Coverage Report

Created: 2025-07-23 06:30

/proc/self/cwd/libfaad/ps_dec.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: ps_dec.c,v 1.16 2009/01/26 22:32:31 menno Exp $
29
**/
30
31
#include "common.h"
32
33
#ifdef PS_DEC
34
35
#include <stdlib.h>
36
#include <stdio.h>
37
#include "ps_dec.h"
38
#include "ps_tables.h"
39
40
/* constants */
41
51.6M
#define NEGATE_IPD_MASK            (0x1000)
42
386k
#define DECAY_SLOPE                FRAC_CONST(0.05)
43
#define COEF_SQRT2                 COEF_CONST(1.4142135623731)
44
45
/* tables */
46
/* filters are mirrored in coef 6, second half left out */
47
static const real_t p8_13_20[7] =
48
{
49
    FRAC_CONST(0.00746082949812),
50
    FRAC_CONST(0.02270420949825),
51
    FRAC_CONST(0.04546865930473),
52
    FRAC_CONST(0.07266113929591),
53
    FRAC_CONST(0.09885108575264),
54
    FRAC_CONST(0.11793710567217),
55
    FRAC_CONST(0.125)
56
};
57
58
static const real_t p2_13_20[7] =
59
{
60
    FRAC_CONST(0.0),
61
    FRAC_CONST(0.01899487526049),
62
    FRAC_CONST(0.0),
63
    FRAC_CONST(-0.07293139167538),
64
    FRAC_CONST(0.0),
65
    FRAC_CONST(0.30596630545168),
66
    FRAC_CONST(0.5)
67
};
68
69
static const real_t p12_13_34[7] =
70
{
71
    FRAC_CONST(0.04081179924692),
72
    FRAC_CONST(0.03812810994926),
73
    FRAC_CONST(0.05144908135699),
74
    FRAC_CONST(0.06399831151592),
75
    FRAC_CONST(0.07428313801106),
76
    FRAC_CONST(0.08100347892914),
77
    FRAC_CONST(0.08333333333333)
78
};
79
80
static const real_t p8_13_34[7] =
81
{
82
    FRAC_CONST(0.01565675600122),
83
    FRAC_CONST(0.03752716391991),
84
    FRAC_CONST(0.05417891378782),
85
    FRAC_CONST(0.08417044116767),
86
    FRAC_CONST(0.10307344158036),
87
    FRAC_CONST(0.12222452249753),
88
    FRAC_CONST(0.125)
89
};
90
91
static const real_t p4_13_34[7] =
92
{
93
    FRAC_CONST(-0.05908211155639),
94
    FRAC_CONST(-0.04871498374946),
95
    FRAC_CONST(0.0),
96
    FRAC_CONST(0.07778723915851),
97
    FRAC_CONST(0.16486303567403),
98
    FRAC_CONST(0.23279856662996),
99
    FRAC_CONST(0.25)
100
};
101
102
#ifdef PARAM_32KHZ
103
static const uint8_t delay_length_d[2][NO_ALLPASS_LINKS] = {
104
    { 1, 2, 3 } /* d_24kHz */,
105
    { 3, 4, 5 } /* d_48kHz */
106
};
107
#else
108
static const uint8_t delay_length_d[NO_ALLPASS_LINKS] = {
109
    3, 4, 5 /* d_48kHz */
110
};
111
#endif
112
static const real_t filter_a[NO_ALLPASS_LINKS] = { /* a(m) = exp(-d_48kHz(m)/7) */
113
    FRAC_CONST(0.65143905753106),
114
    FRAC_CONST(0.56471812200776),
115
    FRAC_CONST(0.48954165955695)
116
};
117
118
static const uint8_t group_border20[10+12 + 1] =
119
{
120
    6, 7, 0, 1, 2, 3, /* 6 subqmf subbands */
121
    9, 8,             /* 2 subqmf subbands */
122
    10, 11,           /* 2 subqmf subbands */
123
    3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 35, 64
124
};
125
126
static const uint8_t group_border34[32+18 + 1] =
127
{
128
     0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, /* 12 subqmf subbands */
129
     12, 13, 14, 15, 16, 17, 18, 19,                 /*  8 subqmf subbands */
130
     20, 21, 22, 23,                                 /*  4 subqmf subbands */
131
     24, 25, 26, 27,                                 /*  4 subqmf subbands */
132
     28, 29, 30, 31,                                 /*  4 subqmf subbands */
133
     32-27, 33-27, 34-27, 35-27, 36-27, 37-27, 38-27, 40-27, 42-27, 44-27, 46-27, 48-27, 51-27, 54-27, 57-27, 60-27, 64-27, 68-27, 91-27
134
};
135
136
static const uint16_t map_group2bk20[10+12] =
137
{
138
    (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
139
    0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
140
};
141
142
static const uint16_t map_group2bk34[32+18] =
143
{
144
    0,  1,  2,  3,  4,  5,  6,  6,  7, (NEGATE_IPD_MASK | 2), (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
145
    10, 10, 4,  5,  6,  7,  8,  9,
146
    10, 11, 12, 9,
147
    14, 11, 12, 13,
148
    14, 15, 16, 13,
149
    16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33
150
};
151
152
/* type definitions */
153
typedef struct
154
{
155
    uint8_t frame_len;
156
    uint8_t resolution20[3];
157
    uint8_t resolution34[5];
158
159
    qmf_t *work;
160
    qmf_t **buffer;
161
    qmf_t **temp;
162
} hyb_info;
163
164
/* static function declarations */
165
static void ps_data_decode(ps_info *ps);
166
static hyb_info *hybrid_init(uint8_t numTimeSlotsRate);
167
static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
168
                            qmf_t *buffer, qmf_t **X_hybrid);
169
static void INLINE DCT3_4_unscaled(real_t *y, real_t *x);
170
