Coverage Report

Created: 2026-01-10 06:28

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/proc/self/cwd/libfaad/ps_dec.c
Line
Count
Source
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: ps_dec.c,v 1.16 2009/01/26 22:32:31 menno Exp $
29
**/
30
31
#include "common.h"
32
33
#ifdef PS_DEC
34
35
#include <stdlib.h>
36
#include <stdio.h>
37
#include "ps_dec.h"
38
#include "ps_tables.h"
39
40
/* constants */
41
15.1M
#define NEGATE_IPD_MASK            (0x1000)
42
113k
#define DECAY_SLOPE                FRAC_CONST(0.05)
43
#define COEF_SQRT2                 COEF_CONST(1.4142135623731)
44
45
/* tables */
46
/* filters are mirrored in coef 6, second half left out */
47
static const real_t p8_13_20[7] =
48
{
49
    FRAC_CONST(0.00746082949812),
50
    FRAC_CONST(0.02270420949825),
51
    FRAC_CONST(0.04546865930473),
52
    FRAC_CONST(0.07266113929591),
53
    FRAC_CONST(0.09885108575264),
54
    FRAC_CONST(0.11793710567217),
55
    FRAC_CONST(0.125)
56
};
57
58
static const real_t p2_13_20[7] =
59
{
60
    FRAC_CONST(0.0),
61
    FRAC_CONST(0.01899487526049),
62
    FRAC_CONST(0.0),
63
    FRAC_CONST(-0.07293139167538),
64
    FRAC_CONST(0.0),
65
    FRAC_CONST(0.30596630545168),
66
    FRAC_CONST(0.5)
67
};
68
69
static const real_t p12_13_34[7] =
70
{
71
    FRAC_CONST(0.04081179924692),
72
    FRAC_CONST(0.03812810994926),
73
    FRAC_CONST(0.05144908135699),
74
    FRAC_CONST(0.06399831151592),
75
    FRAC_CONST(0.07428313801106),
76
    FRAC_CONST(0.08100347892914),
77
    FRAC_CONST(0.08333333333333)
78
};
79
80
static const real_t p8_13_34[7] =
81
{
82
    FRAC_CONST(0.01565675600122),
83
    FRAC_CONST(0.03752716391991),
84
    FRAC_CONST(0.05417891378782),
85
    FRAC_CONST(0.08417044116767),
86
    FRAC_CONST(0.10307344158036),
87
    FRAC_CONST(0.12222452249753),
88
    FRAC_CONST(0.125)
89
};
90
91
static const real_t p4_13_34[7] =
92
{
93
    FRAC_CONST(-0.05908211155639),
94
    FRAC_CONST(-0.04871498374946),
95
    FRAC_CONST(0.0),
96
    FRAC_CONST(0.07778723915851),
97
    FRAC_CONST(0.16486303567403),
98
    FRAC_CONST(0.23279856662996),
99
    FRAC_CONST(0.25)
100
};
101
102
#ifdef PARAM_32KHZ
103
static const uint8_t delay_length_d[2][NO_ALLPASS_LINKS] = {
104
    { 1, 2, 3 } /* d_24kHz */,
105
    { 3, 4, 5 } /* d_48kHz */
106
};
107
#else
108
static const uint8_t delay_length_d[NO_ALLPASS_LINKS] = {
109
    3, 4, 5 /* d_48kHz */
110
};
111
#endif
112
static const real_t filter_a[NO_ALLPASS_LINKS] = { /* a(m) = exp(-d_48kHz(m)/7) */
113
    FRAC_CONST(0.65143905753106),
114
    FRAC_CONST(0.56471812200776),
115
    FRAC_CONST(0.48954165955695)
116
};
117
118
static const uint8_t group_border20[10+12 + 1] =
119
{
120
    6, 7, 0, 1, 2, 3, /* 6 subqmf subbands */
121
    9, 8,             /* 2 subqmf subbands */
122
    10, 11,           /* 2 subqmf subbands */
123
    3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 35, 64
124
};
125
126
static const uint8_t group_border34[32+18 + 1] =
127
{
128
     0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, /* 12 subqmf subbands */
129
     12, 13, 14, 15, 16, 17, 18, 19,                 /*  8 subqmf subbands */
130
     20, 21, 22, 23,                                 /*  4 subqmf subbands */
131
     24, 25, 26, 27,                                 /*  4 subqmf subbands */
132
     28, 29, 30, 31,                                 /*  4 subqmf subbands */
133
     32-27, 33-27, 34-27, 35-27, 36-27, 37-27, 38-27, 40-27, 42-27, 44-27, 46-27, 48-27, 51-27, 54-27, 57-27, 60-27, 64-27, 68-27, 91-27
134
};
135
136
static const uint16_t map_group2bk20[10+12] =
137
{
138
    (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
139
    0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
140
};
141
142
static const uint16_t map_group2bk34[32+18] =
143
{
144
    0,  1,  2,  3,  4,  5,  6,  6,  7, (NEGATE_IPD_MASK | 2), (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
145
    10, 10, 4,  5,  6,  7,  8,  9,
146
    10, 11, 12, 9,
147
    14, 11, 12, 13,
148
    14, 15, 16, 13,
149
    16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33
150
};
151
152
/* type definitions */
153
typedef struct
154
{
155
    uint8_t frame_len;
156
    uint8_t resolution20[3];
157
    uint8_t resolution34[5];
158
159
    qmf_t *work;
160
    qmf_t **buffer;
161
    qmf_t **temp;
162
} hyb_info;
163
164
/* static function declarations */
165
static void ps_data_decode(ps_info *ps);
166
static hyb_info *hybrid_init(uint8_t numTimeSlotsRate);
167
static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
168
                            qmf_t *buffer, qmf_t **X_hybrid);
169
static void INLINE DCT3_4_unscaled(real_t *y, real_t *x);
170
static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
171
                            qmf_t *buffer, qmf_t **X_hybrid);
172
static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
173
                            uint8_t use34, uint8_t numTimeSlotsRate);
174
static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
175
                             uint8_t use34, uint8_t numTimeSlotsRate);
176
static int8_t delta_clip(int8_t i, int8_t min, int8_t max);
177
static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
178
                         uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
179
                         int8_t min_index, int8_t max_index);
180
static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
181
                                uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
182
                                int8_t and_modulo);
183
static void map20indexto34(int8_t *index, uint8_t bins);
184
#ifdef PS_LOW_POWER
185
static void map34indexto20(int8_t *index, uint8_t bins);
186
#endif
187
static void ps_data_decode(ps_info *ps);
188
static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
189
                           qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
190
static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
191
                         qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
192
193
/*  */
194
195
196
static hyb_info *hybrid_init(uint8_t numTimeSlotsRate)
197
9.38k
{
198
9.38k
    uint8_t i;
199
200
9.38k
    hyb_info *hyb = (hyb_info*)faad_malloc(sizeof(hyb_info));
201
202
9.38k
    hyb->resolution34[0] = 12;
203
9.38k
    hyb->resolution34[1] = 8;
204
9.38k
    hyb->resolution34[2] = 4;
205
9.38k
    hyb->resolution34[3] = 4;
206
9.38k
    hyb->resolution34[4] = 4;
207
208
9.38k
    hyb->resolution20[0] = 8;
209
9.38k
    hyb->resolution20[1] = 2;
210
9.38k
    hyb->resolution20[2] = 2;
211
212
9.38k
    hyb->frame_len = numTimeSlotsRate;
213
214
9.38k
    hyb->work = (qmf_t*)faad_malloc((hyb->frame_len+12) * sizeof(qmf_t));
215
9.38k
    memset(hyb->work, 0, (hyb->frame_len+12) * sizeof(qmf_t));
216
217
9.38k
    hyb->buffer = (qmf_t**)faad_malloc(5 * sizeof(qmf_t*));
218
56.3k
    for (i = 0; i < 5; i++)
219
46.9k
    {
220
46.9k
        hyb->buffer[i] = (qmf_t*)faad_malloc(hyb->frame_len * sizeof(qmf_t));
221
46.9k
        memset(hyb->buffer[i], 0, hyb->frame_len * sizeof(qmf_t));
222
46.9k
    }
223
224
9.38k
    hyb->temp = (qmf_t**)faad_malloc(hyb->frame_len * sizeof(qmf_t*));
225
307k
    for (i = 0; i < hyb->frame_len; i++)
226
297k
    {
227
297k
        hyb->temp[i] = (qmf_t*)faad_malloc(12 /*max*/ * sizeof(qmf_t));
228
297k
    }
229
230
9.38k
    return hyb;
231
9.38k
}
232
233
static void hybrid_free(hyb_info *hyb)
234
9.38k
{
235
9.38k
    uint8_t i;
236
237
9.38k
  if (!hyb) return;
238
239
9.38k
    if (hyb->work)
240
9.38k
        faad_free(hyb->work);
241
242
56.3k
    for (i = 0; i < 5; i++)
243
46.9k
    {
244
46.9k
        if (hyb->buffer[i])
245
46.9k
            faad_free(hyb->buffer[i]);
246
46.9k
    }
247
9.38k
    if (hyb->buffer)
248
9.38k
        faad_free(hyb->buffer);
249
250
307k
    for (i = 0; i < hyb->frame_len; i++)
251
297k
    {
252
297k
        if (hyb->temp[i])
253
297k
            faad_free(hyb->temp[i]);
254
297k
    }
255
9.38k
    if (hyb->temp)
256
9.38k
        faad_free(hyb->temp);
257
258
9.38k
    faad_free(hyb);
259
9.38k
}
260
261
/* real filter, size 2 */
262
static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
263
                            qmf_t *buffer, qmf_t **X_hybrid)
264
7.23k
{
265
7.23k
    uint8_t i;
266
7.23k
    (void)hyb;  /* TODO: remove parameter? */
267
268
235k
    for (i = 0; i < frame_len; i++)
269
227k
    {
270
227k
        real_t r0 = MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i])));
271
227k
        real_t r1 = MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i])));
272
227k
        real_t r2 = MUL_F(filter[2],(QMF_RE(buffer[2+i]) + QMF_RE(buffer[10+i])));
273
227k
        real_t r3 = MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
274
227k
        real_t r4 = MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
275
227k
        real_t r5 = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
276
227k
        real_t r6 = MUL_F(filter[6],QMF_RE(buffer[6+i]));
277
227k
        real_t i0 = MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i])));
278
227k
        real_t i1 = MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i])));
279
227k
        real_t i2 = MUL_F(filter[2],(QMF_IM(buffer[2+i]) + QMF_IM(buffer[10+i])));
280
227k
        real_t i3 = MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
281
227k
        real_t i4 = MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
282
227k
        real_t i5 = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
283
227k
        real_t i6 = MUL_F(filter[6],QMF_IM(buffer[6+i]));
284
285
        /* q = 0 */
286
227k
        QMF_RE(X_hybrid[i][0]) = r0 + r1 + r2 + r3 + r4 + r5 + r6;
287
227k
        QMF_IM(X_hybrid[i][0]) = i0 + i1 + i2 + i3 + i4 + i5 + i6;
288
289
        /* q = 1 */
290
227k
        QMF_RE(X_hybrid[i][1]) = r0 - r1 + r2 - r3 + r4 - r5 + r6;
291
227k
        QMF_IM(X_hybrid[i][1]) = i0 - i1 + i2 - i3 + i4 - i5 + i6;
292
227k
    }
293
7.23k
}
294
295
/* complex filter, size 4 */
296
static void channel_filter4(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
297
                            qmf_t *buffer, qmf_t **X_hybrid)
298
7.02k
{
299
7.02k
    uint8_t i;
300
7.02k
    real_t input_re1[2], input_re2[2], input_im1[2], input_im2[2];
301
7.02k
    (void)hyb;  /* TODO: remove parameter? */
302
303
224k
    for (i = 0; i < frame_len; i++)
304
217k
    {
305
217k
        input_re1[0] = -MUL_F(filter[2], (QMF_RE(buffer[i+2]) + QMF_RE(buffer[i+10]))) +
306
217k
            MUL_F(filter[6], QMF_RE(buffer[i+6]));
307
217k
        input_re1[1] = MUL_F(FRAC_CONST(-0.70710678118655),
308
217k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) + QMF_RE(buffer[i+11]))) +
309
217k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) + QMF_RE(buffer[i+9]))) -
