Coverage Report

Created: 2026-01-09 06:48

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/proc/self/cwd/libfaad/ps_dec.c
Line
Count
Source
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: ps_dec.c,v 1.16 2009/01/26 22:32:31 menno Exp $
29
**/
30
31
#include "common.h"
32
33
#ifdef PS_DEC
34
35
#include <stdlib.h>
36
#include <stdio.h>
37
#include "ps_dec.h"
38
#include "ps_tables.h"
39
40
/* constants */
41
14.7M
#define NEGATE_IPD_MASK            (0x1000)
42
110k
#define DECAY_SLOPE                FRAC_CONST(0.05)
43
#define COEF_SQRT2                 COEF_CONST(1.4142135623731)
44
45
/* tables */
46
/* filters are mirrored in coef 6, second half left out */
47
static const real_t p8_13_20[7] =
48
{
49
    FRAC_CONST(0.00746082949812),
50
    FRAC_CONST(0.02270420949825),
51
    FRAC_CONST(0.04546865930473),
52
    FRAC_CONST(0.07266113929591),
53
    FRAC_CONST(0.09885108575264),
54
    FRAC_CONST(0.11793710567217),
55
    FRAC_CONST(0.125)
56
};
57
58
static const real_t p2_13_20[7] =
59
{
60
    FRAC_CONST(0.0),
61
    FRAC_CONST(0.01899487526049),
62
    FRAC_CONST(0.0),
63
    FRAC_CONST(-0.07293139167538),
64
    FRAC_CONST(0.0),
65
    FRAC_CONST(0.30596630545168),
66
    FRAC_CONST(0.5)
67
};
68
69
static const real_t p12_13_34[7] =
70
{
71
    FRAC_CONST(0.04081179924692),
72
    FRAC_CONST(0.03812810994926),
73
    FRAC_CONST(0.05144908135699),
74
    FRAC_CONST(0.06399831151592),
75
    FRAC_CONST(0.07428313801106),
76
    FRAC_CONST(0.08100347892914),
77
    FRAC_CONST(0.08333333333333)
78
};
79
80
static const real_t p8_13_34[7] =
81
{
82
    FRAC_CONST(0.01565675600122),
83
    FRAC_CONST(0.03752716391991),
84
    FRAC_CONST(0.05417891378782),
85
    FRAC_CONST(0.08417044116767),
86
    FRAC_CONST(0.10307344158036),
87
    FRAC_CONST(0.12222452249753),
88
    FRAC_CONST(0.125)
89
};
90
91
static const real_t p4_13_34[7] =
92
{
93
    FRAC_CONST(-0.05908211155639),
94
    FRAC_CONST(-0.04871498374946),
95
    FRAC_CONST(0.0),
96
    FRAC_CONST(0.07778723915851),
97
    FRAC_CONST(0.16486303567403),
98
    FRAC_CONST(0.23279856662996),
99
    FRAC_CONST(0.25)
100
};
101
102
#ifdef PARAM_32KHZ
103
static const uint8_t delay_length_d[2][NO_ALLPASS_LINKS] = {
104
    { 1, 2, 3 } /* d_24kHz */,
105
    { 3, 4, 5 } /* d_48kHz */
106
};
107
#else
108
static const uint8_t delay_length_d[NO_ALLPASS_LINKS] = {
109
    3, 4, 5 /* d_48kHz */
110
};
111
#endif
112
static const real_t filter_a[NO_ALLPASS_LINKS] = { /* a(m) = exp(-d_48kHz(m)/7) */
113
    FRAC_CONST(0.65143905753106),
114
    FRAC_CONST(0.56471812200776),
115
    FRAC_CONST(0.48954165955695)
116
};
117
118
static const uint8_t group_border20[10+12 + 1] =
119
{
120
    6, 7, 0, 1, 2, 3, /* 6 subqmf subbands */
121
    9, 8,             /* 2 subqmf subbands */
122
    10, 11,           /* 2 subqmf subbands */
123
    3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 35, 64
124
};
125
126
static const uint8_t group_border34[32+18 + 1] =
127
{
128
     0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, /* 12 subqmf subbands */
129
     12, 13, 14, 15, 16, 17, 18, 19,                 /*  8 subqmf subbands */
130
     20, 21, 22, 23,                                 /*  4 subqmf subbands */
131
     24, 25, 26, 27,                                 /*  4 subqmf subbands */
132
     28, 29, 30, 31,                                 /*  4 subqmf subbands */
133
     32-27, 33-27, 34-27, 35-27, 36-27, 37-27, 38-27, 40-27, 42-27, 44-27, 46-27, 48-27, 51-27, 54-27, 57-27, 60-27, 64-27, 68-27, 91-27
134
};
135
136
static const uint16_t map_group2bk20[10+12] =
137
{
138
    (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
139
    0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
140
};
141
142
static const uint16_t map_group2bk34[32+18] =
143
{
144
    0,  1,  2,  3,  4,  5,  6,  6,  7, (NEGATE_IPD_MASK | 2), (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
145
    10, 10, 4,  5,  6,  7,  8,  9,
146
    10, 11, 12, 9,
147
    14, 11, 12, 13,
148
    14, 15, 16, 13,
149
    16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33
150
};
151
152
/* type definitions */
153
typedef struct
154
{
155
    uint8_t frame_len;
156
    uint8_t resolution20[3];
157
    uint8_t resolution34[5];
158
159
    qmf_t *work;
160
    qmf_t **buffer;
161
    qmf_t **temp;
162
} hyb_info;
163
164
/* static function declarations */
165
static void ps_data_decode(ps_info *ps);
166
static hyb_info *hybrid_init(uint8_t numTimeSlotsRate);
167
static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
168
                            qmf_t *buffer, qmf_t **X_hybrid);
169
static void INLINE DCT3_4_unscaled(real_t *y, real_t *x);
170
static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
171
                            qmf_t *buffer, qmf_t **X_hybrid);
172
static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
173
                            uint8_t use34, uint8_t numTimeSlotsRate);
174
static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
175
                             uint8_t use34, uint8_t numTimeSlotsRate);
176
static int8_t delta_clip(int8_t i, int8_t min, int8_t max);
177
static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
178
                         uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
179
                         int8_t min_index, int8_t max_index);
180
static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
181
                                uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
182
                                int8_t and_modulo);
183
static void map20indexto34(int8_t *index, uint8_t bins);
184
#ifdef PS_LOW_POWER
185
static void map34indexto20(int8_t *index, uint8_t bins);
186
#endif
187
static void ps_data_decode(ps_info *ps);
188
static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
189
                           qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
190
static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
191
                         qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
192
193
/*  */
194
195
196
static hyb_info *hybrid_init(uint8_t numTimeSlotsRate)
197
9.31k
{
198
9.31k
    uint8_t i;
199
200
9.31k
    hyb_info *hyb = (hyb_info*)faad_malloc(sizeof(hyb_info));
201
202
9.31k
    hyb->resolution34[0] = 12;
203
9.31k
    hyb->resolution34[1] = 8;
204
9.31k
    hyb->resolution34[2] = 4;
205
9.31k
    hyb->resolution34[3] = 4;
206
9.31k
    hyb->resolution34[4] = 4;
207
208
9.31k
    hyb->resolution20[0] = 8;
209
9.31k
    hyb->resolution20[1] = 2;
210
9.31k
    hyb->resolution20[2] = 2;
211
212
9.31k
    hyb->frame_len = numTimeSlotsRate;
213
214
9.31k
    hyb->work = (qmf_t*)faad_malloc((hyb->frame_len+12) * sizeof(qmf_t));
215
9.31k
    memset(hyb->work, 0, (hyb->frame_len+12) * sizeof(qmf_t));
216
217
9.31k
    hyb->buffer = (qmf_t**)faad_malloc(5 * sizeof(qmf_t*));
218
55.8k
    for (i = 0; i < 5; i++)
219
46.5k
    {
220
46.5k
        hyb->buffer[i] = (qmf_t*)faad_malloc(hyb->frame_len * sizeof(qmf_t));
221
46.5k
        memset(hyb->buffer[i], 0, hyb->frame_len * sizeof(qmf_t));
222
46.5k
    }
223
224
9.31k
    hyb->temp = (qmf_t**)faad_malloc(hyb->frame_len * sizeof(qmf_t*));
225
304k
    for (i = 0; i < hyb->frame_len; i++)
226
295k
    {
227
295k
        hyb->temp[i] = (qmf_t*)faad_malloc(12 /*max*/ * sizeof(qmf_t));
228
295k
    }
229
230
9.31k
    return hyb;
231
9.31k
}
232
233
static void hybrid_free(hyb_info *hyb)
234
9.31k
{
235
9.31k
    uint8_t i;
236
237
9.31k
  if (!hyb) return;
238
239
9.31k
    if (hyb->work)
240
9.31k
        faad_free(hyb->work);
241
242
55.8k
    for (i = 0; i < 5; i++)
243
46.5k
    {
244
46.5k
        if (hyb->buffer[i])
245
46.5k
            faad_free(hyb->buffer[i]);
246
46.5k
    }
247
9.31k
    if (hyb->buffer)
248
9.31k
        faad_free(hyb->buffer);
249
250
304k
    for (i = 0; i < hyb->frame_len; i++)
251
295k
    {
252
295k
        if (hyb->temp[i])
253
295k
            faad_free(hyb->temp[i]);
254
295k
    }
255
9.31k
    if (hyb->temp)
256
9.31k
        faad_free(hyb->temp);
257
258
9.31k
    faad_free(hyb);
259
9.31k
}
260
261
/* real filter, size 2 */
262
static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
263
                            qmf_t *buffer, qmf_t **X_hybrid)
264
7.15k
{
265
7.15k
    uint8_t i;
266
7.15k
    (void)hyb;  /* TODO: remove parameter? */
267
268
232k
    for (i = 0; i < frame_len; i++)
269
225k
    {
270
225k
        real_t r0 = MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i])));
271
225k
        real_t r1 = MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i])));
272
225k
        real_t r2 = MUL_F(filter[2],(QMF_RE(buffer[2+i]) + QMF_RE(buffer[10+i])));
273
225k
        real_t r3 = MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
274
225k
        real_t r4 = MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
275
225k
        real_t r5 = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
276
225k
        real_t r6 = MUL_F(filter[6],QMF_RE(buffer[6+i]));
277
225k
        real_t i0 = MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i])));
278
225k
        real_t i1 = MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i])));
279
225k
        real_t i2 = MUL_F(filter[2],(QMF_IM(buffer[2+i]) + QMF_IM(buffer[10+i])));
280
225k
        real_t i3 = MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
281
225k
        real_t i4 = MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
282
225k
        real_t i5 = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
283
225k
        real_t i6 = MUL_F(filter[6],QMF_IM(buffer[6+i]));
284
285
        /* q = 0 */
286
225k
        QMF_RE(X_hybrid[i][0]) = r0 + r1 + r2 + r3 + r4 + r5 + r6;
287
225k
        QMF_IM(X_hybrid[i][0]) = i0 + i1 + i2 + i3 + i4 + i5 + i6;
288
289
        /* q = 1 */
290
225k
        QMF_RE(X_hybrid[i][1]) = r0 - r1 + r2 - r3 + r4 - r5 + r6;
291
225k
        QMF_IM(X_hybrid[i][1]) = i0 - i1 + i2 - i3 + i4 - i5 + i6;
292
225k
    }
293
7.15k
}
294
295
/* complex filter, size 4 */
296
static void channel_filter4(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
297
                            qmf_t *buffer, qmf_t **X_hybrid)
298
6.71k
{
299
6.71k
    uint8_t i;
300
6.71k
    real_t input_re1[2], input_re2[2], input_im1[2], input_im2[2];
301
6.71k
    (void)hyb;  /* TODO: remove parameter? */
302
303
214k
    for (i = 0; i < frame_len; i++)
304
208k
    {
305
208k
        input_re1[0] = -MUL_F(filter[2], (QMF_RE(buffer[i+2]) + QMF_RE(buffer[i+10]))) +
306
208k
            MUL_F(filter[6], QMF_RE(buffer[i+6]));
307
208k
        input_re1[1] = MUL_F(FRAC_CONST(-0.70710678118655),
308
208k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) + QMF_RE(buffer[i+11]))) +
309
208k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) + QMF_RE(buffer[i+9]))) -