static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
171
                            qmf_t *buffer, qmf_t **X_hybrid);
172
static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
173
                            uint8_t use34, uint8_t numTimeSlotsRate);
174
static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
175
                             uint8_t use34, uint8_t numTimeSlotsRate);
176
static int8_t delta_clip(int8_t i, int8_t min, int8_t max);
177
static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
178
                         uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
179
                         int8_t min_index, int8_t max_index);
180
static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
181
                                uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
182
                                int8_t and_modulo);
183
static void map20indexto34(int8_t *index, uint8_t bins);
184
#ifdef PS_LOW_POWER
185
static void map34indexto20(int8_t *index, uint8_t bins);
186
#endif
187
static void ps_data_decode(ps_info *ps);
188
static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
189
                           qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
190
static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
191
                         qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
192
193
/*  */
194
195
196
static hyb_info *hybrid_init(uint8_t numTimeSlotsRate)
197
32.1k
{
198
32.1k
    uint8_t i;
199
200
32.1k
    hyb_info *hyb = (hyb_info*)faad_malloc(sizeof(hyb_info));
201
202
32.1k
    hyb->resolution34[0] = 12;
203
32.1k
    hyb->resolution34[1] = 8;
204
32.1k
    hyb->resolution34[2] = 4;
205
32.1k
    hyb->resolution34[3] = 4;
206
32.1k
    hyb->resolution34[4] = 4;
207
208
32.1k
    hyb->resolution20[0] = 8;
209
32.1k
    hyb->resolution20[1] = 2;
210
32.1k
    hyb->resolution20[2] = 2;
211
212
32.1k
    hyb->frame_len = numTimeSlotsRate;
213
214
32.1k
    hyb->work = (qmf_t*)faad_malloc((hyb->frame_len+12) * sizeof(qmf_t));
215
32.1k
    memset(hyb->work, 0, (hyb->frame_len+12) * sizeof(qmf_t));
216
217
32.1k
    hyb->buffer = (qmf_t**)faad_malloc(5 * sizeof(qmf_t*));
218
192k
    for (i = 0; i < 5; i++)
219
160k
    {
220
160k
        hyb->buffer[i] = (qmf_t*)faad_malloc(hyb->frame_len * sizeof(qmf_t));
221
160k
        memset(hyb->buffer[i], 0, hyb->frame_len * sizeof(qmf_t));
222
160k
    }
223
224
32.1k
    hyb->temp = (qmf_t**)faad_malloc(hyb->frame_len * sizeof(qmf_t*));
225
1.04M
    for (i = 0; i < hyb->frame_len; i++)
226
1.01M
    {
227
1.01M
        hyb->temp[i] = (qmf_t*)faad_malloc(12 /*max*/ * sizeof(qmf_t));
228
1.01M
    }
229
230
32.1k
    return hyb;
231
32.1k
}
232
233
static void hybrid_free(hyb_info *hyb)
234
32.1k
{
235
32.1k
    uint8_t i;
236
237
32.1k
  if (!hyb) return;
238
239
32.1k
    if (hyb->work)
240
32.1k
        faad_free(hyb->work);
241
242
192k
    for (i = 0; i < 5; i++)
243
160k
    {
244
160k
        if (hyb->buffer[i])
245
160k
            faad_free(hyb->buffer[i]);
246
160k
    }
247
32.1k
    if (hyb->buffer)
248
32.1k
        faad_free(hyb->buffer);
249
250
1.04M
    for (i = 0; i < hyb->frame_len; i++)
251
1.01M
    {
252
1.01M
        if (hyb->temp[i])
253
1.01M
            faad_free(hyb->temp[i]);
254
1.01M
    }
255
32.1k
    if (hyb->temp)
256
32.1k
        faad_free(hyb->temp);
257
258
32.1k
    faad_free(hyb);
259
32.1k
}
260
261
/* real filter, size 2 */
262
static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
263
                            qmf_t *buffer, qmf_t **X_hybrid)
264
49.4k
{
265
49.4k
    uint8_t i;
266
49.4k
    (void)hyb;  /* TODO: remove parameter? */
267
268
1.60M
    for (i = 0; i < frame_len; i++)
269
1.55M
    {
270
1.55M
        real_t r0 = MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i])));
271
1.55M
        real_t r1 = MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i])));
272
1.55M
        real_t r2 = MUL_F(filter[2],(QMF_RE(buffer[2+i]) + QMF_RE(buffer[10+i])));
273
1.55M
        real_t r3 = MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
274
1.55M
        real_t r4 = MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
275
1.55M
        real_t r5 = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
276
1.55M
        real_t r6 = MUL_F(filter[6],QMF_RE(buffer[6+i]));
277
1.55M
        real_t i0 = MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i])));
278
1.55M
        real_t i1 = MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i])));
279
1.55M
        real_t i2 = MUL_F(filter[2],(QMF_IM(buffer[2+i]) + QMF_IM(buffer[10+i])));
280
1.55M