310
217k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) + QMF_RE(buffer[i+7])))));
311
312
217k
        input_im1[0] = MUL_F(filter[0], (QMF_IM(buffer[i+0]) - QMF_IM(buffer[i+12]))) -
313
217k
            MUL_F(filter[4], (QMF_IM(buffer[i+4]) - QMF_IM(buffer[i+8])));
314
217k
        input_im1[1] = MUL_F(FRAC_CONST(0.70710678118655),
315
217k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) - QMF_IM(buffer[i+11]))) -
316
217k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) - QMF_IM(buffer[i+9]))) -
317
217k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) - QMF_IM(buffer[i+7])))));
318
319
217k
        input_re2[0] = MUL_F(filter[0], (QMF_RE(buffer[i+0]) - QMF_RE(buffer[i+12]))) -
320
217k
            MUL_F(filter[4], (QMF_RE(buffer[i+4]) - QMF_RE(buffer[i+8])));
321
217k
        input_re2[1] = MUL_F(FRAC_CONST(0.70710678118655),
322
217k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) - QMF_RE(buffer[i+11]))) -
323
217k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) - QMF_RE(buffer[i+9]))) -
324
217k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) - QMF_RE(buffer[i+7])))));
325
326
217k
        input_im2[0] = -MUL_F(filter[2], (QMF_IM(buffer[i+2]) + QMF_IM(buffer[i+10]))) +
327
217k
            MUL_F(filter[6], QMF_IM(buffer[i+6]));
328
217k
        input_im2[1] = MUL_F(FRAC_CONST(-0.70710678118655),
329
217k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) + QMF_IM(buffer[i+11]))) +
330
217k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) + QMF_IM(buffer[i+9]))) -
331
217k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) + QMF_IM(buffer[i+7])))));
332
333
        /* q == 0 */
334
217k
        QMF_RE(X_hybrid[i][0]) =  input_re1[0] + input_re1[1] + input_im1[0] + input_im1[1];
335
217k
        QMF_IM(X_hybrid[i][0]) = -input_re2[0] - input_re2[1] + input_im2[0] + input_im2[1];
336
337
        /* q == 1 */
338
217k
        QMF_RE(X_hybrid[i][1]) =  input_re1[0] - input_re1[1] - input_im1[0] + input_im1[1];
339
217k
        QMF_IM(X_hybrid[i][1]) =  input_re2[0] - input_re2[1] + input_im2[0] - input_im2[1];
340
341
        /* q == 2 */
342
217k
        QMF_RE(X_hybrid[i][2]) =  input_re1[0] - input_re1[1] + input_im1[0] - input_im1[1];
343
217k
        QMF_IM(X_hybrid[i][2]) = -input_re2[0] + input_re2[1] + input_im2[0] - input_im2[1];
344
345
        /* q == 3 */
346
217k
        QMF_RE(X_hybrid[i][3]) =  input_re1[0] + input_re1[1] - input_im1[0] - input_im1[1];
347
217k
        QMF_IM(X_hybrid[i][3]) =  input_re2[0] + input_re2[1] + input_im2[0] + input_im2[1];
348
217k
    }
349
7.02k
}
350
351
static void INLINE DCT3_4_unscaled(real_t *y, real_t *x)
352
745k
{
353
745k
    real_t f0, f1, f2, f3, f4, f5, f6, f7, f8;
354
355
745k
    f0 = MUL_F(x[2], FRAC_CONST(0.7071067811865476));
356
745k
    f1 = x[0] - f0;
357
745k
    f2 = x[0] + f0;
358
745k
    f3 = x[1] + x[3];
359
745k
    f4 = MUL_C(x[1], COEF_CONST(1.3065629648763766));
360
745k
    f5 = MUL_F(f3, FRAC_CONST(-0.9238795325112866));
361
745k
    f6 = MUL_F(x[3], FRAC_CONST(-0.5411961001461967));
362
745k
    f7 = f4 + f5;
363
745k
    f8 = f6 - f5;
364
745k
    y[3] = f2 - f8;
365
745k
    y[0] = f2 + f8;
366
745k
    y[2] = f1 - f7;
367
745k
    y[1] = f1 + f7;
368
745k
}
369
370
/* complex filter, size 8 */
371
static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
372
                            qmf_t *buffer, qmf_t **X_hybrid)
373
5.95k
{
374
5.95k
    uint8_t i, n;
375
5.95k
    real_t input_re1[4], input_re2[4], input_im1[4], input_im2[4];
376
5.95k
    real_t x[4];
377
5.95k
    (void)hyb;  /* TODO: remove parameter? */
378
379
192k
    for (i = 0; i < frame_len; i++)
380
186k
    {
381
186k
        input_re1[0] =  MUL_F(filter[6],QMF_RE(buffer[6+i]));
382
186k
        input_re1[1] =  MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
383
186k
        input_re1[2] = -MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i]))) + MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
384
186k
        input_re1[3] = -MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i]))) + MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
385
386
186k
        input_im1[0] = MUL_F(filter[5],(QMF_IM(buffer[7+i]) - QMF_IM(buffer[5+i])));
387
186k
        input_im1[1] = MUL_F(filter[0],(QMF_IM(buffer[12+i]) - QMF_IM(buffer[0+i]))) + MUL_F(filter[4],(QMF_IM(buffer[8+i]) - QMF_IM(buffer[4+i])));
388
186k
        input_im1[2] = MUL_F(filter[1],(QMF_IM(buffer[11+i]) - QMF_IM(buffer[1+i]))) + MUL_F(filter[3],(QMF_IM(buffer[9+i]) - QMF_IM(buffer[3+i])));
389
186k
        input_im1[3] = MUL_F(filter[2],(QMF_IM(buffer[10+i]) - QMF_IM(buffer[2+i])));
390
391
932k
        for (n = 0; n < 4; n++)
392
745k
        {
393
745k
            x[n] = input_re1[n] - input_im1[3-n];
394
745k
        }
395
186k
        DCT3_4_unscaled(x, x);
396
186k
        QMF_RE(X_hybrid[i][7]) = x[0];
397
186k
        QMF_RE(X_hybrid[i][5]) = x[2];
398
186k
        QMF_RE(X_hybrid[i][3]) = x[3];
399
186k
        QMF_RE(X_hybrid[i][1]) = x[1];
400
401
932k
        for (n = 0; n < 4; n++)
402
745k
        {
403
745k
            x[n] = input_re1[n] + input_im1[3-n];
404
745k
        }
405
186k
        DCT3_4_unscaled(x, x);
406
186k
        QMF_RE(X_hybrid[i][6]) = x[1];
407
186k
        QMF_RE(X_hybrid[i][4]) = x[3];
408
186k
        QMF_RE(X_hybrid[i][2]) = x[2];
409
186k
        QMF_RE(X_hybrid[i][0]) = x[0];
410
411
186k
        input_im2[0] =  MUL_F(filter[6],QMF_IM(buffer[6+i]));
412
186k
        input_im2[1] =  MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
413
186k
        input_im2[2] = -MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i]))) + MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
414
186k
        input_im2[3] = -MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i]))) + MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
415
416
186k
        input_re2[0] = MUL_F(filter[5],(QMF_RE(buffer[7+i]) - QMF_RE(buffer[5+i])));
417
186k
        input_re2[1] = MUL_F(filter[0],(QMF_RE(buffer[12+i]) - QMF_RE(buffer[0+i]))) + MUL_F(filter[4],(QMF_RE(buffer[8+i]) - QMF_RE(buffer[4+i])));
418
186k
        input_re2[2] = MUL_F(filter[1],(QMF_RE(buffer[11+i]) - QMF_RE(buffer[1+i]))) + MUL_F(filter[3],(QMF_RE(buffer[9+i]) - QMF_RE(buffer[3+i])));
419
186k
        input_re2[3] = MUL_F(filter[2],(QMF_RE(buffer[10+i]) - QMF_RE(buffer[2+i])));
420
421
932k
        for (n = 0; n < 4; n++)
422
745k
        {
423
745k
            x[n] = input_im2[n] + input_re2[3-n];
424
745k
        }
425
186k
        DCT3_4_unscaled(x, x);
426
186k
        QMF_IM(X_hybrid[i][7]) = x[0];
427
186k
        QMF_IM(X_hybrid[i][5]) = x[2];
428
186k
        QMF_IM(X_hybrid[i][3]) = x[3];
429
186k
        QMF_IM(X_hybrid[i][1]) = x[1];
430
431
932k
        for (n = 0; n < 4; n++)
432
745k
        {
433
745k
            x[n] = input_im2[n] - input_re2[3-n];
434
745k
        }
435
186k
        DCT3_4_unscaled(x, x);
436
186k
        QMF_IM(X_hybrid[i][6]) = x[1];
437
186k
        QMF_IM(X_hybrid[i][4]) = x[3];
438
186k
        QMF_IM(X_hybrid[i][2]) = x[2];
439
186k
        QMF_IM(X_hybrid[i][0]) = x[0];
440
186k
    }
441
5.95k
}
442
443
static void INLINE DCT3_6_unscaled(real_t *y, real_t *x)
444
289k
{
445
289k
    real_t f0, f1, f2, f3, f4, f5, f6, f7;
446
447
289k
    f0 = MUL_F(x[3], FRAC_CONST(0.70710678118655));
448
289k
    f1 = x[0] + f0;
449
289k
    f2 = x[0] - f0;
450
289k
    f3 = MUL_F((x[1] - x[5]), FRAC_CONST(0.70710678118655));
451
289k
    f4 = MUL_F(x[2], FRAC_CONST(0.86602540378444)) + MUL_F(x[4], FRAC_CONST(0.5));
452
289k
    f5 = f4 - x[4];
453
289k
    f6 = MUL_F(x[1], FRAC_CONST(0.96592582628907)) + MUL_F(x[5], FRAC_CONST(0.25881904510252));
454
289k
    f7 = f6 - f3;
455
289k
    y[0] = f1 + f6 + f4;
456
289k
    y[1] = f2 + f3 - x[4];
457
289k
    y[2] = f7 + f2 - f5;
458
289k
    y[3] = f1 - f7 - f5;
459
289k
    y[4] = f1 - f3 - x[4];
460
289k
    y[5] = f2 - f6 + f4;
461
289k
}
462
463
/* complex filter, size 12 */
464
static void channel_filter12(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
465
                             qmf_t *buffer, qmf_t **X_hybrid)
466
2.34k
{
467
2.34k
    uint8_t i, n;
468
2.34k
    real_t input_re1[6], input_re2[6], input_im1[6], input_im2[6];
469
2.34k
    real_t out_re1[6], out_re2[6], out_im1[6], out_im2[6];
470
2.34k
    (void)hyb;  /* TODO: remove parameter? */
471
472
74.8k
    for (i = 0; i < frame_len; i++)
473
72.4k
    {
474
507k
        for (n = 0; n < 6; n++)
475
434k
        {
476
434k
            if (n == 0)
477
72.4k
            {
478
72.4k
                input_re1[0] = MUL_F(QMF_RE(buffer[6+i]), filter[6]);
479
72.4k
                input_re2[0] = MUL_F(QMF_IM(buffer[6+i]), filter[6]);
480
362k
            } else {
481
362k
                input_re1[6-n] = MUL_F((QMF_RE(buffer[n+i]) + QMF_RE(buffer[12-n+i])), filter[n]);
482
362k
                input_re2[6-n] = MUL_F((QMF_IM(buffer[n+i]) + QMF_IM(buffer[12-n+i])), filter[n]);
483
362k
            }
484
434k
            input_im2[n] = MUL_F((QMF_RE(buffer[n+i]) - QMF_RE(buffer[12-n+i])), filter[n]);
485
434k
            input_im1[n] = MUL_F((QMF_IM(buffer[n+i]) - QMF_IM(buffer[12-n+i])), filter[n]);
486
434k
        }
487
488
72.4k
        DCT3_6_unscaled(out_re1, input_re1);
489
72.4k
        DCT3_6_unscaled(out_re2, input_re2);
490
491
72.4k
        DCT3_6_unscaled(out_im1, input_im1);
492
72.4k
        DCT3_6_unscaled(out_im2, input_im2);
493
494
289k
        for (n = 0; n < 6; n += 2)
495
217k
        {
496
217k
            QMF_RE(X_hybrid[i][n]) = out_re1[n] - out_im1[n];
497
217k
            QMF_IM(X_hybrid[i][n]) = out_re2[n] + out_im2[n];
498
217k
            QMF_RE(X_hybrid[i][n+1]) = out_re1[n+1] + out_im1[n+1];
499
217k
            QMF_IM(X_hybrid[i][n+1]) = out_re2[n+1] - out_im2[n+1];
500
501
217k
            QMF_RE(X_hybrid[i][10-n]) = out_re1[n+1] - out_im1[n+1];
502
217k
            QMF_IM(X_hybrid[i][10-n]) = out_re2[n+1] + out_im2[n+1];
503
217k
            QMF_RE(X_hybrid[i][11-n]) = out_re1[n] + out_im1[n];
504
217k
            QMF_IM(X_hybrid[i][11-n]) = out_re2[n] - out_im2[n];
505
217k
        }
506
72.4k
    }
507
2.34k
}
508
509
/* Hybrid analysis: further split up QMF subbands
510
 * to improve frequency resolution
511
 */
512
static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
513
                            uint8_t use34, uint8_t numTimeSlotsRate)
514
5.95k
{
515
5.95k
    uint8_t k, n, band;
516
5.95k
    uint8_t offset = 0;
517
5.95k
    uint8_t qmf_bands = (use34) ? 5 : 3;
518
5.95k
    uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
519
520
28.5k
    for (band = 0; band < qmf_bands; band++)
521
22.5k
    {
522
        /* build working buffer */
523
22.5k
        memcpy(hyb->work, hyb->buffer[band], 12 * sizeof(qmf_t));
524
525
        /* add new samples */
