Coverage Report

Created: 2025-07-11 06:40

/proc/self/cwd/libfaad/sbr_hfadj.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: sbr_hfadj.c,v 1.23 2008/09/19 22:50:20 menno Exp $
29
**/
30
31
/* High Frequency adjustment */
32
#include <float.h>
33
34
#include "common.h"
35
#include "structs.h"
36
37
#ifdef SBR_DEC
38
39
#include "sbr_syntax.h"
40
#include "sbr_hfadj.h"
41
42
#include "sbr_noise.h"
43
44
45
/* static function declarations */
46
static uint8_t estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj,
47
                                         qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch);
48
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch);
49
#ifdef SBR_LOW_POWER
50
static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch);
51
static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch);
52
#endif
53
static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj, qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch);
54
55
56
uint8_t hf_adjustment(sbr_info *sbr, qmf_t Xsbr[MAX_NTSRHFG][64]
57
#ifdef SBR_LOW_POWER
58
                      ,real_t *deg /* aliasing degree */
59
#endif
60
                      ,uint8_t ch)
61
24.3k
{
62
24.3k
    ALIGN sbr_hfadj_info adj = {{{0}}};
63
24.3k
    uint8_t ret = 0;
64
65
24.3k
    if (sbr->bs_frame_class[ch] == FIXFIX)
66
7.04k
    {
67
7.04k
        sbr->l_A[ch] = -1;
68
17.2k
    } else if (sbr->bs_frame_class[ch] == VARFIX) {
69
7.73k
        if (sbr->bs_pointer[ch] > 1)
70
2.29k
            sbr->l_A[ch] = sbr->bs_pointer[ch] - 1;
71
5.44k
        else
72
5.44k
            sbr->l_A[ch] = -1;
73
9.54k
    } else {
74
9.54k
        if (sbr->bs_pointer[ch] == 0)
75
3.28k
            sbr->l_A[ch] = -1;
76
6.26k
        else
77
6.26k
            sbr->l_A[ch] = sbr->L_E[ch] + 1 - sbr->bs_pointer[ch];
78
9.54k
    }
79
80
24.3k
    ret = estimate_current_envelope(sbr, &adj, Xsbr, ch);
81
24.3k
    if (ret > 0)
82
520
        return 1;
83
84
23.8k
    calculate_gain(sbr, &adj, ch);
85
86
#ifdef SBR_LOW_POWER
87
    calc_gain_groups(sbr, &adj, deg, ch);
88
    aliasing_reduction(sbr, &adj, deg, ch);
89
#endif
90
91
23.8k
    hf_assembly(sbr, &adj, Xsbr, ch);
92
93
23.8k
    return 0;
94
24.3k
}
95
96
static uint8_t get_S_mapped(sbr_info *sbr, uint8_t ch, uint8_t l, uint8_t current_band)
97
196k
{
98
196k
    if (sbr->f[ch][l] == HI_RES)
99
80.8k
    {
100
        /* in case of using f_table_high we just have 1 to 1 mapping
101
         * from bs_add_harmonic[l][k]
102
         */
103
80.8k
        if ((l >= sbr->l_A[ch]) ||
104
80.8k
            (sbr->bs_add_harmonic_prev[ch][current_band] && sbr->bs_add_harmonic_flag_prev[ch]))
105
53.5k
        {
106
53.5k
            return sbr->bs_add_harmonic[ch][current_band];
107
53.5k
        }
108
115k
    } else {
109
115k
        uint8_t b, lb, ub;
110
111
        /* in case of f_table_low we check if any of the HI_RES bands
112
         * within this LO_RES band has bs_add_harmonic[l][k] turned on
113
         * (note that borders in the LO_RES table are also present in
114
         * the HI_RES table)
115
         */
116
117
        /* find first HI_RES band in current LO_RES band */
118
115k
        lb = 2*current_band - ((sbr->N_high & 1) ? 1 : 0);
119
        /* find first HI_RES band in next LO_RES band */
120
115k
        ub = 2*(current_band+1) - ((sbr->N_high & 1) ? 1 : 0);
121
122
        /* check all HI_RES bands in current LO_RES band for sinusoid */
123
299k
        for (b = lb; b < ub; b++)
124
195k
        {
125
195k
            if ((l >= sbr->l_A[ch]) ||
126
195k
                (sbr->bs_add_harmonic_prev[ch][b] && sbr->bs_add_harmonic_flag_prev[ch]))
127
140k
            {
128
140k
                if (sbr->bs_add_harmonic[ch][b] == 1)
129
11.8k
                    return 1;
130
140k
            }
131
195k
        }
132
115k
    }
133
134
131k
    return 0;
135
196k
}
136
137
static uint8_t estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj,
138
                                         qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch)
139
24.3k
{
140
24.3k
    uint8_t m, l, j, k, k_l, k_h, p;
141
24.3k
    real_t nrg, div;
142
24.3k
    (void)adj;  /* TODO: remove parameter? */
143
#ifdef FIXED_POINT
144
10.1k
    const real_t half = REAL_CONST(0.5);
145
    real_t limit;
146
    real_t mul;
147
#else
148
    const real_t half = 0;  /* Compiler is smart enough to eliminate +0 op. */
149
    const real_t limit = FLT_MAX;
150
#endif
151
152
24.3k
    if (sbr->bs_interpol_freq == 1)
153
17.3k
    {
154
46.4k
        for (l = 0; l < sbr->L_E[ch]; l++)
155
29.2k
        {
156
29.2k
            uint8_t i, l_i, u_i;
157
158
29.2k
            l_i = sbr->t_E[ch][l];
159
29.2k
            u_i = sbr->t_E[ch][l+1];
160
161
29.2k
            div = (real_t)(u_i - l_i);
162
163
29.2k
            if (div <= 0)
164
1.00k
                div = 1;
165
#ifdef FIXED_POINT
166
11.2k
            limit = div << (30 - (COEF_BITS - REAL_BITS));
167
11.2k
            mul = (1 << (COEF_BITS - REAL_BITS)) / div;
168
#endif
169
170
378k
            for (m = 0; m < sbr->M; m++)
171
349k
            {
172
349k
                nrg = 0;
173
174
6.73M
                for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
175
6.38M
                {
176
6.38M
                    real_t re = QMF_RE(Xsbr[i][m + sbr->kx]) + half;
177
6.38M
                    real_t im = QMF_IM(Xsbr[i][m + sbr->kx]) + half;
178
6.38M
                    (void)im;
179
                    /* Actually, that should be MUL_R. On floating-point build
180
                       that is the same. On fixed point-build we use it to
181
                       pre-scale result (to aviod overflow). That, of course
182
                       causes some precision loss. */
183
6.38M
                    nrg += MUL_C(re, re)
184
6.38M
#ifndef SBR_LOW_POWER
185
6.38M
                        + MUL_C(im, im)
186
6.38M
#endif
187
6.38M
                        ;
188
6.38M
                }
189
190
349k
                if (nrg < -limit || nrg > limit)
191
171
                    return 1;
192
#ifdef FIXED_POINT
193
156k
                sbr->E_curr[ch][m][l] = nrg * mul;
194
#else
195
192k
                sbr->E_curr[ch][m][l] = nrg / div;
196
192k
#endif
197
#ifdef SBR_LOW_POWER
198
#ifdef FIXED_POINT
199
                sbr->E_curr[ch][m][l] <<= 1;
200
#else
201
                sbr->E_curr[ch][m][l] *= 2;
202
#endif
203
#endif
204
192k
            }
205
29.2k
        }
206
17.3k
    } else {
207
18.5k
        for (l = 0; l < sbr->L_E[ch]; l++)
208
11.8k
        {
209
89.4k
            for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
210
77.9k
            {
211
77.9k
                k_l = sbr->f_table_res[sbr->f[ch][l]][p];
212
77.9k
                k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
213
214
286k
                for (k = k_l; k < k_h; k++)
215
208k
                {
216
208k
                    uint8_t i, l_i, u_i;
217
208k
                    nrg = 0;
218
219
208k
                    l_i = sbr->t_E[ch][l];
220
208k
                    u_i = sbr->t_E[ch][l+1];
221
222
208k
                    div = (real_t)((u_i - l_i)*(k_h - k_l));
223
224
208k
                    if (div <= 0)
225
8.83k
                        div = 1;
226
#ifdef FIXED_POINT
227
100k
                    limit = div << (30 - (COEF_BITS - REAL_BITS));
228
100k
                    mul = (1 << (COEF_BITS - REAL_BITS)) / div;
229
#endif
230
231
4.11M
                    for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
232
3.91M
                    {
233
18.8M
                        for (j = k_l; j < k_h; j++)
234
14.9M
                        {
235
14.9M
                            real_t re = QMF_RE(Xsbr[i][j]) + half;
236
14.9M
                            real_t im = QMF_IM(Xsbr[i][j]) + half;
237
14.9M
                            (void)im;
238
                            /* Actually, that should be MUL_R. On floating-point build
239
                               that is the same. On fixed point-build we use it to
240
                               pre-scale result (to aviod overflow). That, of course
241
                               causes some precision loss. */
242
14.9M
                            nrg += MUL_C(re, re)
243
14.9M
#ifndef SBR_LOW_POWER
244
14.9M
                                + MUL_C(im, im)
245
14.9M
#endif
246
14.9M
                                ;
247
14.9M
                        }
248
3.91M
                    }
249
250
208k
                    if (nrg < -limit || nrg > limit)
251
349
                        return 1;
252
#ifdef FIXED_POINT
253
100k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg * mul;
254
#else
255
108k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
256
108k
#endif
257
#ifdef SBR_LOW_POWER
258
#ifdef FIXED_POINT
259
                    sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
260
#else
261
                    sbr->E_curr[ch][k - sbr->kx][l] *= 2;
262
#endif
263
#endif
264
108k
                }
265
77.9k
            }
266
11.8k
        }
267
6.98k
    }
268
269
23.8k
    return 0;
270
24.3k
}
sbr_hfadj.c:estimate_current_envelope
Line
Count
Source
139
10.1k
{
140
10.1k
    uint8_t m, l, j, k, k_l, k_h, p;
141
10.1k
    real_t nrg, div;
142
10.1k
    (void)adj;  /* TODO: remove parameter? */
143
10.1k
#ifdef FIXED_POINT
144
10.1k
    const real_t half = REAL_CONST(0.5);
145
10.1k
    real_t limit;
146
10.1k
    real_t mul;
147
#else
148
    const real_t half = 0;  /* Compiler is smart enough to eliminate +0 op. */
149
    const real_t limit = FLT_MAX;
150
#endif
151
152
10.1k
    if (sbr->bs_interpol_freq == 1)
153
6.52k
    {
154
17.6k
        for (l = 0; l < sbr->L_E[ch]; l++)
155
11.2k
        {
156
11.2k
            uint8_t i, l_i, u_i;
157
158
11.2k
            l_i = sbr->t_E[ch][l];
159
11.2k
            u_i = sbr->t_E[ch][l+1];
160
161
11.2k
            div = (real_t)(u_i - l_i);
162
163
11.2k
            if (div <= 0)
164
413
                div = 1;
165
11.2k
#ifdef FIXED_POINT
166
11.2k
            limit = div << (30 - (COEF_BITS - REAL_BITS));
167
11.2k
            mul = (1 << (COEF_BITS - REAL_BITS)) / div;
168
11.2k
#endif
169
170
167k
            for (m = 0; m < sbr->M; m++)
171
156k
            {
172
156k
                nrg = 0;
173
174
2.85M
                for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
175
2.70M
                {
176
2.70M
                    real_t re = QMF_RE(Xsbr[i][m + sbr->kx]) + half;
177
2.70M
                    real_t im = QMF_IM(Xsbr[i][m + sbr->kx]) + half;
178
2.70M
                    (void)im;
179
                    /* Actually, that should be MUL_R. On floating-point build
180
                       that is the same. On fixed point-build we use it to
181
                       pre-scale result (to aviod overflow). That, of course
182
                       causes some precision loss. */
183
2.70M
                    nrg += MUL_C(re, re)
184
2.70M
#ifndef SBR_LOW_POWER
185
2.70M
                        + MUL_C(im, im)
186
2.70M
#endif
187
2.70M
                        ;
188
2.70M
                }
189
190
156k
                if (nrg < -limit || nrg > limit)
191
164
                    return 1;
192
156k
#ifdef FIXED_POINT
193
156k
                sbr->E_curr[ch][m][l] = nrg * mul;
194
#else
195
                sbr->E_curr[ch][m][l] = nrg / div;
196
#endif
197
#ifdef SBR_LOW_POWER
198
#ifdef FIXED_POINT
199
                sbr->E_curr[ch][m][l] <<= 1;
200
#else
201
                sbr->E_curr[ch][m][l] *= 2;
202
#endif
203
#endif
204
156k
            }
205
11.2k
        }
206
6.52k
    } else {
207
9.23k
        for (l = 0; l < sbr->L_E[ch]; l++)
208
5.95k
        {
209
44.2k
            for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
210
38.5k
            {
211
38.5k
                k_l = sbr->f_table_res[sbr->f[ch][l]][p];
212
38.5k
                k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
213
214
139k
                for (k = k_l; k < k_h; k++)
215
100k
                {
216
100k
                    uint8_t i, l_i, u_i;
217
100k
                    nrg = 0;
218
219
100k
                    l_i = sbr->t_E[ch][l];
220
100k
                    u_i = sbr->t_E[ch][l+1];
221
222
100k
                    div = (real_t)((u_i - l_i)*(k_h - k_l));
223
224
100k
                    if (div <= 0)
225
2.64k
                        div = 1;
226
100k
#ifdef FIXED_POINT
227
100k
                    limit = div << (30 - (COEF_BITS - REAL_BITS));
228
100k
                    mul = (1 << (COEF_BITS - REAL_BITS)) / div;
229
100k
#endif
230
231
2.03M
                    for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
232
1.93M
                    {
233
9.91M
                        for (j = k_l; j < k_h; j++)
234
7.97M
                        {
235
7.97M
                            real_t re = QMF_RE(Xsbr[i][j]) + half;
236
7.97M
                            real_t im = QMF_IM(Xsbr[i][j]) + half;
237
7.97M
                            (void)im;
238
                            /* Actually, that should be MUL_R. On floating-point build
239
                               that is the same. On fixed point-build we use it to
240
                               pre-scale result (to aviod overflow). That, of course
241
                               causes some precision loss. */
242
7.97M
                            nrg += MUL_C(re, re)
243
7.97M
#ifndef SBR_LOW_POWER
244
7.97M
                                + MUL_C(im, im)
245
7.97M
#endif
246
7.97M
                                ;
247
7.97M
                        }
248
1.93M
                    }
249
250
100k
                    if (nrg < -limit || nrg > limit)
251
343
                        return 1;
252
100k
#ifdef FIXED_POINT
253
100k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg * mul;
254
#else
255
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