        real_t i3 = MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
281
1.55M
        real_t i4 = MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
282
1.55M
        real_t i5 = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
283
1.55M
        real_t i6 = MUL_F(filter[6],QMF_IM(buffer[6+i]));
284
285
        /* q = 0 */
286
1.55M
        QMF_RE(X_hybrid[i][0]) = r0 + r1 + r2 + r3 + r4 + r5 + r6;
287
1.55M
        QMF_IM(X_hybrid[i][0]) = i0 + i1 + i2 + i3 + i4 + i5 + i6;
288
289
        /* q = 1 */
290
1.55M
        QMF_RE(X_hybrid[i][1]) = r0 - r1 + r2 - r3 + r4 - r5 + r6;
291
1.55M
        QMF_IM(X_hybrid[i][1]) = i0 - i1 + i2 - i3 + i4 - i5 + i6;
292
1.55M
    }
293
49.4k
}
ps_dec.c:channel_filter2
Line
Count
Source
264
24.7k
{
265
24.7k
    uint8_t i;
266
24.7k
    (void)hyb;  /* TODO: remove parameter? */
267
268
803k
    for (i = 0; i < frame_len; i++)
269
778k
    {
270
778k
        real_t r0 = MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i])));
271
778k
        real_t r1 = MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i])));
272
778k
        real_t r2 = MUL_F(filter[2],(QMF_RE(buffer[2+i]) + QMF_RE(buffer[10+i])));
273
778k
        real_t r3 = MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
274
778k
        real_t r4 = MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
275
778k
        real_t r5 = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
276
778k
        real_t r6 = MUL_F(filter[6],QMF_RE(buffer[6+i]));
277
778k
        real_t i0 = MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i])));
278
778k
        real_t i1 = MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i])));
279
778k
        real_t i2 = MUL_F(filter[2],(QMF_IM(buffer[2+i]) + QMF_IM(buffer[10+i])));
280
778k
        real_t i3 = MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
281
778k
        real_t i4 = MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
282
778k
        real_t i5 = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
283
778k
        real_t i6 = MUL_F(filter[6],QMF_IM(buffer[6+i]));
284
285
        /* q = 0 */
286
778k
        QMF_RE(X_hybrid[i][0]) = r0 + r1 + r2 + r3 + r4 + r5 + r6;
287
778k
        QMF_IM(X_hybrid[i][0]) = i0 + i1 + i2 + i3 + i4 + i5 + i6;
288
289
        /* q = 1 */
290
778k
        QMF_RE(X_hybrid[i][1]) = r0 - r1 + r2 - r3 + r4 - r5 + r6;
291
778k
        QMF_IM(X_hybrid[i][1]) = i0 - i1 + i2 - i3 + i4 - i5 + i6;
292
778k
    }
293
24.7k
}
ps_dec.c:channel_filter2
Line
Count
Source
264
24.7k
{
265
24.7k
    uint8_t i;
266
24.7k
    (void)hyb;  /* TODO: remove parameter? */
267
268
803k
    for (i = 0; i < frame_len; i++)
269
778k
    {
270
778k
        real_t r0 = MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i])));
271
778k
        real_t r1 = MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i])));
272
778k
        real_t r2 = MUL_F(filter[2],(QMF_RE(buffer[2+i]) + QMF_RE(buffer[10+i])));
273
778k
        real_t r3 = MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
274
778k
        real_t r4 = MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
275
778k
        real_t r5 = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
276
778k
        real_t r6 = MUL_F(filter[6],QMF_RE(buffer[6+i]));
277
778k
        real_t i0 = MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i])));
278
778k
        real_t i1 = MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i])));
279
778k
        real_t i2 = MUL_F(filter[2],(QMF_IM(buffer[2+i]) + QMF_IM(buffer[10+i])));
280
778k
        real_t i3 = MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
281
778k
        real_t i4 = MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
282
778k
        real_t i5 = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
283
778k
        real_t i6 = MUL_F(filter[6],QMF_IM(buffer[6+i]));
284
285
        /* q = 0 */
286
778k
        QMF_RE(X_hybrid[i][0]) = r0 + r1 + r2 + r3 + r4 + r5 + r6;
287
778k
        QMF_IM(X_hybrid[i][0]) = i0 + i1 + i2 + i3 + i4 + i5 + i6;
288
289
        /* q = 1 */
290
778k
        QMF_RE(X_hybrid[i][1]) = r0 - r1 + r2 - r3 + r4 - r5 + r6;
291
778k
        QMF_IM(X_hybrid[i][1]) = i0 - i1 + i2 - i3 + i4 - i5 + i6;
292
778k
    }
293
24.7k
}
294
295
/* complex filter, size 4 */
296
static void channel_filter4(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
297
                            qmf_t *buffer, qmf_t **X_hybrid)
298
23.9k
{
299
23.9k
    uint8_t i;
300
23.9k
    real_t input_re1[2], input_re2[2], input_im1[2], input_im2[2];
301
23.9k
    (void)hyb;  /* TODO: remove parameter? */
302
303
760k
    for (i = 0; i < frame_len; i++)
304
736k
    {