310
208k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) + QMF_RE(buffer[i+7])))));
311
312
208k
        input_im1[0] = MUL_F(filter[0], (QMF_IM(buffer[i+0]) - QMF_IM(buffer[i+12]))) -
313
208k
            MUL_F(filter[4], (QMF_IM(buffer[i+4]) - QMF_IM(buffer[i+8])));
314
208k
        input_im1[1] = MUL_F(FRAC_CONST(0.70710678118655),
315
208k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) - QMF_IM(buffer[i+11]))) -
316
208k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) - QMF_IM(buffer[i+9]))) -
317
208k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) - QMF_IM(buffer[i+7])))));
318
319
208k
        input_re2[0] = MUL_F(filter[0], (QMF_RE(buffer[i+0]) - QMF_RE(buffer[i+12]))) -
320
208k
            MUL_F(filter[4], (QMF_RE(buffer[i+4]) - QMF_RE(buffer[i+8])));
321
208k
        input_re2[1] = MUL_F(FRAC_CONST(0.70710678118655),
322
208k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) - QMF_RE(buffer[i+11]))) -
323
208k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) - QMF_RE(buffer[i+9]))) -
324
208k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) - QMF_RE(buffer[i+7])))));
325
326
208k
        input_im2[0] = -MUL_F(filter[2], (QMF_IM(buffer[i+2]) + QMF_IM(buffer[i+10]))) +
327
208k
            MUL_F(filter[6], QMF_IM(buffer[i+6]));
328
208k
        input_im2[1] = MUL_F(FRAC_CONST(-0.70710678118655),
329
208k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) + QMF_IM(buffer[i+11]))) +
330
208k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) + QMF_IM(buffer[i+9]))) -
331
208k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) + QMF_IM(buffer[i+7])))));
332
333
        /* q == 0 */
334
208k
        QMF_RE(X_hybrid[i][0]) =  input_re1[0] + input_re1[1] + input_im1[0] + input_im1[1];
335
208k
        QMF_IM(X_hybrid[i][0]) = -input_re2[0] - input_re2[1] + input_im2[0] + input_im2[1];
336
337
        /* q == 1 */
338
208k
        QMF_RE(X_hybrid[i][1]) =  input_re1[0] - input_re1[1] - input_im1[0] + input_im1[1];
339
208k
        QMF_IM(X_hybrid[i][1]) =  input_re2[0] - input_re2[1] + input_im2[0] - input_im2[1];
340
341
        /* q == 2 */
342
208k
        QMF_RE(X_hybrid[i][2]) =  input_re1[0] - input_re1[1] + input_im1[0] - input_im1[1];
343
208k
        QMF_IM(X_hybrid[i][2]) = -input_re2[0] + input_re2[1] + input_im2[0] - input_im2[1];
344
345
        /* q == 3 */
346
208k
        QMF_RE(X_hybrid[i][3]) =  input_re1[0] + input_re1[1] - input_im1[0] - input_im1[1];
347
208k
        QMF_IM(X_hybrid[i][3]) =  input_re2[0] + input_re2[1] + input_im2[0] + input_im2[1];
348
208k
    }
349
6.71k
}
350
351
static void INLINE DCT3_4_unscaled(real_t *y, real_t *x)
352
728k
{
353
728k
    real_t f0, f1, f2, f3, f4, f5, f6, f7, f8;
354
355
728k
    f0 = MUL_F(x[2], FRAC_CONST(0.7071067811865476));
356
728k
    f1 = x[0] - f0;
357
728k
    f2 = x[0] + f0;
358
728k
    f3 = x[1] + x[3];
359
728k
    f4 = MUL_C(x[1], COEF_CONST(1.3065629648763766));
360
728k
    f5 = MUL_F(f3, FRAC_CONST(-0.9238795325112866));
361
728k
    f6 = MUL_F(x[3], FRAC_CONST(-0.5411961001461967));
362
728k
    f7 = f4 + f5;
363
728k
    f8 = f6 - f5;
364
728k
    y[3] = f2 - f8;
365
728k
    y[0] = f2 + f8;
366
728k
    y[2] = f1 - f7;
367
728k
    y[1] = f1 + f7;
368
728k
}
369
370
/* complex filter, size 8 */
371
static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
372
                            qmf_t *buffer, qmf_t **X_hybrid)
373
5.81k
{
374
5.81k
    uint8_t i, n;
375
5.81k
    real_t input_re1[4], input_re2[4], input_im1[4], input_im2[4];
376
5.81k
    real_t x[4];
377
5.81k
    (void)hyb;  /* TODO: remove parameter? */
378
379
187k
    for (i = 0; i < frame_len; i++)
380
182k
    {
381
182k
        input_re1[0] =  MUL_F(filter[6],QMF_RE(buffer[6+i]));
382
182k
        input_re1[1] =  MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
383
182k
        input_re1[2] = -MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i]))) + MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
384
182k
        input_re1[3] = -MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i]))) + MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
385
386
182k
        input_im1[0] = MUL_F(filter[5],(QMF_IM(buffer[7+i]) - QMF_IM(buffer[5+i])));
387
182k
        input_im1[1] = MUL_F(filter[0],(QMF_IM(buffer[12+i]) - QMF_IM(buffer[0+i]))) + MUL_F(filter[4],(QMF_IM(buffer[8+i]) - QMF_IM(buffer[4+i])));
388
182k
        input_im1[2] = MUL_F(filter[1],(QMF_IM(buffer[11+i]) - QMF_IM(buffer[1+i]))) + MUL_F(filter[3],(QMF_IM(buffer[9+i]) - QMF_IM(buffer[3+i])));
389
182k
        input_im1[3] = MUL_F(filter[2],(QMF_IM(buffer[10+i]) - QMF_IM(buffer[2+i])));
390
391
910k
        for (n = 0; n < 4; n++)
392
728k
        {
393
728k
            x[n] = input_re1[n] - input_im1[3-n];
394
728k
        }
395
182k
        DCT3_4_unscaled(x, x);
396
182k
        QMF_RE(X_hybrid[i][7]) = x[0];
397
182k
        QMF_RE(X_hybrid[i][5]) = x[2];
398
182k
        QMF_RE(X_hybrid[i][3]) = x[3];
399
182k
        QMF_RE(X_hybrid[i][1]) = x[1];
400
401
910k
        for (n = 0; n < 4; n++)
402
728k
        {
403
728k
            x[n] = input_re1[n] + input_im1[3-n];
404
728k
        }
405
182k
        DCT3_4_unscaled(x, x);
406
182k
        QMF_RE(X_hybrid[i][6]) = x[1];
407
182k
        QMF_RE(X_hybrid[i][4]) = x[3];
408
182k
        QMF_RE(X_hybrid[i][2]) = x[2];
409
182k
        QMF_RE(X_hybrid[i][0]) = x[0];
410
411
182k
        input_im2[0] =  MUL_F(filter[6],QMF_IM(buffer[6+i]));
412
182k
        input_im2[1] =  MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
413
182k
        input_im2[2] = -MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i]))) + MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
414
182k
        input_im2[3] = -MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i]))) + MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
415
416
182k
        input_re2[0] = MUL_F(filter[5],(QMF_RE(buffer[7+i]) - QMF_RE(buffer[5+i])));
417
182k
        input_re2[1] = MUL_F(filter[0],(QMF_RE(buffer[12+i]) - QMF_RE(buffer[0+i]))) + MUL_F(filter[4],(QMF_RE(buffer[8+i]) - QMF_RE(buffer[4+i])));
418
182k
        input_re2[2] = MUL_F(filter[1],(QMF_RE(buffer[11+i]) - QMF_RE(buffer[1+i]))) + MUL_F(filter[3],(QMF_RE(buffer[9+i]) - QMF_RE(buffer[3+i])));
419
182k
        input_re2[3] = MUL_F(filter[2],(QMF_RE(buffer[10+i]) - QMF_RE(buffer[2+i])));
420
421
910k
        for (n = 0; n < 4; n++)
422
728k
        {
423
728k
            x[n] = input_im2[n] + input_re2[3-n];
424
728k
        }
425
182k
        DCT3_4_unscaled(x, x);
426
182k
        QMF_IM(X_hybrid[i][7]) = x[0];
427
182k
        QMF_IM(X_hybrid[i][5]) = x[2];
428
182k
        QMF_IM(X_hybrid[i][3]) = x[3];
429
182k
        QMF_IM(X_hybrid[i][1]) = x[1];
430
431
910k
        for (n = 0; n < 4; n++)
432
728k
        {
433
728k
            x[n] = input_im2[n] - input_re2[3-n];
434
728k
        }
435
182k
        DCT3_4_unscaled(x, x);
436
182k
        QMF_IM(X_hybrid[i][6]) = x[1];
437
182k
        QMF_IM(X_hybrid[i][4]) = x[3];
438
182k
        QMF_IM(X_hybrid[i][2]) = x[2];
439
182k
        QMF_IM(X_hybrid[i][0]) = x[0];
440
182k
    }
441
5.81k
}
442
443
static void INLINE DCT3_6_unscaled(real_t *y, real_t *x)
444
277k
{
445
277k
    real_t f0, f1, f2, f3, f4, f5, f6, f7;
446
447
277k
    f0 = MUL_F(x[3], FRAC_CONST(0.70710678118655));
448
277k
    f1 = x[0] + f0;
449
277k
    f2 = x[0] - f0;
450
277k
    f3 = MUL_F((x[1] - x[5]), FRAC_CONST(0.70710678118655));
451
277k
    f4 = MUL_F(x[2], FRAC_CONST(0.86602540378444)) + MUL_F(x[4], FRAC_CONST(0.5));
452
277k
    f5 = f4 - x[4];
453
277k
    f6 = MUL_F(x[1], FRAC_CONST(0.96592582628907)) + MUL_F(x[5], FRAC_CONST(0.25881904510252));
454
277k
    f7 = f6 - f3;
455
277k
    y[0] = f1 + f6 + f4;
456
277k
    y[1] = f2 + f3 - x[4];
457
277k
    y[2] = f7 + f2 - f5;
458
277k
    y[3] = f1 - f7 - f5;
459
277k
    y[4] = f1 - f3 - x[4];
460
277k
    y[5] = f2 - f6 + f4;
461
277k
}
462
463
/* complex filter, size 12 */
464
static void channel_filter12(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
465
                             qmf_t *buffer, qmf_t **X_hybrid)
466
2.23k
{
467
2.23k
    uint8_t i, n;
468
2.23k
    real_t input_re1[6], input_re2[6], input_im1[6], input_im2[6];
469
2.23k
    real_t out_re1[6], out_re2[6], out_im1[6], out_im2[6];
470
2.23k
    (void)hyb;  /* TODO: remove parameter? */
471
472
71.6k
    for (i = 0; i < frame_len; i++)
473
69.3k
    {
474
485k
        for (n = 0; n < 6; n++)
475
416k
        {
476
416k
            if (n == 0)
477
69.3k
            {
478
69.3k
                input_re1[0] = MUL_F(QMF_RE(buffer[6+i]), filter[6]);
479
69.3k
                input_re2[0] = MUL_F(QMF_IM(buffer[6+i]), filter[6]);
480
346k
            } else {
481
346k
                input_re1[6-n] = MUL_F((QMF_RE(buffer[n+i]) + QMF_RE(buffer[12-n+i])), filter[n]);
482
346k
                input_re2[6-n] = MUL_F((QMF_IM(buffer[n+i]) + QMF_IM(buffer[12-n+i])), filter[n]);
483
346k
            }
484
416k
            input_im2[n] = MUL_F((QMF_RE(buffer[n+i]) - QMF_RE(buffer[12-n+i])), filter[n]);
485
416k
            input_im1[n] = MUL_F((QMF_IM(buffer[n+i]) - QMF_IM(buffer[12-n+i])), filter[n]);
486
416k
        }
487
488
69.3k
        DCT3_6_unscaled(out_re1, input_re1);
489
69.3k
        DCT3_6_unscaled(out_re2, input_re2);
490
491
69.3k
        DCT3_6_unscaled(out_im1, input_im1);
492
69.3k
        DCT3_6_unscaled(out_im2, input_im2);
493
494
277k
        for (n = 0; n < 6; n += 2)
495
208k
        {
496
208k
            QMF_RE(X_hybrid[i][n]) = out_re1[n] - out_im1[n];
497
208k
            QMF_IM(X_hybrid[i][n]) = out_re2[n] + out_im2[n];
498
208k
            QMF_RE(X_hybrid[i][n+1]) = out_re1[n+1] + out_im1[n+1];
499
208k
            QMF_IM(X_hybrid[i][n+1]) = out_re2[n+1] - out_im2[n+1];
500
501
208k
            QMF_RE(X_hybrid[i][10-n]) = out_re1[n+1] - out_im1[n+1];
502
208k
            QMF_IM(X_hybrid[i][10-n]) = out_re2[n+1] + out_im2[n+1];
503
208k
            QMF_RE(X_hybrid[i][11-n]) = out_re1[n] + out_im1[n];
504
208k
            QMF_IM(X_hybrid[i][11-n]) = out_re2[n] - out_im2[n];
505
208k
        }
506
69.3k
    }
507
2.23k
}
508
509
/* Hybrid analysis: further split up QMF subbands
510
 * to improve frequency resolution
511
 */
512
static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
513
                            uint8_t use34, uint8_t numTimeSlotsRate)
514
5.81k
{
515
5.81k
    uint8_t k, n, band;
516
5.81k
    uint8_t offset = 0;
517
5.81k
    uint8_t qmf_bands = (use34) ? 5 : 3;
518
5.81k
    uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
519
520
27.7k
    for (band = 0; band < qmf_bands; band++)
521
21.9k
    {
522
        /* build working buffer */
523
21.9k
        memcpy(hyb->work, hyb->buffer[band], 12 * sizeof(qmf_t));
524
525
        /* add new samples */