256
#endif
257
#ifdef SBR_LOW_POWER
258
#ifdef FIXED_POINT
259
                    sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
260
#else
261
                    sbr->E_curr[ch][k - sbr->kx][l] *= 2;
262
#endif
263
#endif
264
100k
                }
265
38.5k
            }
266
5.95k
        }
267
3.62k
    }
268
269
9.63k
    return 0;
270
10.1k
}
sbr_hfadj.c:estimate_current_envelope
Line
Count
Source
139
14.1k
{
140
14.1k
    uint8_t m, l, j, k, k_l, k_h, p;
141
14.1k
    real_t nrg, div;
142
14.1k
    (void)adj;  /* TODO: remove parameter? */
143
#ifdef FIXED_POINT
144
    const real_t half = REAL_CONST(0.5);
145
    real_t limit;
146
    real_t mul;
147
#else
148
14.1k
    const real_t half = 0;  /* Compiler is smart enough to eliminate +0 op. */
149
14.1k
    const real_t limit = FLT_MAX;
150
14.1k
#endif
151
152
14.1k
    if (sbr->bs_interpol_freq == 1)
153
10.8k
    {
154
28.8k
        for (l = 0; l < sbr->L_E[ch]; l++)
155
18.0k
        {
156
18.0k
            uint8_t i, l_i, u_i;
157
158
18.0k
            l_i = sbr->t_E[ch][l];
159
18.0k
            u_i = sbr->t_E[ch][l+1];
160
161
18.0k
            div = (real_t)(u_i - l_i);
162
163
18.0k
            if (div <= 0)
164
589
                div = 1;
165
#ifdef FIXED_POINT
166
            limit = div << (30 - (COEF_BITS - REAL_BITS));
167
            mul = (1 << (COEF_BITS - REAL_BITS)) / div;
168
#endif
169
170
210k
            for (m = 0; m < sbr->M; m++)
171
192k
            {
172
192k
                nrg = 0;
173
174
3.87M
                for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
175
3.67M
                {
176
3.67M
                    real_t re = QMF_RE(Xsbr[i][m + sbr->kx]) + half;
177
3.67M
                    real_t im = QMF_IM(Xsbr[i][m + sbr->kx]) + half;
178
3.67M
                    (void)im;
179
                    /* Actually, that should be MUL_R. On floating-point build
180
                       that is the same. On fixed point-build we use it to
181
                       pre-scale result (to aviod overflow). That, of course
182
                       causes some precision loss. */
183
3.67M
                    nrg += MUL_C(re, re)
184
3.67M
#ifndef SBR_LOW_POWER
185
3.67M
                        + MUL_C(im, im)
186
3.67M
#endif
187
3.67M
                        ;
188
3.67M
                }
189
190
192k
                if (nrg < -limit || nrg > limit)
191
7
                    return 1;
192
#ifdef FIXED_POINT
193
                sbr->E_curr[ch][m][l] = nrg * mul;
194
#else
195
192k
                sbr->E_curr[ch][m][l] = nrg / div;
196
192k
#endif
197
#ifdef SBR_LOW_POWER
198
#ifdef FIXED_POINT
199
                sbr->E_curr[ch][m][l] <<= 1;
200
#else
201
                sbr->E_curr[ch][m][l] *= 2;
202
#endif
203
#endif
204
192k
            }
205
18.0k
        }
206
10.8k
    } else {
207
9.26k
        for (l = 0; l < sbr->L_E[ch]; l++)
208
5.91k
        {
209
45.2k
            for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
210
39.3k
            {
211
39.3k
                k_l = sbr->f_table_res[sbr->f[ch][l]][p];
212
39.3k
                k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
213
214
147k
                for (k = k_l; k < k_h; k++)
215
108k
                {
216
108k
                    uint8_t i, l_i, u_i;
217
108k
                    nrg = 0;
218
219
108k
                    l_i = sbr->t_E[ch][l];
220
108k
                    u_i = sbr->t_E[ch][l+1];
221
222
108k
                    div = (real_t)((u_i - l_i)*(k_h - k_l));
223
224
108k
                    if (div <= 0)
225
6.18k
                        div = 1;
226
#ifdef FIXED_POINT
227
                    limit = div << (30 - (COEF_BITS - REAL_BITS));
228
                    mul = (1 << (COEF_BITS - REAL_BITS)) / div;
229
#endif
230
231
2.08M
                    for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
232
1.97M
                    {
233
8.97M
                        for (j = k_l; j < k_h; j++)
234
6.99M
                        {
235
6.99M
                            real_t re = QMF_RE(Xsbr[i][j]) + half;
236
6.99M
                            real_t im = QMF_IM(Xsbr[i][j]) + half;
237
6.99M
                            (void)im;
238
                            /* Actually, that should be MUL_R. On floating-point build
239
                               that is the same. On fixed point-build we use it to
240
                               pre-scale result (to aviod overflow). That, of course
241
                               causes some precision loss. */
242
6.99M
                            nrg += MUL_C(re, re)
243
6.99M
#ifndef SBR_LOW_POWER
244
6.99M
                                + MUL_C(im, im)
245
6.99M
#endif
246
6.99M
                                ;
247
6.99M
                        }
248
1.97M
                    }
249
250
108k
                    if (nrg < -limit || nrg > limit)
251
6
                        return 1;
252
#ifdef FIXED_POINT
253
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg * mul;
254
#else
255
108k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
256
108k
#endif
257
#ifdef SBR_LOW_POWER
258
#ifdef FIXED_POINT
259
                    sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
260
#else
261
                    sbr->E_curr[ch][k - sbr->kx][l] *= 2;
262
#endif
263
#endif
264
108k
                }
265
39.3k
            }
266
5.91k
        }
267
3.36k
    }
268
269
14.1k
    return 0;
270
14.1k
}
271
272
#ifdef FIXED_POINT
273
#define EPS (1) /* smallest number available in fixed point */
274
#else
275
184k
#define EPS (1e-12)
276
#endif
277
278
279
280
#ifdef FIXED_POINT
281
282
/* log2 values of [0..63] */
283
static const real_t log2_int_tab[] = {
284
    LOG2_MIN_INF, REAL_CONST(0.000000000000000), REAL_CONST(1.000000000000000), REAL_CONST(1.584962500721156),
285
    REAL_CONST(2.000000000000000), REAL_CONST(2.321928094887362), REAL_CONST(2.584962500721156), REAL_CONST(2.807354922057604),
286
    REAL_CONST(3.000000000000000), REAL_CONST(3.169925001442313), REAL_CONST(3.321928094887363), REAL_CONST(3.459431618637297),
287
    REAL_CONST(3.584962500721156), REAL_CONST(3.700439718141092), REAL_CONST(3.807354922057604), REAL_CONST(3.906890595608519),
288
    REAL_CONST(4.000000000000000), REAL_CONST(4.087462841250339), REAL_CONST(4.169925001442312), REAL_CONST(4.247927513443585),
289
    REAL_CONST(4.321928094887362), REAL_CONST(4.392317422778761), REAL_CONST(4.459431618637297), REAL_CONST(4.523561956057013),
290
    REAL_CONST(4.584962500721156), REAL_CONST(4.643856189774724), REAL_CONST(4.700439718141093), REAL_CONST(4.754887502163468),
291
    REAL_CONST(4.807354922057604), REAL_CONST(4.857980995127572), REAL_CONST(4.906890595608519), REAL_CONST(4.954196310386875),
292
    REAL_CONST(5.000000000000000), REAL_CONST(5.044394119358453), REAL_CONST(5.087462841250340), REAL_CONST(5.129283016944966),
293
    REAL_CONST(5.169925001442312), REAL_CONST(5.209453365628949), REAL_CONST(5.247927513443585), REAL_CONST(5.285402218862248),
294
    REAL_CONST(5.321928094887363), REAL_CONST(5.357552004618084), REAL_CONST(5.392317422778761), REAL_CONST(5.426264754702098),
295
    REAL_CONST(5.459431618637297), REAL_CONST(5.491853096329675), REAL_CONST(5.523561956057013), REAL_CONST(5.554588851677637),
296
    REAL_CONST(5.584962500721156), REAL_CONST(5.614709844115208), REAL_CONST(5.643856189774724), REAL_CONST(5.672425341971495),
297
    REAL_CONST(5.700439718141093), REAL_CONST(5.727920454563200), REAL_CONST(5.754887502163469), REAL_CONST(5.781359713524660),
298
    REAL_CONST(5.807354922057605), REAL_CONST(5.832890014164742), REAL_CONST(5.857980995127572), REAL_CONST(5.882643049361842),
299
    REAL_CONST(5.906890595608518), REAL_CONST(5.930737337562887), REAL_CONST(5.954196310386876), REAL_CONST(5.977279923499916)
300
};
301
302
// pan_log2_tab[X] = log2(2**X + 1) - X
303
static const real_t pan_log2_tab[13] = {
304
    REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362), REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339),
305
    REAL_CONST(0.044394119358453), REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878), REAL_CONST(0.002815015607054),
306
    REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247), REAL_CONST(0.000352177480301)
307
};
308
309
static real_t find_log2_E(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
310
362k
{
311
    /* check for coupled energy/noise data */
312
362k
    if (sbr->bs_coupling == 1)
313
166k
    {
314
166k
        int16_t e = sbr->E[0][k][l];
315
166k
        int16_t E = sbr->E[1][k][l];
316
166k
        uint8_t amp0 = (sbr->amp_res[0]) ? 0 : 1;
317
166k
        uint8_t amp1 = (sbr->amp_res[1]) ? 0 : 1;
318
166k
        real_t tmp, pan;
319
320
        /* E[1] should always be even so shifting is OK */
321
166k
        E >>= amp1;
322
166k
        if (e < 0 || e >= 64 || E < 0 || E > 24)
323
43.6k
            return LOG2_MIN_INF;
324
122k
        E -= 12;
325
326
122k
        if (ch != 0)  // L/R anti-symmetry
327
60.5k
            E = -E;
328
329
122k
        if (E >= 0)
330
61.4k
        {
331
            /* negative */
332
61.4k
            pan = pan_log2_tab[E];
333
61.4k
        } else {
334
            /* positive */
335
61.0k
            pan = pan_log2_tab[-E] + ((-E)<<REAL_BITS);
336
61.0k
        }
337
338
        /* tmp / pan in log2 */
339
122k
        tmp = (7 << REAL_BITS) + (e << (REAL_BITS-amp0));
340
122k
        return tmp - pan;
341
195k
    } else {
342
195k
        int16_t e = sbr->E[ch][k][l];
343
195k
        uint8_t amp = (sbr->amp_res[ch]) ? 0 : 1;
344
195k
        if (e < 0 || (e >> amp) >= 64)
345
24.5k
            return LOG2_MIN_INF;
346
171k
        return 6 * REAL_PRECISION + e * (REAL_PRECISION >> amp);
347
195k
    }
348
362k
}
349
350
static real_t find_log2_Q(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
351
247k
{
352
    /* check for coupled energy/noise data */
353
247k
    if (sbr->bs_coupling == 1)
354
113k
    {
355
113k
        int32_t q = sbr->Q[0][k][l];
356
113k
        int32_t Q = sbr->Q[1][k][l];
357
113k
        real_t tmp, pan;
358
359
113k
        if (q < 0 || q > 30 || Q < 0 || Q > 24)
360
22.6k
            return LOG2_MIN_INF;
361
90.9k
        Q -= 12;
362
363
90.9k
        if (ch != 0)  // L/R anti-symmetry
364
45.0k
            Q = -Q;
365
366
90.9k
        if (Q >= 0)
367
45.1k
        {
368
            /* negative */
369
45.1k
            pan = pan_log2_tab[Q];
370
45.7k
        } else {
371
            /* positive */
372
45.7k
            pan = pan_log2_tab[-Q] + ((-Q)<<REAL_BITS);
373
45.7k
        }
374
375
        /* tmp / pan in log2 */
376
90.9k
        tmp = (7 - q) * REAL_PRECISION;
377
90.9k
        return tmp - pan;
378
134k
    } else {
379
134k
        int32_t q = sbr->Q[ch][k][l];
380
134k
        if (q < 0 || q > 30)
381
20.1k
            return LOG2_MIN_INF;
382
114k
        return (6 - q) * REAL_PRECISION;
383
134k
    }
384
247k
}
385
386
static const real_t log_Qplus1_pan[31][13] = {
387
    { REAL_CONST(0.044383447617292), REAL_CONST(0.169768601655960), REAL_CONST(0.583090126514435), REAL_CONST(1.570089221000671), REAL_CONST(3.092446088790894), REAL_CONST(4.733354568481445), REAL_CONST(6.022367954254150), REAL_CONST(6.692092418670654), REAL_CONST(6.924463272094727), REAL_CONST(6.989034175872803), REAL_CONST(7.005646705627441), REAL_CONST(7.009829998016357), REAL_CONST(7.010877609252930) },
388
    { REAL_CONST(0.022362394258380), REAL_CONST(0.087379962205887), REAL_CONST(0.320804953575134), REAL_CONST(0.988859415054321), REAL_CONST(2.252387046813965), REAL_CONST(3.786596298217773), REAL_CONST(5.044394016265869), REAL_CONST(5.705977916717529), REAL_CONST(5.936291694641113), REAL_CONST(6.000346660614014), REAL_CONST(6.016829967498779), REAL_CONST(6.020981311798096), REAL_CONST(6.022020816802979) },
389
    { REAL_CONST(0.011224525049329), REAL_CONST(0.044351425021887), REAL_CONST(0.169301137328148), REAL_CONST(0.577544987201691), REAL_CONST(1.527246952056885), REAL_CONST(2.887525320053101), REAL_CONST(4.087462902069092), REAL_CONST(4.733354568481445), REAL_CONST(4.959661006927490), REAL_CONST(5.022709369659424), REAL_CONST(5.038940429687500), REAL_CONST(5.043028831481934), REAL_CONST(5.044052600860596) },
390
    { REAL_CONST(0.005623178556561), REAL_CONST(0.022346137091517), REAL_CONST(0.087132595479488), REAL_CONST(0.317482173442841), REAL_CONST(0.956931233406067), REAL_CONST(2.070389270782471), REAL_CONST(3.169924974441528), REAL_CONST(3.786596298217773), REAL_CONST(4.005294322967529), REAL_CONST(4.066420555114746), REAL_CONST(4.082170009613037), REAL_CONST(4.086137294769287), REAL_CONST(4.087131500244141) },
391
    { REAL_CONST(0.002814328996465), REAL_CONST(0.011216334067285), REAL_CONST(0.044224001467228), REAL_CONST(0.167456731200218), REAL_CONST(0.556393325328827), REAL_CONST(1.378511548042297), REAL_CONST(2.321928024291992), REAL_CONST(2.887525320053101), REAL_CONST(3.092446088790894), REAL_CONST(3.150059700012207), REAL_CONST(3.164926528930664), REAL_CONST(3.168673276901245), REAL_CONST(3.169611930847168) },
392
    { REAL_CONST(0.001407850766554), REAL_CONST(0.005619067233056), REAL_CONST(0.022281449288130), REAL_CONST(0.086156636476517), REAL_CONST(0.304854571819305), REAL_CONST(0.847996890544891), REAL_CONST(1.584962487220764), REAL_CONST(2.070389270782471), REAL_CONST(2.252387046813965), REAL_CONST(2.304061651229858), REAL_CONST(2.317430257797241), REAL_CONST(2.320801734924316), REAL_CONST(2.321646213531494) },
393
    { REAL_CONST(0.000704097095877), REAL_CONST(0.002812269143760), REAL_CONST(0.011183738708496), REAL_CONST(0.043721374124289), REAL_CONST(0.160464659333229), REAL_CONST(0.485426813364029), REAL_CONST(1.000000000000000), REAL_CONST(1.378511548042297), REAL_CONST(1.527246952056885), REAL_CONST(1.570089221000671), REAL_CONST(1.581215262413025), REAL_CONST(1.584023833274841), REAL_CONST(1.584727644920349) },
394