526
726k
        for (n = 0; n < hyb->frame_len; n++)
527
704k
        {
528
704k
            QMF_RE(hyb->work[12 + n]) = QMF_RE(X[n + 6 /*delay*/][band]);
529
704k
            QMF_IM(hyb->work[12 + n]) = QMF_IM(X[n + 6 /*delay*/][band]);
530
704k
        }
531
532
        /* store samples */
533
22.5k
        memcpy(hyb->buffer[band], hyb->work + hyb->frame_len, 12 * sizeof(qmf_t));
534
535
536
22.5k
        switch(resolution[band])
537
22.5k
        {
538
7.23k
        case 2:
539
            /* Type B real filter, Q[p] = 2 */
540
7.23k
            channel_filter2(hyb, hyb->frame_len, p2_13_20, hyb->work, hyb->temp);
541
7.23k
            break;
542
7.02k
        case 4:
543
            /* Type A complex filter, Q[p] = 4 */
544
7.02k
            channel_filter4(hyb, hyb->frame_len, p4_13_34, hyb->work, hyb->temp);
545
7.02k
            break;
546
5.95k
        case 8:
547
            /* Type A complex filter, Q[p] = 8 */
548
5.95k
            channel_filter8(hyb, hyb->frame_len, (use34) ? p8_13_34 : p8_13_20,
549
5.95k
                hyb->work, hyb->temp);
550
5.95k
            break;
551
2.34k
        case 12:
552
            /* Type A complex filter, Q[p] = 12 */
553
2.34k
            channel_filter12(hyb, hyb->frame_len, p12_13_34, hyb->work, hyb->temp);
554
2.34k
            break;
555
22.5k
        }
556
557
726k
        for (n = 0; n < hyb->frame_len; n++)
558
704k
        {
559
4.39M
            for (k = 0; k < resolution[band]; k++)
560
3.68M
            {
561
3.68M
                QMF_RE(X_hybrid[n][offset + k]) = QMF_RE(hyb->temp[n][k]);
562
3.68M
                QMF_IM(X_hybrid[n][offset + k]) = QMF_IM(hyb->temp[n][k]);
563
3.68M
            }
564
704k
        }
565
22.5k
        offset += resolution[band];
566
22.5k
    }
567
568
    /* group hybrid channels */
569
5.95k
    if (!use34)
570
3.61k
    {
571
117k
        for (n = 0; n < numTimeSlotsRate; n++)
572
113k
        {
573
113k
            QMF_RE(X_hybrid[n][3]) += QMF_RE(X_hybrid[n][4]);
574
113k
            QMF_IM(X_hybrid[n][3]) += QMF_IM(X_hybrid[n][4]);
575
113k
            QMF_RE(X_hybrid[n][4]) = 0;
576
113k
            QMF_IM(X_hybrid[n][4]) = 0;
577
578
113k
            QMF_RE(X_hybrid[n][2]) += QMF_RE(X_hybrid[n][5]);
579
113k
            QMF_IM(X_hybrid[n][2]) += QMF_IM(X_hybrid[n][5]);
580
113k
            QMF_RE(X_hybrid[n][5]) = 0;
581
113k
            QMF_IM(X_hybrid[n][5]) = 0;
582
113k
        }
583
3.61k
    }
584
5.95k
}
585
586
static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
587
                             uint8_t use34, uint8_t numTimeSlotsRate)
588
11.9k
{
589
11.9k
    uint8_t k, n, band;
590
11.9k
    uint8_t offset = 0;
591
11.9k
    uint8_t qmf_bands = (use34) ? 5 : 3;
592
11.9k
    uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
593
11.9k
    (void)numTimeSlotsRate;  /* TODO: remove parameter? */
594
595
57.0k
    for(band = 0; band < qmf_bands; band++)
596
45.0k
    {
597
1.45M
        for (n = 0; n < hyb->frame_len; n++)
598
1.40M
        {
599
1.40M
            QMF_RE(X[n][band]) = 0;
600
1.40M
            QMF_IM(X[n][band]) = 0;
601
602
8.78M
            for (k = 0; k < resolution[band]; k++)
603
7.37M
            {
604
7.37M
                QMF_RE(X[n][band]) += QMF_RE(X_hybrid[n][offset + k]);
605
7.37M
                QMF_IM(X[n][band]) += QMF_IM(X_hybrid[n][offset + k]);
606
7.37M
            }
607
1.40M
        }
608
45.0k
        offset += resolution[band];
609
45.0k
    }
610
11.9k
}
611
612
/* limits the value i to the range [min,max] */
613
static int8_t delta_clip(int8_t i, int8_t min, int8_t max)
614
91.1k
{
615
91.1k
    if (i < min)
616
9.61k
        return min;
617
81.5k
    else if (i > max)
618
1.34k
        return max;
619
80.1k
    else
620
80.1k
        return i;
621
91.1k
}
622
623
//int iid = 0;
624
625
/* delta decode array */
626
static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
627
                         uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
628
                         int8_t min_index, int8_t max_index)
629
18.0k
{
630
18.0k
    int8_t i;
631
632
18.0k
    if (enable == 1)
633
8.33k
    {
634
8.33k
        if (dt_flag == 0)
635
5.55k
        {
636
            /* delta coded in frequency direction */
637
5.55k
            index[0] = 0 + index[0];
638
5.55k
            index[0] = delta_clip(index[0], min_index, max_index);
639
640
65.2k
            for (i = 1; i < nr_par; i++)
641
59.6k
            {
642
59.6k
                index[i] = index[i-1] + index[i];
643
59.6k
                index[i] = delta_clip(index[i], min_index, max_index);
644
59.6k
            }
645
5.55k
        } else {
646
            /* delta coded in time direction */
647
28.6k
            for (i = 0; i < nr_par; i++)
648
25.9k
            {
649
                //int8_t tmp2;
650
                //int8_t tmp = index[i];
651
652
                //printf("%d %d\n", index_prev[i*stride], index[i]);
653
                //printf("%d\n", index[i]);
654
655
25.9k
                index[i] = index_prev[i*stride] + index[i];
656
                //tmp2 = index[i];
657
25.9k
                index[i] = delta_clip(index[i], min_index, max_index);
658
659
                //if (iid)
660
                //{
661
                //    if (index[i] == 7)
662
                //    {
663
                //        printf("%d %d %d\n", index_prev[i*stride], tmp, tmp2);
664
                //    }
665
                //}
666
25.9k
            }
667
2.78k
        }
668
9.69k
    } else {
669
        /* set indices to zero */
670
17.4k
        for (i = 0; i < nr_par; i++)
671
7.77k
        {
672
7.77k
            index[i] = 0;
673
7.77k
        }
674
9.69k
    }
675
676
    /* coarse */
677
18.0k
    if (stride == 2)
678
10.6k
    {
679
36.8k
        for (i = (nr_par<<1)-1; i > 0; i--)
680
26.2k
        {
681
26.2k
            index[i] = index[i>>1];
682
26.2k
        }
683
10.6k
    }
684
18.0k
}
685
686
/* delta modulo decode array */
687
/* in: log2 value of the modulo value to allow using AND instead of MOD */
688
static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
689
                                uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
690
                                int8_t and_modulo)
691
18.0k
{
692
18.0k
    int8_t i;
693
694
18.0k
    if (enable == 1)
695
4.87k
    {
696
4.87k
        if (dt_flag == 0)
697
1.94k
        {
698
            /* delta coded in frequency direction */
699
1.94k
            index[0] = 0 + index[0];
700
1.94k
            index[0] &= and_modulo;
701
702
6.55k
            for (i = 1; i < nr_par; i++)
703
4.61k
            {
704
4.61k
                index[i] = index[i-1] + index[i];
705
4.61k
                index[i] &= and_modulo;
706
4.61k
            }
707
2.93k
        } else {
708
            /* delta coded in time direction */
709
8.51k
            for (i = 0; i < nr_par; i++)
710
5.58k
            {
711
5.58k
                index[i] = index_prev[i*stride] + index[i];
712
5.58k
                index[i] &= and_modulo;
713
5.58k
            }
714
2.93k
        }
715
13.1k
    } else {
716
        /* set indices to zero */
717
58.2k
        for (i = 0; i < nr_par; i++)
718
45.0k
        {
719
45.0k
            index[i] = 0;
720
45.0k
        }
721
13.1k
    }
722
723
    /* coarse */
724
18.0k
    if (stride == 2)
725
0
    {
726
0
        index[0] = 0;
727
0
        for (i = (nr_par<<1)-1; i > 0; i--)
728
0
        {
729
0
            index[i] = index[i>>1];
730
0
        }
731
0
    }
732
18.0k
}
733
734
#ifdef PS_LOW_POWER
735
static void map34indexto20(int8_t *index, uint8_t bins)
736
{
737
    index[0] = (2*index[0]+index[1])/3;
738
    index[1] = (index[1]+2*index[2])/3;
739
    index[2] = (2*index[3]+index[4])/3;
740
    index[3] = (index[4]+2*index[5])/3;
741
    index[4] = (index[6]+index[7])/2;
742
    index[5] = (index[8]+index[9])/2;
743
    index[6] = index[10];
744
    index[7] = index[11];
745
    index[8] = (index[12]+index[13])/2;
746
    index[9] = (index[14]+index[15])/2;
747
    index[10] = index[16];
748
749
    if (bins == 34)
750
    {
751
        index[11] = index[17];
752
        index[12] = index[18];
753
        index[13] = index[19];
754
        index[14] = (index[20]+index[21])/2;
755
        index[15] = (index[22]+index[23])/2;
756
        index[16] = (index[24]+index[25])/2;
757
        index[17] = (index[26]+index[27])/2;
758
        index[18] = (index[28]+index[29]+index[30]+index[31])/4;
759
        index[19] = (index[32]+index[33])/2;
760
    }
761
}
762
#endif
763
764
static void map20indexto34(int8_t *index, uint8_t bins)
765
7.45k
{
766
7.45k
    index[0] = index[0];
767
7.45k
    index[1] = (index[0] + index[1])/2;
768
7.45k
    index[2] = index[1];
769
7.45k
    index[3] = index[2];
770
7.45k
    index[4] = (index[2] + index[3])/2;
771
7.45k
    index[5] = index[3];
772
7.45k
    index[6] = index[4];
773
7.45k
    index[7] = index[4];
774
7.45k
    index[8] = index[5];
775
7.45k
    index[9] = index[5];
776
7.45k
    index[10] = index[6];
777
7.45k
    index[11] = index[7];
778
7.45k
    index[12] = index[8];
779
7.45k
    index[13] = index[8];
780
7.45k
    index[14] = index[9];
781
7.45k
    index[15] = index[9];
782
7.45k
    index[16] = index[10];
783
784
7.45k
    if (bins == 34)
785
3.81k
    {
786
3.81k
        index[17] = index[11];
787
3.81k
        index[18] = index[12];
788
3.81k
        index[19] = index[13];
789
3.81k
        index[20] = index[14];
790
3.81k
        index[21] = index[14];
791
3.81k
        index[22] = index[15];
792
3.81k
        index[23] = index[15];
793
3.81k
        index[24] = index[16];
794
3.81k
        index[25] = index[16];
795
3.81k
        index[26] = index[17];
796
3.81k
        index[27] = index[17];
797
3.81k
        index[28] = index[18];
798
3.81k
        index[29] = index[18];
799
3.81k
        index[30] = index[18];
800
3.81k
        index[31] = index[18];
801
3.81k
        index[32] = index[19];
802
3.81k
        index[33] = index[19];
803
3.81k
    }
804
7.45k
}
805
806
/* parse the bitstream data decoded in ps_data() */
807
static void ps_data_decode(ps_info *ps)
808
5.95k
{
809
5.95k
    uint8_t env, bin;
810
811
    /* ps data not available, use data from previous frame */
812
5.95k
    if (ps->ps_data_available == 0)
813
1.62k
    {
814
1.62k
        ps->num_env = 0;
815
1.62k
    }
816
817
14.9k
    for (env = 0; env < ps->num_env; env++)
818
9.01k
    {
819
9.01k
        int8_t *iid_index_prev;
820
9.01k
        int8_t *icc_index_prev;
821
9.01k
        int8_t *ipd_index_prev;
822
9.01k
        int8_t *opd_index_prev;
823
824
9.01k
        int8_t num_iid_steps = (ps->iid_mode < 3) ? 7 : 15 /*fine quant*/;
825
826
9.01k
        if (env == 0)
827
2.84k
        {
828
            /* take last envelope from previous frame */
829
2.84k