526
707k
        for (n = 0; n < hyb->frame_len; n++)
527
685k
        {
528
685k
            QMF_RE(hyb->work[12 + n]) = QMF_RE(X[n + 6 /*delay*/][band]);
529
685k
            QMF_IM(hyb->work[12 + n]) = QMF_IM(X[n + 6 /*delay*/][band]);
530
685k
        }
531
532
        /* store samples */
533
21.9k
        memcpy(hyb->buffer[band], hyb->work + hyb->frame_len, 12 * sizeof(qmf_t));
534
535
536
21.9k
        switch(resolution[band])
537
21.9k
        {
538
7.15k
        case 2:
539
            /* Type B real filter, Q[p] = 2 */
540
7.15k
            channel_filter2(hyb, hyb->frame_len, p2_13_20, hyb->work, hyb->temp);
541
7.15k
            break;
542
6.71k
        case 4:
543
            /* Type A complex filter, Q[p] = 4 */
544
6.71k
            channel_filter4(hyb, hyb->frame_len, p4_13_34, hyb->work, hyb->temp);
545
6.71k
            break;
546
5.81k
        case 8:
547
            /* Type A complex filter, Q[p] = 8 */
548
5.81k
            channel_filter8(hyb, hyb->frame_len, (use34) ? p8_13_34 : p8_13_20,
549
5.81k
                hyb->work, hyb->temp);
550
5.81k
            break;
551
2.23k
        case 12:
552
            /* Type A complex filter, Q[p] = 12 */
553
2.23k
            channel_filter12(hyb, hyb->frame_len, p12_13_34, hyb->work, hyb->temp);
554
2.23k
            break;
555
21.9k
        }
556
557
707k
        for (n = 0; n < hyb->frame_len; n++)
558
685k
        {
559
4.25M
            for (k = 0; k < resolution[band]; k++)
560
3.57M
            {
561
3.57M
                QMF_RE(X_hybrid[n][offset + k]) = QMF_RE(hyb->temp[n][k]);
562
3.57M
                QMF_IM(X_hybrid[n][offset + k]) = QMF_IM(hyb->temp[n][k]);
563
3.57M
            }
564
685k
        }
565
21.9k
        offset += resolution[band];
566
21.9k
    }
567
568
    /* group hybrid channels */
569
5.81k
    if (!use34)
570
3.57k
    {
571
116k
        for (n = 0; n < numTimeSlotsRate; n++)
572
112k
        {
573
112k
            QMF_RE(X_hybrid[n][3]) += QMF_RE(X_hybrid[n][4]);
574
112k
            QMF_IM(X_hybrid[n][3]) += QMF_IM(X_hybrid[n][4]);
575
112k
            QMF_RE(X_hybrid[n][4]) = 0;
576
112k
            QMF_IM(X_hybrid[n][4]) = 0;
577
578
112k
            QMF_RE(X_hybrid[n][2]) += QMF_RE(X_hybrid[n][5]);
579
112k
            QMF_IM(X_hybrid[n][2]) += QMF_IM(X_hybrid[n][5]);
580
112k
            QMF_RE(X_hybrid[n][5]) = 0;
581
112k
            QMF_IM(X_hybrid[n][5]) = 0;
582
112k
        }
583
3.57k
    }
584
5.81k
}
585
586
static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
587
                             uint8_t use34, uint8_t numTimeSlotsRate)
588
11.6k
{
589
11.6k
    uint8_t k, n, band;
590
11.6k
    uint8_t offset = 0;
591
11.6k
    uint8_t qmf_bands = (use34) ? 5 : 3;
592
11.6k
    uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
593
11.6k
    (void)numTimeSlotsRate;  /* TODO: remove parameter? */
594
595
55.4k
    for(band = 0; band < qmf_bands; band++)
596
43.8k
    {
597
1.41M
        for (n = 0; n < hyb->frame_len; n++)
598
1.37M
        {
599
1.37M
            QMF_RE(X[n][band]) = 0;
600
1.37M
            QMF_IM(X[n][band]) = 0;
601
602
8.51M
            for (k = 0; k < resolution[band]; k++)
603
7.14M
            {
604
7.14M
                QMF_RE(X[n][band]) += QMF_RE(X_hybrid[n][offset + k]);
605
7.14M
                QMF_IM(X[n][band]) += QMF_IM(X_hybrid[n][offset + k]);
606
7.14M
            }
607
1.37M
        }
608
43.8k
        offset += resolution[band];
609
43.8k
    }
610
11.6k
}
611
612
/* limits the value i to the range [min,max] */
613
static int8_t delta_clip(int8_t i, int8_t min, int8_t max)
614
90.9k
{
615
90.9k
    if (i < min)
616
9.62k
        return min;
617
81.3k
    else if (i > max)
618
1.33k
        return max;
619
80.0k
    else
620
80.0k
        return i;
621
90.9k
}
622
623
//int iid = 0;
624
625
/* delta decode array */
626
static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
627
                         uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
628
                         int8_t min_index, int8_t max_index)
629
17.9k
{
630
17.9k
    int8_t i;
631
632
17.9k
    if (enable == 1)
633
8.24k
    {
634
8.24k
        if (dt_flag == 0)
635
5.46k
        {
636
            /* delta coded in frequency direction */
637
5.46k
            index[0] = 0 + index[0];
638
5.46k
            index[0] = delta_clip(index[0], min_index, max_index);
639
640
65.1k
            for (i = 1; i < nr_par; i++)
641
59.6k
            {
642
59.6k
                index[i] = index[i-1] + index[i];
643
59.6k
                index[i] = delta_clip(index[i], min_index, max_index);
644
59.6k
            }
645
5.46k
        } else {
646
            /* delta coded in time direction */
647
28.6k
            for (i = 0; i < nr_par; i++)
648
25.8k
            {
649
                //int8_t tmp2;
650
                //int8_t tmp = index[i];
651
652
                //printf("%d %d\n", index_prev[i*stride], index[i]);
653
                //printf("%d\n", index[i]);
654
655
25.8k
                index[i] = index_prev[i*stride] + index[i];
656
                //tmp2 = index[i];
657
25.8k
                index[i] = delta_clip(index[i], min_index, max_index);
658
659
                //if (iid)
660
                //{
661
                //    if (index[i] == 7)
662
                //    {
663
                //        printf("%d %d %d\n", index_prev[i*stride], tmp, tmp2);
664
                //    }
665
                //}
666
25.8k
            }
667
2.77k
        }
668
9.66k
    } else {
669
        /* set indices to zero */
670
17.4k
        for (i = 0; i < nr_par; i++)
671
7.77k
        {
672
7.77k
            index[i] = 0;
673
7.77k
        }
674
9.66k
    }
675
676
    /* coarse */
677
17.9k
    if (stride == 2)
678
10.5k
    {
679
35.6k
        for (i = (nr_par<<1)-1; i > 0; i--)
680
25.1k
        {
681
25.1k
            index[i] = index[i>>1];
682
25.1k
        }
683
10.5k
    }
684
17.9k
}
685
686
/* delta modulo decode array */
687
/* in: log2 value of the modulo value to allow using AND instead of MOD */
688
static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
689
                                uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
690
                                int8_t and_modulo)
691
17.9k
{
692
17.9k
    int8_t i;
693
694
17.9k
    if (enable == 1)
695
4.80k
    {
696
4.80k
        if (dt_flag == 0)
697
1.91k
        {
698
            /* delta coded in frequency direction */
699
1.91k
            index[0] = 0 + index[0];
700
1.91k
            index[0] &= and_modulo;
701
702
6.35k
            for (i = 1; i < nr_par; i++)
703
4.44k
            {
704
4.44k
                index[i] = index[i-1] + index[i];
705
4.44k
                index[i] &= and_modulo;
706
4.44k
            }
707
2.89k
        } else {
708
            /* delta coded in time direction */
709
8.20k
            for (i = 0; i < nr_par; i++)
710
5.31k
            {
711
5.31k
                index[i] = index_prev[i*stride] + index[i];
712
5.31k
                index[i] &= and_modulo;
713
5.31k
            }
714
2.89k
        }
715
13.1k
    } else {
716
        /* set indices to zero */
717
58.3k
        for (i = 0; i < nr_par; i++)
718
45.2k
        {
719
45.2k
            index[i] = 0;
720
45.2k
        }
721
13.1k
    }
722
723
    /* coarse */
724
17.9k
    if (stride == 2)
725
0
    {
726
0
        index[0] = 0;
727
0
        for (i = (nr_par<<1)-1; i > 0; i--)
728
0
        {
729
0
            index[i] = index[i>>1];
730
0
        }
731
0
    }
732
17.9k
}
733
734
#ifdef PS_LOW_POWER
735
static void map34indexto20(int8_t *index, uint8_t bins)
736
{
737
    index[0] = (2*index[0]+index[1])/3;
738
    index[1] = (index[1]+2*index[2])/3;
739
    index[2] = (2*index[3]+index[4])/3;
740
    index[3] = (index[4]+2*index[5])/3;
741
    index[4] = (index[6]+index[7])/2;
742
    index[5] = (index[8]+index[9])/2;
743
    index[6] = index[10];
744
    index[7] = index[11];
745
    index[8] = (index[12]+index[13])/2;
746
    index[9] = (index[14]+index[15])/2;
747
    index[10] = index[16];
748
749
    if (bins == 34)
750
    {
751
        index[11] = index[17];
752
        index[12] = index[18];
753
        index[13] = index[19];
754
        index[14] = (index[20]+index[21])/2;
755
        index[15] = (index[22]+index[23])/2;
756
        index[16] = (index[24]+index[25])/2;
757
        index[17] = (index[26]+index[27])/2;
758
        index[18] = (index[28]+index[29]+index[30]+index[31])/4;
759
        index[19] = (index[32]+index[33])/2;
760
    }
761
}
762
#endif
763
764
static void map20indexto34(int8_t *index, uint8_t bins)
765
7.19k
{
766
7.19k
    index[0] = index[0];
767
7.19k
    index[1] = (index[0] + index[1])/2;
768
7.19k
    index[2] = index[1];
769
7.19k
    index[3] = index[2];
770
7.19k
    index[4] = (index[2] + index[3])/2;
771
7.19k
    index[5] = index[3];
772
7.19k
    index[6] = index[4];
773
7.19k
    index[7] = index[4];
774
7.19k
    index[8] = index[5];
775
7.19k
    index[9] = index[5];
776
7.19k
    index[10] = index[6];
777
7.19k
    index[11] = index[7];
778
7.19k
    index[12] = index[8];
779
7.19k
    index[13] = index[8];
780
7.19k
    index[14] = index[9];
781
7.19k
    index[15] = index[9];
782
7.19k
    index[16] = index[10];
783
784
7.19k
    if (bins == 34)
785
3.72k
    {
786
3.72k
        index[17] = index[11];
787
3.72k
        index[18] = index[12];
788
3.72k
        index[19] = index[13];
789
3.72k
        index[20] = index[14];
790
3.72k
        index[21] = index[14];
791
3.72k
        index[22] = index[15];
792
3.72k
        index[23] = index[15];
793
3.72k
        index[24] = index[16];
794
3.72k
        index[25] = index[16];
795
3.72k
        index[26] = index[17];
796
3.72k
        index[27] = index[17];
797
3.72k
        index[28] = index[18];
798
3.72k
        index[29] = index[18];
799
3.72k
        index[30] = index[18];
800
3.72k
        index[31] = index[18];
801
3.72k
        index[32] = index[19];
802
3.72k
        index[33] = index[19];
803
3.72k
    }
804
7.19k
}
805
806
/* parse the bitstream data decoded in ps_data() */
807
static void ps_data_decode(ps_info *ps)
808
5.81k
{
809
5.81k
    uint8_t env, bin;
810
811
    /* ps data not available, use data from previous frame */
812
5.81k
    if (ps->ps_data_available == 0)
813
1.55k
    {
814
1.55k
        ps->num_env = 0;
815
1.55k
    }
816
817
14.7k
    for (env = 0; env < ps->num_env; env++)
818
8.95k
    {
819
8.95k
        int8_t *iid_index_prev;
820
8.95k
        int8_t *icc_index_prev;
821
8.95k
        int8_t *ipd_index_prev;
822
8.95k
        int8_t *opd_index_prev;
823
824
8.95k
        int8_t num_iid_steps = (ps->iid_mode < 3) ? 7 : 15 /*fine quant*/;
825
826
8.95k
        if (env == 0)
827
2.82k
        {
828
            /* take last envelope from previous frame */
829
2.82k