    { REAL_CONST(0.000352177477907), REAL_CONST(0.001406819908880), REAL_CONST(0.005602621007711), REAL_CONST(0.022026389837265), REAL_CONST(0.082462236285210), REAL_CONST(0.263034462928772), REAL_CONST(0.584962487220764), REAL_CONST(0.847996890544891), REAL_CONST(0.956931233406067), REAL_CONST(0.988859415054321), REAL_CONST(0.997190535068512), REAL_CONST(0.999296069145203), REAL_CONST(0.999823868274689) },
395
    { REAL_CONST(0.000176099492819), REAL_CONST(0.000703581434209), REAL_CONST(0.002804030198604), REAL_CONST(0.011055230163038), REAL_CONST(0.041820213198662), REAL_CONST(0.137503549456596), REAL_CONST(0.321928083896637), REAL_CONST(0.485426813364029), REAL_CONST(0.556393325328827), REAL_CONST(0.577544987201691), REAL_CONST(0.583090126514435), REAL_CONST(0.584493279457092), REAL_CONST(0.584845066070557) },
396
    { REAL_CONST(0.000088052431238), REAL_CONST(0.000351833587047), REAL_CONST(0.001402696361765), REAL_CONST(0.005538204684854), REAL_CONST(0.021061634644866), REAL_CONST(0.070389263331890), REAL_CONST(0.169925004243851), REAL_CONST(0.263034462928772), REAL_CONST(0.304854571819305), REAL_CONST(0.317482173442841), REAL_CONST(0.320804953575134), REAL_CONST(0.321646571159363), REAL_CONST(0.321857661008835) },
397
    { REAL_CONST(0.000044026888645), REAL_CONST(0.000175927518285), REAL_CONST(0.000701518612914), REAL_CONST(0.002771759871393), REAL_CONST(0.010569252073765), REAL_CONST(0.035623874515295), REAL_CONST(0.087462842464447), REAL_CONST(0.137503549456596), REAL_CONST(0.160464659333229), REAL_CONST(0.167456731200218), REAL_CONST(0.169301137328148), REAL_CONST(0.169768601655960), REAL_CONST(0.169885858893394) },
398
    { REAL_CONST(0.000022013611670), REAL_CONST(0.000088052431238), REAL_CONST(0.000350801943569), REAL_CONST(0.001386545598507), REAL_CONST(0.005294219125062), REAL_CONST(0.017921976745129), REAL_CONST(0.044394120573997), REAL_CONST(0.070389263331890), REAL_CONST(0.082462236285210), REAL_CONST(0.086156636476517), REAL_CONST(0.087132595479488), REAL_CONST(0.087379962205887), REAL_CONST(0.087442122399807) },
399
    { REAL_CONST(0.000011006847672), REAL_CONST(0.000044026888645), REAL_CONST(0.000175411638338), REAL_CONST(0.000693439331371), REAL_CONST(0.002649537986144), REAL_CONST(0.008988817222416), REAL_CONST(0.022367812693119), REAL_CONST(0.035623874515295), REAL_CONST(0.041820213198662), REAL_CONST(0.043721374124289), REAL_CONST(0.044224001467228), REAL_CONST(0.044351425021887), REAL_CONST(0.044383447617292) },
400
    { REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000087708482170), REAL_CONST(0.000346675369656), REAL_CONST(0.001325377263129), REAL_CONST(0.004501323681325), REAL_CONST(0.011227255687118), REAL_CONST(0.017921976745129), REAL_CONST(0.021061634644866), REAL_CONST(0.022026389837265), REAL_CONST(0.022281449288130), REAL_CONST(0.022346137091517), REAL_CONST(0.022362394258380) },
401
    { REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043854910473), REAL_CONST(0.000173348103999), REAL_CONST(0.000662840844598), REAL_CONST(0.002252417383716), REAL_CONST(0.005624548997730), REAL_CONST(0.008988817222416), REAL_CONST(0.010569252073765), REAL_CONST(0.011055230163038), REAL_CONST(0.011183738708496), REAL_CONST(0.011216334067285), REAL_CONST(0.011224525049329) },
402
    { REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000086676649516), REAL_CONST(0.000331544462824), REAL_CONST(0.001126734190620), REAL_CONST(0.002815015614033), REAL_CONST(0.004501323681325), REAL_CONST(0.005294219125062), REAL_CONST(0.005538204684854), REAL_CONST(0.005602621007711), REAL_CONST(0.005619067233056), REAL_CONST(0.005623178556561) },
403
    { REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043338975956), REAL_CONST(0.000165781748365), REAL_CONST(0.000563477107789), REAL_CONST(0.001408194424585), REAL_CONST(0.002252417383716), REAL_CONST(0.002649537986144), REAL_CONST(0.002771759871393), REAL_CONST(0.002804030198604), REAL_CONST(0.002812269143760), REAL_CONST(0.002814328996465) },
404
    { REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000021669651687), REAL_CONST(0.000082893253420), REAL_CONST(0.000281680084299), REAL_CONST(0.000704268983100), REAL_CONST(0.001126734190620), REAL_CONST(0.001325377263129), REAL_CONST(0.001386545598507), REAL_CONST(0.001402696361765), REAL_CONST(0.001406819908880), REAL_CONST(0.001407850766554) },
405
    { REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010834866771), REAL_CONST(0.000041447223339), REAL_CONST(0.000140846910654), REAL_CONST(0.000352177477907), REAL_CONST(0.000563477107789), REAL_CONST(0.000662840844598), REAL_CONST(0.000693439331371), REAL_CONST(0.000701518612914), REAL_CONST(0.000703581434209), REAL_CONST(0.000704097095877) },
406
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000020637769921), REAL_CONST(0.000070511166996), REAL_CONST(0.000176099492819), REAL_CONST(0.000281680084299), REAL_CONST(0.000331544462824), REAL_CONST(0.000346675369656), REAL_CONST(0.000350801943569), REAL_CONST(0.000351833587047), REAL_CONST(0.000352177477907) },
407
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010318922250), REAL_CONST(0.000035256012779), REAL_CONST(0.000088052431238), REAL_CONST(0.000140846910654), REAL_CONST(0.000165781748365), REAL_CONST(0.000173348103999), REAL_CONST(0.000175411638338), REAL_CONST(0.000175927518285), REAL_CONST(0.000176099492819) },
408
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005159470220), REAL_CONST(0.000017542124624), REAL_CONST(0.000044026888645), REAL_CONST(0.000070511166996), REAL_CONST(0.000082893253420), REAL_CONST(0.000086676649516), REAL_CONST(0.000087708482170), REAL_CONST(0.000088052431238), REAL_CONST(0.000088052431238) },
409
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002579737384), REAL_CONST(0.000008771088687), REAL_CONST(0.000022013611670), REAL_CONST(0.000035256012779), REAL_CONST(0.000041447223339), REAL_CONST(0.000043338975956), REAL_CONST(0.000043854910473), REAL_CONST(0.000044026888645), REAL_CONST(0.000044026888645) },
410
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000004471542070), REAL_CONST(0.000011006847672), REAL_CONST(0.000017542124624), REAL_CONST(0.000020637769921), REAL_CONST(0.000021669651687), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670) },
411
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002235772627), REAL_CONST(0.000005503434295), REAL_CONST(0.000008771088687), REAL_CONST(0.000010318922250), REAL_CONST(0.000010834866771), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672) },
412
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001031895522), REAL_CONST(0.000002751719876), REAL_CONST(0.000004471542070), REAL_CONST(0.000005159470220), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295) },
413
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000515947875), REAL_CONST(0.000001375860506), REAL_CONST(0.000002235772627), REAL_CONST(0.000002579737384), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876) },
414
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000000687930424), REAL_CONST(0.000001031895522), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506) },
415
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000515947875), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424) },
416
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269) },
417
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634) }
418
};
419
420
static const real_t log_Qplus1[31] = {
421
    REAL_CONST(6.022367813028454), REAL_CONST(5.044394119358453), REAL_CONST(4.087462841250339),
422
    REAL_CONST(3.169925001442313), REAL_CONST(2.321928094887362), REAL_CONST(1.584962500721156),
423
    REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362),
424
    REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339), REAL_CONST(0.044394119358453),
425
    REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878),
426
    REAL_CONST(0.002815015607054), REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247),
427
    REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122),
428
    REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667),
429
    REAL_CONST(0.000005503434331), REAL_CONST(0.000002751719790), REAL_CONST(0.000001375860551),
430
    REAL_CONST(0.000000687930439), REAL_CONST(0.000000343965261), REAL_CONST(0.000000171982641),
431
    REAL_CONST(0.000000000000000)
432
};
433
434
static real_t find_log2_Qplus1(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
435
247k
{
436
    /* check for coupled energy/noise data */
437
247k
    if (sbr->bs_coupling == 1)
438
113k
    {
439
113k
        if ((sbr->Q[0][k][l] >= 0) && (sbr->Q[0][k][l] <= 30) &&
440
113k
            (sbr->Q[1][k][l] >= 0) && (sbr->Q[1][k][l] <= 24))
441
90.9k
        {
442
90.9k
            if (ch == 0)
443
45.9k
            {
444
45.9k
                return log_Qplus1_pan[sbr->Q[0][k][l]][sbr->Q[1][k][l] >> 1];
445
45.9k
            } else {
446
45.0k
                return log_Qplus1_pan[sbr->Q[0][k][l]][12 - (sbr->Q[1][k][l] >> 1)];
447
45.0k
            }
448
90.9k
        } else {
449
22.6k
            return 0;
450
22.6k
        }
451
134k
    } else {
452
134k
        if (sbr->Q[ch][k][l] >= 0 && sbr->Q[ch][k][l] <= 30)
453
114k
        {
454
114k
            return log_Qplus1[sbr->Q[ch][k][l]];
455
114k
        } else {
456
20.1k
            return 0;
457
20.1k
        }
458
134k
    }
459
247k
}
460
461
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
462
9.63k
{
463
    /* log2 values of limiter gains */
464
    /* Last one less than log2(1e10) due to FIXED POINT float limitations */
465
9.63k
    static real_t limGain[] = {
466
9.63k
        REAL_CONST(-1.0), REAL_CONST(0.0), REAL_CONST(1.0), REAL_CONST(21.0)
467
9.63k
    };
468
9.63k
    uint8_t m, l, k;
469
470
9.63k
    uint8_t current_t_noise_band = 0;
471
9.63k
    uint8_t S_mapped;
472
473
9.63k
    ALIGN real_t Q_M_lim[MAX_M];
474
9.63k
    ALIGN real_t G_lim[MAX_M];
475
9.63k
    ALIGN real_t G_boost;
476
9.63k
    ALIGN real_t S_M[MAX_M];
477
478
9.63k
    real_t exp = REAL_CONST(-10);
479
480
26.2k
    for (l = 0; l < sbr->L_E[ch]; l++)
481
16.5k
    {
482
16.5k
        uint8_t current_f_noise_band = 0;
483
16.5k
        uint8_t current_res_band = 0;
484
16.5k
        uint8_t current_res_band2 = 0;
485
16.5k
        uint8_t current_hi_res_band = 0;
486
487
16.5k
        real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
488
489
16.5k
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
490
491
16.5k
        if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
492
2.64k
        {
493
2.64k
            current_t_noise_band++;
494
2.64k
        }
495
496
54.4k
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
497
37.8k
        {
498
37.8k
            real_t Q_M = 0;
499
37.8k
            real_t G_max;
500
37.8k
            uint64_t den = 0, acc1 = 0, acc2 = 0;
501
37.8k
            uint8_t current_res_band_size = 0;
502
37.8k
            uint8_t Q_M_size = 0;
503
37.8k
            real_t log_e, log_den, log_acc1, log_acc2;
504
505
37.8k
            uint8_t ml1, ml2;
506
507
            /* bounds of current limiter bands */
508
37.8k
            ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
509
37.8k
            ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
510
511
37.8k
            if (ml1 > MAX_M)
512
0
                ml1 = MAX_M;
513
514
37.8k
            if (ml2 > MAX_M)
515
0
                ml2 = MAX_M;
516
517
518
            /* calculate the accumulated E_orig and E_curr over the limiter band */
519
285k
            for (m = ml1; m < ml2; m++)
520
247k
            {
521
247k
                if ((m + sbr->kx) < sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
522
171k
                {
523
171k
                    current_res_band_size++;
524
171k
                } else {
525
76.3k
                    log_e = find_log2_E(sbr, current_res_band, l, ch);
526
76.3k
                    acc1 += pow2_int(exp + log2_int_tab[current_res_band_size] + log_e);
527
528
76.3k
                    current_res_band++;
529
76.3k
                    current_res_band_size = 1;
530
76.3k
                }
531
532
247k
                acc2 += sbr->E_curr[ch][m][l];
533
247k
            }
534
37.8k
            if (current_res_band_size) {
535
37.8k
                log_e = find_log2_E(sbr, current_res_band, l, ch);
536
37.8k
                acc1 += pow2_int(exp + log2_int_tab[current_res_band_size] + log_e);
537
37.8k
            }
538
539
540
37.8k
            if (acc1 == 0)
541
23.2k
                log_acc1 = LOG2_MIN_INF;
542
14.6k
            else
543
14.6k
                log_acc1 = log2_int(acc1);
544
545
37.8k
            if (acc2 == 0)
546
37.1k
                log_acc2 = LOG2_MIN_INF;
547
672
            else
548
672
                log_acc2 = log2_int(acc2);
549
550
            /* calculate the maximum gain */
551
            /* ratio of the energy of the original signal and the energy
552
             * of the HF generated signal
553
             */
554
37.8k
            G_max = log_acc1 - log_acc2 + limGain[sbr->bs_limiter_gains];
555
37.8k
            G_max = min(G_max, limGain[3]);
556
557
558
285k
            for (m = ml1; m < ml2; m++)
559
247k
            {
560
247k
                real_t G;
561
247k
                real_t E_curr, E_orig;
562
247k
                real_t Q_orig, Q_orig_plus1;
563
247k
                uint8_t S_index_mapped;
564
565
566
                /* check if m is on a noise band border */
567
247k
                if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
568
15.3k
                {
569
                    /* step to next noise band */
570
15.3k
                    current_f_noise_band++;
571
15.3k
                }
572
573
574
                /* check if m is on a resolution band border */
575
247k
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
576
76.2k