            iid_index_prev = ps->iid_index_prev;
830
2.84k
            icc_index_prev = ps->icc_index_prev;
831
2.84k
            ipd_index_prev = ps->ipd_index_prev;
832
2.84k
            opd_index_prev = ps->opd_index_prev;
833
6.17k
        } else {
834
            /* take index values from previous envelope */
835
6.17k
            iid_index_prev = ps->iid_index[env - 1];
836
6.17k
            icc_index_prev = ps->icc_index[env - 1];
837
6.17k
            ipd_index_prev = ps->ipd_index[env - 1];
838
6.17k
            opd_index_prev = ps->opd_index[env - 1];
839
6.17k
        }
840
841
//        iid = 1;
842
        /* delta decode iid parameters */
843
9.01k
        delta_decode(ps->enable_iid, ps->iid_index[env], iid_index_prev,
844
9.01k
            ps->iid_dt[env], ps->nr_iid_par,
845
9.01k
            (ps->iid_mode == 0 || ps->iid_mode == 3) ? 2 : 1,
846
9.01k
            -num_iid_steps, num_iid_steps);
847
//        iid = 0;
848
849
        /* delta decode icc parameters */
850
9.01k
        delta_decode(ps->enable_icc, ps->icc_index[env], icc_index_prev,
851
9.01k
            ps->icc_dt[env], ps->nr_icc_par,
852
9.01k
            (ps->icc_mode == 0 || ps->icc_mode == 3) ? 2 : 1,
853
9.01k
            0, 7);
854
855
        /* delta modulo decode ipd parameters */
856
9.01k
        delta_modulo_decode(ps->enable_ipdopd, ps->ipd_index[env], ipd_index_prev,
857
9.01k
            ps->ipd_dt[env], ps->nr_ipdopd_par, 1, 7);
858
859
        /* delta modulo decode opd parameters */
860
9.01k
        delta_modulo_decode(ps->enable_ipdopd, ps->opd_index[env], opd_index_prev,
861
9.01k
            ps->opd_dt[env], ps->nr_ipdopd_par, 1, 7);
862
9.01k
    }
863
864
    /* handle error case */
865
5.95k
    if (ps->num_env == 0)
866
3.11k
    {
867
        /* force to 1 */
868
3.11k
        ps->num_env = 1;
869
870
3.11k
        if (ps->enable_iid)
871
2.23k
        {
872
78.2k
            for (bin = 0; bin < 34; bin++)
873
76.0k
                ps->iid_index[0][bin] = ps->iid_index_prev[bin];
874
2.23k
        } else {
875
30.7k
            for (bin = 0; bin < 34; bin++)
876
29.8k
                ps->iid_index[0][bin] = 0;
877
879
        }
878
879
3.11k
        if (ps->enable_icc)
880
1.62k
        {
881
56.7k
            for (bin = 0; bin < 34; bin++)
882
55.1k
                ps->icc_index[0][bin] = ps->icc_index_prev[bin];
883
1.62k
        } else {
884
52.3k
            for (bin = 0; bin < 34; bin++)
885
50.8k
                ps->icc_index[0][bin] = 0;
886
1.49k
        }
887
888
3.11k
        if (ps->enable_ipdopd)
889
421
        {
890
7.57k
            for (bin = 0; bin < 17; bin++)
891
7.15k
            {
892
7.15k
                ps->ipd_index[0][bin] = ps->ipd_index_prev[bin];
893
7.15k
                ps->opd_index[0][bin] = ps->opd_index_prev[bin];
894
7.15k
            }
895
2.69k
        } else {
896
48.5k
            for (bin = 0; bin < 17; bin++)
897
45.8k
            {
898
45.8k
                ps->ipd_index[0][bin] = 0;
899
45.8k
                ps->opd_index[0][bin] = 0;
900
45.8k
            }
901
2.69k
        }
902
3.11k
    }
903
904
    /* update previous indices */
905
208k
    for (bin = 0; bin < 34; bin++)
906
202k
        ps->iid_index_prev[bin] = ps->iid_index[ps->num_env-1][bin];
907
208k
    for (bin = 0; bin < 34; bin++)
908
202k
        ps->icc_index_prev[bin] = ps->icc_index[ps->num_env-1][bin];
909
107k
    for (bin = 0; bin < 17; bin++)
910
101k
    {
911
101k
        ps->ipd_index_prev[bin] = ps->ipd_index[ps->num_env-1][bin];
912
101k
        ps->opd_index_prev[bin] = ps->opd_index[ps->num_env-1][bin];
913
101k
    }
914
915
5.95k
    ps->ps_data_available = 0;
916
917
5.95k
    if (ps->frame_class == 0)
918
3.95k
    {
919
3.95k
        ps->border_position[0] = 0;
920
7.03k
        for (env = 1; env < ps->num_env; env++)
921
3.07k
        {
922
3.07k
            ps->border_position[env] = (env * ps->numTimeSlotsRate) / ps->num_env;
923
3.07k
        }
924
3.95k
        ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
925
3.95k
    } else {
926
1.99k
        ps->border_position[0] = 0;
927
928
1.99k
        if (ps->border_position[ps->num_env] < ps->numTimeSlotsRate)
929
1.64k
        {
930
57.4k
            for (bin = 0; bin < 34; bin++)
931
55.7k
            {
932
55.7k
                ps->iid_index[ps->num_env][bin] = ps->iid_index[ps->num_env-1][bin];
933
55.7k
                ps->icc_index[ps->num_env][bin] = ps->icc_index[ps->num_env-1][bin];
934
55.7k
            }
935
29.5k
            for (bin = 0; bin < 17; bin++)
936
27.8k
            {
937
27.8k
                ps->ipd_index[ps->num_env][bin] = ps->ipd_index[ps->num_env-1][bin];
938
27.8k
                ps->opd_index[ps->num_env][bin] = ps->opd_index[ps->num_env-1][bin];
939
27.8k
            }
940
1.64k
            ps->num_env++;
941
1.64k
            ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
942
1.64k
        }
943
944
6.74k
        for (env = 1; env < ps->num_env; env++)
945
4.74k
        {
946
4.74k
            int8_t thr = ps->numTimeSlotsRate - (ps->num_env - env);
947
948
4.74k
            if (ps->border_position[env] > thr)
949
656
            {
950
656
                ps->border_position[env] = thr;
951
4.08k
            } else {
952
4.08k
                thr = ps->border_position[env-1]+1;
953
4.08k
                if (ps->border_position[env] < thr)
954
1.88k
                {
955
1.88k
                    ps->border_position[env] = thr;
956
1.88k
                }
957
4.08k
            }
958
4.74k
        }
959
1.99k
    }
960
961
    /* make sure that the indices of all parameters can be mapped
962
     * to the same hybrid synthesis filterbank
963
     */
964
#ifdef PS_LOW_POWER
965
    for (env = 0; env < ps->num_env; env++)
966
    {
967
        if (ps->iid_mode == 2 || ps->iid_mode == 5)
968
            map34indexto20(ps->iid_index[env], 34);
969
        if (ps->icc_mode == 2 || ps->icc_mode == 5)
970
            map34indexto20(ps->icc_index[env], 34);
971
972
        /* disable ipd/opd */
973
        for (bin = 0; bin < 17; bin++)
974
        {
975
            ps->aaIpdIndex[env][bin] = 0;
976
            ps->aaOpdIndex[env][bin] = 0;
977
        }
978
    }
979
#else
980
5.95k
    if (ps->use34hybrid_bands)
981
2.34k
    {
982
6.32k
        for (env = 0; env < ps->num_env; env++)
983
3.98k
        {
984
3.98k
            if (ps->iid_mode != 2 && ps->iid_mode != 5)
985
1.82k
                map20indexto34(ps->iid_index[env], 34);
986
3.98k
            if (ps->icc_mode != 2 && ps->icc_mode != 5)
987
1.98k
                map20indexto34(ps->icc_index[env], 34);
988
3.98k
            if (ps->ipd_mode != 2 && ps->ipd_mode != 5)
989
1.82k
            {
990
1.82k
                map20indexto34(ps->ipd_index[env], 17);
991
1.82k
                map20indexto34(ps->opd_index[env], 17);
992
1.82k
            }
993
3.98k
        }
994
2.34k
    }
995
5.95k
#endif
996
997
#if 0
998
    for (env = 0; env < ps->num_env; env++)
999
    {
1000
        printf("iid[env:%d]:", env);
1001
        for (bin = 0; bin < 34; bin++)
1002
        {
1003
            printf(" %d", ps->iid_index[env][bin]);
1004
        }
1005
        printf("\n");
1006
    }
1007
    for (env = 0; env < ps->num_env; env++)
1008
    {
1009
        printf("icc[env:%d]:", env);
1010
        for (bin = 0; bin < 34; bin++)
1011
        {
1012
            printf(" %d", ps->icc_index[env][bin]);
1013
        }
1014
        printf("\n");
1015
    }
1016
    for (env = 0; env < ps->num_env; env++)
1017
    {
1018
        printf("ipd[env:%d]:", env);
1019
        for (bin = 0; bin < 17; bin++)
1020
        {
1021
            printf(" %d", ps->ipd_index[env][bin]);
1022
        }
1023
        printf("\n");
1024
    }
1025
    for (env = 0; env < ps->num_env; env++)
1026
    {
1027
        printf("opd[env:%d]:", env);
1028
        for (bin = 0; bin < 17; bin++)
1029
        {
1030
            printf(" %d", ps->opd_index[env][bin]);
1031
        }
1032
        printf("\n");
1033
    }
1034
    printf("\n");
1035
#endif
1036
5.95k
}
1037
1038
/* decorrelate the mono signal using an allpass filter */
1039
static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
1040
                           qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
1041
5.95k
{
1042
5.95k
    uint8_t gr, n, bk;
1043
5.95k
    uint8_t temp_delay = 0;
1044
5.95k
    uint8_t sb, maxsb;
1045
5.95k
    const complex_t *Phi_Fract_SubQmf;
1046
5.95k
    uint8_t temp_delay_ser[NO_ALLPASS_LINKS];
1047
5.95k
    real_t P_SmoothPeakDecayDiffNrg, nrg;
1048
5.95k
    real_t P[32][34];
1049
5.95k
    real_t G_TransientRatio[32][34] = {{0}};
1050
5.95k
    complex_t inputLeft;
1051
1052
1053
    /* chose hybrid filterbank: 20 or 34 band case */
1054
5.95k
    if (ps->use34hybrid_bands)
1055
2.34k
    {
1056
2.34k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf34;
1057
3.61k
    } else{
1058
3.61k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf20;
1059
3.61k
    }
1060
1061
    /* clear the energy values */
1062
196k
    for (n = 0; n < 32; n++)
1063
190k
    {
1064
6.67M
        for (bk = 0; bk < 34; bk++)
1065
6.48M
        {
1066
6.48M
            P[n][bk] = 0;
1067
6.48M
        }
1068
190k
    }
1069
1070
    /* calculate the energy in each parameter band b(k) */
1071
202k
    for (gr = 0; gr < ps->num_groups; gr++)
1072
196k
    {
1073
        /* select the parameter index b(k) to which this group belongs */
1074
196k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1075
1076
        /* select the upper subband border for this group */
1077
196k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr]+1 : ps->group_border[gr+1];
1078
1079
666k
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1080
469k
        {
1081
15.1M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1082
14.7M
            {
1083
#ifdef FIXED_POINT
1084
                uint32_t in_re, in_im;
1085
#endif
1086
1087
                /* input from hybrid subbands or QMF subbands */
1088
14.7M
                if (gr < ps->num_hybrid_groups)
1089
3.46M
                {
1090
3.46M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1091
3.46M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1092
11.2M
                } else {
1093
11.2M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1094
11.2M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1095
11.2M
                }
1096
1097
                /* accumulate energy */
1098
#ifdef FIXED_POINT
1099
                /* NOTE: all input is scaled by 2^(-5) because of fixed point QMF
1100
                 * meaning that P will be scaled by 2^(-10) compared to floating point version
1101
                 */
1102
                in_re = ((abs(RE(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1103