305
736k
        input_re1[0] = -MUL_F(filter[2], (QMF_RE(buffer[i+2]) + QMF_RE(buffer[i+10]))) +
306
736k
            MUL_F(filter[6], QMF_RE(buffer[i+6]));
307
736k
        input_re1[1] = MUL_F(FRAC_CONST(-0.70710678118655),
308
736k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) + QMF_RE(buffer[i+11]))) +
309
736k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) + QMF_RE(buffer[i+9]))) -
310
736k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) + QMF_RE(buffer[i+7])))));
311
312
736k
        input_im1[0] = MUL_F(filter[0], (QMF_IM(buffer[i+0]) - QMF_IM(buffer[i+12]))) -
313
736k
            MUL_F(filter[4], (QMF_IM(buffer[i+4]) - QMF_IM(buffer[i+8])));
314
736k
        input_im1[1] = MUL_F(FRAC_CONST(0.70710678118655),
315
736k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) - QMF_IM(buffer[i+11]))) -
316
736k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) - QMF_IM(buffer[i+9]))) -
317
736k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) - QMF_IM(buffer[i+7])))));
318
319
736k
        input_re2[0] = MUL_F(filter[0], (QMF_RE(buffer[i+0]) - QMF_RE(buffer[i+12]))) -
320
736k
            MUL_F(filter[4], (QMF_RE(buffer[i+4]) - QMF_RE(buffer[i+8])));
321
736k
        input_re2[1] = MUL_F(FRAC_CONST(0.70710678118655),
322
736k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) - QMF_RE(buffer[i+11]))) -
323
736k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) - QMF_RE(buffer[i+9]))) -
324
736k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) - QMF_RE(buffer[i+7])))));
325
326
736k
        input_im2[0] = -MUL_F(filter[2], (QMF_IM(buffer[i+2]) + QMF_IM(buffer[i+10]))) +
327
736k
            MUL_F(filter[6], QMF_IM(buffer[i+6]));
328
736k
        input_im2[1] = MUL_F(FRAC_CONST(-0.70710678118655),
329
736k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) + QMF_IM(buffer[i+11]))) +
330
736k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) + QMF_IM(buffer[i+9]))) -
331
736k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) + QMF_IM(buffer[i+7])))));
332
333
        /* q == 0 */
334
736k
        QMF_RE(X_hybrid[i][0]) =  input_re1[0] + input_re1[1] + input_im1[0] + input_im1[1];
335
736k
        QMF_IM(X_hybrid[i][0]) = -input_re2[0] - input_re2[1] + input_im2[0] + input_im2[1];
336
337
        /* q == 1 */
338
736k
        QMF_RE(X_hybrid[i][1]) =  input_re1[0] - input_re1[1] - input_im1[0] + input_im1[1];
339
736k
        QMF_IM(X_hybrid[i][1]) =  input_re2[0] - input_re2[1] + input_im2[0] - input_im2[1];
340
341
        /* q == 2 */
342
736k
        QMF_RE(X_hybrid[i][2]) =  input_re1[0] - input_re1[1] + input_im1[0] - input_im1[1];
343
736k
        QMF_IM(X_hybrid[i][2]) = -input_re2[0] + input_re2[1] + input_im2[0] - input_im2[1];
344
345
        /* q == 3 */
346
736k
        QMF_RE(X_hybrid[i][3]) =  input_re1[0] + input_re1[1] - input_im1[0] - input_im1[1];
347
736k
        QMF_IM(X_hybrid[i][3]) =  input_re2[0] + input_re2[1] + input_im2[0] + input_im2[1];
348
736k
    }
349
23.9k
}
ps_dec.c:channel_filter4
Line
Count
Source
298
11.3k
{
299
11.3k
    uint8_t i;
300
11.3k
    real_t input_re1[2], input_re2[2], input_im1[2], input_im2[2];
301
11.3k
    (void)hyb;  /* TODO: remove parameter? */
302
303
359k
    for (i = 0; i < frame_len; i++)
304
348k
    {
305
348k
        input_re1[0] = -MUL_F(filter[2], (QMF_RE(buffer[i+2]) + QMF_RE(buffer[i+10]))) +
306
348k
            MUL_F(filter[6], QMF_RE(buffer[i+6]));
307
348k
        input_re1[1] = MUL_F(FRAC_CONST(-0.70710678118655),
308
348k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) + QMF_RE(buffer[i+11]))) +
309
348k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) + QMF_RE(buffer[i+9]))) -
310
348k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) + QMF_RE(buffer[i+7])))));
311
312
348k
        input_im1[0] = MUL_F(filter[0], (QMF_IM(buffer[i+0]) - QMF_IM(buffer[i+12]))) -
313
348k
            MUL_F(filter[4], (QMF_IM(buffer[i+4]) - QMF_IM(buffer[i+8])));
314
348k
        input_im1[1] = MUL_F(FRAC_CONST(0.70710678118655),
315
348k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) - QMF_IM(buffer[i+11]))) -
316
348k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) - QMF_IM(buffer[i+9]))) -
317
348k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) - QMF_IM(buffer[i+7])))));
318
319
348k
        input_re2[0] = MUL_F(filter[0], (QMF_RE(buffer[i+0]) - QMF_RE(buffer[i+12]))) -
320
348k
            MUL_F(filter[4], (QMF_RE(buffer[i+4]) - QMF_RE(buffer[i+8])));
321
348k
        input_re2[1] = MUL_F(FRAC_CONST(0.70710678118655),
322
348k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) - QMF_RE(buffer[i+11]))) -