                {
577
                    /* accumulate a whole range of equal Q_Ms */
578
76.2k
                    if (Q_M_size > 0)
579
32.6k
                        den += pow2_int(log2_int_tab[Q_M_size] + Q_M);
580
76.2k
                    Q_M_size = 0;
581
582
                    /* step to next resolution band */
583
76.2k
                    current_res_band2++;
584
585
                    /* if we move to a new resolution band, we should check if we are
586
                     * going to add a sinusoid in this band
587
                     */
588
76.2k
                    S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
589
76.2k
                }
590
591
592
                /* check if m is on a HI_RES band border */
593
247k
                if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
594
121k
                {
595
                    /* step to next HI_RES band */
596
121k
                    current_hi_res_band++;
597
121k
                }
598
599
600
                /* find S_index_mapped
601
                 * S_index_mapped can only be 1 for the m in the middle of the
602
                 * current HI_RES band
603
                 */
604
247k
                S_index_mapped = 0;
605
247k
                if ((l >= sbr->l_A[ch]) ||
606
247k
                    (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
607
191k
                {
608
                    /* find the middle subband of the HI_RES frequency band */
609
191k
                    if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
610
103k
                        S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
611
191k
                }
612
613
614
                /* find bitstream parameters */
615
247k
                if (sbr->E_curr[ch][m][l] == 0)
616
242k
                    E_curr = LOG2_MIN_INF;
617
4.95k
                else
618
4.95k
                    E_curr = log2_int(sbr->E_curr[ch][m][l]);
619
247k
                E_orig = exp + find_log2_E(sbr, current_res_band2, l, ch);
620
621
622
247k
                Q_orig = find_log2_Q(sbr, current_f_noise_band, current_t_noise_band, ch);
623
247k
                Q_orig_plus1 = find_log2_Qplus1(sbr, current_f_noise_band, current_t_noise_band, ch);
624
625
626
                /* Q_M only depends on E_orig and Q_div2:
627
                 * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
628
                 * a change of current res band (HI or LO)
629
                 */
630
247k
                Q_M = E_orig + Q_orig - Q_orig_plus1;
631
632
633
                /* S_M only depends on E_orig, Q_div and S_index_mapped:
634
                 * S_index_mapped can only be non-zero once per HI_RES band
635
                 */
636
247k
                if (S_index_mapped == 0)
637
230k
                {
638
230k
                    S_M[m] = LOG2_MIN_INF; /* -inf */
639
230k
                } else {
640
17.3k
                    S_M[m] = E_orig - Q_orig_plus1;
641
17.3k
                    S_M[m] = min(S_M[m], limGain[3]);
642
643
                    /* accumulate sinusoid part of the total energy */
644
17.3k
                    den += pow2_int(S_M[m]);
645
17.3k
                }
646
647
648
                /* calculate gain */
649
                /* ratio of the energy of the original signal and the energy
650
                 * of the HF generated signal
651
                 */
652
                /* E_curr here is officially E_curr+1 so the log2() of that can never be < 0 */
653
                /* scaled by exp */
654
247k
                G = E_orig - max(exp, E_curr);
655
247k
                if ((S_mapped == 0) && (delta == 1))
656
188k
                {
657
                    /* G = G * 1/(1+Q) */
658
188k
                    G -= Q_orig_plus1;
659
188k
                } else if (S_mapped == 1) {
660
                    /* G = G * Q/(1+Q) */
661
39.6k
                    G += Q_orig - Q_orig_plus1;
662
39.6k
                }
663
664
665
                /* limit the additional noise energy level */
666
                /* and apply the limiter */
667
247k
                if (G_max > G)
668
160k
                {
669
160k
                    Q_M_lim[m] = Q_M;
670
160k
                    G_lim[m] = G;
671
672
160k
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
673
140k
                    {
674
140k
                        Q_M_size++;
675
140k
                    }
676
160k
                } else {
677
                    /* G >= G_max */
678
86.9k
                    Q_M_lim[m] = Q_M + G_max - G;
679
86.9k
                    G_lim[m] = G_max;
680
681
                    /* accumulate limited Q_M */
682
86.9k
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
683
75.4k
                    {
684
75.4k
                        den += pow2_int(Q_M_lim[m]);
685
75.4k
                    }
686
86.9k
                }
687
688
689
                /* accumulate the total energy */
690
                /* E_curr changes for every m so we do need to accumulate every m */
691
247k
                den += pow2_int(E_curr + G_lim[m]);
692
247k
            }
693
694
            /* accumulate last range of equal Q_Ms */
695
37.8k
            if (Q_M_size > 0)
696
22.5k
            {
697
22.5k
                den += pow2_int(log2_int_tab[Q_M_size] + Q_M);
698
22.5k
            }
699
700
37.8k
            if (den == 0)
701
28.4k
                log_den = LOG2_MIN_INF;
702
9.45k
            else
703
9.45k
                log_den = log2_int(den /*+ EPS*/);
704
705
            /* calculate the final gain */
706
            /* G_boost: [0..2.51188643] */
707
37.8k
            G_boost = log_acc1 - log_den;
708
37.8k
            G_boost = min(G_boost, REAL_CONST(1.328771237) /* log2(1.584893192 ^ 2) */);
709
710
711
285k
            for (m = ml1; m < ml2; m++)
712
247k
            {
713
                /* apply compensation to gain, noise floor sf's and sinusoid levels */
714
247k
#ifndef SBR_LOW_POWER
715
247k
                adj->G_lim_boost[l][m] = pow2_fix((G_lim[m] + G_boost) >> 1);
716
#else
717
                /* sqrt() will be done after the aliasing reduction to save a
718
                 * few multiplies
719
                 */
720
                adj->G_lim_boost[l][m] = pow2_fix(G_lim[m] + G_boost);
721
#endif
722
247k
                adj->Q_M_lim_boost[l][m] = pow2_fix((Q_M_lim[m] + G_boost) >> 1);
723
724
247k
                adj->S_M_boost[l][m] = pow2_fix((S_M[m] + G_boost) >> 1);
725
247k
            }
726
37.8k
        }
727
16.5k
    }
728
9.63k
}
729
730
#else
731
732
//#define LOG2_TEST
733
734
#ifdef LOG2_TEST
735
736
#define LOG2_MIN_INF -100000
737
738
__inline float pow2(float val)
739
{
740
    return pow(2.0, val);
741
}
742
__inline float log2(float val)
743
{
744
    return log(val)/log(2.0);
745
}
746
747
#define RB 14
748
749
float QUANTISE2REAL(float val)
750
{
751
    __int32 ival = (__int32)(val * (1<<RB));
752
    return (float)ival / (float)((1<<RB));
753
}
754
755
float QUANTISE2INT(float val)
756
{
757
    return floor(val);
758
}
759
760
/* log2 values of [0..63] */
761
static const real_t log2_int_tab[] = {
762
    LOG2_MIN_INF,      0.000000000000000, 1.000000000000000, 1.584962500721156,
763
    2.000000000000000, 2.321928094887362, 2.584962500721156, 2.807354922057604,
764
    3.000000000000000, 3.169925001442313, 3.321928094887363, 3.459431618637297,
765
    3.584962500721156, 3.700439718141092, 3.807354922057604, 3.906890595608519,
766
    4.000000000000000, 4.087462841250339, 4.169925001442312, 4.247927513443585,
767
    4.321928094887362, 4.392317422778761, 4.459431618637297, 4.523561956057013,
768
    4.584962500721156, 4.643856189774724, 4.700439718141093, 4.754887502163468,
769
    4.807354922057604, 4.857980995127572, 4.906890595608519, 4.954196310386875,
770
    5.000000000000000, 5.044394119358453, 5.087462841250340, 5.129283016944966,
771
    5.169925001442312, 5.209453365628949, 5.247927513443585, 5.285402218862248,
772
    5.321928094887363, 5.357552004618084, 5.392317422778761, 5.426264754702098,
773
    5.459431618637297, 5.491853096329675, 5.523561956057013, 5.554588851677637,
774
    5.584962500721156, 5.614709844115208, 5.643856189774724, 5.672425341971495,
775
    5.700439718141093, 5.727920454563200, 5.754887502163469, 5.781359713524660,
776
    5.807354922057605, 5.832890014164742, 5.857980995127572, 5.882643049361842,
777
    5.906890595608518, 5.930737337562887, 5.954196310386876, 5.977279923499916
778
};
779
780
static const real_t pan_log2_tab[] = {
781
    1.000000000000000, 0.584962500721156, 0.321928094887362, 0.169925001442312, 0.087462841250339,
782
    0.044394119358453, 0.022367813028455, 0.011227255423254, 0.005624549193878, 0.002815015607054,
783
    0.001408194392808, 0.000704269011247, 0.000352177480301, 0.000176099486443, 0.000088052430122,
784
    0.000044026886827, 0.000022013611360, 0.000011006847667
785
};
786
787
static real_t find_log2_E(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
788
{
789
    /* check for coupled energy/noise data */
790
    if (sbr->bs_coupling == 1)
791
    {
792
        real_t amp0 = (sbr->amp_res[0]) ? 1.0 : 0.5;
793
        real_t amp1 = (sbr->amp_res[1]) ? 1.0 : 0.5;
794
        float tmp = QUANTISE2REAL(7.0 + (real_t)sbr->E[0][k][l] * amp0);
795
        float pan;
796
797
        int E = (int)(sbr->E[1][k][l] * amp1);
798
799
        if (ch == 0)
800
        {
801
            if (E > 12)
802
            {
803
                /* negative */
804
                pan = QUANTISE2REAL(pan_log2_tab[-12 + E]);
805
            } else {
806
                /* positive */
807
                pan = QUANTISE2REAL(pan_log2_tab[12 - E] + (12 - E));
808
            }
809
        } else {
810
            if (E < 12)
811
            {
812
                /* negative */
813
                pan = QUANTISE2REAL(pan_log2_tab[-E + 12]);
814
            } else {
815
                /* positive */
816
                pan = QUANTISE2REAL(pan_log2_tab[E - 12] + (E - 12));
817
            }
818
        }
819
820
        /* tmp / pan in log2 */
821
        return QUANTISE2REAL(tmp - pan);
822
    } else {
823
        real_t amp = (sbr->amp_res[ch]) ? 1.0 : 0.5;
824
825
        return QUANTISE2REAL(6.0 + (real_t)sbr->E[ch][k][l] * amp);
826
    }
827
}
828
829
static real_t find_log2_Q(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
830
{
831
    /* check for coupled energy/noise data */
832
    if (sbr->bs_coupling == 1)
833
    {
834
        float tmp = QUANTISE2REAL(7.0 - (real_t)sbr->Q[0][k][l]);
835
        float pan;
836
837
        int Q = (int)(sbr->Q[1][k][l]);
838
839
        if (ch == 0)
840
        {
841
            if (Q > 12)
842
            {
843
                /* negative */
844
                pan = QUANTISE2REAL(pan_log2_tab[-12 + Q]);
845
            } else {
846
                /* positive */
847
                pan = QUANTISE2REAL(pan_log2_tab[12 - Q] + (12 - Q));
848
            }
849
        } else {
850
            if (Q < 12)
851
            {
852
                /* negative */
853
                pan = QUANTISE2REAL(pan_log2_tab[-Q + 12]);
854
            } else {
855
                /* positive */
856
                pan = QUANTISE2REAL(pan_log2_tab[Q - 12] + (Q - 12));
857
            }
858
        }
859
860
        /* tmp / pan in log2 */
861
        return QUANTISE2REAL(tmp - pan);
862
    } else {
863
        return QUANTISE2REAL(6.0 - (real_t)sbr->Q[ch][k][l]);
864
    }
865
}
866
867
static const real_t log_Qplus1_pan[31][13] = {
868
    { REAL_CONST(0.044383447617292), REAL_CONST(0.169768601655960), REAL_CONST(0.583090126514435), REAL_CONST(1.570089221000671), REAL_CONST(3.092446088790894), REAL_CONST(4.733354568481445), REAL_CONST(6.022367954254150), REAL_CONST(6.692092418670654), REAL_CONST(6.924463272094727), REAL_CONST(6.989034175872803), REAL_CONST(7.005646705627441), REAL_CONST(7.009829998016357), REAL_CONST(7.010877609252930) },
869
    { REAL_CONST(0.022362394258380), REAL_CONST(0.087379962205887), REAL_CONST(0.320804953575134), REAL_CONST(0.988859415054321), REAL_CONST(2.252387046813965), REAL_CONST(3.786596298217773), REAL_CONST(5.044394016265869), REAL_CONST(5.705977916717529), REAL_CONST(5.936291694641113), REAL_CONST(6.000346660614014), REAL_CONST(6.016829967498779), REAL_CONST(6.020981311798096), REAL_CONST(6.022020816802979) },
870
    { REAL_CONST(0.011224525049329), REAL_CONST(0.044351425021887), REAL_CONST(0.169301137328148), REAL_CONST(0.577544987201691), REAL_CONST(1.527246952056885), REAL_CONST(2.887525320053101), REAL_CONST(4.087462902069092), REAL_CONST(4.733354568481445), REAL_CONST(4.959661006927490), REAL_CONST(5.022709369659424), REAL_CONST(5.038940429687500), REAL_CONST(5.043028831481934), REAL_CONST(5.044052600860596) },
871
    { REAL_CONST(0.005623178556561), REAL_CONST(0.022346137091517), REAL_CONST(0.087132595479488), REAL_CONST(0.317482173442841), REAL_CONST(0.956931233406067), REAL_CONST(2.070389270782471), REAL_CONST(3.169924974441528), REAL_CONST(3.786596298217773), REAL_CONST(4.005294322967529), REAL_CONST(4.066420555114746), REAL_CONST(4.082170009613037), REAL_CONST(4.086137294769287), REAL_CONST(4.087131500244141) },
872
    { REAL_CONST(0.002814328996465), REAL_CONST(0.011216334067285), REAL_CONST(0.044224001467228), REAL_CONST(0.167456731200218), REAL_CONST(0.556393325328827), REAL_CONST(1.378511548042297), REAL_CONST(2.321928024291992), REAL_CONST(2.887525320053101), REAL_CONST(3.092446088790894), REAL_CONST(3.150059700012207), REAL_CONST(3.164926528930664), REAL_CONST(3.168673276901245), REAL_CONST(3.169611930847168) },
873
    { REAL_CONST(0.001407850766554), REAL_CONST(0.005619067233056), REAL_CONST(0.022281449288130), REAL_CONST(0.086156636476517), REAL_CONST(0.304854571819305), REAL_CONST(0.847996890544891), REAL_CONST(1.584962487220764), REAL_CONST(2.070389270782471), REAL_CONST(2.252387046813965), REAL_CONST(2.304061651229858), REAL_CONST(2.317430257797241), REAL_CONST(2.320801734924316), REAL_CONST(2.321646213531494) },