                in_im = ((abs(IM(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1104
                P[n][bk] += in_re*in_re + in_im*in_im;
1105
#else
1106
14.7M
                P[n][bk] += MUL_R(RE(inputLeft),RE(inputLeft)) + MUL_R(IM(inputLeft),IM(inputLeft));
1107
14.7M
#endif
1108
14.7M
            }
1109
469k
        }
1110
196k
    }
1111
1112
#if 0
1113
    for (n = 0; n < 32; n++)
1114
    {
1115
        for (bk = 0; bk < 34; bk++)
1116
        {
1117
#ifdef FIXED_POINT
1118
            printf("%d %d: %d\n", n, bk, P[n][bk] /*/(float)REAL_PRECISION*/);
1119
#else
1120
            printf("%d %d: %f\n", n, bk, P[n][bk]/1024.0);
1121
#endif
1122
        }
1123
    }
1124
#endif
1125
1126
    /* calculate transient reduction ratio for each parameter band b(k) */
1127
157k
    for (bk = 0; bk < ps->nr_par_bands; bk++)
1128
151k
    {
1129
4.90M
        for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1130
4.75M
        {
1131
4.75M
            const real_t gamma = COEF_CONST(1.5);
1132
1133
4.75M
            ps->P_PeakDecayNrg[bk] = MUL_F(ps->P_PeakDecayNrg[bk], ps->alpha_decay);
1134
4.75M
            if (ps->P_PeakDecayNrg[bk] < P[n][bk])
1135
49.4k
                ps->P_PeakDecayNrg[bk] = P[n][bk];
1136
1137
            /* apply smoothing filter to peak decay energy */
1138
4.75M
            P_SmoothPeakDecayDiffNrg = ps->P_SmoothPeakDecayDiffNrg_prev[bk];
1139
4.75M
            P_SmoothPeakDecayDiffNrg += MUL_F((ps->P_PeakDecayNrg[bk] - P[n][bk] - ps->P_SmoothPeakDecayDiffNrg_prev[bk]), ps->alpha_smooth);
1140
4.75M
            ps->P_SmoothPeakDecayDiffNrg_prev[bk] = P_SmoothPeakDecayDiffNrg;
1141
1142
            /* apply smoothing filter to energy */
1143
4.75M
            nrg = ps->P_prev[bk];
1144
4.75M
            nrg += MUL_F((P[n][bk] - ps->P_prev[bk]), ps->alpha_smooth);
1145
4.75M
            ps->P_prev[bk] = nrg;
1146
1147
            /* calculate transient ratio */
1148
4.75M
            if (MUL_C(P_SmoothPeakDecayDiffNrg, gamma) <= nrg)
1149
4.71M
            {
1150
4.71M
                G_TransientRatio[n][bk] = REAL_CONST(1.0);
1151
4.71M
            } else {
1152
40.7k
                G_TransientRatio[n][bk] = DIV_R(nrg, (MUL_C(P_SmoothPeakDecayDiffNrg, gamma)));
1153
40.7k
            }
1154
4.75M
        }
1155
151k
    }
1156
1157
#if 0
1158
    for (n = 0; n < 32; n++)
1159
    {
1160
        for (bk = 0; bk < 34; bk++)
1161
        {
1162
#ifdef FIXED_POINT
1163
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]/(float)REAL_PRECISION);
1164
#else
1165
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]);
1166
#endif
1167
        }
1168
    }
1169
#endif
1170
1171
    /* apply stereo decorrelation filter to the signal */
1172
202k
    for (gr = 0; gr < ps->num_groups; gr++)
1173
196k
    {
1174
196k
        if (gr < ps->num_hybrid_groups)
1175
111k
            maxsb = ps->group_border[gr] + 1;
1176
85.5k
        else
1177
85.5k
            maxsb = ps->group_border[gr + 1];
1178
1179
        /* QMF channel */
1180
666k
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1181
469k
        {
1182
469k
            real_t g_DecaySlope;
1183
469k
            real_t g_DecaySlope_filt[NO_ALLPASS_LINKS];
1184
1185
            /* g_DecaySlope: [0..1] */
1186
469k
            if (gr < ps->num_hybrid_groups || sb <= ps->decay_cutoff)
1187
116k
            {
1188
116k
                g_DecaySlope = FRAC_CONST(1.0);
1189
352k
            } else {
1190
352k
                int8_t decay = ps->decay_cutoff - sb;
1191
352k
                if (decay <= -20 /* -1/DECAY_SLOPE */)
1192
239k
                {
1193
239k
                    g_DecaySlope = 0;
1194
239k
                } else {
1195
                    /* decay(int)*decay_slope(frac) = g_DecaySlope(frac) */
1196
113k
                    g_DecaySlope = FRAC_CONST(1.0) + DECAY_SLOPE * decay;
1197
113k
                }
1198
352k
            }
1199
1200
            /* calculate g_DecaySlope_filt for every n multiplied by filter_a[n] */
1201
1.87M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1202
1.40M
            {
1203
1.40M
                g_DecaySlope_filt[n] = MUL_F(g_DecaySlope, filter_a[n]);
1204
1.40M
            }
1205
1206
1207
            /* set delay indices */
1208
469k
            temp_delay = ps->saved_delay;
1209
1.87M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1210
1.40M
                temp_delay_ser[n] = ps->delay_buf_index_ser[n];
1211
1212
15.1M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1213
14.7M
            {
1214
14.7M
                complex_t tmp, tmp0, R0;
1215
14.7M
                uint8_t m;
1216
1217
14.7M
                if (gr < ps->num_hybrid_groups)
1218
3.46M
                {
1219
                    /* hybrid filterbank input */
1220
3.46M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1221
3.46M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1222
11.2M
                } else {
1223
                    /* QMF filterbank input */
1224
11.2M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1225
11.2M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1226
11.2M
                }
1227
1228
14.7M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1229
7.66M
                {
1230
                    /* delay */
1231
1232
                    /* never hybrid subbands here, always QMF subbands */
1233
7.66M
                    RE(tmp) = RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1234
7.66M
                    IM(tmp) = IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1235
7.66M
                    RE(R0) = RE(tmp);
1236
7.66M
                    IM(R0) = IM(tmp);
1237
7.66M
                    RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = RE(inputLeft);
1238
7.66M
                    IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = IM(inputLeft);
1239
7.66M
                } else {
1240
                    /* allpass filter */
1241
7.05M
                    complex_t Phi_Fract;
1242
1243
                    /* fetch parameters */
1244
7.05M
                    if (gr < ps->num_hybrid_groups)
1245
3.46M
                    {
1246
                        /* select data from the hybrid subbands */
1247
3.46M
                        RE(tmp0) = RE(ps->delay_SubQmf[temp_delay][sb]);
1248
3.46M
                        IM(tmp0) = IM(ps->delay_SubQmf[temp_delay][sb]);
1249
1250
3.46M
                        RE(ps->delay_SubQmf[temp_delay][sb]) = RE(inputLeft);
1251
3.46M
                        IM(ps->delay_SubQmf[temp_delay][sb]) = IM(inputLeft);
1252
1253
3.46M
                        RE(Phi_Fract) = RE(Phi_Fract_SubQmf[sb]);
1254
3.46M
                        IM(Phi_Fract) = IM(Phi_Fract_SubQmf[sb]);
1255
3.59M
                    } else {
1256
                        /* select data from the QMF subbands */
1257
3.59M
                        RE(tmp0) = RE(ps->delay_Qmf[temp_delay][sb]);
1258
3.59M
                        IM(tmp0) = IM(ps->delay_Qmf[temp_delay][sb]);
1259
1260
3.59M
                        RE(ps->delay_Qmf[temp_delay][sb]) = RE(inputLeft);
1261
3.59M
                        IM(ps->delay_Qmf[temp_delay][sb]) = IM(inputLeft);
1262
1263
3.59M
                        RE(Phi_Fract) = RE(Phi_Fract_Qmf[sb]);
1264
3.59M
                        IM(Phi_Fract) = IM(Phi_Fract_Qmf[sb]);
1265
3.59M
                    }
1266
1267
                    /* z^(-2) * Phi_Fract[k] */
1268
7.05M
                    ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Phi_Fract), IM(Phi_Fract));
1269
1270
7.05M
                    RE(R0) = RE(tmp);
1271
7.05M
                    IM(R0) = IM(tmp);
1272
28.2M
                    for (m = 0; m < NO_ALLPASS_LINKS; m++)
1273
21.1M
                    {
1274
21.1M
                        complex_t Q_Fract_allpass, tmp2;
1275
1276
                        /* fetch parameters */
1277
21.1M
                        if (gr < ps->num_hybrid_groups)
1278
10.3M
                        {
1279
                            /* select data from the hybrid subbands */
1280
10.3M
                            RE(tmp0) = RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1281
10.3M
                            IM(tmp0) = IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1282
1283
10.3M
                            if (ps->use34hybrid_bands)
1284
6.96M
                            {
1285
6.96M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf34[sb][m]);
1286
6.96M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf34[sb][m]);
1287
6.96M
                            } else {
1288
3.43M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf20[sb][m]);
1289
3.43M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf20[sb][m]);
1290
3.43M
                            }
1291
10.7M
                        } else {
1292
                            /* select data from the QMF subbands */
1293
10.7M
                            RE(tmp0) = RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1294
10.7M
                            IM(tmp0) = IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1295
1296
10.7M
                            RE(Q_Fract_allpass) = RE(Q_Fract_allpass_Qmf[sb][m]);
1297
10.7M
                            IM(Q_Fract_allpass) = IM(Q_Fract_allpass_Qmf[sb][m]);
1298
10.7M
                        }
1299
1300
                        /* delay by a fraction */
1301
                        /* z^(-d(m)) * Q_Fract_allpass[k,m] */
1302
21.1M
                        ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Q_Fract_allpass), IM(Q_Fract_allpass));
1303
1304
                        /* -a(m) * g_DecaySlope[k] */
1305
21.1M
                        RE(tmp) += -MUL_F(g_DecaySlope_filt[m], RE(R0));
1306
21.1M
                        IM(tmp) += -MUL_F(g_DecaySlope_filt[m], IM(R0));
1307
1308
                        /* -a(m) * g_DecaySlope[k] * Q_Fract_allpass[k,m] * z^(-d(m)) */
1309
21.1M
                        RE(tmp2) = RE(R0) + MUL_F(g_DecaySlope_filt[m], RE(tmp));
1310
21.1M
                        IM(tmp2) = IM(R0) + MUL_F(g_DecaySlope_filt[m], IM(tmp));
1311
1312
                        /* store sample */
1313
21.1M
                        if (gr < ps->num_hybrid_groups)
1314
10.3M
                        {
1315
10.3M
                            RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1316
10.3M
                            IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1317
10.7M
                        } else {
1318
10.7M
                            RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1319
10.7M
                            IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1320
10.7M
                        }
1321
1322
                        /* store for next iteration (or as output value if last iteration) */
1323
21.1M
                        RE(R0) = RE(tmp);
1324
21.1M
                        IM(R0) = IM(tmp);