323
348k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) - QMF_RE(buffer[i+9]))) -
324
348k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) - QMF_RE(buffer[i+7])))));
325
326
348k
        input_im2[0] = -MUL_F(filter[2], (QMF_IM(buffer[i+2]) + QMF_IM(buffer[i+10]))) +
327
348k
            MUL_F(filter[6], QMF_IM(buffer[i+6]));
328
348k
        input_im2[1] = MUL_F(FRAC_CONST(-0.70710678118655),
329
348k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) + QMF_IM(buffer[i+11]))) +
330
348k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) + QMF_IM(buffer[i+9]))) -
331
348k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) + QMF_IM(buffer[i+7])))));
332
333
        /* q == 0 */
334
348k
        QMF_RE(X_hybrid[i][0]) =  input_re1[0] + input_re1[1] + input_im1[0] + input_im1[1];
335
348k
        QMF_IM(X_hybrid[i][0]) = -input_re2[0] - input_re2[1] + input_im2[0] + input_im2[1];
336
337
        /* q == 1 */
338
348k
        QMF_RE(X_hybrid[i][1]) =  input_re1[0] - input_re1[1] - input_im1[0] + input_im1[1];
339
348k
        QMF_IM(X_hybrid[i][1]) =  input_re2[0] - input_re2[1] + input_im2[0] - input_im2[1];
340
341
        /* q == 2 */
342
348k
        QMF_RE(X_hybrid[i][2]) =  input_re1[0] - input_re1[1] + input_im1[0] - input_im1[1];
343
348k
        QMF_IM(X_hybrid[i][2]) = -input_re2[0] + input_re2[1] + input_im2[0] - input_im2[1];
344
345
        /* q == 3 */
346
348k
        QMF_RE(X_hybrid[i][3]) =  input_re1[0] + input_re1[1] - input_im1[0] - input_im1[1];
347
348k
        QMF_IM(X_hybrid[i][3]) =  input_re2[0] + input_re2[1] + input_im2[0] + input_im2[1];
348
348k
    }
349
11.3k
}
ps_dec.c:channel_filter4
Line
Count
Source
298
12.6k
{
299
12.6k
    uint8_t i;
300
12.6k
    real_t input_re1[2], input_re2[2], input_im1[2], input_im2[2];
301
12.6k
    (void)hyb;  /* TODO: remove parameter? */
302
303
400k
    for (i = 0; i < frame_len; i++)
304
388k
    {
305
388k
        input_re1[0] = -MUL_F(filter[2], (QMF_RE(buffer[i+2]) + QMF_RE(buffer[i+10]))) +
306
388k
            MUL_F(filter[6], QMF_RE(buffer[i+6]));
307
388k
        input_re1[1] = MUL_F(FRAC_CONST(-0.70710678118655),
308
388k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) + QMF_RE(buffer[i+11]))) +
309
388k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) + QMF_RE(buffer[i+9]))) -
310
388k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) + QMF_RE(buffer[i+7])))));
311
312
388k
        input_im1[0] = MUL_F(filter[0], (QMF_IM(buffer[i+0]) - QMF_IM(buffer[i+12]))) -
313
388k
            MUL_F(filter[4], (QMF_IM(buffer[i+4]) - QMF_IM(buffer[i+8])));
314
388k
        input_im1[1] = MUL_F(FRAC_CONST(0.70710678118655),
315
388k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) - QMF_IM(buffer[i+11]))) -
316
388k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) - QMF_IM(buffer[i+9]))) -
317
388k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) - QMF_IM(buffer[i+7])))));
318
319
388k
        input_re2[0] = MUL_F(filter[0], (QMF_RE(buffer[i+0]) - QMF_RE(buffer[i+12]))) -
320
388k
            MUL_F(filter[4], (QMF_RE(buffer[i+4]) - QMF_RE(buffer[i+8])));
321
388k
        input_re2[1] = MUL_F(FRAC_CONST(0.70710678118655),
322
388k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) - QMF_RE(buffer[i+11]))) -
323
388k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) - QMF_RE(buffer[i+9]))) -
324
388k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) - QMF_RE(buffer[i+7])))));
325
326
388k
        input_im2[0] = -MUL_F(filter[2], (QMF_IM(buffer[i+2]) + QMF_IM(buffer[i+10]))) +
327
388k
            MUL_F(filter[6], QMF_IM(buffer[i+6]));
328
388k
        input_im2[1] = MUL_F(FRAC_CONST(-0.70710678118655),
329
388k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) + QMF_IM(buffer[i+11]))) +
330
388k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) + QMF_IM(buffer[i+9]))) -
331
388k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) + QMF_IM(buffer[i+7])))));
332
333
        /* q == 0 */
334
388k
        QMF_RE(X_hybrid[i][0]) =  input_re1[0] + input_re1[1] + input_im1[0] + input_im1[1];
335
388k
        QMF_IM(X_hybrid[i][0]) = -input_re2[0] - input_re2[1] + input_im2[0] + input_im2[1];
336
337
        /* q == 1 */
338
388k
        QMF_RE(X_hybrid[i][1]) =  input_re1[0] - input_re1[1] - input_im1[0] + input_im1[1];
339
388k
        QMF_IM(X_hybrid[i][1]) =  input_re2[0] - input_re2[1] + input_im2[0] - input_im2[1];
340
341
        /* q == 2 */
342
388k
        QMF_RE(X_hybrid[i][2]) =  input_re1[0] - input_re1[1] + input_im1[0] - input_im1[1];
343
388k
        QMF_IM(X_hybrid[i][2]) = -input_re2[0] + input_re2[1] + input_im2[0] - input_im2[1];