874
    { REAL_CONST(0.000704097095877), REAL_CONST(0.002812269143760), REAL_CONST(0.011183738708496), REAL_CONST(0.043721374124289), REAL_CONST(0.160464659333229), REAL_CONST(0.485426813364029), REAL_CONST(1.000000000000000), REAL_CONST(1.378511548042297), REAL_CONST(1.527246952056885), REAL_CONST(1.570089221000671), REAL_CONST(1.581215262413025), REAL_CONST(1.584023833274841), REAL_CONST(1.584727644920349) },
875
    { REAL_CONST(0.000352177477907), REAL_CONST(0.001406819908880), REAL_CONST(0.005602621007711), REAL_CONST(0.022026389837265), REAL_CONST(0.082462236285210), REAL_CONST(0.263034462928772), REAL_CONST(0.584962487220764), REAL_CONST(0.847996890544891), REAL_CONST(0.956931233406067), REAL_CONST(0.988859415054321), REAL_CONST(0.997190535068512), REAL_CONST(0.999296069145203), REAL_CONST(0.999823868274689) },
876
    { REAL_CONST(0.000176099492819), REAL_CONST(0.000703581434209), REAL_CONST(0.002804030198604), REAL_CONST(0.011055230163038), REAL_CONST(0.041820213198662), REAL_CONST(0.137503549456596), REAL_CONST(0.321928083896637), REAL_CONST(0.485426813364029), REAL_CONST(0.556393325328827), REAL_CONST(0.577544987201691), REAL_CONST(0.583090126514435), REAL_CONST(0.584493279457092), REAL_CONST(0.584845066070557) },
877
    { REAL_CONST(0.000088052431238), REAL_CONST(0.000351833587047), REAL_CONST(0.001402696361765), REAL_CONST(0.005538204684854), REAL_CONST(0.021061634644866), REAL_CONST(0.070389263331890), REAL_CONST(0.169925004243851), REAL_CONST(0.263034462928772), REAL_CONST(0.304854571819305), REAL_CONST(0.317482173442841), REAL_CONST(0.320804953575134), REAL_CONST(0.321646571159363), REAL_CONST(0.321857661008835) },
878
    { REAL_CONST(0.000044026888645), REAL_CONST(0.000175927518285), REAL_CONST(0.000701518612914), REAL_CONST(0.002771759871393), REAL_CONST(0.010569252073765), REAL_CONST(0.035623874515295), REAL_CONST(0.087462842464447), REAL_CONST(0.137503549456596), REAL_CONST(0.160464659333229), REAL_CONST(0.167456731200218), REAL_CONST(0.169301137328148), REAL_CONST(0.169768601655960), REAL_CONST(0.169885858893394) },
879
    { REAL_CONST(0.000022013611670), REAL_CONST(0.000088052431238), REAL_CONST(0.000350801943569), REAL_CONST(0.001386545598507), REAL_CONST(0.005294219125062), REAL_CONST(0.017921976745129), REAL_CONST(0.044394120573997), REAL_CONST(0.070389263331890), REAL_CONST(0.082462236285210), REAL_CONST(0.086156636476517), REAL_CONST(0.087132595479488), REAL_CONST(0.087379962205887), REAL_CONST(0.087442122399807) },
880
    { REAL_CONST(0.000011006847672), REAL_CONST(0.000044026888645), REAL_CONST(0.000175411638338), REAL_CONST(0.000693439331371), REAL_CONST(0.002649537986144), REAL_CONST(0.008988817222416), REAL_CONST(0.022367812693119), REAL_CONST(0.035623874515295), REAL_CONST(0.041820213198662), REAL_CONST(0.043721374124289), REAL_CONST(0.044224001467228), REAL_CONST(0.044351425021887), REAL_CONST(0.044383447617292) },
881
    { REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000087708482170), REAL_CONST(0.000346675369656), REAL_CONST(0.001325377263129), REAL_CONST(0.004501323681325), REAL_CONST(0.011227255687118), REAL_CONST(0.017921976745129), REAL_CONST(0.021061634644866), REAL_CONST(0.022026389837265), REAL_CONST(0.022281449288130), REAL_CONST(0.022346137091517), REAL_CONST(0.022362394258380) },
882
    { REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043854910473), REAL_CONST(0.000173348103999), REAL_CONST(0.000662840844598), REAL_CONST(0.002252417383716), REAL_CONST(0.005624548997730), REAL_CONST(0.008988817222416), REAL_CONST(0.010569252073765), REAL_CONST(0.011055230163038), REAL_CONST(0.011183738708496), REAL_CONST(0.011216334067285), REAL_CONST(0.011224525049329) },
883
    { REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000086676649516), REAL_CONST(0.000331544462824), REAL_CONST(0.001126734190620), REAL_CONST(0.002815015614033), REAL_CONST(0.004501323681325), REAL_CONST(0.005294219125062), REAL_CONST(0.005538204684854), REAL_CONST(0.005602621007711), REAL_CONST(0.005619067233056), REAL_CONST(0.005623178556561) },
884
    { REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043338975956), REAL_CONST(0.000165781748365), REAL_CONST(0.000563477107789), REAL_CONST(0.001408194424585), REAL_CONST(0.002252417383716), REAL_CONST(0.002649537986144), REAL_CONST(0.002771759871393), REAL_CONST(0.002804030198604), REAL_CONST(0.002812269143760), REAL_CONST(0.002814328996465) },
885
    { REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000021669651687), REAL_CONST(0.000082893253420), REAL_CONST(0.000281680084299), REAL_CONST(0.000704268983100), REAL_CONST(0.001126734190620), REAL_CONST(0.001325377263129), REAL_CONST(0.001386545598507), REAL_CONST(0.001402696361765), REAL_CONST(0.001406819908880), REAL_CONST(0.001407850766554) },
886
    { REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010834866771), REAL_CONST(0.000041447223339), REAL_CONST(0.000140846910654), REAL_CONST(0.000352177477907), REAL_CONST(0.000563477107789), REAL_CONST(0.000662840844598), REAL_CONST(0.000693439331371), REAL_CONST(0.000701518612914), REAL_CONST(0.000703581434209), REAL_CONST(0.000704097095877) },
887
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000020637769921), REAL_CONST(0.000070511166996), REAL_CONST(0.000176099492819), REAL_CONST(0.000281680084299), REAL_CONST(0.000331544462824), REAL_CONST(0.000346675369656), REAL_CONST(0.000350801943569), REAL_CONST(0.000351833587047), REAL_CONST(0.000352177477907) },
888
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010318922250), REAL_CONST(0.000035256012779), REAL_CONST(0.000088052431238), REAL_CONST(0.000140846910654), REAL_CONST(0.000165781748365), REAL_CONST(0.000173348103999), REAL_CONST(0.000175411638338), REAL_CONST(0.000175927518285), REAL_CONST(0.000176099492819) },
889
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005159470220), REAL_CONST(0.000017542124624), REAL_CONST(0.000044026888645), REAL_CONST(0.000070511166996), REAL_CONST(0.000082893253420), REAL_CONST(0.000086676649516), REAL_CONST(0.000087708482170), REAL_CONST(0.000088052431238), REAL_CONST(0.000088052431238) },
890
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002579737384), REAL_CONST(0.000008771088687), REAL_CONST(0.000022013611670), REAL_CONST(0.000035256012779), REAL_CONST(0.000041447223339), REAL_CONST(0.000043338975956), REAL_CONST(0.000043854910473), REAL_CONST(0.000044026888645), REAL_CONST(0.000044026888645) },
891
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000004471542070), REAL_CONST(0.000011006847672), REAL_CONST(0.000017542124624), REAL_CONST(0.000020637769921), REAL_CONST(0.000021669651687), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670) },
892
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002235772627), REAL_CONST(0.000005503434295), REAL_CONST(0.000008771088687), REAL_CONST(0.000010318922250), REAL_CONST(0.000010834866771), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672) },
893
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001031895522), REAL_CONST(0.000002751719876), REAL_CONST(0.000004471542070), REAL_CONST(0.000005159470220), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295) },
894
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000515947875), REAL_CONST(0.000001375860506), REAL_CONST(0.000002235772627), REAL_CONST(0.000002579737384), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876) },
895
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000000687930424), REAL_CONST(0.000001031895522), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506) },
896
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000515947875), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424) },
897
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269) },
898
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634) }
899
};
900
901
static const real_t log_Qplus1[31] = {
902
    REAL_CONST(6.022367813028454), REAL_CONST(5.044394119358453), REAL_CONST(4.087462841250339),
903
    REAL_CONST(3.169925001442313), REAL_CONST(2.321928094887362), REAL_CONST(1.584962500721156),
904
    REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362),
905
    REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339), REAL_CONST(0.044394119358453),
906
    REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878),
907
    REAL_CONST(0.002815015607054), REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247),
908
    REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122),
909
    REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667),
910
    REAL_CONST(0.000005503434331), REAL_CONST(0.000002751719790), REAL_CONST(0.000001375860551),
911
    REAL_CONST(0.000000687930439), REAL_CONST(0.000000343965261), REAL_CONST(0.000000171982641),
912
    REAL_CONST(0.000000000000000)
913
};
914
915
static real_t find_log2_Qplus1(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
916
{
917
    /* check for coupled energy/noise data */
918
    if (sbr->bs_coupling == 1)
919
    {
920
        if ((sbr->Q[0][k][l] >= 0) && (sbr->Q[0][k][l] <= 30) &&
921
            (sbr->Q[1][k][l] >= 0) && (sbr->Q[1][k][l] <= 24))
922
        {
923
            if (ch == 0)
924
            {
925
                return QUANTISE2REAL(log_Qplus1_pan[sbr->Q[0][k][l]][sbr->Q[1][k][l] >> 1]);
926
            } else {
927
                return QUANTISE2REAL(log_Qplus1_pan[sbr->Q[0][k][l]][12 - (sbr->Q[1][k][l] >> 1)]);
928
            }
929
        } else {
930
            return 0;
931
        }
932
    } else {
933
        if (sbr->Q[ch][k][l] >= 0 && sbr->Q[ch][k][l] <= 30)
934
        {
935
            return QUANTISE2REAL(log_Qplus1[sbr->Q[ch][k][l]]);
936
        } else {
937
            return 0;
938
        }
939
    }
940
}
941
942
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
943
{
944
    /* log2 values of limiter gains */
945
    static real_t limGain[] = { -1.0, 0.0, 1.0, 33.219 };
946
    uint8_t m, l, k;
947
948
    uint8_t current_t_noise_band = 0;
949
    uint8_t S_mapped;
950
951
    ALIGN real_t Q_M_lim[MAX_M];
952
    ALIGN real_t G_lim[MAX_M];
953
    ALIGN real_t G_boost;
954
    ALIGN real_t S_M[MAX_M];
955
956
957
    for (l = 0; l < sbr->L_E[ch]; l++)
958
    {
959
        uint8_t current_f_noise_band = 0;
960
        uint8_t current_res_band = 0;
961
        uint8_t current_res_band2 = 0;
962
        uint8_t current_hi_res_band = 0;
963
964
        real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
965
966
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
967
968
        if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
969
        {
970
            current_t_noise_band++;
971
        }
972
973
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
974
        {
975
            real_t Q_M = 0;
976
            real_t G_max;
977
            real_t den = 0;
978
            real_t acc1 = 0;
979
            real_t acc2 = 0;
980
            uint8_t current_res_band_size = 0;
981
            uint8_t Q_M_size = 0;
982
983
            uint8_t ml1, ml2;
984
985
            /* bounds of current limiter bands */
986
            ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
987
            ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
988
989
            if (ml1 > MAX_M)
990
                ml1 = MAX_M;
991
992
            if (ml2 > MAX_M)
993
                ml2 = MAX_M;
994
995
996
            /* calculate the accumulated E_orig and E_curr over the limiter band */
997
            for (m = ml1; m < ml2; m++)
998
            {
999
                if ((m + sbr->kx) < sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
1000
                {
1001
                    current_res_band_size++;
1002
                } else {
1003
                    acc1 += QUANTISE2INT(pow2(-10 + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch)));
1004
1005
                    current_res_band++;
1006
                    current_res_band_size = 1;
1007
                }
1008
1009
                acc2 += QUANTISE2INT(sbr->E_curr[ch][m][l]/1024.0);
1010
            }
1011
            acc1 += QUANTISE2INT(pow2(-10 + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch)));
1012
1013
            acc1 = QUANTISE2REAL( log2(EPS + acc1) );
1014
1015
1016
            /* calculate the maximum gain */
1017
            /* ratio of the energy of the original signal and the energy
1018
             * of the HF generated signal
1019
             */
1020
            G_max = acc1 - QUANTISE2REAL(log2(EPS + acc2)) + QUANTISE2REAL(limGain[sbr->bs_limiter_gains]);
1021
            G_max = min(G_max, QUANTISE2REAL(limGain[3]));
1022
1023
1024
            for (m = ml1; m < ml2; m++)
1025
            {
1026
                real_t G;
1027
                real_t E_curr, E_orig;
1028
                real_t Q_orig, Q_orig_plus1;
1029
                uint8_t S_index_mapped;
1030
1031
1032
                /* check if m is on a noise band border */
1033
                if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
1034
                {
1035
                    /* step to next noise band */
1036
                    current_f_noise_band++;
1037
                }
1038
1039
1040
                /* check if m is on a resolution band border */
1041
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
1042
                {
1043
                    /* accumulate a whole range of equal Q_Ms */
1044
                    if (Q_M_size > 0)
1045
                        den += QUANTISE2INT(pow2(log2_int_tab[Q_M_size] + Q_M));
1046
                    Q_M_size = 0;
1047
1048
                    /* step to next resolution band */
1049
                    current_res_band2++;
1050
1051
                    /* if we move to a new resolution band, we should check if we are
1052