            iid_index_prev = ps->iid_index_prev;
830
2.82k
            icc_index_prev = ps->icc_index_prev;
831
2.82k
            ipd_index_prev = ps->ipd_index_prev;
832
2.82k
            opd_index_prev = ps->opd_index_prev;
833
6.13k
        } else {
834
            /* take index values from previous envelope */
835
6.13k
            iid_index_prev = ps->iid_index[env - 1];
836
6.13k
            icc_index_prev = ps->icc_index[env - 1];
837
6.13k
            ipd_index_prev = ps->ipd_index[env - 1];
838
6.13k
            opd_index_prev = ps->opd_index[env - 1];
839
6.13k
        }
840
841
//        iid = 1;
842
        /* delta decode iid parameters */
843
8.95k
        delta_decode(ps->enable_iid, ps->iid_index[env], iid_index_prev,
844
8.95k
            ps->iid_dt[env], ps->nr_iid_par,
845
8.95k
            (ps->iid_mode == 0 || ps->iid_mode == 3) ? 2 : 1,
846
8.95k
            -num_iid_steps, num_iid_steps);
847
//        iid = 0;
848
849
        /* delta decode icc parameters */
850
8.95k
        delta_decode(ps->enable_icc, ps->icc_index[env], icc_index_prev,
851
8.95k
            ps->icc_dt[env], ps->nr_icc_par,
852
8.95k
            (ps->icc_mode == 0 || ps->icc_mode == 3) ? 2 : 1,
853
8.95k
            0, 7);
854
855
        /* delta modulo decode ipd parameters */
856
8.95k
        delta_modulo_decode(ps->enable_ipdopd, ps->ipd_index[env], ipd_index_prev,
857
8.95k
            ps->ipd_dt[env], ps->nr_ipdopd_par, 1, 7);
858
859
        /* delta modulo decode opd parameters */
860
8.95k
        delta_modulo_decode(ps->enable_ipdopd, ps->opd_index[env], opd_index_prev,
861
8.95k
            ps->opd_dt[env], ps->nr_ipdopd_par, 1, 7);
862
8.95k
    }
863
864
    /* handle error case */
865
5.81k
    if (ps->num_env == 0)
866
2.99k
    {
867
        /* force to 1 */
868
2.99k
        ps->num_env = 1;
869
870
2.99k
        if (ps->enable_iid)
871
2.12k
        {
872
74.2k
            for (bin = 0; bin < 34; bin++)
873
72.1k
                ps->iid_index[0][bin] = ps->iid_index_prev[bin];
874
2.12k
        } else {
875
30.5k
            for (bin = 0; bin < 34; bin++)
876
29.7k
                ps->iid_index[0][bin] = 0;
877
874
        }
878
879
2.99k
        if (ps->enable_icc)
880
1.50k
        {
881
52.7k
            for (bin = 0; bin < 34; bin++)
882
51.2k
                ps->icc_index[0][bin] = ps->icc_index_prev[bin];
883
1.50k
        } else {
884
52.0k
            for (bin = 0; bin < 34; bin++)
885
50.5k
                ps->icc_index[0][bin] = 0;
886
1.48k
        }
887
888
2.99k
        if (ps->enable_ipdopd)
889
428
        {
890
7.70k
            for (bin = 0; bin < 17; bin++)
891
7.27k
            {
892
7.27k
                ps->ipd_index[0][bin] = ps->ipd_index_prev[bin];
893
7.27k
                ps->opd_index[0][bin] = ps->opd_index_prev[bin];
894
7.27k
            }
895
2.56k
        } else {
896
46.2k
            for (bin = 0; bin < 17; bin++)
897
43.6k
            {
898
43.6k
                ps->ipd_index[0][bin] = 0;
899
43.6k
                ps->opd_index[0][bin] = 0;
900
43.6k
            }
901
2.56k
        }
902
2.99k
    }
903
904
    /* update previous indices */
905
203k
    for (bin = 0; bin < 34; bin++)
906
197k
        ps->iid_index_prev[bin] = ps->iid_index[ps->num_env-1][bin];
907
203k
    for (bin = 0; bin < 34; bin++)
908
197k
        ps->icc_index_prev[bin] = ps->icc_index[ps->num_env-1][bin];
909
104k
    for (bin = 0; bin < 17; bin++)
910
98.8k
    {
911
98.8k
        ps->ipd_index_prev[bin] = ps->ipd_index[ps->num_env-1][bin];
912
98.8k
        ps->opd_index_prev[bin] = ps->opd_index[ps->num_env-1][bin];
913
98.8k
    }
914
915
5.81k
    ps->ps_data_available = 0;
916
917
5.81k
    if (ps->frame_class == 0)
918
3.82k
    {
919
3.82k
        ps->border_position[0] = 0;
920
6.88k
        for (env = 1; env < ps->num_env; env++)
921
3.06k
        {
922
3.06k
            ps->border_position[env] = (env * ps->numTimeSlotsRate) / ps->num_env;
923
3.06k
        }
924
3.82k
        ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
925
3.82k
    } else {
926
1.98k
        ps->border_position[0] = 0;
927
928
1.98k
        if (ps->border_position[ps->num_env] < ps->numTimeSlotsRate)
929
1.64k
        {
930
57.5k
            for (bin = 0; bin < 34; bin++)
931
55.8k
            {
932
55.8k
                ps->iid_index[ps->num_env][bin] = ps->iid_index[ps->num_env-1][bin];
933
55.8k
                ps->icc_index[ps->num_env][bin] = ps->icc_index[ps->num_env-1][bin];
934
55.8k
            }
935
29.5k
            for (bin = 0; bin < 17; bin++)
936
27.9k
            {
937
27.9k
                ps->ipd_index[ps->num_env][bin] = ps->ipd_index[ps->num_env-1][bin];
938
27.9k
                ps->opd_index[ps->num_env][bin] = ps->opd_index[ps->num_env-1][bin];
939
27.9k
            }
940
1.64k
            ps->num_env++;
941
1.64k
            ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
942
1.64k
        }
943
944
6.70k
        for (env = 1; env < ps->num_env; env++)
945
4.71k
        {
946
4.71k
            int8_t thr = ps->numTimeSlotsRate - (ps->num_env - env);
947
948
4.71k
            if (ps->border_position[env] > thr)
949
659
            {
950
659
                ps->border_position[env] = thr;
951
4.05k
            } else {
952
4.05k
                thr = ps->border_position[env-1]+1;
953
4.05k
                if (ps->border_position[env] < thr)
954
1.86k
                {
955
1.86k
                    ps->border_position[env] = thr;
956
1.86k
                }
957
4.05k
            }
958
4.71k
        }
959
1.98k
    }
960
961
    /* make sure that the indices of all parameters can be mapped
962
     * to the same hybrid synthesis filterbank
963
     */
964
#ifdef PS_LOW_POWER
965
    for (env = 0; env < ps->num_env; env++)
966
    {
967
        if (ps->iid_mode == 2 || ps->iid_mode == 5)
968
            map34indexto20(ps->iid_index[env], 34);
969
        if (ps->icc_mode == 2 || ps->icc_mode == 5)
970
            map34indexto20(ps->icc_index[env], 34);
971
972
        /* disable ipd/opd */
973
        for (bin = 0; bin < 17; bin++)
974
        {
975
            ps->aaIpdIndex[env][bin] = 0;
976
            ps->aaOpdIndex[env][bin] = 0;
977
        }
978
    }
979
#else
980
5.81k
    if (ps->use34hybrid_bands)
981
2.23k
    {
982
6.12k
        for (env = 0; env < ps->num_env; env++)
983
3.89k
        {
984
3.89k
            if (ps->iid_mode != 2 && ps->iid_mode != 5)
985
1.73k
                map20indexto34(ps->iid_index[env], 34);
986
3.89k
            if (ps->icc_mode != 2 && ps->icc_mode != 5)
987
1.98k
                map20indexto34(ps->icc_index[env], 34);
988
3.89k
            if (ps->ipd_mode != 2 && ps->ipd_mode != 5)
989
1.73k
            {
990
1.73k
                map20indexto34(ps->ipd_index[env], 17);
991
1.73k
                map20indexto34(ps->opd_index[env], 17);
992
1.73k
            }
993
3.89k
        }
994
2.23k
    }
995
5.81k
#endif
996
997
#if 0
998
    for (env = 0; env < ps->num_env; env++)
999
    {
1000
        printf("iid[env:%d]:", env);
1001
        for (bin = 0; bin < 34; bin++)
1002
        {
1003
            printf(" %d", ps->iid_index[env][bin]);
1004
        }
1005
        printf("\n");
1006
    }
1007
    for (env = 0; env < ps->num_env; env++)
1008
    {
1009
        printf("icc[env:%d]:", env);
1010
        for (bin = 0; bin < 34; bin++)
1011
        {
1012
            printf(" %d", ps->icc_index[env][bin]);
1013
        }
1014
        printf("\n");
1015
    }
1016
    for (env = 0; env < ps->num_env; env++)
1017
    {
1018
        printf("ipd[env:%d]:", env);
1019
        for (bin = 0; bin < 17; bin++)
1020
        {
1021
            printf(" %d", ps->ipd_index[env][bin]);
1022
        }
1023
        printf("\n");
1024
    }
1025
    for (env = 0; env < ps->num_env; env++)
1026
    {
1027
        printf("opd[env:%d]:", env);
1028
        for (bin = 0; bin < 17; bin++)
1029
        {
1030
            printf(" %d", ps->opd_index[env][bin]);
1031
        }
1032
        printf("\n");
1033
    }
1034
    printf("\n");
1035
#endif
1036
5.81k
}
1037
1038
/* decorrelate the mono signal using an allpass filter */
1039
static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
1040
                           qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
1041
5.81k
{
1042
5.81k
    uint8_t gr, n, bk;
1043
5.81k
    uint8_t temp_delay = 0;
1044
5.81k
    uint8_t sb, maxsb;
1045
5.81k
    const complex_t *Phi_Fract_SubQmf;
1046
5.81k
    uint8_t temp_delay_ser[NO_ALLPASS_LINKS];
1047
5.81k
    real_t P_SmoothPeakDecayDiffNrg, nrg;
1048
5.81k
    real_t P[32][34];
1049
5.81k
    real_t G_TransientRatio[32][34] = {{0}};
1050
5.81k
    complex_t inputLeft;
1051
1052
1053
    /* chose hybrid filterbank: 20 or 34 band case */
1054
5.81k
    if (ps->use34hybrid_bands)
1055
2.23k
    {
1056
2.23k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf34;
1057
3.57k
    } else{
1058
3.57k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf20;
1059
3.57k
    }
1060
1061
    /* clear the energy values */
1062
191k
    for (n = 0; n < 32; n++)
1063
186k
    {
1064
6.51M
        for (bk = 0; bk < 34; bk++)
1065
6.32M
        {
1066
6.32M
            P[n][bk] = 0;
1067
6.32M
        }
1068
186k
    }
1069
1070
    /* calculate the energy in each parameter band b(k) */
1071
196k
    for (gr = 0; gr < ps->num_groups; gr++)
1072
190k
    {
1073
        /* select the parameter index b(k) to which this group belongs */
1074
190k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1075
1076
        /* select the upper subband border for this group */
1077
190k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr]+1 : ps->group_border[gr+1];
1078
1079
648k
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1080
457k
        {
1081
14.8M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1082
14.3M
            {
1083
#ifdef FIXED_POINT
1084
                uint32_t in_re, in_im;
1085
#endif
1086
1087
                /* input from hybrid subbands or QMF subbands */
1088
14.3M
                if (gr < ps->num_hybrid_groups)
1089
3.35M
                {
1090
3.35M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1091
3.35M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1092
10.9M
                } else {
1093
10.9M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1094
10.9M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1095
10.9M
                }
1096
1097
                /* accumulate energy */
1098
#ifdef FIXED_POINT
1099
                /* NOTE: all input is scaled by 2^(-5) because of fixed point QMF
1100
                 * meaning that P will be scaled by 2^(-10) compared to floating point version
1101
                 */
1102
                in_re = ((abs(RE(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1103