344
345
        /* q == 3 */
346
388k
        QMF_RE(X_hybrid[i][3]) =  input_re1[0] + input_re1[1] - input_im1[0] - input_im1[1];
347
388k
        QMF_IM(X_hybrid[i][3]) =  input_re2[0] + input_re2[1] + input_im2[0] + input_im2[1];
348
388k
    }
349
12.6k
}
350
351
static void INLINE DCT3_4_unscaled(real_t *y, real_t *x)
352
2.53M
{
353
2.53M
    real_t f0, f1, f2, f3, f4, f5, f6, f7, f8;
354
355
2.53M
    f0 = MUL_F(x[2], FRAC_CONST(0.7071067811865476));
356
2.53M
    f1 = x[0] - f0;
357
2.53M
    f2 = x[0] + f0;
358
2.53M
    f3 = x[1] + x[3];
359
2.53M
    f4 = MUL_C(x[1], COEF_CONST(1.3065629648763766));
360
2.53M
    f5 = MUL_F(f3, FRAC_CONST(-0.9238795325112866));
361
2.53M
    f6 = MUL_F(x[3], FRAC_CONST(-0.5411961001461967));
362
2.53M
    f7 = f4 + f5;
363
2.53M
    f8 = f6 - f5;
364
2.53M
    y[3] = f2 - f8;
365
2.53M
    y[0] = f2 + f8;
366
2.53M
    y[2] = f1 - f7;
367
2.53M
    y[1] = f1 + f7;
368
2.53M
}
ps_dec.c:DCT3_4_unscaled
Line
Count
Source
352
1.13M
{
353
1.13M
    real_t f0, f1, f2, f3, f4, f5, f6, f7, f8;
354
355
1.13M
    f0 = MUL_F(x[2], FRAC_CONST(0.7071067811865476));
356
1.13M
    f1 = x[0] - f0;
357
1.13M
    f2 = x[0] + f0;
358
1.13M
    f3 = x[1] + x[3];
359
1.13M
    f4 = MUL_C(x[1], COEF_CONST(1.3065629648763766));
360
1.13M
    f5 = MUL_F(f3, FRAC_CONST(-0.9238795325112866));
361
1.13M
    f6 = MUL_F(x[3], FRAC_CONST(-0.5411961001461967));
362
1.13M
    f7 = f4 + f5;
363
1.13M
    f8 = f6 - f5;
364
1.13M
    y[3] = f2 - f8;
365
1.13M
    y[0] = f2 + f8;
366
1.13M
    y[2] = f1 - f7;
367
1.13M
    y[1] = f1 + f7;
368
1.13M
}
ps_dec.c:DCT3_4_unscaled
Line
Count
Source
352
1.40M
{
353
1.40M
    real_t f0, f1, f2, f3, f4, f5, f6, f7, f8;
354
355
1.40M
    f0 = MUL_F(x[2], FRAC_CONST(0.7071067811865476));
356
1.40M
    f1 = x[0] - f0;
357
1.40M
    f2 = x[0] + f0;
358
1.40M
    f3 = x[1] + x[3];
359
1.40M
    f4 = MUL_C(x[1], COEF_CONST(1.3065629648763766));
360
1.40M
    f5 = MUL_F(f3, FRAC_CONST(-0.9238795325112866));
361
1.40M
    f6 = MUL_F(x[3], FRAC_CONST(-0.5411961001461967));
362
1.40M
    f7 = f4 + f5;
363
1.40M
    f8 = f6 - f5;
364
1.40M
    y[3] = f2 - f8;
365
1.40M
    y[0] = f2 + f8;
366
1.40M
    y[2] = f1 - f7;
367
1.40M
    y[1] = f1 + f7;
368
1.40M
}
369
370
/* complex filter, size 8 */
371
static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
372
                            qmf_t *buffer, qmf_t **X_hybrid)
373
40.7k
{
374
40.7k
    uint8_t i, n;
375
40.7k
    real_t input_re1[4], input_re2[4], input_im1[4], input_im2[4];
376
40.7k
    real_t x[4];
377
40.7k
    (void)hyb;  /* TODO: remove parameter? */
378
379
1.31M
    for (i = 0; i < frame_len; i++)
380
1.26M
    {
381
1.26M
        input_re1[0] =  MUL_F(filter[6],QMF_RE(buffer[6+i]));
382
1.26M
        input_re1[1] =  MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
383
1.26M
        input_re1[2] = -MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i]))) + MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
384
1.26M
        input_re1[3] = -MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i]))) + MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
385
386
1.26M
        input_im1[0] = MUL_F(filter[5],(QMF_IM(buffer[7+i]) - QMF_IM(buffer[5+i])));
387
1.26M
        input_im1[1] = MUL_F(filter[0],(QMF_IM(buffer[12+i]) - QMF_IM(buffer[0+i]))) + MUL_F(filter[4],(QMF_IM(buffer[8+i]) - QMF_IM(buffer[4+i])));
388
1.26M
        input_im1[2] = MUL_F(filter[1],(QMF_IM(buffer[11+i]) - QMF_IM(buffer[1+i]))) + MUL_F(filter[3],(QMF_IM(buffer[9+i]) - QMF_IM(buffer[3+i])));
389
1.26M
        input_im1[3] = MUL_F(filter[2],(QMF_IM(buffer[10+i]) - QMF_IM(buffer[2+i])));
390
391
6.34M
        for (n = 0; n < 4; n++)
392
5.07M
        {
393
5.07M
            x[n] = input_re1[n] - input_im1[3-n];
394
5.07M
        }
395
1.26M
        DCT3_4_unscaled(x, x);
396
1.26M
        QMF_RE(X_hybrid[i][7]) = x[0];
397
1.26M
        QMF_RE(X_hybrid[i][5]) = x[2];
398
1.26M
        QMF_RE(X_hybrid[i][3]) = x[3];
399
1.26M
        QMF_RE(X_hybrid[i][1]) = x[1];
400
401
6.34M
        for (n = 0; n < 4; n++)
402
5.07M
        {
403
5.07M
            x[n] = input_re1[n] + input_im1[3-n];
404
5.07M
        }
405
1.26M
        DCT3_4_unscaled(x, x);
406
1.26M
        QMF_RE(X_hybrid[i][6]) = x[1];
407
1.26M
        QMF_RE(X_hybrid[i][4]) = x[3];
408
1.26M
        QMF_RE(X_hybrid[i][2]) = x[2];
409
1.26M
        QMF_RE(X_hybrid[i][0]) = x[0];
410
411
1.26M
        input_im2[0] =  MUL_F(filter[6],QMF_IM(buffer[6+i]));
412
1.26M
        input_im2[1] =  MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
413
1.26M