                     * going to add a sinusoid in this band
1053
                     */
1054
                    S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
1055
                }
1056
1057
1058
                /* check if m is on a HI_RES band border */
1059
                if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
1060
                {
1061
                    /* step to next HI_RES band */
1062
                    current_hi_res_band++;
1063
                }
1064
1065
1066
                /* find S_index_mapped
1067
                 * S_index_mapped can only be 1 for the m in the middle of the
1068
                 * current HI_RES band
1069
                 */
1070
                S_index_mapped = 0;
1071
                if ((l >= sbr->l_A[ch]) ||
1072
                    (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
1073
                {
1074
                    /* find the middle subband of the HI_RES frequency band */
1075
                    if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
1076
                        S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
1077
                }
1078
1079
1080
                /* find bitstream parameters */
1081
                if (sbr->E_curr[ch][m][l] == 0)
1082
                    E_curr = LOG2_MIN_INF;
1083
                else
1084
                    E_curr = -10 + log2(sbr->E_curr[ch][m][l]);
1085
                E_orig = -10 + find_log2_E(sbr, current_res_band2, l, ch);
1086
1087
                Q_orig = find_log2_Q(sbr, current_f_noise_band, current_t_noise_band, ch);
1088
                Q_orig_plus1 = find_log2_Qplus1(sbr, current_f_noise_band, current_t_noise_band, ch);
1089
1090
1091
                /* Q_M only depends on E_orig and Q_div2:
1092
                 * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
1093
                 * a change of current res band (HI or LO)
1094
                 */
1095
                Q_M = E_orig + Q_orig - Q_orig_plus1;
1096
1097
1098
                /* S_M only depends on E_orig, Q_div and S_index_mapped:
1099
                 * S_index_mapped can only be non-zero once per HI_RES band
1100
                 */
1101
                if (S_index_mapped == 0)
1102
                {
1103
                    S_M[m] = LOG2_MIN_INF; /* -inf */
1104
                } else {
1105
                    S_M[m] = E_orig - Q_orig_plus1;
1106
1107
                    /* accumulate sinusoid part of the total energy */
1108
                    den += pow2(S_M[m]);
1109
                }
1110
1111
1112
                /* calculate gain */
1113
                /* ratio of the energy of the original signal and the energy
1114
                 * of the HF generated signal
1115
                 */
1116
                /* E_curr here is officially E_curr+1 so the log2() of that can never be < 0 */
1117
                /* scaled by -10 */
1118
                G = E_orig - max(-10, E_curr);
1119
                if ((S_mapped == 0) && (delta == 1))
1120
                {
1121
                    /* G = G * 1/(1+Q) */
1122
                    G -= Q_orig_plus1;
1123
                } else if (S_mapped == 1) {
1124
                    /* G = G * Q/(1+Q) */
1125
                    G += Q_orig - Q_orig_plus1;
1126
                }
1127
1128
1129
                /* limit the additional noise energy level */
1130
                /* and apply the limiter */
1131
                if (G_max > G)
1132
                {
1133
                    Q_M_lim[m] = QUANTISE2REAL(Q_M);
1134
                    G_lim[m] = QUANTISE2REAL(G);
1135
1136
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
1137
                    {
1138
                        Q_M_size++;
1139
                    }
1140
                } else {
1141
                    /* G > G_max */
1142
                    Q_M_lim[m] = QUANTISE2REAL(Q_M) + G_max - QUANTISE2REAL(G);
1143
                    G_lim[m] = G_max;
1144
1145
                    /* accumulate limited Q_M */
1146
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
1147
                    {
1148
                        den += QUANTISE2INT(pow2(Q_M_lim[m]));
1149
                    }
1150
                }
1151
1152
1153
                /* accumulate the total energy */
1154
                /* E_curr changes for every m so we do need to accumulate every m */
1155
                den += QUANTISE2INT(pow2(E_curr + G_lim[m]));
1156
            }
1157
1158
            /* accumulate last range of equal Q_Ms */
1159
            if (Q_M_size > 0)
1160
            {
1161
                den += QUANTISE2INT(pow2(log2_int_tab[Q_M_size] + Q_M));
1162
            }
1163
1164
1165
            /* calculate the final gain */
1166
            /* G_boost: [0..2.51188643] */
1167
            G_boost = acc1 - QUANTISE2REAL(log2(den + EPS));
1168
            G_boost = min(G_boost, QUANTISE2REAL(1.328771237) /* log2(1.584893192 ^ 2) */);
1169
1170
1171
            for (m = ml1; m < ml2; m++)
1172
            {
1173
                /* apply compensation to gain, noise floor sf's and sinusoid levels */
1174
#ifndef SBR_LOW_POWER
1175
                adj->G_lim_boost[l][m] = QUANTISE2REAL(pow2((G_lim[m] + G_boost) / 2.0));
1176
#else
1177
                /* sqrt() will be done after the aliasing reduction to save a
1178
                 * few multiplies
1179
                 */
1180
                adj->G_lim_boost[l][m] = QUANTISE2REAL(pow2(G_lim[m] + G_boost));
1181
#endif
1182
                adj->Q_M_lim_boost[l][m] = QUANTISE2REAL(pow2((Q_M_lim[m] + 10 + G_boost) / 2.0));
1183
1184
                if (S_M[m] != LOG2_MIN_INF)
1185
                {
1186
                    adj->S_M_boost[l][m] = QUANTISE2REAL(pow2((S_M[m] + 10 + G_boost) / 2.0));
1187
                } else {
1188
                    adj->S_M_boost[l][m] = 0;
1189
                }
1190
            }
1191
        }
1192
    }
1193
}
1194
1195
#else
1196
1197
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
1198
14.1k
{
1199
14.1k
    static real_t limGain[] = { 0.5, 1.0, 2.0, 1e10 };
1200
14.1k
    uint8_t m, l, k;
1201
1202
14.1k
    uint8_t current_t_noise_band = 0;
1203
14.1k
    uint8_t S_mapped;
1204
1205
14.1k
    ALIGN real_t Q_M_lim[MAX_M];
1206
14.1k
    ALIGN real_t G_lim[MAX_M];
1207
14.1k
    ALIGN real_t G_boost;
1208
14.1k
    ALIGN real_t S_M[MAX_M];
1209
1210
38.0k
    for (l = 0; l < sbr->L_E[ch]; l++)
1211
23.9k
    {
1212
23.9k
        uint8_t current_f_noise_band = 0;
1213
23.9k
        uint8_t current_res_band = 0;
1214
23.9k
        uint8_t current_res_band2 = 0;
1215
23.9k
        uint8_t current_hi_res_band = 0;
1216
1217
23.9k
        real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
1218
1219
23.9k
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
1220
1221
23.9k
        if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
1222
4.48k
        {
1223
4.48k
            current_t_noise_band++;
1224
4.48k
        }
1225
1226
69.9k
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
1227
46.0k
        {
1228
46.0k
            real_t G_max;
1229
46.0k
            real_t den = 0;
1230
46.0k
            real_t acc1 = 0;
1231
46.0k
            real_t acc2 = 0;
1232
1233
46.0k
            uint8_t ml1, ml2;
1234
1235
46.0k
            ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
1236
46.0k
            ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
1237
1238
46.0k
            if (ml1 > MAX_M)
1239
0
                ml1 = MAX_M;
1240
1241
46.0k
            if (ml2 > MAX_M)
1242
0
                ml2 = MAX_M;
1243
1244
1245
            /* calculate the accumulated E_orig and E_curr over the limiter band */
1246
334k
            for (m = ml1; m < ml2; m++)
1247
288k
            {
1248
288k
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
1249
79.6k
                {
1250
79.6k
                    current_res_band++;
1251
79.6k
                }
1252
288k
                acc1 += sbr->E_orig[ch][current_res_band][l];
1253
288k
                acc2 += sbr->E_curr[ch][m][l];
1254
288k
            }
1255
1256
1257
            /* calculate the maximum gain */
1258
            /* ratio of the energy of the original signal and the energy
1259
             * of the HF generated signal
1260
             */
1261
46.0k
            G_max = ((EPS + acc1) / (EPS + acc2)) * limGain[sbr->bs_limiter_gains];
1262
46.0k
            G_max = min(G_max, 1e10);
1263
1264
1265
334k
            for (m = ml1; m < ml2; m++)
1266
288k
            {
1267
288k
                real_t Q_M, G;
1268
288k
                real_t Q_div, Q_div2;
1269
288k
                uint8_t S_index_mapped;
1270
1271
1272
                /* check if m is on a noise band border */
1273
288k
                if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
1274
17.1k
                {
1275
                    /* step to next noise band */
1276
17.1k
                    current_f_noise_band++;
1277
17.1k
                }
1278
1279
1280
                /* check if m is on a resolution band border */
1281
288k
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
1282
79.6k
                {
1283
                    /* step to next resolution band */
1284
79.6k
                    current_res_band2++;
1285
1286
                    /* if we move to a new resolution band, we should check if we are
1287
                     * going to add a sinusoid in this band
1288
                     */
1289
79.6k
                    S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
1290
79.6k
                }
1291
1292
1293
                /* check if m is on a HI_RES band border */
1294
288k
                if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
1295
135k
                {
1296
                    /* step to next HI_RES band */
1297
135k
                    current_hi_res_band++;
1298
135k
                }
1299
1300
1301
                /* find S_index_mapped
1302
                 * S_index_mapped can only be 1 for the m in the middle of the
1303
                 * current HI_RES band
1304
                 */
1305
288k
                S_index_mapped = 0;
1306
288k
                if ((l >= sbr->l_A[ch]) ||
1307
288k
                    (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
1308
202k
                {
1309
                    /* find the middle subband of the HI_RES frequency band */
1310
202k
                    if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
1311
107k
                        S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
1312
202k
                }
1313
1314
1315
                /* Q_div: [0..1] (1/(1+Q_mapped)) */
1316
288k
                Q_div = sbr->Q_div[ch][current_f_noise_band][current_t_noise_band];
1317
1318
1319
                /* Q_div2: [0..1] (Q_mapped/(1+Q_mapped)) */
1320
288k
                Q_div2 = sbr->Q_div2[ch][current_f_noise_band][current_t_noise_band];
1321
1322
1323
                /* Q_M only depends on E_orig and Q_div2:
1324
                 * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
1325
                 * a change of current noise band
1326
                 */
1327
288k
                Q_M = sbr->E_orig[ch][current_res_band2][l] * Q_div2;
1328
1329
1330
                /* S_M only depends on E_orig, Q_div and S_index_mapped:
1331
                 * S_index_mapped can only be non-zero once per HI_RES band
1332
                 */
1333
288k
                if (S_index_mapped == 0)
1334
276k
                {
1335
276k
                    S_M[m] = 0;
1336
276k
                } else {
1337
12.0k
                    S_M[m] = sbr->E_orig[ch][current_res_band2][l] * Q_div;
1338
1339
                    /* accumulate sinusoid part of the total energy */
1340
12.0k
                    den += S_M[m];
1341
12.0k
                }
1342
1343
1344
                /* calculate gain */
1345
                /* ratio of the energy of the original signal and the energy
1346
                 * of the HF generated signal
1347
                 */
1348
288k
                G = sbr->E_orig[ch][current_res_band2][l] / (1.0 + sbr->E_curr[ch][m][l]);
1349
288k
                if ((S_mapped == 0) && (delta == 1))
1350
240k
                    G *= Q_div;
1351
47.9k
                else if (S_mapped == 1)
1352
27.4k
                    G *= Q_div2;
1353
1354
1355
                /* limit the additional noise energy level */
1356
                /* and apply the limiter */
1357
288k
                if (G <= G_max)
1358
252k
                {
1359
252k
                    Q_M_lim[m] = Q_M;
1360
252k
                    G_lim[m] = G;
1361
252k
                } else {
1362
35.7k
                    Q_M_lim[m] = Q_M * G_max / G;
1363
35.7k
                    G_lim[m] = G_max;
1364
35.7k
                }
1365
1366
1367
                /* accumulate the total energy */
1368
288k
                den += sbr->E_curr[ch][m][l] * G_lim[m];
1369
288k
                if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
1370
259k
                    den += Q_M_lim[m];
1371
288k
            }
1372
1373
            /* G_boost: [0..2.51188643] */
1374
46.0k
            G_boost = (acc1 + EPS) / (den + EPS);
1375
46.0k
            G_boost = min(G_boost, 2.51188643 /* 1.584893192 ^ 2 */);
1376
1377
334k
            for (m = ml1; m < ml2; m++)
1378
288k
            {
1379
                /* apply compensation to gain, noise floor sf's and sinusoid levels */
1380
288k
#ifndef SBR_LOW_POWER
1381
288k
                adj->G_lim_boost[l][m] = sqrt(G_lim[m] * G_boost);
1382
#else
1383
                /* sqrt() will be done after the aliasing reduction to save a
1384
                 * few multiplies
1385
                 */
1386
                adj->G_lim_boost[l][m] = G_lim[m] * G_boost;
1387
#endif
1388
288k
                adj->Q_M_lim_boost[l][m] = sqrt(Q_M_lim[m] * G_boost);
1389
1390