1325
21.1M
                    }
1326
7.05M
                }
1327
1328
                /* select b(k) for reading the transient ratio */
1329
14.7M
                bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1330
1331
                /* duck if a past transient is found */
1332
14.7M
                RE(R0) = MUL_R(G_TransientRatio[n][bk], RE(R0));
1333
14.7M
                IM(R0) = MUL_R(G_TransientRatio[n][bk], IM(R0));
1334
1335
14.7M
                if (gr < ps->num_hybrid_groups)
1336
3.46M
                {
1337
                    /* hybrid */
1338
3.46M
                    QMF_RE(X_hybrid_right[n][sb]) = RE(R0);
1339
3.46M
                    QMF_IM(X_hybrid_right[n][sb]) = IM(R0);
1340
11.2M
                } else {
1341
                    /* QMF */
1342
11.2M
                    QMF_RE(X_right[n][sb]) = RE(R0);
1343
11.2M
                    QMF_IM(X_right[n][sb]) = IM(R0);
1344
11.2M
                }
1345
1346
                /* Update delay buffer index */
1347
14.7M
                if (++temp_delay >= 2)
1348
7.35M
                {
1349
7.35M
                    temp_delay = 0;
1350
7.35M
                }
1351
1352
                /* update delay indices */
1353
14.7M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1354
7.66M
                {
1355
                    /* delay_D depends on the samplerate, it can hold the values 14 and 1 */
1356
7.66M
                    if (++ps->delay_buf_index_delay[sb] >= ps->delay_D[sb])
1357
5.56M
                    {
1358
5.56M
                        ps->delay_buf_index_delay[sb] = 0;
1359
5.56M
                    }
1360
7.66M
                }
1361
1362
58.8M
                for (m = 0; m < NO_ALLPASS_LINKS; m++)
1363
44.1M
                {
1364
44.1M
                    if (++temp_delay_ser[m] >= ps->num_sample_delay_ser[m])
1365
11.2M
                    {
1366
11.2M
                        temp_delay_ser[m] = 0;
1367
11.2M
                    }
1368
44.1M
                }
1369
14.7M
            }
1370
469k
        }
1371
196k
    }
1372
1373
    /* update delay indices */
1374
5.95k
    ps->saved_delay = temp_delay;
1375
23.8k
    for (n = 0; n < NO_ALLPASS_LINKS; n++)
1376
17.8k
        ps->delay_buf_index_ser[n] = temp_delay_ser[n];
1377
5.95k
}
1378
1379
#if 0
1380
#ifdef FIXED_POINT
1381
#define step(shift) \
1382
    if ((0x40000000l >> shift) + root <= value)       \
1383
    {                                                 \
1384
        value -= (0x40000000l >> shift) + root;       \
1385
        root = (root >> 1) | (0x40000000l >> shift);  \
1386
    } else {                                          \
1387
        root = root >> 1;                             \
1388
    }
1389
1390
/* fixed point square root approximation */
1391
static real_t ps_sqrt(real_t value)
1392
{
1393
    real_t root = 0;
1394
1395
    step( 0); step( 2); step( 4); step( 6);
1396
    step( 8); step(10); step(12); step(14);
1397
    step(16); step(18); step(20); step(22);
1398
    step(24); step(26); step(28); step(30);
1399
1400
    if (root < value)
1401
        ++root;
1402
1403
    root <<= (REAL_BITS/2);
1404
1405
    return root;
1406
}
1407
#else
1408
#define ps_sqrt(A) sqrt(A)
1409
#endif
1410
#endif
1411
1412
static const real_t ipdopd_cos_tab[] = {
1413
    FRAC_CONST(1.000000000000000),
1414
    FRAC_CONST(0.707106781186548),
1415
    FRAC_CONST(0.000000000000000),
1416
    FRAC_CONST(-0.707106781186547),
1417
    FRAC_CONST(-1.000000000000000),
1418
    FRAC_CONST(-0.707106781186548),
1419
    FRAC_CONST(-0.000000000000000),
1420
    FRAC_CONST(0.707106781186547),
1421
    FRAC_CONST(1.000000000000000)
1422
};
1423
1424
static const real_t ipdopd_sin_tab[] = {
1425
    FRAC_CONST(0.000000000000000),
1426
    FRAC_CONST(0.707106781186547),
1427
    FRAC_CONST(1.000000000000000),
1428
    FRAC_CONST(0.707106781186548),
1429
    FRAC_CONST(0.000000000000000),
1430
    FRAC_CONST(-0.707106781186547),
1431
    FRAC_CONST(-1.000000000000000),
1432
    FRAC_CONST(-0.707106781186548),
1433
    FRAC_CONST(-0.000000000000000)
1434
};
1435
1436
static real_t magnitude_c(complex_t c)
1437
96.1k
{
1438
#ifdef FIXED_POINT
1439
#define ps_abs(A) (((A) > 0) ? (A) : (-(A)))
1440
#define ALPHA FRAC_CONST(0.948059448969)
1441
#define BETA  FRAC_CONST(0.392699081699)
1442
1443
    real_t abs_inphase = ps_abs(RE(c));
1444
    real_t abs_quadrature = ps_abs(IM(c));
1445
1446
    if (abs_inphase > abs_quadrature) {
1447
        return MUL_F(abs_inphase, ALPHA) + MUL_F(abs_quadrature, BETA);
1448
    } else {
1449
        return MUL_F(abs_quadrature, ALPHA) + MUL_F(abs_inphase, BETA);
1450
    }
1451
#else
1452
96.1k
    return sqrt(RE(c)*RE(c) + IM(c)*IM(c));
1453
96.1k
#endif
1454
96.1k
}
1455
1456
static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
1457
                         qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
1458
5.95k
{
1459
5.95k
    uint8_t n;
1460
5.95k
    uint8_t gr;
1461
5.95k
    uint8_t bk = 0;
1462
5.95k
    uint8_t sb, maxsb;
1463
5.95k
    uint8_t env;
1464
5.95k
    uint8_t nr_ipdopd_par;
1465
5.95k
    complex_t h11, h12, h21, h22;  // COEF
1466
5.95k
    complex_t H11, H12, H21, H22;  // COEF
1467
5.95k
    complex_t deltaH11, deltaH12, deltaH21, deltaH22;  // COEF
1468
5.95k
    complex_t tempLeft, tempRight; // FRAC
1469
5.95k
    complex_t phaseLeft, phaseRight; // FRAC
1470
5.95k
    real_t L;
1471
5.95k
    const real_t *sf_iid;
1472
5.95k
    uint8_t no_iid_steps;
1473
1474
5.95k
    if (ps->iid_mode >= 3)
1475
2.45k
    {
1476
2.45k
        no_iid_steps = 15;
1477
2.45k
        sf_iid = sf_iid_fine;
1478
3.50k
    } else {
1479
3.50k
        no_iid_steps = 7;
1480
3.50k
        sf_iid = sf_iid_normal;
1481
3.50k
    }
1482
1483
5.95k
    if (ps->ipd_mode == 0 || ps->ipd_mode == 3)
1484
3.04k
    {
1485
3.04k
        nr_ipdopd_par = 11; /* resolution */
1486
3.04k
    } else {
1487
2.91k
        nr_ipdopd_par = ps->nr_ipdopd_par;
1488
2.91k
    }
1489
1490
202k
    for (gr = 0; gr < ps->num_groups; gr++)
1491
196k
    {
1492
196k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1493
1494
        /* use one channel per group in the subqmf domain */
1495
196k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr] + 1 : ps->group_border[gr + 1];
1496
1497
611k
        for (env = 0; env < ps->num_env; env++)
1498
414k
        {
1499
414k
            uint8_t abs_iid = (uint8_t)abs(ps->iid_index[env][bk]);
1500
            /* index range is supposed to be -7...7 or -15...15 depending on iid_mode
1501
                (Table 8.24, ISO/IEC 14496-3:2005).
1502
                if it is outside these boundaries, this is most likely an error. sanitize
1503
                it and try to process further. */
1504
414k
            if (ps->iid_index[env][bk] < -no_iid_steps) {
1505
142
                fprintf(stderr, "Warning: invalid iid_index: %d < %d\n", ps->iid_index[env][bk],
1506
142
                    -no_iid_steps);
1507
142
                ps->iid_index[env][bk] = -no_iid_steps;
1508
142
                abs_iid = no_iid_steps;
1509
414k
            } else if (ps->iid_index[env][bk] > no_iid_steps) {
1510
81
                fprintf(stderr, "Warning: invalid iid_index: %d > %d\n", ps->iid_index[env][bk],
1511
81
                    no_iid_steps);
1512
81
                ps->iid_index[env][bk] = no_iid_steps;
1513
81
                abs_iid = no_iid_steps;
1514
81
            }
1515
414k
            if (ps->icc_index[env][bk] < 0) {
1516
257
                fprintf(stderr, "Warning: invalid icc_index: %d < 0\n", ps->icc_index[env][bk]);
1517
257
                ps->icc_index[env][bk] = 0;
1518
414k
            } else if (ps->icc_index[env][bk] > 7) {
1519
0
                fprintf(stderr, "Warning: invalid icc_index: %d > 7\n", ps->icc_index[env][bk]);
1520
0
                ps->icc_index[env][bk] = 7;
1521
0
            }
1522
1523
414k
            if (ps->icc_mode < 3)
1524
260k
            {
1525
                /* type 'A' mixing as described in 8.6.4.6.2.1 */
1526
260k
                real_t c_1, c_2;  // COEF
1527
260k
                real_t cosa, sina;  // COEF
1528
260k
                real_t cosb, sinb;  // COEF
1529
260k
                real_t ab1, ab2;  // COEF
1530
260k
                real_t ab3, ab4;  // COEF
1531
1532
                /*
1533
                c_1 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps + iid_index] / 10.0)));
1534
                c_2 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps - iid_index] / 10.0)));
1535
                alpha = 0.5 * acos(quant_rho[icc_index]);
1536
                beta = alpha * ( c_1 - c_2 ) / sqrt(2.0);
1537
                */
1538
1539
                //printf("%d\n", ps->iid_index[env][bk]);
1540
1541
                /* calculate the scalefactors c_1 and c_2 from the intensity differences */
1542
260k
                c_1 = sf_iid[no_iid_steps + ps->iid_index[env][bk]];
1543
260k
                c_2 = sf_iid[no_iid_steps - ps->iid_index[env][bk]];
1544
1545
                /* calculate alpha and beta using the ICC parameters */
1546
260k
                cosa = cos_alphas[ps->icc_index[env][bk]];
1547
260k
                sina = sin_alphas[ps->icc_index[env][bk]];
1548
1549
260k
                if (ps->iid_mode >= 3)
1550
87.3k
                {
1551
87.3k
                    cosb = cos_betas_fine[abs_iid][ps->icc_index[env][bk]];
1552
87.3k
                    sinb = sin_betas_fine[abs_iid][ps->icc_index[env][bk]];
1553
172k
                } else {
1554
172k
                    cosb = cos_betas_normal[abs_iid][ps->icc_index[env][bk]];
1555
172k
                    sinb = sin_betas_normal[abs_iid][ps->icc_index[env][bk]];
1556
172k
                }
1557
1558
260k
                ab1 = MUL_C(cosb, cosa);
1559
260k
                ab2 = MUL_C(sinb, sina);
1560
260k
                ab3 = MUL_C(sinb, cosa);
1561
260k
                ab4 = MUL_C(cosb, sina);
1562
1563
                /* h_xy: COEF */
1564
260k
                RE(h11) = MUL_C(c_2, (ab1 - ab2));
1565
260k
                RE(h12) = MUL_C(c_1, (ab1 + ab2));
1566
260k
                RE(h21) = MUL_C(c_2, (ab3 + ab4));
1567
260k
                RE(h22) = MUL_C(c_1, (ab3 - ab4));
1568
260k
            } else {
1569
                /* type 'B' mixing as described in 8.6.4.6.2.2 */
1570
154k
                real_t sina, cosa;  // COEF
1571
154k
                real_t cosg, sing;  // COEF
1572
1573
                /*
1574
                real_t c, rho, mu, alpha, gamma;
1575
                uint8_t i;
1576
1577
                i = ps->iid_index[env][bk];
1578
                c = (real_t)pow(10.0, ((i)?(((i>0)?1:-1)*quant_iid[((i>0)?i:-i)-1]):0.)/20.0);
1579
                rho = quant_rho[ps->icc_index[env][bk]];
1580
1581
                if (rho == 0.0f && c == 1.)