        input_im2[2] = -MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i]))) + MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
414
1.26M
        input_im2[3] = -MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i]))) + MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
415
416
1.26M
        input_re2[0] = MUL_F(filter[5],(QMF_RE(buffer[7+i]) - QMF_RE(buffer[5+i])));
417
1.26M
        input_re2[1] = MUL_F(filter[0],(QMF_RE(buffer[12+i]) - QMF_RE(buffer[0+i]))) + MUL_F(filter[4],(QMF_RE(buffer[8+i]) - QMF_RE(buffer[4+i])));
418
1.26M
        input_re2[2] = MUL_F(filter[1],(QMF_RE(buffer[11+i]) - QMF_RE(buffer[1+i]))) + MUL_F(filter[3],(QMF_RE(buffer[9+i]) - QMF_RE(buffer[3+i])));
419
1.26M
        input_re2[3] = MUL_F(filter[2],(QMF_RE(buffer[10+i]) - QMF_RE(buffer[2+i])));
420
421
6.34M
        for (n = 0; n < 4; n++)
422
5.07M
        {
423
5.07M
            x[n] = input_im2[n] + input_re2[3-n];
424
5.07M
        }
425
1.26M
        DCT3_4_unscaled(x, x);
426
1.26M
        QMF_IM(X_hybrid[i][7]) = x[0];
427
1.26M
        QMF_IM(X_hybrid[i][5]) = x[2];
428
1.26M
        QMF_IM(X_hybrid[i][3]) = x[3];
429
1.26M
        QMF_IM(X_hybrid[i][1]) = x[1];
430
431
6.34M
        for (n = 0; n < 4; n++)
432
5.07M
        {
433
5.07M
            x[n] = input_im2[n] - input_re2[3-n];
434
5.07M
        }
435
1.26M
        DCT3_4_unscaled(x, x);
436
1.26M
        QMF_IM(X_hybrid[i][6]) = x[1];
437
1.26M
        QMF_IM(X_hybrid[i][4]) = x[3];
438
1.26M
        QMF_IM(X_hybrid[i][2]) = x[2];
439
1.26M
        QMF_IM(X_hybrid[i][0]) = x[0];
440
1.26M
    }
441
40.7k
}
ps_dec.c:channel_filter8
Line
Count
Source
373
20.3k
{
374
20.3k
    uint8_t i, n;
375
20.3k
    real_t input_re1[4], input_re2[4], input_im1[4], input_im2[4];
376
20.3k
    real_t x[4];
377
20.3k
    (void)hyb;  /* TODO: remove parameter? */
378
379
655k
    for (i = 0; i < frame_len; i++)
380
634k
    {
381
634k
        input_re1[0] =  MUL_F(filter[6],QMF_RE(buffer[6+i]));
382
634k
        input_re1[1] =  MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
383
634k
        input_re1[2] = -MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i]))) + MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
384
634k
        input_re1[3] = -MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i]))) + MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
385
386
634k
        input_im1[0] = MUL_F(filter[5],(QMF_IM(buffer[7+i]) - QMF_IM(buffer[5+i])));
387
634k
        input_im1[1] = MUL_F(filter[0],(QMF_IM(buffer[12+i]) - QMF_IM(buffer[0+i]))) + MUL_F(filter[4],(QMF_IM(buffer[8+i]) - QMF_IM(buffer[4+i])));
388
634k
        input_im1[2] = MUL_F(filter[1],(QMF_IM(buffer[11+i]) - QMF_IM(buffer[1+i]))) + MUL_F(filter[3],(QMF_IM(buffer[9+i]) - QMF_IM(buffer[3+i])));
389
634k
        input_im1[3] = MUL_F(filter[2],(QMF_IM(buffer[10+i]) - QMF_IM(buffer[2+i])));
390
391
3.17M
        for (n = 0; n < 4; n++)
392
2.53M
        {
393
2.53M
            x[n] = input_re1[n] - input_im1[3-n];
394
2.53M
        }
395
634k
        DCT3_4_unscaled(x, x);
396
634k
        QMF_RE(X_hybrid[i][7]) = x[0];
397
634k
        QMF_RE(X_hybrid[i][5]) = x[2];
398
634k
        QMF_RE(X_hybrid[i][3]) = x[3];
399
634k
        QMF_RE(X_hybrid[i][1]) = x[1];
400
401
3.17M
        for (n = 0; n < 4; n++)
402
2.53M
        {
403
2.53M
            x[n] = input_re1[n] + input_im1[3-n];
404
2.53M
        }
405
634k
        DCT3_4_unscaled(x, x);
406
634k
        QMF_RE(X_hybrid[i][6]) = x[1];
407
634k
        QMF_RE(X_hybrid[i][4]) = x[3];
408
634k
        QMF_RE(X_hybrid[i][2]) = x[2];
409
634k
        QMF_RE(X_hybrid[i][0]) = x[0];
410
411
634k
        input_im2[0] =  MUL_F(filter[6],QMF_IM(buffer[6+i]));
412
634k
        input_im2[1] =  MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
413
634k
        input_im2[2] = -MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i]))) + MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
414
634k
        input_im2[3] = -MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i]))) + MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
415
416
634k
        input_re2[0] = MUL_F(filter[5],(QMF_RE(buffer[7+i]) - QMF_RE(buffer[5+i])));
417
634k
        input_re2[1] = MUL_F(filter[0],(QMF_RE(buffer[12+i]) - QMF_RE(buffer[0+i]))) + MUL_F(filter[4],(QMF_RE(buffer[8+i]) - QMF_RE(buffer[4+i])));
418
634k
        input_re2[2] = MUL_F(filter[1],(QMF_RE(buffer[11+i]) - QMF_RE(buffer[1+i]))) + MUL_F(filter[3],(QMF_RE(buffer[9+i]) - QMF_RE(buffer[3+i])));
419
634k
        input_re2[3] = MUL_F(filter[2],(QMF_RE(buffer[10+i]) - QMF_RE(buffer[2+i])));
420
421
3.17M
        for (n = 0; n < 4; n++)
422
2.53M