                in_im = ((abs(IM(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1104
                P[n][bk] += in_re*in_re + in_im*in_im;
1105
#else
1106
14.3M
                P[n][bk] += MUL_R(RE(inputLeft),RE(inputLeft)) + MUL_R(IM(inputLeft),IM(inputLeft));
1107
14.3M
#endif
1108
14.3M
            }
1109
457k
        }
1110
190k
    }
1111
1112
#if 0
1113
    for (n = 0; n < 32; n++)
1114
    {
1115
        for (bk = 0; bk < 34; bk++)
1116
        {
1117
#ifdef FIXED_POINT
1118
            printf("%d %d: %d\n", n, bk, P[n][bk] /*/(float)REAL_PRECISION*/);
1119
#else
1120
            printf("%d %d: %f\n", n, bk, P[n][bk]/1024.0);
1121
#endif
1122
        }
1123
    }
1124
#endif
1125
1126
    /* calculate transient reduction ratio for each parameter band b(k) */
1127
153k
    for (bk = 0; bk < ps->nr_par_bands; bk++)
1128
147k
    {
1129
4.77M
        for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1130
4.62M
        {
1131
4.62M
            const real_t gamma = COEF_CONST(1.5);
1132
1133
4.62M
            ps->P_PeakDecayNrg[bk] = MUL_F(ps->P_PeakDecayNrg[bk], ps->alpha_decay);
1134
4.62M
            if (ps->P_PeakDecayNrg[bk] < P[n][bk])
1135
48.2k
                ps->P_PeakDecayNrg[bk] = P[n][bk];
1136
1137
            /* apply smoothing filter to peak decay energy */
1138
4.62M
            P_SmoothPeakDecayDiffNrg = ps->P_SmoothPeakDecayDiffNrg_prev[bk];
1139
4.62M
            P_SmoothPeakDecayDiffNrg += MUL_F((ps->P_PeakDecayNrg[bk] - P[n][bk] - ps->P_SmoothPeakDecayDiffNrg_prev[bk]), ps->alpha_smooth);
1140
4.62M
            ps->P_SmoothPeakDecayDiffNrg_prev[bk] = P_SmoothPeakDecayDiffNrg;
1141
1142
            /* apply smoothing filter to energy */
1143
4.62M
            nrg = ps->P_prev[bk];
1144
4.62M
            nrg += MUL_F((P[n][bk] - ps->P_prev[bk]), ps->alpha_smooth);
1145
4.62M
            ps->P_prev[bk] = nrg;
1146
1147
            /* calculate transient ratio */
1148
4.62M
            if (MUL_C(P_SmoothPeakDecayDiffNrg, gamma) <= nrg)
1149
4.58M
            {
1150
4.58M
                G_TransientRatio[n][bk] = REAL_CONST(1.0);
1151
4.58M
            } else {
1152
38.5k
                G_TransientRatio[n][bk] = DIV_R(nrg, (MUL_C(P_SmoothPeakDecayDiffNrg, gamma)));
1153
38.5k
            }
1154
4.62M
        }
1155
147k
    }
1156
1157
#if 0
1158
    for (n = 0; n < 32; n++)
1159
    {
1160
        for (bk = 0; bk < 34; bk++)
1161
        {
1162
#ifdef FIXED_POINT
1163
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]/(float)REAL_PRECISION);
1164
#else
1165
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]);
1166
#endif
1167
        }
1168
    }
1169
#endif
1170
1171
    /* apply stereo decorrelation filter to the signal */
1172
196k
    for (gr = 0; gr < ps->num_groups; gr++)
1173
190k
    {
1174
190k
        if (gr < ps->num_hybrid_groups)
1175
107k
            maxsb = ps->group_border[gr] + 1;
1176
83.2k
        else
1177
83.2k
            maxsb = ps->group_border[gr + 1];
1178
1179
        /* QMF channel */
1180
648k
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1181
457k
        {
1182
457k
            real_t g_DecaySlope;
1183
457k
            real_t g_DecaySlope_filt[NO_ALLPASS_LINKS];
1184
1185
            /* g_DecaySlope: [0..1] */
1186
457k
            if (gr < ps->num_hybrid_groups || sb <= ps->decay_cutoff)
1187
113k
            {
1188
113k
                g_DecaySlope = FRAC_CONST(1.0);
1189
344k
            } else {
1190
344k
                int8_t decay = ps->decay_cutoff - sb;
1191
344k
                if (decay <= -20 /* -1/DECAY_SLOPE */)
1192
233k
                {
1193
233k
                    g_DecaySlope = 0;
1194
233k
                } else {
1195
                    /* decay(int)*decay_slope(frac) = g_DecaySlope(frac) */
1196
110k
                    g_DecaySlope = FRAC_CONST(1.0) + DECAY_SLOPE * decay;
1197
110k
                }
1198
344k
            }
1199
1200
            /* calculate g_DecaySlope_filt for every n multiplied by filter_a[n] */
1201
1.83M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1202
1.37M
            {
1203
1.37M
                g_DecaySlope_filt[n] = MUL_F(g_DecaySlope, filter_a[n]);
1204
1.37M
            }
1205
1206
1207
            /* set delay indices */
1208
457k
            temp_delay = ps->saved_delay;
1209
1.83M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1210
1.37M
                temp_delay_ser[n] = ps->delay_buf_index_ser[n];
1211
1212
14.8M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1213
14.3M
            {
1214
14.3M
                complex_t tmp, tmp0, R0;
1215
14.3M
                uint8_t m;
1216
1217
14.3M
                if (gr < ps->num_hybrid_groups)
1218
3.35M
                {
1219
                    /* hybrid filterbank input */
1220
3.35M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1221
3.35M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1222
10.9M
                } else {
1223
                    /* QMF filterbank input */
1224
10.9M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1225
10.9M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1226
10.9M
                }
1227
1228
14.3M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1229
7.48M
                {
1230
                    /* delay */
1231
1232
                    /* never hybrid subbands here, always QMF subbands */
1233
7.48M
                    RE(tmp) = RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1234
7.48M
                    IM(tmp) = IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1235
7.48M
                    RE(R0) = RE(tmp);
1236
7.48M
                    IM(R0) = IM(tmp);
1237
7.48M
                    RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = RE(inputLeft);
1238
7.48M
                    IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = IM(inputLeft);
1239
7.48M
                } else {
1240
                    /* allpass filter */
1241
6.86M
                    complex_t Phi_Fract;
1242
1243
                    /* fetch parameters */
1244
6.86M
                    if (gr < ps->num_hybrid_groups)
1245
3.35M
                    {
1246
                        /* select data from the hybrid subbands */
1247
3.35M
                        RE(tmp0) = RE(ps->delay_SubQmf[temp_delay][sb]);
1248
3.35M
                        IM(tmp0) = IM(ps->delay_SubQmf[temp_delay][sb]);
1249
1250
3.35M
                        RE(ps->delay_SubQmf[temp_delay][sb]) = RE(inputLeft);
1251
3.35M
                        IM(ps->delay_SubQmf[temp_delay][sb]) = IM(inputLeft);
1252
1253
3.35M
                        RE(Phi_Fract) = RE(Phi_Fract_SubQmf[sb]);
1254
3.35M
                        IM(Phi_Fract) = IM(Phi_Fract_SubQmf[sb]);
1255
3.51M
                    } else {
1256
                        /* select data from the QMF subbands */
1257
3.51M
                        RE(tmp0) = RE(ps->delay_Qmf[temp_delay][sb]);
1258
3.51M
                        IM(tmp0) = IM(ps->delay_Qmf[temp_delay][sb]);
1259
1260
3.51M
                        RE(ps->delay_Qmf[temp_delay][sb]) = RE(inputLeft);
1261
3.51M
                        IM(ps->delay_Qmf[temp_delay][sb]) = IM(inputLeft);
1262
1263
3.51M
                        RE(Phi_Fract) = RE(Phi_Fract_Qmf[sb]);
1264
3.51M
                        IM(Phi_Fract) = IM(Phi_Fract_Qmf[sb]);
1265
3.51M
                    }
1266
1267
                    /* z^(-2) * Phi_Fract[k] */
1268
6.86M
                    ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Phi_Fract), IM(Phi_Fract));
1269
1270
6.86M
                    RE(R0) = RE(tmp);
1271
6.86M
                    IM(R0) = IM(tmp);
1272
27.4M
                    for (m = 0; m < NO_ALLPASS_LINKS; m++)
1273
20.5M
                    {
1274
20.5M
                        complex_t Q_Fract_allpass, tmp2;
1275
1276
                        /* fetch parameters */
1277
20.5M
                        if (gr < ps->num_hybrid_groups)
1278
10.0M
                        {
1279
                            /* select data from the hybrid subbands */
1280
10.0M
                            RE(tmp0) = RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1281
10.0M
                            IM(tmp0) = IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1282
1283
10.0M
                            if (ps->use34hybrid_bands)
1284
6.66M
                            {
1285
6.66M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf34[sb][m]);
1286
6.66M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf34[sb][m]);
1287
6.66M
                            } else {
1288
3.39M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf20[sb][m]);
1289
3.39M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf20[sb][m]);
1290
3.39M
                            }
1291
10.5M
                        } else {
1292
                            /* select data from the QMF subbands */
1293
10.5M
                            RE(tmp0) = RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1294
10.5M
                            IM(tmp0) = IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1295
1296
10.5M
                            RE(Q_Fract_allpass) = RE(Q_Fract_allpass_Qmf[sb][m]);
1297
10.5M
                            IM(Q_Fract_allpass) = IM(Q_Fract_allpass_Qmf[sb][m]);
1298
10.5M
                        }
1299
1300
                        /* delay by a fraction */
1301
                        /* z^(-d(m)) * Q_Fract_allpass[k,m] */
1302
20.5M
                        ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Q_Fract_allpass), IM(Q_Fract_allpass));
1303
1304
                        /* -a(m) * g_DecaySlope[k] */
1305
20.5M
                        RE(tmp) += -MUL_F(g_DecaySlope_filt[m], RE(R0));
1306
20.5M
                        IM(tmp) += -MUL_F(g_DecaySlope_filt[m], IM(R0));
1307
1308
                        /* -a(m) * g_DecaySlope[k] * Q_Fract_allpass[k,m] * z^(-d(m)) */
1309
20.5M
                        RE(tmp2) = RE(R0) + MUL_F(g_DecaySlope_filt[m], RE(tmp));
1310
20.5M
                        IM(tmp2) = IM(R0) + MUL_F(g_DecaySlope_filt[m], IM(tmp));
1311
1312
                        /* store sample */
1313
20.5M
                        if (gr < ps->num_hybrid_groups)
1314
10.0M
                        {
1315
10.0M
                            RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1316
10.0M
                            IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1317
10.5M
                        } else {
1318
10.5M
                            RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1319
10.5M
                            IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1320
10.5M
                        }
1321
1322
                        /* store for next iteration (or as output value if last iteration) */
1323
20.5M
                        RE(R0) = RE(tmp);
1324
20.5M
                        IM(R0) = IM(tmp);