1582
                {
1583
                    alpha = (real_t)M_PI/4.0f;
1584
                    rho = 0.05f;
1585
                } else {
1586
                    if (rho <= 0.05f)
1587
                    {
1588
                        rho = 0.05f;
1589
                    }
1590
                    alpha = 0.5f*(real_t)atan( (2.0f*c*rho) / (c*c-1.0f) );
1591
1592
                    if (alpha < 0.)
1593
                    {
1594
                        alpha += (real_t)M_PI/2.0f;
1595
                    }
1596
                    if (rho < 0.)
1597
                    {
1598
                        alpha += (real_t)M_PI;
1599
                    }
1600
                }
1601
                mu = c+1.0f/c;
1602
                mu = 1+(4.0f*rho*rho-4.0f)/(mu*mu);
1603
                gamma = (real_t)atan(sqrt((1.0f-sqrt(mu))/(1.0f+sqrt(mu))));
1604
                */
1605
1606
154k
                if (ps->iid_mode >= 3)
1607
85.0k
                {
1608
85.0k
                    cosa = sincos_alphas_B_fine[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1609
85.0k
                    sina = sincos_alphas_B_fine[30 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1610
85.0k
                    cosg = cos_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1611
85.0k
                    sing = sin_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1612
85.0k
                } else {
1613
69.5k
                    cosa = sincos_alphas_B_normal[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1614
69.5k
                    sina = sincos_alphas_B_normal[14 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1615
69.5k
                    cosg = cos_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1616
69.5k
                    sing = sin_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1617
69.5k
                }
1618
1619
154k
                RE(h11) = MUL_C(COEF_SQRT2, MUL_C(cosa, cosg));
1620
154k
                RE(h12) = MUL_C(COEF_SQRT2, MUL_C(sina, cosg));
1621
154k
                RE(h21) = MUL_C(COEF_SQRT2, MUL_C(-cosa, sing));
1622
154k
                RE(h22) = MUL_C(COEF_SQRT2, MUL_C(sina, sing));
1623
154k
            }
1624
414k
            IM(h11) = IM(h12) = IM(h21) = IM(h22) = 0;
1625
1626
            /* calculate phase rotation parameters H_xy */
1627
            /* note that the imaginary part of these parameters are only calculated when
1628
               IPD and OPD are enabled
1629
             */
1630
414k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1631
48.0k
            {
1632
48.0k
                int8_t i;
1633
48.0k
                real_t xy, pq, xypq;  // FRAC
1634
1635
                /* ringbuffer index */
1636
48.0k
                i = ps->phase_hist;
1637
1638
                /* previous value */
1639
#ifdef FIXED_POINT
1640
                /* divide by 4*2, shift right 3 bits;
1641
                   extra halving to avoid overflows; it is ok, because result is normalized */
1642
                RE(tempLeft)  = RE(ps->ipd_prev[bk][i]) >> 3;
1643
                IM(tempLeft)  = IM(ps->ipd_prev[bk][i]) >> 3;
1644
                RE(tempRight) = RE(ps->opd_prev[bk][i]) >> 3;
1645
                IM(tempRight) = IM(ps->opd_prev[bk][i]) >> 3;
1646
#else
1647
48.0k
                RE(tempLeft)  = MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1648
48.0k
                IM(tempLeft)  = MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1649
48.0k
                RE(tempRight) = MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1650
48.0k
                IM(tempRight) = MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1651
48.0k
#endif
1652
1653
                /* save current value */
1654
48.0k
                RE(ps->ipd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->ipd_index[env][bk])];
1655
48.0k
                IM(ps->ipd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->ipd_index[env][bk])];
1656
48.0k
                RE(ps->opd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->opd_index[env][bk])];
1657
48.0k
                IM(ps->opd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->opd_index[env][bk])];
1658
1659
                /* add current value */
1660
#ifdef FIXED_POINT
1661
                /* extra halving to avoid overflows */
1662
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]) >> 1;
1663
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]) >> 1;
1664
                RE(tempRight) += RE(ps->opd_prev[bk][i]) >> 1;
1665
                IM(tempRight) += IM(ps->opd_prev[bk][i]) >> 1;
1666
#else
1667
48.0k
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]);
1668
48.0k
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]);
1669
48.0k
                RE(tempRight) += RE(ps->opd_prev[bk][i]);
1670
48.0k
                IM(tempRight) += IM(ps->opd_prev[bk][i]);
1671
48.0k
#endif
1672
1673
                /* ringbuffer index */
1674
48.0k
                if (i == 0)
1675
24.2k
                {
1676
24.2k
                    i = 2;
1677
24.2k
                }
1678
48.0k
                i--;
1679
1680
                /* get value before previous */
1681
#ifdef FIXED_POINT
1682
                /* dividing by 2*2, shift right 2 bits; extra halving to avoid overflows */
1683
                RE(tempLeft)  += (RE(ps->ipd_prev[bk][i]) >> 2);
1684
                IM(tempLeft)  += (IM(ps->ipd_prev[bk][i]) >> 2);
1685
                RE(tempRight) += (RE(ps->opd_prev[bk][i]) >> 2);
1686
                IM(tempRight) += (IM(ps->opd_prev[bk][i]) >> 2);
1687
#else
1688
48.0k
                RE(tempLeft)  += MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1689
48.0k
                IM(tempLeft)  += MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1690
48.0k
                RE(tempRight) += MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1691
48.0k
                IM(tempRight) += MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1692
48.0k
#endif
1693
1694
#if 0 /* original code */
1695
                ipd = (float)atan2(IM(tempLeft), RE(tempLeft));
1696
                opd = (float)atan2(IM(tempRight), RE(tempRight));
1697
1698
                /* phase rotation */
1699
                RE(phaseLeft) = (float)cos(opd);
1700
                IM(phaseLeft) = (float)sin(opd);
1701
                opd -= ipd;
1702
                RE(phaseRight) = (float)cos(opd);
1703
                IM(phaseRight) = (float)sin(opd);
1704
#else
1705
1706
                // x = IM(tempLeft)
1707
                // y = RE(tempLeft)
1708
                // p = IM(tempRight)
1709
                // q = RE(tempRight)
1710
                // cos(atan2(x,y)) = y/sqrt((x*x) + (y*y))
1711
                // sin(atan2(x,y)) = x/sqrt((x*x) + (y*y))
1712
                // cos(atan2(x,y)-atan2(p,q)) = (y*q + x*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1713
                // sin(atan2(x,y)-atan2(p,q)) = (x*q - y*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1714
1715
48.0k
                xy = magnitude_c(tempRight);
1716
48.0k
                pq = magnitude_c(tempLeft);
1717
1718
48.0k
                if (xy != 0)
1719
48.0k
                {
1720
48.0k
                    RE(phaseLeft) = DIV_F(RE(tempRight), xy);
1721
48.0k
                    IM(phaseLeft) = DIV_F(IM(tempRight), xy);
1722
48.0k
                } else {
1723
0
                    RE(phaseLeft) = 0;
1724
0
                    IM(phaseLeft) = 0;
1725
0
                }
1726
1727
48.0k
                xypq = MUL_F(xy, pq);
1728
1729
48.0k
                if (xypq != 0)
1730
48.0k
                {
1731
48.0k
                    real_t tmp1 = MUL_F(RE(tempRight), RE(tempLeft)) + MUL_F(IM(tempRight), IM(tempLeft));
1732
48.0k
                    real_t tmp2 = MUL_F(IM(tempRight), RE(tempLeft)) - MUL_F(RE(tempRight), IM(tempLeft));
1733
1734
48.0k
                    RE(phaseRight) = DIV_F(tmp1, xypq);
1735
48.0k
                    IM(phaseRight) = DIV_F(tmp2, xypq);
1736
48.0k
                } else {
1737
0
                    RE(phaseRight) = 0;
1738
0
                    IM(phaseRight) = 0;
1739
0
                }
1740
1741
48.0k
#endif
1742
1743
                /* MUL_F(COEF, REAL) = COEF */
1744
48.0k
                IM(h11) = MUL_F(RE(h11), IM(phaseLeft));
1745
48.0k
                IM(h12) = MUL_F(RE(h12), IM(phaseRight));
1746
48.0k
                IM(h21) = MUL_F(RE(h21), IM(phaseLeft));
1747
48.0k
                IM(h22) = MUL_F(RE(h22), IM(phaseRight));
1748
1749
48.0k
                RE(h11) = MUL_F(RE(h11), RE(phaseLeft));
1750
48.0k
                RE(h12) = MUL_F(RE(h12), RE(phaseRight));
1751
48.0k
                RE(h21) = MUL_F(RE(h21), RE(phaseLeft));
1752
48.0k
                RE(h22) = MUL_F(RE(h22), RE(phaseRight));
1753
48.0k
            }
1754
1755
            /* length of the envelope n_e+1 - n_e (in time samples) */
1756
            /* 0 < L <= 32: integer */
1757
414k
            L = (real_t)(ps->border_position[env + 1] - ps->border_position[env]);
1758
1759
            /* obtain final H_xy by means of linear interpolation */
1760
414k
            RE(deltaH11) = (RE(h11) - RE(ps->h11_prev[gr])) / L;
1761
414k
            RE(deltaH12) = (RE(h12) - RE(ps->h12_prev[gr])) / L;
1762
414k
            RE(deltaH21) = (RE(h21) - RE(ps->h21_prev[gr])) / L;
1763
414k
            RE(deltaH22) = (RE(h22) - RE(ps->h22_prev[gr])) / L;
1764
1765
414k
            RE(H11) = RE(ps->h11_prev[gr]);
1766
414k
            RE(H12) = RE(ps->h12_prev[gr]);
1767
414k
            RE(H21) = RE(ps->h21_prev[gr]);
1768
414k
            RE(H22) = RE(ps->h22_prev[gr]);
1769
414k
            IM(H11) = IM(H12) = IM(H21) = IM(H22) = 0;
1770
1771
414k
            RE(ps->h11_prev[gr]) = RE(h11);
1772
414k
            RE(ps->h12_prev[gr]) = RE(h12);
1773
414k
            RE(ps->h21_prev[gr]) = RE(h21);
1774
414k
            RE(ps->h22_prev[gr]) = RE(h22);
1775
1776
            /* only calculate imaginary part when needed */
1777
414k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1778
48.0k
            {
1779
                /* obtain final H_xy by means of linear interpolation */
1780
48.0k
                IM(deltaH11) = (IM(h11) - IM(ps->h11_prev[gr])) / L;
1781
48.0k
                IM(deltaH12) = (IM(h12) - IM(ps->h12_prev[gr])) / L;
1782
48.0k
                IM(deltaH21) = (IM(h21) - IM(ps->h21_prev[gr])) / L;
1783
48.0k
                IM(deltaH22) = (IM(h22) - IM(ps->h22_prev[gr])) / L;
1784
1785
48.0k
                IM(H11) = IM(ps->h11_prev[gr]);
1786
48.0k
                IM(H12) = IM(ps->h12_prev[gr]);
1787
48.0k
                IM(H21) = IM(ps->h21_prev[gr]);
1788
48.0k