288k
                if (S_M[m] != 0)
1391
7.67k
                {
1392
7.67k
                    adj->S_M_boost[l][m] = sqrt(S_M[m] * G_boost);
1393
280k
                } else {
1394
280k
                    adj->S_M_boost[l][m] = 0;
1395
280k
                }
1396
288k
            }
1397
46.0k
        }
1398
23.9k
    }
1399
14.1k
}
1400
#endif // log2_test
1401
1402
#endif
1403
1404
#ifdef SBR_LOW_POWER
1405
static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
1406
{
1407
    uint8_t l, k, i;
1408
    uint8_t grouping;
1409
    uint8_t S_mapped;
1410
1411
    for (l = 0; l < sbr->L_E[ch]; l++)
1412
    {
1413
        uint8_t current_res_band = 0;
1414
        i = 0;
1415
        grouping = 0;
1416
1417
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band);
1418
1419
        for (k = sbr->kx; k < sbr->kx + sbr->M - 1; k++)
1420
        {
1421
            if (k == sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
1422
            {
1423
                /* step to next resolution band */
1424
                current_res_band++;
1425
1426
                S_mapped = get_S_mapped(sbr, ch, l, current_res_band);
1427
            }
1428
1429
            if (deg[k + 1] && S_mapped == 0)
1430
            {
1431
                if (grouping == 0)
1432
                {
1433
                    sbr->f_group[l][i] = k;
1434
                    grouping = 1;
1435
                    i++;
1436
                }
1437
            } else {
1438
                if (grouping)
1439
                {
1440
                    if (S_mapped)
1441
                    {
1442
                        sbr->f_group[l][i] = k;
1443
                    } else {
1444
                        sbr->f_group[l][i] = k + 1;
1445
                    }
1446
                    grouping = 0;
1447
                    i++;
1448
                }
1449
            }
1450
        }
1451
1452
        if (grouping)
1453
        {
1454
            sbr->f_group[l][i] = sbr->kx + sbr->M;
1455
            i++;
1456
        }
1457
1458
        sbr->N_G[l] = (uint8_t)(i >> 1);
1459
    }
1460
}
1461
1462
static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
1463
{
1464
    uint8_t l, k, m;
1465
    real_t E_total, E_total_est, G_target, acc;
1466
1467
    for (l = 0; l < sbr->L_E[ch]; l++)
1468
    {
1469
        for (k = 0; k < sbr->N_G[l]; k++)
1470
        {
1471
            E_total_est = E_total = 0;
1472
1473
            for (m = sbr->f_group[l][k<<1]; m < sbr->f_group[l][(k<<1) + 1]; m++)
1474
            {
1475
                /* E_curr: integer */
1476
                /* G_lim_boost: fixed point */
1477
                /* E_total_est: integer */
1478
                /* E_total: integer */
1479
                E_total_est += sbr->E_curr[ch][m-sbr->kx][l];
1480
#ifdef FIXED_POINT
1481
                E_total += MUL_Q2(sbr->E_curr[ch][m-sbr->kx][l], adj->G_lim_boost[l][m-sbr->kx]);
1482
#else
1483
                E_total += sbr->E_curr[ch][m-sbr->kx][l] * adj->G_lim_boost[l][m-sbr->kx];
1484
#endif
1485
            }
1486
1487
            /* G_target: fixed point */
1488
            if ((E_total_est + EPS) == 0)
1489
            {
1490
                G_target = 0;
1491
            } else {
1492
#ifdef FIXED_POINT
1493
                G_target = (((int64_t)(E_total))<<Q2_BITS)/(E_total_est + EPS);
1494
#else
1495
                G_target = E_total / (E_total_est + EPS);
1496
#endif
1497
            }
1498
            acc = 0;
1499
1500
            for (m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
1501
            {
1502
                real_t alpha;
1503
1504
                /* alpha: (COEF) fixed point */
1505
                if (m < sbr->kx + sbr->M - 1)
1506
                {
1507
                    alpha = max(deg[m], deg[m + 1]);
1508
                } else {
1509
                    alpha = deg[m];
1510
                }
1511
1512
                adj->G_lim_boost[l][m-sbr->kx] = MUL_C(alpha, G_target) +
1513
                    MUL_C((COEF_CONST(1)-alpha), adj->G_lim_boost[l][m-sbr->kx]);
1514
1515
                /* acc: integer */
1516
#ifdef FIXED_POINT
1517
                acc += MUL_Q2(adj->G_lim_boost[l][m-sbr->kx], sbr->E_curr[ch][m-sbr->kx][l]);
1518
#else
1519
                acc += adj->G_lim_boost[l][m-sbr->kx] * sbr->E_curr[ch][m-sbr->kx][l];
1520
#endif
1521
            }
1522
1523
            /* acc: fixed point */
1524
            if (acc + EPS == 0)
1525
            {
1526
                acc = 0;
1527
            } else {
1528
#ifdef FIXED_POINT
1529
                acc = (((int64_t)(E_total))<<Q2_BITS)/(acc + EPS);
1530
#else
1531
                acc = E_total / (acc + EPS);
1532
#endif
1533
            }
1534
            for(m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
1535
            {
1536
#ifdef FIXED_POINT
1537
                adj->G_lim_boost[l][m-sbr->kx] = MUL_Q2(acc, adj->G_lim_boost[l][m-sbr->kx]);
1538
#else
1539
                adj->G_lim_boost[l][m-sbr->kx] = acc * adj->G_lim_boost[l][m-sbr->kx];
1540
#endif
1541
            }
1542
        }
1543
    }
1544
1545
    for (l = 0; l < sbr->L_E[ch]; l++)
1546
    {
1547
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
1548
        {
1549
            for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
1550
                 m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
1551
            {
1552
#ifdef FIXED_POINT
1553
                 adj->G_lim_boost[l][m] = SBR_SQRT_Q2(adj->G_lim_boost[l][m]);
1554
#else
1555
                 adj->G_lim_boost[l][m] = sqrt(adj->G_lim_boost[l][m]);
1556
#endif
1557
            }
1558
        }
1559
    }
1560
}
1561
#endif
1562
1563
static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj,
1564
                        qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch)
1565
23.8k
{
1566
23.8k
    static real_t h_smooth[] = {
1567
23.8k
        FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084),
1568
23.8k
        FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582),
1569
23.8k
        FRAC_CONST(0.33333333333333)
1570
23.8k
    };
1571
23.8k
    static int8_t phi_re[] = { 1, 0, -1, 0 };
1572
23.8k
    static int8_t phi_im[] = { 0, 1, 0, -1 };
1573
1574
23.8k
    uint8_t m, l, i, n;
1575
23.8k
    uint16_t fIndexNoise = 0;
1576
23.8k
    uint8_t fIndexSine = 0;
1577
23.8k
    uint8_t assembly_reset = 0;
1578
1579
23.8k
    real_t G_filt, Q_filt;
1580
1581
23.8k
    uint8_t h_SL;
1582
1583
1584
23.8k
    if (sbr->Reset == 1)
1585
22.9k
    {
1586
22.9k
        assembly_reset = 1;
1587
22.9k
        fIndexNoise = 0;
1588
22.9k
    } else {
1589
833
        fIndexNoise = sbr->index_noise_prev[ch];
1590
833
    }
1591
23.8k
    fIndexSine = sbr->psi_is_prev[ch];
1592
1593
1594
64.3k
    for (l = 0; l < sbr->L_E[ch]; l++)
1595
40.5k
    {
1596
40.5k
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
1597
1598
#ifdef SBR_LOW_POWER
1599
        h_SL = 0;
1600
#else
1601
40.5k
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
1602
40.5k
        h_SL = (no_noise ? 0 : h_SL);
1603
40.5k
#endif
1604
1605
40.5k
        if (assembly_reset)
1606
22.9k
        {
1607
114k
            for (n = 0; n < 4; n++)
1608
91.6k
            {
1609
91.6k
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1610
91.6k
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1611
91.6k
            }
1612
            /* reset ringbuffer index */
1613
22.9k
            sbr->GQ_ringbuf_index[ch] = 4;
1614
22.9k
            assembly_reset = 0;
1615
22.9k
        }
1616
1617
783k
        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
1618
743k
        {
1619
#ifdef SBR_LOW_POWER
1620
            uint8_t i_min1, i_plus1;
1621
            uint8_t sinusoids = 0;
1622
#endif
1623
1624
            /* load new values into ringbuffer */
1625
743k
            memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1626
743k
            memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1627
1628
10.9M
            for (m = 0; m < sbr->M; m++)
1629
10.2M
            {
1630
10.2M
                qmf_t psi;
1631
1632
10.2M
                G_filt = 0;
1633
10.2M
                Q_filt = 0;
1634
1635
10.2M
#ifndef SBR_LOW_POWER
1636
10.2M
                if (h_SL != 0)
1637
3.34M
                {
1638
3.34M
                    uint8_t ri = sbr->GQ_ringbuf_index[ch];
1639
20.0M
                    for (n = 0; n <= 4; n++)
1640
16.7M
                    {
1641
16.7M
                        real_t curr_h_smooth = h_smooth[n];
1642
16.7M
                        ri++;
1643
16.7M
                        if (ri >= 5)
1644
3.34M
                            ri -= 5;
1645
16.7M
                        G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth);
1646
16.7M
                        Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth);
1647
16.7M
                    }
1648
6.86M
               } else {
1649
6.86M
#endif
1650
6.86M
                    G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1651
6.86M
                    Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1652
6.86M
#ifndef SBR_LOW_POWER
1653
6.86M
                }
1654
10.2M
#endif
1655
10.2M
                if (adj->S_M_boost[l][m] != 0 || no_noise)
1656
1.01M
                    Q_filt = 0;
1657
1658
                /* add noise to the output */
1659
10.2M
                fIndexNoise = (fIndexNoise + 1) & 511;
1660
1661
                /* the smoothed gain values are applied to Xsbr */
1662
                /* V is defined, not calculated */
1663
                //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1664
                //    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1665
10.2M
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1666
10.2M
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1667
10.2M
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
1668
10.5k
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
1669
10.2M
#ifndef SBR_LOW_POWER
1670
                //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1671
                //    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1672
10.2M
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1673
10.2M
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1674
10.2M
#endif
1675
1676
10.2M
                {
1677
10.2M
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
1678
10.2M
                    QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
1679
10.2M
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);
1680
1681
10.2M
#ifndef SBR_LOW_POWER
1682
10.2M
                    QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
1683
10.2M
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
1684
#else
1685
1686
                    i_min1 = (fIndexSine - 1) & 3;
1687
                    i_plus1 = (fIndexSine + 1) & 3;
1688
1689
                    if ((m == 0) && (phi_re[i_plus1] != 0))
1690
                    {
1691
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) +=
1692
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815)));
1693
                        if (sbr->M != 0)
1694
                        {
1695
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1696
                                (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815)));
1697
                        }
1698
                    }
1699
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1700
                    {
1701
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1702
                            (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1703
                    }
1704
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
1705
                    {
1706
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1707
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815)));
1708
                    }
1709
                    if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1710
                    {
1711
                        if (m > 0)
1712
                        {
1713
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1714
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1715
                        }
1716
                        if (m + sbr->kx < 64)
1717
                        {
1718
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) +=
1719
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815)));
1720
                        }
1721
                    }
1722
1723
                    if (adj->S_M_boost[l][m] != 0)
1724
                        sinusoids++;
1725
#endif
1726
10.2M
                }
1727
10.2M
            }
1728
1729
743k
            fIndexSine = (fIndexSine + 1) & 3;
1730
1731
            /* update the ringbuffer index used for filtering G and Q with h_smooth */
1732
743k
            sbr->GQ_ringbuf_index[ch]++;
1733
743k
            if (sbr->GQ_ringbuf_index[ch] >= 5)
1734
159k
                sbr->GQ_ringbuf_index[ch] = 0;
1735
743k
        }
1736
40.5k
    }
1737
1738
23.8k
    sbr->index_noise_prev[ch] = fIndexNoise;
1739
23.8k
    sbr->psi_is_prev[ch] = fIndexSine;
1740
23.8k
}
sbr_hfadj.c:hf_assembly
Line
Count
Source
1565
9.63k
{
1566
9.63k
    static real_t h_smooth[] = {
1567
9.63k
        FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084),
1568
9.63k
        FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582),
1569
9.63k
        FRAC_CONST(0.33333333333333)
1570
9.63k
    };
1571
9.63k
    static int8_t phi_re[] = { 1, 0, -1, 0 };
1572
9.63k
    static int8_t phi_im[] = { 0, 1, 0, -1 };
1573
1574
9.63k
    uint8_t m, l, i, n;
1575
9.63k
    uint16_t fIndexNoise = 0;
1576
9.63k
    uint8_t fIndexSine = 0;
1577
9.63k
    uint8_t assembly_reset = 0;
1578
1579
9.63k
    real_t G_filt, Q_filt;
1580
1581
9.63k
    uint8_t h_SL;
1582
1583
1584
9.63k
    if (sbr->Reset == 1)
1585
9.32k
    {
1586
9.32k
        assembly_reset = 1;
1587
9.32k