1325
20.5M
                    }
1326
6.86M
                }
1327
1328
                /* select b(k) for reading the transient ratio */
1329
14.3M
                bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1330
1331
                /* duck if a past transient is found */
1332
14.3M
                RE(R0) = MUL_R(G_TransientRatio[n][bk], RE(R0));
1333
14.3M
                IM(R0) = MUL_R(G_TransientRatio[n][bk], IM(R0));
1334
1335
14.3M
                if (gr < ps->num_hybrid_groups)
1336
3.35M
                {
1337
                    /* hybrid */
1338
3.35M
                    QMF_RE(X_hybrid_right[n][sb]) = RE(R0);
1339
3.35M
                    QMF_IM(X_hybrid_right[n][sb]) = IM(R0);
1340
10.9M
                } else {
1341
                    /* QMF */
1342
10.9M
                    QMF_RE(X_right[n][sb]) = RE(R0);
1343
10.9M
                    QMF_IM(X_right[n][sb]) = IM(R0);
1344
10.9M
                }
1345
1346
                /* Update delay buffer index */
1347
14.3M
                if (++temp_delay >= 2)
1348
7.17M
                {
1349
7.17M
                    temp_delay = 0;
1350
7.17M
                }
1351
1352
                /* update delay indices */
1353
14.3M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1354
7.48M
                {
1355
                    /* delay_D depends on the samplerate, it can hold the values 14 and 1 */
1356
7.48M
                    if (++ps->delay_buf_index_delay[sb] >= ps->delay_D[sb])
1357
5.43M
                    {
1358
5.43M
                        ps->delay_buf_index_delay[sb] = 0;
1359
5.43M
                    }
1360
7.48M
                }
1361
1362
57.4M
                for (m = 0; m < NO_ALLPASS_LINKS; m++)
1363
43.0M
                {
1364
43.0M
                    if (++temp_delay_ser[m] >= ps->num_sample_delay_ser[m])
1365
11.0M
                    {
1366
11.0M
                        temp_delay_ser[m] = 0;
1367
11.0M
                    }
1368
43.0M
                }
1369
14.3M
            }
1370
457k
        }
1371
190k
    }
1372
1373
    /* update delay indices */
1374
5.81k
    ps->saved_delay = temp_delay;
1375
23.2k
    for (n = 0; n < NO_ALLPASS_LINKS; n++)
1376
17.4k
        ps->delay_buf_index_ser[n] = temp_delay_ser[n];
1377
5.81k
}
1378
1379
#if 0
1380
#ifdef FIXED_POINT
1381
#define step(shift) \
1382
    if ((0x40000000l >> shift) + root <= value)       \
1383
    {                                                 \
1384
        value -= (0x40000000l >> shift) + root;       \
1385
        root = (root >> 1) | (0x40000000l >> shift);  \
1386
    } else {                                          \
1387
        root = root >> 1;                             \
1388
    }
1389
1390
/* fixed point square root approximation */
1391
static real_t ps_sqrt(real_t value)
1392
{
1393
    real_t root = 0;
1394
1395
    step( 0); step( 2); step( 4); step( 6);
1396
    step( 8); step(10); step(12); step(14);
1397
    step(16); step(18); step(20); step(22);
1398
    step(24); step(26); step(28); step(30);
1399
1400
    if (root < value)
1401
        ++root;
1402
1403
    root <<= (REAL_BITS/2);
1404
1405
    return root;
1406
}
1407
#else
1408
#define ps_sqrt(A) sqrt(A)
1409
#endif
1410
#endif
1411
1412
static const real_t ipdopd_cos_tab[] = {
1413
    FRAC_CONST(1.000000000000000),
1414
    FRAC_CONST(0.707106781186548),
1415
    FRAC_CONST(0.000000000000000),
1416
    FRAC_CONST(-0.707106781186547),
1417
    FRAC_CONST(-1.000000000000000),
1418
    FRAC_CONST(-0.707106781186548),
1419
    FRAC_CONST(-0.000000000000000),
1420
    FRAC_CONST(0.707106781186547),
1421
    FRAC_CONST(1.000000000000000)
1422
};
1423
1424
static const real_t ipdopd_sin_tab[] = {
1425
    FRAC_CONST(0.000000000000000),
1426
    FRAC_CONST(0.707106781186547),
1427
    FRAC_CONST(1.000000000000000),
1428
    FRAC_CONST(0.707106781186548),
1429
    FRAC_CONST(0.000000000000000),
1430
    FRAC_CONST(-0.707106781186547),
1431
    FRAC_CONST(-1.000000000000000),
1432
    FRAC_CONST(-0.707106781186548),
1433
    FRAC_CONST(-0.000000000000000)
1434
};
1435
1436
static real_t magnitude_c(complex_t c)
1437
95.1k
{
1438
#ifdef FIXED_POINT
1439
#define ps_abs(A) (((A) > 0) ? (A) : (-(A)))
1440
#define ALPHA FRAC_CONST(0.948059448969)
1441
#define BETA  FRAC_CONST(0.392699081699)
1442
1443
    real_t abs_inphase = ps_abs(RE(c));
1444
    real_t abs_quadrature = ps_abs(IM(c));
1445
1446
    if (abs_inphase > abs_quadrature) {
1447
        return MUL_F(abs_inphase, ALPHA) + MUL_F(abs_quadrature, BETA);
1448
    } else {
1449
        return MUL_F(abs_quadrature, ALPHA) + MUL_F(abs_inphase, BETA);
1450
    }
1451
#else
1452
95.1k
    return sqrt(RE(c)*RE(c) + IM(c)*IM(c));
1453
95.1k
#endif
1454
95.1k
}
1455
1456
static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
1457
                         qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
1458
5.81k
{
1459
5.81k
    uint8_t n;
1460
5.81k
    uint8_t gr;
1461
5.81k
    uint8_t bk = 0;
1462
5.81k
    uint8_t sb, maxsb;
1463
5.81k
    uint8_t env;
1464
5.81k
    uint8_t nr_ipdopd_par;
1465
5.81k
    complex_t h11, h12, h21, h22;  // COEF
1466
5.81k
    complex_t H11, H12, H21, H22;  // COEF
1467
5.81k
    complex_t deltaH11, deltaH12, deltaH21, deltaH22;  // COEF
1468
5.81k
    complex_t tempLeft, tempRight; // FRAC
1469
5.81k
    complex_t phaseLeft, phaseRight; // FRAC
1470
5.81k
    real_t L;
1471
5.81k
    const real_t *sf_iid;
1472
5.81k
    uint8_t no_iid_steps;
1473
1474
5.81k
    if (ps->iid_mode >= 3)
1475
2.32k
    {
1476
2.32k
        no_iid_steps = 15;
1477
2.32k
        sf_iid = sf_iid_fine;
1478
3.48k
    } else {
1479
3.48k
        no_iid_steps = 7;
1480
3.48k
        sf_iid = sf_iid_normal;
1481
3.48k
    }
1482
1483
5.81k
    if (ps->ipd_mode == 0 || ps->ipd_mode == 3)
1484
3.00k
    {
1485
3.00k
        nr_ipdopd_par = 11; /* resolution */
1486
3.00k
    } else {
1487
2.81k
        nr_ipdopd_par = ps->nr_ipdopd_par;
1488
2.81k
    }
1489
1490
196k
    for (gr = 0; gr < ps->num_groups; gr++)
1491
190k
    {
1492
190k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1493
1494
        /* use one channel per group in the subqmf domain */
1495
190k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr] + 1 : ps->group_border[gr + 1];
1496
1497
598k
        for (env = 0; env < ps->num_env; env++)
1498
407k
        {
1499
407k
            uint8_t abs_iid = (uint8_t)abs(ps->iid_index[env][bk]);
1500
            /* index range is supposed to be -7...7 or -15...15 depending on iid_mode
1501
                (Table 8.24, ISO/IEC 14496-3:2005).
1502
                if it is outside these boundaries, this is most likely an error. sanitize
1503
                it and try to process further. */
1504
407k
            if (ps->iid_index[env][bk] < -no_iid_steps) {
1505
161
                fprintf(stderr, "Warning: invalid iid_index: %d < %d\n", ps->iid_index[env][bk],
1506
161
                    -no_iid_steps);
1507
161
                ps->iid_index[env][bk] = -no_iid_steps;
1508
161
                abs_iid = no_iid_steps;
1509
407k
            } else if (ps->iid_index[env][bk] > no_iid_steps) {
1510
79
                fprintf(stderr, "Warning: invalid iid_index: %d > %d\n", ps->iid_index[env][bk],
1511
79
                    no_iid_steps);
1512
79
                ps->iid_index[env][bk] = no_iid_steps;
1513
79
                abs_iid = no_iid_steps;
1514
79
            }
1515
407k
            if (ps->icc_index[env][bk] < 0) {
1516
257
                fprintf(stderr, "Warning: invalid icc_index: %d < 0\n", ps->icc_index[env][bk]);
1517
257
                ps->icc_index[env][bk] = 0;
1518
407k
            } else if (ps->icc_index[env][bk] > 7) {
1519
0
                fprintf(stderr, "Warning: invalid icc_index: %d > 7\n", ps->icc_index[env][bk]);
1520
0
                ps->icc_index[env][bk] = 7;
1521
0
            }
1522
1523
407k
            if (ps->icc_mode < 3)
1524
254k
            {
1525
                /* type 'A' mixing as described in 8.6.4.6.2.1 */
1526
254k
                real_t c_1, c_2;  // COEF
1527
254k
                real_t cosa, sina;  // COEF
1528
254k
                real_t cosb, sinb;  // COEF
1529
254k
                real_t ab1, ab2;  // COEF
1530
254k
                real_t ab3, ab4;  // COEF
1531
1532
                /*
1533
                c_1 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps + iid_index] / 10.0)));
1534
                c_2 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps - iid_index] / 10.0)));
1535
                alpha = 0.5 * acos(quant_rho[icc_index]);
1536
                beta = alpha * ( c_1 - c_2 ) / sqrt(2.0);
1537
                */
1538
1539
                //printf("%d\n", ps->iid_index[env][bk]);
1540
1541
                /* calculate the scalefactors c_1 and c_2 from the intensity differences */
1542
254k
                c_1 = sf_iid[no_iid_steps + ps->iid_index[env][bk]];
1543
254k
                c_2 = sf_iid[no_iid_steps - ps->iid_index[env][bk]];
1544
1545
                /* calculate alpha and beta using the ICC parameters */
1546
254k
                cosa = cos_alphas[ps->icc_index[env][bk]];
1547
254k
                sina = sin_alphas[ps->icc_index[env][bk]];
1548
1549
254k
                if (ps->iid_mode >= 3)
1550
82.1k
                {
1551
82.1k
                    cosb = cos_betas_fine[abs_iid][ps->icc_index[env][bk]];
1552
82.1k
                    sinb = sin_betas_fine[abs_iid][ps->icc_index[env][bk]];
1553
172k
                } else {
1554
172k
                    cosb = cos_betas_normal[abs_iid][ps->icc_index[env][bk]];
1555
172k
                    sinb = sin_betas_normal[abs_iid][ps->icc_index[env][bk]];
1556
172k
                }
1557
1558
254k
                ab1 = MUL_C(cosb, cosa);
1559
254k
                ab2 = MUL_C(sinb, sina);
1560
254k
                ab3 = MUL_C(sinb, cosa);
1561
254k
                ab4 = MUL_C(cosb, sina);
1562
1563
                /* h_xy: COEF */
1564
254k
                RE(h11) = MUL_C(c_2, (ab1 - ab2));
1565
254k
                RE(h12) = MUL_C(c_1, (ab1 + ab2));
1566
254k
                RE(h21) = MUL_C(c_2, (ab3 + ab4));
1567
254k
                RE(h22) = MUL_C(c_1, (ab3 - ab4));
1568
254k
            } else {
1569
                /* type 'B' mixing as described in 8.6.4.6.2.2 */
1570
153k
                real_t sina, cosa;  // COEF
1571
153k
                real_t cosg, sing;  // COEF
1572
1573
                /*
1574
                real_t c, rho, mu, alpha, gamma;
1575
                uint8_t i;
1576
1577
                i = ps->iid_index[env][bk];
1578
                c = (real_t)pow(10.0, ((i)?(((i>0)?1:-1)*quant_iid[((i>0)?i:-i)-1]):0.)/20.0);
1579
                rho = quant_rho[ps->icc_index[env][bk]];
1580
1581
                if (rho == 0.0f && c == 1.)