                IM(H22) = IM(ps->h22_prev[gr]);
1789
1790
48.0k
                if ((NEGATE_IPD_MASK & ps->map_group2bk[gr]) != 0)
1791
6.56k
                {
1792
6.56k
                    IM(deltaH11) = -IM(deltaH11);
1793
6.56k
                    IM(deltaH12) = -IM(deltaH12);
1794
6.56k
                    IM(deltaH21) = -IM(deltaH21);
1795
6.56k
                    IM(deltaH22) = -IM(deltaH22);
1796
1797
6.56k
                    IM(H11) = -IM(H11);
1798
6.56k
                    IM(H12) = -IM(H12);
1799
6.56k
                    IM(H21) = -IM(H21);
1800
6.56k
                    IM(H22) = -IM(H22);
1801
6.56k
                }
1802
1803
48.0k
                IM(ps->h11_prev[gr]) = IM(h11);
1804
48.0k
                IM(ps->h12_prev[gr]) = IM(h12);
1805
48.0k
                IM(ps->h21_prev[gr]) = IM(h21);
1806
48.0k
                IM(ps->h22_prev[gr]) = IM(h22);
1807
48.0k
            }
1808
1809
            /* apply H_xy to the current envelope band of the decorrelated subband */
1810
6.55M
            for (n = ps->border_position[env]; n < ps->border_position[env + 1]; n++)
1811
6.14M
            {
1812
                /* addition finalises the interpolation over every n */
1813
6.14M
                RE(H11) += RE(deltaH11);
1814
6.14M
                RE(H12) += RE(deltaH12);
1815
6.14M
                RE(H21) += RE(deltaH21);
1816
6.14M
                RE(H22) += RE(deltaH22);
1817
6.14M
                if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1818
603k
                {
1819
603k
                    IM(H11) += IM(deltaH11);
1820
603k
                    IM(H12) += IM(deltaH12);
1821
603k
                    IM(H21) += IM(deltaH21);
1822
603k
                    IM(H22) += IM(deltaH22);
1823
603k
                }
1824
1825
                /* channel is an alias to the subband */
1826
20.8M
                for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1827
14.7M
                {
1828
14.7M
                    complex_t inLeft, inRight;  // precision_of in(Left|Right) == precision_of X_(left|right)
1829
1830
                    /* load decorrelated samples */
1831
14.7M
                    if (gr < ps->num_hybrid_groups)
1832
3.46M
                    {
1833
3.46M
                        RE(inLeft) =  RE(X_hybrid_left[n][sb]);
1834
3.46M
                        IM(inLeft) =  IM(X_hybrid_left[n][sb]);
1835
3.46M
                        RE(inRight) = RE(X_hybrid_right[n][sb]);
1836
3.46M
                        IM(inRight) = IM(X_hybrid_right[n][sb]);
1837
11.2M
                    } else {
1838
11.2M
                        RE(inLeft) =  RE(X_left[n][sb]);
1839
11.2M
                        IM(inLeft) =  IM(X_left[n][sb]);
1840
11.2M
                        RE(inRight) = RE(X_right[n][sb]);
1841
11.2M
                        IM(inRight) = IM(X_right[n][sb]);
1842
11.2M
                    }
1843
1844
                    /* precision_of temp(Left|Right) == precision_of X_(left|right) */
1845
1846
                    /* apply mixing */
1847
14.7M
                    RE(tempLeft) =  MUL_C(RE(H11), RE(inLeft)) + MUL_C(RE(H21), RE(inRight));
1848
14.7M
                    IM(tempLeft) =  MUL_C(RE(H11), IM(inLeft)) + MUL_C(RE(H21), IM(inRight));
1849
14.7M
                    RE(tempRight) = MUL_C(RE(H12), RE(inLeft)) + MUL_C(RE(H22), RE(inRight));
1850
14.7M
                    IM(tempRight) = MUL_C(RE(H12), IM(inLeft)) + MUL_C(RE(H22), IM(inRight));
1851
1852
                    /* only perform imaginary operations when needed */
1853
14.7M
                    if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1854
605k
                    {
1855
                        /* apply rotation */
1856
605k
                        RE(tempLeft)  -= MUL_C(IM(H11), IM(inLeft)) + MUL_C(IM(H21), IM(inRight));
1857
605k
                        IM(tempLeft)  += MUL_C(IM(H11), RE(inLeft)) + MUL_C(IM(H21), RE(inRight));
1858
605k
                        RE(tempRight) -= MUL_C(IM(H12), IM(inLeft)) + MUL_C(IM(H22), IM(inRight));
1859
605k
                        IM(tempRight) += MUL_C(IM(H12), RE(inLeft)) + MUL_C(IM(H22), RE(inRight));
1860
605k
                    }
1861
1862
                    /* store final samples */
1863
14.7M
                    if (gr < ps->num_hybrid_groups)
1864
3.46M
                    {
1865
3.46M
                        RE(X_hybrid_left[n][sb])  = RE(tempLeft);
1866
3.46M
                        IM(X_hybrid_left[n][sb])  = IM(tempLeft);
1867
3.46M
                        RE(X_hybrid_right[n][sb]) = RE(tempRight);
1868
3.46M
                        IM(X_hybrid_right[n][sb]) = IM(tempRight);
1869
11.2M
                    } else {
1870
11.2M
                        RE(X_left[n][sb])  = RE(tempLeft);
1871
11.2M
                        IM(X_left[n][sb])  = IM(tempLeft);
1872
11.2M
                        RE(X_right[n][sb]) = RE(tempRight);
1873
11.2M
                        IM(X_right[n][sb]) = IM(tempRight);
1874
11.2M
                    }
1875
14.7M
                }
1876
6.14M
            }
1877
1878
            /* shift phase smoother's circular buffer index */
1879
414k
            ps->phase_hist++;
1880
414k
            if (ps->phase_hist == 2)
1881
207k
            {
1882
207k
                ps->phase_hist = 0;
1883
207k
            }
1884
414k
        }
1885
196k
    }
1886
5.95k
}
1887
1888
void ps_free(ps_info *ps)
1889
9.38k
{
1890
    /* free hybrid filterbank structures */
1891
9.38k
    hybrid_free(ps->hyb);
1892
1893
9.38k
    faad_free(ps);
1894
9.38k
}
1895
1896
ps_info *ps_init(uint8_t sr_index, uint8_t numTimeSlotsRate)
1897
9.38k
{
1898
9.38k
    uint8_t i;
1899
9.38k
    uint8_t short_delay_band;
1900
1901
9.38k
    ps_info *ps = (ps_info*)faad_malloc(sizeof(ps_info));
1902
9.38k
    memset(ps, 0, sizeof(ps_info));
1903
1904
9.38k
    ps->hyb = hybrid_init(numTimeSlotsRate);
1905
9.38k
    ps->numTimeSlotsRate = numTimeSlotsRate;
1906
1907
9.38k
    ps->ps_data_available = 0;
1908
1909
    /* delay stuff*/
1910
9.38k
    ps->saved_delay = 0;
1911
1912
609k
    for (i = 0; i < 64; i++)
1913
600k
    {
1914
600k
        ps->delay_buf_index_delay[i] = 0;
1915
600k
    }
1916
1917
37.5k
    for (i = 0; i < NO_ALLPASS_LINKS; i++)
1918
28.1k
    {
1919
28.1k
        ps->delay_buf_index_ser[i] = 0;
1920
#ifdef PARAM_32KHZ
1921
        if (sr_index <= 5) /* >= 32 kHz*/
1922
        {
1923
            ps->num_sample_delay_ser[i] = delay_length_d[1][i];
1924
        } else {
1925
            ps->num_sample_delay_ser[i] = delay_length_d[0][i];
1926
        }
1927
#else
1928
28.1k
        (void)sr_index;
1929
        /* THESE ARE CONSTANTS NOW */
1930
28.1k
        ps->num_sample_delay_ser[i] = delay_length_d[i];
1931
28.1k
#endif
1932
28.1k
    }
1933
1934
#ifdef PARAM_32KHZ
1935
    if (sr_index <= 5) /* >= 32 kHz*/
1936
    {
1937
        short_delay_band = 35;
1938
        ps->nr_allpass_bands = 22;
1939
        ps->alpha_decay = FRAC_CONST(0.76592833836465);
1940
        ps->alpha_smooth = FRAC_CONST(0.25);
1941
    } else {
1942
        short_delay_band = 64;
1943
        ps->nr_allpass_bands = 45;
1944
        ps->alpha_decay = FRAC_CONST(0.58664621951003);
1945
        ps->alpha_smooth = FRAC_CONST(0.6);
1946
    }
1947
#else
1948
    /* THESE ARE CONSTANTS NOW */
1949
9.38k
    short_delay_band = 35;
1950
9.38k
    ps->nr_allpass_bands = 22;
1951
9.38k
    ps->alpha_decay = FRAC_CONST(0.76592833836465);
1952
9.38k
    ps->alpha_smooth = FRAC_CONST(0.25);
1953
9.38k
#endif
1954
1955
    /* THESE ARE CONSTANT NOW IF PS IS INDEPENDANT OF SAMPLERATE */
1956
337k
    for (i = 0; i < short_delay_band; i++)
1957
328k
    {
1958
328k
        ps->delay_D[i] = 14;
1959
328k
    }
1960
281k
    for (i = short_delay_band; i < 64; i++)
1961
272k
    {
1962
272k
        ps->delay_D[i] = 1;
1963
272k
    }
1964
1965
    /* mixing and phase */
1966
478k
    for (i = 0; i < 50; i++)
1967
469k
    {
1968
469k
        RE(ps->h11_prev[i]) = 1;
1969
469k
        IM(ps->h11_prev[i]) = 1;
1970
469k
        RE(ps->h12_prev[i]) = 1;
1971
469k
        IM(ps->h12_prev[i]) = 1;
1972
469k
    }
1973
1974
9.38k
    ps->phase_hist = 0;
1975
1976
197k
    for (i = 0; i < 20; i++)
1977
187k
    {
1978
187k
        RE(ps->ipd_prev[i][0]) = 0;
1979
187k
        IM(ps->ipd_prev[i][0]) = 0;
1980
187k
        RE(ps->ipd_prev[i][1]) = 0;
1981
187k
        IM(ps->ipd_prev[i][1]) = 0;
1982
187k
        RE(ps->opd_prev[i][0]) = 0;
1983
187k
        IM(ps->opd_prev[i][0]) = 0;
1984
187k
        RE(ps->opd_prev[i][1]) = 0;
1985
187k
        IM(ps->opd_prev[i][1]) = 0;
1986
187k
    }
1987
1988
9.38k
    return ps;
1989
9.38k
}
1990
1991
/* main Parametric Stereo decoding function */
1992
uint8_t ps_decode(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64])
1993
5.95k
{
1994
5.95k
    qmf_t X_hybrid_left[32][32] = {{{0}}};
1995
5.95k
    qmf_t X_hybrid_right[32][32] = {{{0}}};
1996
1997
    /* delta decoding of the bitstream data */
1998
5.95k
    ps_data_decode(ps);
1999
2000
    /* set up some parameters depending on filterbank type */
2001
5.95k
    if (ps->use34hybrid_bands)
2002
2.34k
    {
2003
2.34k
        ps->group_border = (uint8_t*)group_border34;
2004
2.34k
        ps->map_group2bk = (uint16_t*)map_group2bk34;
2005
2.34k
        ps->num_groups = 32+18;
2006
2.34k
        ps->num_hybrid_groups = 32;
2007
2.34k
        ps->nr_par_bands = 34;
2008
2.34k
        ps->decay_cutoff = 5;
2009
3.61k
    } else {
2010
3.61k
        ps->group_border = (uint8_t*)group_border20;
2011
3.61k
        ps->map_group2bk = (uint16_t*)map_group2bk20;
2012
3.61k
        ps->num_groups = 10+12;
2013
3.61k
        ps->num_hybrid_groups = 10;
2014
3.61k
        ps->nr_par_bands = 20;
2015
3.61k
        ps->decay_cutoff = 3;
2016
3.61k
    }
2017
2018
    /* Perform further analysis on the lowest subbands to get a higher
2019
     * frequency resolution
2020
     */
2021
5.95k
    hybrid_analysis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
2022
5.95k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2023
2024
    /* decorrelate mono signal */
2025
5.95k
    ps_decorrelate(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
2026
2027
    /* apply mixing and phase parameters */
2028
5.95k
    ps_mix_phase(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
2029
2030
    /* hybrid synthesis, to rebuild the SBR QMF matrices */
2031
5.95k
    hybrid_synthesis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
2032
5.95k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2033
2034
5.95k
    hybrid_synthesis((hyb_info*)ps->hyb, X_right, X_hybrid_right,
2035
5.95k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2036
2037
5.95k
    return 0;
2038
5.95k
}
2039
2040
#endif