11_prev[i]) = 1;
1969
470k
        IM(ps->h11_prev[i]) = 1;
1970
470k
        RE(ps->h12_prev[i]) = 1;
1971
470k
        IM(ps->h12_prev[i]) = 1;
1972
470k
    }
1973
1974
9.40k
    ps->phase_hist = 0;
1975
1976
197k
    for (i = 0; i < 20; i++)
1977
188k
    {
1978
188k
        RE(ps->ipd_prev[i][0]) = 0;
1979
188k
        IM(ps->ipd_prev[i][0]) = 0;
1980
188k
        RE(ps->ipd_prev[i][1]) = 0;
1981
188k
        IM(ps->ipd_prev[i][1]) = 0;
1982
188k
        RE(ps->opd_prev[i][0]) = 0;
1983
188k
        IM(ps->opd_prev[i][0]) = 0;
1984
188k
        RE(ps->opd_prev[i][1]) = 0;
1985
188k
        IM(ps->opd_prev[i][1]) = 0;
1986
188k
    }
1987
1988
9.40k
    return ps;
1989
9.40k
}
1990
1991
/* main Parametric Stereo decoding function */
1992
uint8_t ps_decode(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64])
1993
5.68k
{
1994
5.68k
    qmf_t X_hybrid_left[32][32] = {{{0}}};
1995
5.68k
    qmf_t X_hybrid_right[32][32] = {{{0}}};
1996
1997
    /* delta decoding of the bitstream data */
1998
5.68k
    ps_data_decode(ps);
1999
2000
    /* set up some parameters depending on filterbank type */
2001
5.68k
    if (ps->use34hybrid_bands)
2002
2.29k
    {
2003
2.29k
        ps->group_border = (uint8_t*)group_border34;
2004
2.29k
        ps->map_group2bk = (uint16_t*)map_group2bk34;
2005
2.29k
        ps->num_groups = 32+18;
2006
2.29k
        ps->num_hybrid_groups = 32;
2007
2.29k
        ps->nr_par_bands = 34;
2008
2.29k
        ps->decay_cutoff = 5;
2009
3.39k
    } else {
2010
3.39k
        ps->group_border = (uint8_t*)group_border20;
2011
3.39k
        ps->map_group2bk = (uint16_t*)map_group2bk20;
2012
3.39k
        ps->num_groups = 10+12;
2013
3.39k
        ps->num_hybrid_groups = 10;
2014
3.39k
        ps->nr_par_bands = 20;
2015
3.39k
        ps->decay_cutoff = 3;
2016
3.39k
    }
2017
2018
    /* Perform further analysis on the lowest subbands to get a higher
2019
     * frequency resolution
2020
     */
2021
5.68k
    hybrid_analysis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
2022
5.68k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2023
2024
    /* decorrelate mono signal */
2025
5.68k
    ps_decorrelate(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
2026
2027
    /* apply mixing and phase parameters */
2028
5.68k
    ps_mix_phase(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
2029
2030
    /* hybrid synthesis, to rebuild the SBR QMF matrices */
2031
5.68k
    hybrid_synthesis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
2032
5.68k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2033
2034
5.68k
    hybrid_synthesis((hyb_info*)ps->hyb, X_right, X_hybrid_right,
2035
5.68k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2036
2037
5.68k
    return 0;
2038
5.68k
}
2039
2040
#endif