1582
                {
1583
                    alpha = (real_t)M_PI/4.0f;
1584
                    rho = 0.05f;
1585
                } else {
1586
                    if (rho <= 0.05f)
1587
                    {
1588
                        rho = 0.05f;
1589
                    }
1590
                    alpha = 0.5f*(real_t)atan( (2.0f*c*rho) / (c*c-1.0f) );
1591
1592
                    if (alpha < 0.)
1593
                    {
1594
                        alpha += (real_t)M_PI/2.0f;
1595
                    }
1596
                    if (rho < 0.)
1597
                    {
1598
                        alpha += (real_t)M_PI;
1599
                    }
1600
                }
1601
                mu = c+1.0f/c;
1602
                mu = 1+(4.0f*rho*rho-4.0f)/(mu*mu);
1603
                gamma = (real_t)atan(sqrt((1.0f-sqrt(mu))/(1.0f+sqrt(mu))));
1604
                */
1605
1606
153k
                if (ps->iid_mode >= 3)
1607
83.5k
                {
1608
83.5k
                    cosa = sincos_alphas_B_fine[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1609
83.5k
                    sina = sincos_alphas_B_fine[30 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1610
83.5k
                    cosg = cos_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1611
83.5k
                    sing = sin_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1612
83.5k
                } else {
1613
69.6k
                    cosa = sincos_alphas_B_normal[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1614
69.6k
                    sina = sincos_alphas_B_normal[14 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1615
69.6k
                    cosg = cos_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1616
69.6k
                    sing = sin_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1617
69.6k
                }
1618
1619
153k
                RE(h11) = MUL_C(COEF_SQRT2, MUL_C(cosa, cosg));
1620
153k
                RE(h12) = MUL_C(COEF_SQRT2, MUL_C(sina, cosg));
1621
153k
                RE(h21) = MUL_C(COEF_SQRT2, MUL_C(-cosa, sing));
1622
153k
                RE(h22) = MUL_C(COEF_SQRT2, MUL_C(sina, sing));
1623
153k
            }
1624
407k
            IM(h11) = IM(h12) = IM(h21) = IM(h22) = 0;
1625
1626
            /* calculate phase rotation parameters H_xy */
1627
            /* note that the imaginary part of these parameters are only calculated when
1628
               IPD and OPD are enabled
1629
             */
1630
407k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1631
47.5k
            {
1632
47.5k
                int8_t i;
1633
47.5k
                real_t xy, pq, xypq;  // FRAC
1634
1635
                /* ringbuffer index */
1636
47.5k
                i = ps->phase_hist;
1637
1638
                /* previous value */
1639
#ifdef FIXED_POINT
1640
                /* divide by 4*2, shift right 3 bits;
1641
                   extra halving to avoid overflows; it is ok, because result is normalized */
1642
                RE(tempLeft)  = RE(ps->ipd_prev[bk][i]) >> 3;
1643
                IM(tempLeft)  = IM(ps->ipd_prev[bk][i]) >> 3;
1644
                RE(tempRight) = RE(ps->opd_prev[bk][i]) >> 3;
1645
                IM(tempRight) = IM(ps->opd_prev[bk][i]) >> 3;
1646
#else
1647
47.5k
                RE(tempLeft)  = MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1648
47.5k
                IM(tempLeft)  = MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1649
47.5k
                RE(tempRight) = MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1650
47.5k
                IM(tempRight) = MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1651
47.5k
#endif
1652
1653
                /* save current value */
1654
47.5k
                RE(ps->ipd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->ipd_index[env][bk])];
1655
47.5k
                IM(ps->ipd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->ipd_index[env][bk])];
1656
47.5k
                RE(ps->opd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->opd_index[env][bk])];
1657
47.5k
                IM(ps->opd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->opd_index[env][bk])];
1658
1659
                /* add current value */
1660
#ifdef FIXED_POINT
1661
                /* extra halving to avoid overflows */
1662
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]) >> 1;
1663
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]) >> 1;
1664
                RE(tempRight) += RE(ps->opd_prev[bk][i]) >> 1;
1665
                IM(tempRight) += IM(ps->opd_prev[bk][i]) >> 1;
1666
#else
1667
47.5k
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]);
1668
47.5k
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]);
1669
47.5k
                RE(tempRight) += RE(ps->opd_prev[bk][i]);
1670
47.5k
                IM(tempRight) += IM(ps->opd_prev[bk][i]);
1671
47.5k
#endif
1672
1673
                /* ringbuffer index */
1674
47.5k
                if (i == 0)
1675
24.0k
                {
1676
24.0k
                    i = 2;
1677
24.0k
                }
1678
47.5k
                i--;
1679
1680
                /* get value before previous */
1681
#ifdef FIXED_POINT
1682
                /* dividing by 2*2, shift right 2 bits; extra halving to avoid overflows */
1683
                RE(tempLeft)  += (RE(ps->ipd_prev[bk][i]) >> 2);
1684
                IM(tempLeft)  += (IM(ps->ipd_prev[bk][i]) >> 2);
1685
                RE(tempRight) += (RE(ps->opd_prev[bk][i]) >> 2);
1686
                IM(tempRight) += (IM(ps->opd_prev[bk][i]) >> 2);
1687
#else
1688
47.5k
                RE(tempLeft)  += MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1689
47.5k
                IM(tempLeft)  += MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1690
47.5k
                RE(tempRight) += MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1691
47.5k
                IM(tempRight) += MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1692
47.5k
#endif
1693
1694
#if 0 /* original code */
1695
                ipd = (float)atan2(IM(tempLeft), RE(tempLeft));
1696
                opd = (float)atan2(IM(tempRight), RE(tempRight));
1697
1698
                /* phase rotation */
1699
                RE(phaseLeft) = (float)cos(opd);
1700
                IM(phaseLeft) = (float)sin(opd);
1701
                opd -= ipd;
1702
                RE(phaseRight) = (float)cos(opd);
1703
                IM(phaseRight) = (float)sin(opd);
1704
#else
1705
1706
                // x = IM(tempLeft)
1707
                // y = RE(tempLeft)
1708
                // p = IM(tempRight)
1709
                // q = RE(tempRight)
1710
                // cos(atan2(x,y)) = y/sqrt((x*x) + (y*y))
1711
                // sin(atan2(x,y)) = x/sqrt((x*x) + (y*y))
1712
                // cos(atan2(x,y)-atan2(p,q)) = (y*q + x*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1713
                // sin(atan2(x,y)-atan2(p,q)) = (x*q - y*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1714
1715
47.5k
                xy = magnitude_c(tempRight);
1716
47.5k
                pq = magnitude_c(tempLeft);
1717
1718
47.5k
                if (xy != 0)
1719
47.5k
                {
1720
47.5k
                    RE(phaseLeft) = DIV_F(RE(tempRight), xy);
1721
47.5k
                    IM(phaseLeft) = DIV_F(IM(tempRight), xy);
1722
47.5k
                } else {
1723
0
                    RE(phaseLeft) = 0;
1724
0
                    IM(phaseLeft) = 0;
1725
0
                }
1726
1727
47.5k
                xypq = MUL_F(xy, pq);
1728
1729
47.5k
                if (xypq != 0)
1730
47.5k
                {
1731
47.5k
                    real_t tmp1 = MUL_F(RE(tempRight), RE(tempLeft)) + MUL_F(IM(tempRight), IM(tempLeft));
1732
47.5k
                    real_t tmp2 = MUL_F(IM(tempRight), RE(tempLeft)) - MUL_F(RE(tempRight), IM(tempLeft));
1733
1734
47.5k
                    RE(phaseRight) = DIV_F(tmp1, xypq);
1735
47.5k
                    IM(phaseRight) = DIV_F(tmp2, xypq);
1736
47.5k
                } else {
1737
0
                    RE(phaseRight) = 0;
1738
0
                    IM(phaseRight) = 0;
1739
0
                }
1740
1741
47.5k
#endif
1742
1743
                /* MUL_F(COEF, REAL) = COEF */
1744
47.5k
                IM(h11) = MUL_F(RE(h11), IM(phaseLeft));
1745
47.5k
                IM(h12) = MUL_F(RE(h12), IM(phaseRight));
1746
47.5k
                IM(h21) = MUL_F(RE(h21), IM(phaseLeft));
1747
47.5k
                IM(h22) = MUL_F(RE(h22), IM(phaseRight));
1748
1749
47.5k
                RE(h11) = MUL_F(RE(h11), RE(phaseLeft));
1750
47.5k
                RE(h12) = MUL_F(RE(h12), RE(phaseRight));
1751
47.5k
                RE(h21) = MUL_F(RE(h21), RE(phaseLeft));
1752
47.5k
                RE(h22) = MUL_F(RE(h22), RE(phaseRight));
1753
47.5k
            }
1754
1755
            /* length of the envelope n_e+1 - n_e (in time samples) */
1756
            /* 0 < L <= 32: integer */
1757
407k
            L = (real_t)(ps->border_position[env + 1] - ps->border_position[env]);
1758
1759
            /* obtain final H_xy by means of linear interpolation */
1760
407k
            RE(deltaH11) = (RE(h11) - RE(ps->h11_prev[gr])) / L;
1761
407k
            RE(deltaH12) = (RE(h12) - RE(ps->h12_prev[gr])) / L;
1762
407k
            RE(deltaH21) = (RE(h21) - RE(ps->h21_prev[gr])) / L;
1763
407k
            RE(deltaH22) = (RE(h22) - RE(ps->h22_prev[gr])) / L;
1764
1765
407k
            RE(H11) = RE(ps->h11_prev[gr]);
1766
407k
            RE(H12) = RE(ps->h12_prev[gr]);
1767
407k
            RE(H21) = RE(ps->h21_prev[gr]);
1768
407k
            RE(H22) = RE(ps->h22_prev[gr]);
1769
407k
            IM(H11) = IM(H12) = IM(H21) = IM(H22) = 0;
1770
1771
407k
            RE(ps->h11_prev[gr]) = RE(h11);
1772
407k
            RE(ps->h12_prev[gr]) = RE(h12);
1773
407k
            RE(ps->h21_prev[gr]) = RE(h21);
1774
407k
            RE(ps->h22_prev[gr]) = RE(h22);
1775
1776
            /* only calculate imaginary part when needed */
1777
407k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1778
47.5k
            {
1779
                /* obtain final H_xy by means of linear interpolation */
1780
47.5k
                IM(deltaH11) = (IM(h11) - IM(ps->h11_prev[gr])) / L;
1781
47.5k
                IM(deltaH12) = (IM(h12) - IM(ps->h12_prev[gr])) / L;
1782
47.5k
                IM(deltaH21) = (IM(h21) - IM(ps->h21_prev[gr])) / L;
1783
47.5k
                IM(deltaH22) = (IM(h22) - IM(ps->h22_prev[gr])) / L;
1784
1785
47.5k
                IM(H11) = IM(ps->h11_prev[gr]);
1786
47.5k
                IM(H12) = IM(ps->h12_prev[gr]);
1787
47.5k
                IM(H21) = IM(ps->h21_prev[gr]);
1788
47.5k