        fIndexNoise = 0;
1588
9.32k
    } else {
1589
308
        fIndexNoise = sbr->index_noise_prev[ch];
1590
308
    }
1591
9.63k
    fIndexSine = sbr->psi_is_prev[ch];
1592
1593
1594
26.2k
    for (l = 0; l < sbr->L_E[ch]; l++)
1595
16.5k
    {
1596
16.5k
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
1597
1598
#ifdef SBR_LOW_POWER
1599
        h_SL = 0;
1600
#else
1601
16.5k
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
1602
16.5k
        h_SL = (no_noise ? 0 : h_SL);
1603
16.5k
#endif
1604
1605
16.5k
        if (assembly_reset)
1606
9.30k
        {
1607
46.5k
            for (n = 0; n < 4; n++)
1608
37.2k
            {
1609
37.2k
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1610
37.2k
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1611
37.2k
            }
1612
            /* reset ringbuffer index */
1613
9.30k
            sbr->GQ_ringbuf_index[ch] = 4;
1614
9.30k
            assembly_reset = 0;
1615
9.30k
        }
1616
1617
326k
        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
1618
309k
        {
1619
#ifdef SBR_LOW_POWER
1620
            uint8_t i_min1, i_plus1;
1621
            uint8_t sinusoids = 0;
1622
#endif
1623
1624
            /* load new values into ringbuffer */
1625
309k
            memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1626
309k
            memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1627
1628
4.86M
            for (m = 0; m < sbr->M; m++)
1629
4.55M
            {
1630
4.55M
                qmf_t psi;
1631
1632
4.55M
                G_filt = 0;
1633
4.55M
                Q_filt = 0;
1634
1635
4.55M
#ifndef SBR_LOW_POWER
1636
4.55M
                if (h_SL != 0)
1637
1.70M
                {
1638
1.70M
                    uint8_t ri = sbr->GQ_ringbuf_index[ch];
1639
10.2M
                    for (n = 0; n <= 4; n++)
1640
8.50M
                    {
1641
8.50M
                        real_t curr_h_smooth = h_smooth[n];
1642
8.50M
                        ri++;
1643
8.50M
                        if (ri >= 5)
1644
1.70M
                            ri -= 5;
1645
8.50M
                        G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth);
1646
8.50M
                        Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth);
1647
8.50M
                    }
1648
2.85M
               } else {
1649
2.85M
#endif
1650
2.85M
                    G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1651
2.85M
                    Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1652
2.85M
#ifndef SBR_LOW_POWER
1653
2.85M
                }
1654
4.55M
#endif
1655
4.55M
                if (adj->S_M_boost[l][m] != 0 || no_noise)
1656
549k
                    Q_filt = 0;
1657
1658
                /* add noise to the output */
1659
4.55M
                fIndexNoise = (fIndexNoise + 1) & 511;
1660
1661
                /* the smoothed gain values are applied to Xsbr */
1662
                /* V is defined, not calculated */
1663
                //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1664
                //    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1665
4.55M
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1666
4.55M
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1667
4.55M
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
1668
4.39k
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
1669
4.55M
#ifndef SBR_LOW_POWER
1670
                //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1671
                //    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1672
4.55M
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1673
4.55M
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1674
4.55M
#endif
1675
1676
4.55M
                {
1677
4.55M
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
1678
4.55M
                    QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
1679
4.55M
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);
1680
1681
4.55M
#ifndef SBR_LOW_POWER
1682
4.55M
                    QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
1683
4.55M
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
1684
#else
1685
1686
                    i_min1 = (fIndexSine - 1) & 3;
1687
                    i_plus1 = (fIndexSine + 1) & 3;
1688
1689
                    if ((m == 0) && (phi_re[i_plus1] != 0))
1690
                    {
1691
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) +=
1692
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815)));
1693
                        if (sbr->M != 0)
1694
                        {
1695
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1696
                                (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815)));
1697
                        }
1698
                    }
1699
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1700
                    {
1701
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1702
                            (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1703
                    }
1704
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
1705
                    {
1706
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1707
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815)));
1708
                    }
1709
                    if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1710
                    {
1711
                        if (m > 0)
1712
                        {
1713
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1714
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1715
                        }
1716
                        if (m + sbr->kx < 64)
1717
                        {
1718
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) +=
1719
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815)));
1720
                        }
1721
                    }
1722
1723
                    if (adj->S_M_boost[l][m] != 0)
1724
                        sinusoids++;
1725
#endif
1726
4.55M
                }
1727
4.55M
            }
1728
1729
309k
            fIndexSine = (fIndexSine + 1) & 3;
1730
1731
            /* update the ringbuffer index used for filtering G and Q with h_smooth */
1732
309k
            sbr->GQ_ringbuf_index[ch]++;
1733
309k
            if (sbr->GQ_ringbuf_index[ch] >= 5)
1734
66.3k
                sbr->GQ_ringbuf_index[ch] = 0;
1735
309k
        }
1736
16.5k
    }
1737
1738
9.63k
    sbr->index_noise_prev[ch] = fIndexNoise;
1739
9.63k
    sbr->psi_is_prev[ch] = fIndexSine;
1740
9.63k
}
sbr_hfadj.c:hf_assembly
Line
Count
Source
1565
14.1k
{
1566
14.1k
    static real_t h_smooth[] = {
1567
14.1k
        FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084),
1568
14.1k
        FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582),
1569
14.1k
        FRAC_CONST(0.33333333333333)
1570
14.1k
    };
1571
14.1k
    static int8_t phi_re[] = { 1, 0, -1, 0 };
1572
14.1k
    static int8_t phi_im[] = { 0, 1, 0, -1 };
1573
1574
14.1k
    uint8_t m, l, i, n;
1575
14.1k
    uint16_t fIndexNoise = 0;
1576
14.1k
    uint8_t fIndexSine = 0;
1577
14.1k
    uint8_t assembly_reset = 0;
1578
1579
14.1k
    real_t G_filt, Q_filt;
1580
1581
14.1k
    uint8_t h_SL;
1582
1583
1584
14.1k
    if (sbr->Reset == 1)
1585
13.6k
    {
1586
13.6k
        assembly_reset = 1;
1587
13.6k
        fIndexNoise = 0;
1588
13.6k
    } else {
1589
525
        fIndexNoise = sbr->index_noise_prev[ch];
1590
525
    }
1591
14.1k
    fIndexSine = sbr->psi_is_prev[ch];
1592
1593
1594
38.0k
    for (l = 0; l < sbr->L_E[ch]; l++)
1595
23.9k
    {
1596
23.9k
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
1597
1598
#ifdef SBR_LOW_POWER
1599
        h_SL = 0;
1600
#else
1601
23.9k
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
1602
23.9k
        h_SL = (no_noise ? 0 : h_SL);
1603
23.9k
#endif
1604
1605
23.9k
        if (assembly_reset)
1606
13.6k
        {
1607
68.0k
            for (n = 0; n < 4; n++)
1608
54.4k
            {
1609
54.4k
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1610
54.4k
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1611
54.4k
            }
1612
            /* reset ringbuffer index */
1613
13.6k
            sbr->GQ_ringbuf_index[ch] = 4;
1614
13.6k
            assembly_reset = 0;
1615
13.6k
        }
1616
1617
457k
        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
1618
433k
        {
1619
#ifdef SBR_LOW_POWER
1620
            uint8_t i_min1, i_plus1;
1621
            uint8_t sinusoids = 0;
1622
#endif
1623
1624
            /* load new values into ringbuffer */
1625
433k
            memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1626
433k
            memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1627
1628
6.08M
            for (m = 0; m < sbr->M; m++)
1629
5.65M
            {
1630
5.65M
                qmf_t psi;
1631
1632
5.65M
                G_filt = 0;
1633
5.65M
                Q_filt = 0;
1634
1635
5.65M
#ifndef SBR_LOW_POWER
1636
5.65M
                if (h_SL != 0)
1637
1.64M
                {
1638
1.64M
                    uint8_t ri = sbr->GQ_ringbuf_index[ch];
1639
9.86M
                    for (n = 0; n <= 4; n++)
1640
8.22M
                    {
1641
8.22M
                        real_t curr_h_smooth = h_smooth[n];
1642
8.22M
                        ri++;
1643
8.22M
                        if (ri >= 5)
1644
1.64M
                            ri -= 5;
1645
8.22M
                        G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth);
1646
8.22M
                        Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth);
1647
8.22M
                    }
1648
4.00M
               } else {
1649
4.00M
#endif
1650
4.00M
                    G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1651
4.00M
                    Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1652
4.00M
#ifndef SBR_LOW_POWER
1653
4.00M
                }
1654
5.65M
#endif
1655
5.65M
                if (adj->S_M_boost[l][m] != 0 || no_noise)
1656
469k
                    Q_filt = 0;
1657
1658
                /* add noise to the output */
1659
5.65M
                fIndexNoise = (fIndexNoise + 1) & 511;
1660
1661
                /* the smoothed gain values are applied to Xsbr */
1662
                /* V is defined, not calculated */
1663
                //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1664
                //    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1665
5.65M
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1666
5.65M
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1667
5.65M
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
1668
6.12k
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
1669
5.65M
#ifndef SBR_LOW_POWER
1670
                //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1671
                //    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1672
5.65M
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1673
5.65M
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1674
5.65M
#endif
1675
1676
5.65M
                {
1677
5.65M
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
1678
5.65M
                    QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
1679
5.65M
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);
1680
1681
5.65M
#ifndef SBR_LOW_POWER
1682
5.65M
                    QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
1683
5.65M
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
1684
#else
1685
1686
                    i_min1 = (fIndexSine - 1) & 3;
1687
                    i_plus1 = (fIndexSine + 1) & 3;
1688
1689
                    if ((m == 0) && (phi_re[i_plus1] != 0))
1690
                    {
1691
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) +=
1692
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815)));
1693
                        if (sbr->M != 0)
1694
                        {
1695
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1696
                                (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815)));
1697
                        }
1698
                    }
1699
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1700
                    {
1701
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1702
                            (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1703
                    }
1704
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
1705
                    {
1706
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1707
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815)));
1708
                    }
1709
                    if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1710
                    {
1711
                        if (m > 0)
1712
                        {
1713
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1714
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1715
                        }
1716
                        if (m + sbr->kx < 64)
1717
                        {
1718
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) +=
1719
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815)));
1720
                        }
1721
                    }
1722
1723
                    if (adj->S_M_boost[l][m] != 0)
1724
                        sinusoids++;
1725
#endif
1726
5.65M
                }
1727
5.65M
            }
1728
1729
433k
            fIndexSine = (fIndexSine + 1) & 3;
1730
1731
            /* update the ringbuffer index used for filtering G and Q with h_smooth */
1732
433k
            sbr->GQ_ringbuf_index[ch]++;
1733
433k
            if (sbr->GQ_ringbuf_index[ch] >= 5)
1734
93.2k
                sbr->GQ_ringbuf_index[ch] = 0;
1735
433k
        }
1736
23.9k
    }
1737
1738
14.1k
    sbr->index_noise_prev[ch] = fIndexNoise;
1739
14.1k
    sbr->psi_is_prev[ch] = fIndexSine;
1740
14.1k
}
1741
1742
#endif