                IM(H22) = IM(ps->h22_prev[gr]);
1789
1790
47.5k
                if ((NEGATE_IPD_MASK & ps->map_group2bk[gr]) != 0)
1791
6.49k
                {
1792
6.49k
                    IM(deltaH11) = -IM(deltaH11);
1793
6.49k
                    IM(deltaH12) = -IM(deltaH12);
1794
6.49k
                    IM(deltaH21) = -IM(deltaH21);
1795
6.49k
                    IM(deltaH22) = -IM(deltaH22);
1796
1797
6.49k
                    IM(H11) = -IM(H11);
1798
6.49k
                    IM(H12) = -IM(H12);
1799
6.49k
                    IM(H21) = -IM(H21);
1800
6.49k
                    IM(H22) = -IM(H22);
1801
6.49k
                }
1802
1803
47.5k
                IM(ps->h11_prev[gr]) = IM(h11);
1804
47.5k
                IM(ps->h12_prev[gr]) = IM(h12);
1805
47.5k
                IM(ps->h21_prev[gr]) = IM(h21);
1806
47.5k
                IM(ps->h22_prev[gr]) = IM(h22);
1807
47.5k
            }
1808
1809
            /* apply H_xy to the current envelope band of the decorrelated subband */
1810
6.36M
            for (n = ps->border_position[env]; n < ps->border_position[env + 1]; n++)
1811
5.96M
            {
1812
                /* addition finalises the interpolation over every n */
1813
5.96M
                RE(H11) += RE(deltaH11);
1814
5.96M
                RE(H12) += RE(deltaH12);
1815
5.96M
                RE(H21) += RE(deltaH21);
1816
5.96M
                RE(H22) += RE(deltaH22);
1817
5.96M
                if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1818
605k
                {
1819
605k
                    IM(H11) += IM(deltaH11);
1820
605k
                    IM(H12) += IM(deltaH12);
1821
605k
                    IM(H21) += IM(deltaH21);
1822
605k
                    IM(H22) += IM(deltaH22);
1823
605k
                }
1824
1825
                /* channel is an alias to the subband */
1826
20.3M
                for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1827
14.3M
                {
1828
14.3M
                    complex_t inLeft, inRight;  // precision_of in(Left|Right) == precision_of X_(left|right)
1829
1830
                    /* load decorrelated samples */
1831
14.3M
                    if (gr < ps->num_hybrid_groups)
1832
3.35M
                    {
1833
3.35M
                        RE(inLeft) =  RE(X_hybrid_left[n][sb]);
1834
3.35M
                        IM(inLeft) =  IM(X_hybrid_left[n][sb]);
1835
3.35M
                        RE(inRight) = RE(X_hybrid_right[n][sb]);
1836
3.35M
                        IM(inRight) = IM(X_hybrid_right[n][sb]);
1837
10.9M
                    } else {
1838
10.9M
                        RE(inLeft) =  RE(X_left[n][sb]);
1839
10.9M
                        IM(inLeft) =  IM(X_left[n][sb]);
1840
10.9M
                        RE(inRight) = RE(X_right[n][sb]);
1841
10.9M
                        IM(inRight) = IM(X_right[n][sb]);
1842
10.9M
                    }
1843
1844
                    /* precision_of temp(Left|Right) == precision_of X_(left|right) */
1845
1846
                    /* apply mixing */
1847
14.3M
                    RE(tempLeft) =  MUL_C(RE(H11), RE(inLeft)) + MUL_C(RE(H21), RE(inRight));
1848
14.3M
                    IM(tempLeft) =  MUL_C(RE(H11), IM(inLeft)) + MUL_C(RE(H21), IM(inRight));
1849
14.3M
                    RE(tempRight) = MUL_C(RE(H12), RE(inLeft)) + MUL_C(RE(H22), RE(inRight));
1850
14.3M
                    IM(tempRight) = MUL_C(RE(H12), IM(inLeft)) + MUL_C(RE(H22), IM(inRight));
1851
1852
                    /* only perform imaginary operations when needed */
1853
14.3M
                    if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1854
607k
                    {
1855
                        /* apply rotation */
1856
607k
                        RE(tempLeft)  -= MUL_C(IM(H11), IM(inLeft)) + MUL_C(IM(H21), IM(inRight));
1857
607k
                        IM(tempLeft)  += MUL_C(IM(H11), RE(inLeft)) + MUL_C(IM(H21), RE(inRight));
1858
607k
                        RE(tempRight) -= MUL_C(IM(H12), IM(inLeft)) + MUL_C(IM(H22), IM(inRight));
1859
607k
                        IM(tempRight) += MUL_C(IM(H12), RE(inLeft)) + MUL_C(IM(H22), RE(inRight));
1860
607k
                    }
1861
1862
                    /* store final samples */
1863
14.3M
                    if (gr < ps->num_hybrid_groups)
1864
3.35M
                    {
1865
3.35M
                        RE(X_hybrid_left[n][sb])  = RE(tempLeft);
1866
3.35M
                        IM(X_hybrid_left[n][sb])  = IM(tempLeft);
1867
3.35M
                        RE(X_hybrid_right[n][sb]) = RE(tempRight);
1868
3.35M
                        IM(X_hybrid_right[n][sb]) = IM(tempRight);
1869
10.9M
                    } else {
1870
10.9M
                        RE(X_left[n][sb])  = RE(tempLeft);
1871
10.9M
                        IM(X_left[n][sb])  = IM(tempLeft);
1872
10.9M
                        RE(X_right[n][sb]) = RE(tempRight);
1873
10.9M
                        IM(X_right[n][sb]) = IM(tempRight);
1874
10.9M
                    }
1875
14.3M
                }
1876
5.96M
            }
1877
1878
            /* shift phase smoother's circular buffer index */
1879
407k
            ps->phase_hist++;
1880
407k
            if (ps->phase_hist == 2)
1881
203k
            {
1882
203k
                ps->phase_hist = 0;
1883
203k
            }
1884
407k
        }
1885
190k
    }
1886
5.81k
}
1887
1888
void ps_free(ps_info *ps)
1889
9.31k
{
1890
    /* free hybrid filterbank structures */
1891
9.31k
    hybrid_free(ps->hyb);
1892
1893
9.31k
    faad_free(ps);
1894
9.31k
}
1895
1896
ps_info *ps_init(uint8_t sr_index, uint8_t numTimeSlotsRate)
1897
9.31k
{
1898
9.31k
    uint8_t i;
1899
9.31k
    uint8_t short_delay_band;
1900
1901
9.31k
    ps_info *ps = (ps_info*)faad_malloc(sizeof(ps_info));
1902
9.31k
    memset(ps, 0, sizeof(ps_info));
1903
1904
9.31k
    ps->hyb = hybrid_init(numTimeSlotsRate);
1905
9.31k
    ps->numTimeSlotsRate = numTimeSlotsRate;
1906
1907
9.31k
    ps->ps_data_available = 0;
1908
1909
    /* delay stuff*/
1910
9.31k
    ps->saved_delay = 0;
1911
1912
605k
    for (i = 0; i < 64; i++)
1913
595k
    {
1914
595k
        ps->delay_buf_index_delay[i] = 0;
1915
595k
    }
1916
1917
37.2k
    for (i = 0; i < NO_ALLPASS_LINKS; i++)
1918
27.9k
    {
1919
27.9k
        ps->delay_buf_index_ser[i] = 0;
1920
#ifdef PARAM_32KHZ
1921
        if (sr_index <= 5) /* >= 32 kHz*/
1922
        {
1923
            ps->num_sample_delay_ser[i] = delay_length_d[1][i];
1924
        } else {
1925
            ps->num_sample_delay_ser[i] = delay_length_d[0][i];
1926
        }
1927
#else
1928
27.9k
        (void)sr_index;
1929
        /* THESE ARE CONSTANTS NOW */
1930
27.9k
        ps->num_sample_delay_ser[i] = delay_length_d[i];
1931
27.9k
#endif
1932
27.9k
    }
1933
1934
#ifdef PARAM_32KHZ
1935
    if (sr_index <= 5) /* >= 32 kHz*/
1936
    {
1937
        short_delay_band = 35;
1938
        ps->nr_allpass_bands = 22;
1939
        ps->alpha_decay = FRAC_CONST(0.76592833836465);
1940
        ps->alpha_smooth = FRAC_CONST(0.25);
1941
    } else {
1942
        short_delay_band = 64;
1943
        ps->nr_allpass_bands = 45;
1944
        ps->alpha_decay = FRAC_CONST(0.58664621951003);
1945
        ps->alpha_smooth = FRAC_CONST(0.6);
1946
    }
1947
#else
1948
    /* THESE ARE CONSTANTS NOW */
1949
9.31k
    short_delay_band = 35;
1950
9.31k
    ps->nr_allpass_bands = 22;
1951
9.31k
    ps->alpha_decay = FRAC_CONST(0.76592833836465);
1952
9.31k
    ps->alpha_smooth = FRAC_CONST(0.25);
1953
9.31k
#endif
1954
1955
    /* THESE ARE CONSTANT NOW IF PS IS INDEPENDANT OF SAMPLERATE */
1956
335k
    for (i = 0; i < short_delay_band; i++)
1957
325k
    {
1958
325k
        ps->delay_D[i] = 14;
1959
325k
    }
1960
279k
    for (i = short_delay_band; i < 64; i++)
1961
269k
    {
1962
269k
        ps->delay_D[i] = 1;
1963
269k
    }
1964
1965
    /* mixing and phase */
1966
474k
    for (i = 0; i < 50; i++)
1967
465k
    {
1968
465k
        RE(ps->h11_prev[i]) = 1;
1969
465k
        IM(ps->h11_prev[i]) = 1;
1970
465k
        RE(ps->h12_prev[i]) = 1;
1971
465k
        IM(ps->h12_prev[i]) = 1;
1972
465k
    }
1973
1974
9.31k
    ps->phase_hist = 0;
1975
1976
195k
    for (i = 0; i < 20; i++)
1977
186k
    {
1978
186k
        RE(ps->ipd_prev[i][0]) = 0;
1979
186k
        IM(ps->ipd_prev[i][0]) = 0;
1980
186k
        RE(ps->ipd_prev[i][1]) = 0;
1981
186k
        IM(ps->ipd_prev[i][1]) = 0;
1982
186k
        RE(ps->opd_prev[i][0]) = 0;
1983
186k
        IM(ps->opd_prev[i][0]) = 0;
1984
186k
        RE(ps->opd_prev[i][1]) = 0;
1985
186k
        IM(ps->opd_prev[i][1]) = 0;
1986
186k
    }
1987
1988
9.31k
    return ps;
1989
9.31k
}
1990
1991
/* main Parametric Stereo decoding function */
1992
uint8_t ps_decode(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64])
1993
5.81k
{
1994
5.81k
    qmf_t X_hybrid_left[32][32] = {{{0}}};
1995
5.81k
    qmf_t X_hybrid_right[32][32] = {{{0}}};
1996
1997
    /* delta decoding of the bitstream data */
1998
5.81k
    ps_data_decode(ps);
1999
2000
    /* set up some parameters depending on filterbank type */
2001
5.81k
    if (ps->use34hybrid_bands)
2002
2.23k
    {
2003
2.23k
        ps->group_border = (uint8_t*)group_border34;
2004
2.23k
        ps->map_group2bk = (uint16_t*)map_group2bk34;
2005
2.23k
        ps->num_groups = 32+18;
2006
2.23k
        ps->num_hybrid_groups = 32;
2007
2.23k
        ps->nr_par_bands = 34;
2008
2.23k
        ps->decay_cutoff = 5;
2009
3.57k
    } else {
2010
3.57k
        ps->group_border = (uint8_t*)group_border20;
2011
3.57k
        ps->map_group2bk = (uint16_t*)map_group2bk20;
2012
3.57k
        ps->num_groups = 10+12;
2013
3.57k
        ps->num_hybrid_groups = 10;
2014
3.57k
        ps->nr_par_bands = 20;
2015
3.57k
        ps->decay_cutoff = 3;
2016
3.57k
    }
2017
2018
    /* Perform further analysis on the lowest subbands to get a higher
2019
     * frequency resolution
2020
     */
2021
5.81k
    hybrid_analysis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
2022
5.81k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2023
2024
    /* decorrelate mono signal */
2025
5.81k
    ps_decorrelate(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
2026
2027
    /* apply mixing and phase parameters */
2028
5.81k
    ps_mix_phase(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
2029
2030
    /* hybrid synthesis, to rebuild the SBR QMF matrices */
2031
5.81k
    hybrid_synthesis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
2032
5.81k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2033
2034
5.81k
    hybrid_synthesis((hyb_info*)ps->hyb, X_right, X_hybrid_right,
2035
5.81k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2036
2037
5.81k
    return 0;
2038
5.81k
}
2039
2040
#endif