        {
423
2.53M
            x[n] = input_im2[n] + input_re2[3-n];
424
2.53M
        }
425
634k
        DCT3_4_unscaled(x, x);
426
634k
        QMF_IM(X_hybrid[i][7]) = x[0];
427
634k
        QMF_IM(X_hybrid[i][5]) = x[2];
428
634k
        QMF_IM(X_hybrid[i][3]) = x[3];
429
634k
        QMF_IM(X_hybrid[i][1]) = x[1];
430
431
3.17M
        for (n = 0; n < 4; n++)
432
2.53M
        {
433
2.53M
            x[n] = input_im2[n] - input_re2[3-n];
434
2.53M
        }
435
634k
        DCT3_4_unscaled(x, x);
436
634k
        QMF_IM(X_hybrid[i][6]) = x[1];
437
634k
        QMF_IM(X_hybrid[i][4]) = x[3];
438
634k
        QMF_IM(X_hybrid[i][2]) = x[2];
439
634k
        QMF_IM(X_hybrid[i][0]) = x[0];
440
634k
    }
441
20.3k
}
ps_dec.c:channel_filter8
Line
Count
Source
373
20.3k
{
374
20.3k
    uint8_t i, n;
375
20.3k
    real_t input_re1[4], input_re2[4], input_im1[4], input_im2[4];
376
20.3k
    real_t x[4];
377
20.3k
    (void)hyb;  /* TODO: remove parameter? */
378
379
655k
    for (i = 0; i < frame_len; i++)
380
634k
    {
381
634k
        input_re1[0] =  MUL_F(filter[6],QMF_RE(buffer[6+i]));
382
634k
        input_re1[1] =  MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
383
634k
        input_re1[2] = -MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i]))) + MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
384
634k
        input_re1[3] = -MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i]))) + MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
385
386
634k
        input_im1[0] = MUL_F(filter[5],(QMF_IM(buffer[7+i]) - QMF_IM(buffer[5+i])));
387
634k
        input_im1[1] = MUL_F(filter[0],(QMF_IM(buffer[12+i]) - QMF_IM(buffer[0+i]))) + MUL_F(filter[4],(QMF_IM(buffer[8+i]) - QMF_IM(buffer[4+i])));
388
634k
        input_im1[2] = MUL_F(filter[1],(QMF_IM(buffer[11+i]) - QMF_IM(buffer[1+i]))) + MUL_F(filter[3],(QMF_IM(buffer[9+i]) - QMF_IM(buffer[3+i])));
389
634k
        input_im1[3] = MUL_F(filter[2],(QMF_IM(buffer[10+i]) - QMF_IM(buffer[2+i])));
390
391
3.17M
        for (n = 0; n < 4; n++)
392
2.53M
        {
393
2.53M
            x[n] = input_re1[n] - input_im1[3-n];
394
2.53M
        }
395
634k
        DCT3_4_unscaled(x, x);
396
634k
        QMF_RE(X_hybrid[i][7]) = x[0];
397
634k
        QMF_RE(X_hybrid[i][5]) = x[2];
398
634k
        QMF_RE(X_hybrid[i][3]) = x[3];
399
634k
        QMF_RE(X_hybrid[i][1]) = x[1];
400
401
3.17M
        for (n = 0; n < 4; n++)
402
2.53M
        {
403
2.53M
            x[n] = input_re1[n] + input_im1[3-n];
404
2.53M
        }
405
634k
        DCT3_4_unscaled(x, x);
406
634k
        QMF_RE(X_hybrid[i][6]) = x[1];
407
634k
        QMF_RE(X_hybrid[i][4]) = x[3];
408
634k
        QMF_RE(X_hybrid[i][2]) = x[2];
409
634k
        QMF_RE(X_hybrid[i][0]) = x[0];
410
411
634k
        input_im2[0] =  MUL_F(filter[6],QMF_IM(buffer[6+i]));
412
634k
        input_im2[1] =  MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
413
634k
        input_im2[2] = -MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i]))) + MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
414
634k
        input_im2[3] = -MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i]))) + MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
415
416
634k
        input_re2[0] = MUL_F(filter[5],(QMF_RE(buffer[7+i]) - QMF_RE(buffer[5+i])));
417
634k
        input_re2[1] = MUL_F(filter[0],(QMF_RE(buffer[12+i]) - QMF_RE(buffer[0+i]))) + MUL_F(filter[4],(QMF_RE(buffer[8+i]) - QMF_RE(buffer[4+i])));
418
634k
        input_re2[2] = MUL_F(filter[1],(QMF_RE(buffer[11+i]) - QMF_RE(buffer[1+i]))) + MUL_F(filter[3],(QMF_RE(buffer[9+i]) - QMF_RE(buffer[3+i])));
419
634k
        input_re2[3] = MUL_F(filter[2],(QMF_RE(buffer[10+i]) - QMF_RE(buffer[2+i])));
420
421
3.17M
        for (n = 0; n < 4; n++)
422
2.53M
        {
423
2.53M
            x[n] = input_im2[n] + input_re2[3-n];
424
2.53M
        }
425
634k
        DCT3_4_unscaled(x, x);
426
634k
        QMF_IM(X_hybrid[i][7]) = x[0];
427
634k
        QMF_IM(X_hybrid[i][5]) = x[2];
428
634k
        QMF_IM(X_hybrid[i][3]) = x[3];
429
634k
        QMF_IM(X_hybrid[i][1]) = x[1];
430
431
3.17M
        for (n = 0; n < 4; n++)
432
2.53M
        {
433
2.53M
            x[n] = input_im2[n] - input_re2[3-n];
434
2.53M
        }
435
634k
        DCT3_4_unscaled(x, x);
436
634k
        QMF_IM(X_hybrid[i][6]) = x[1];
437
634k
        QMF_IM(X_hybrid[i][4]) = x[3];
438
634k
        QMF_IM(X_hybrid[i][2]) = x[2];
439
634k
        QMF_IM(X_hybrid[i][0]) = x[0];
440
634k
    }
441
20.3k
}
442
443
static void INLINE DCT3_6_unscaled(real_t *y, real_t *x)
444
982k
{
445
982k
    real_t f0, f1, f2, f3, f4, f5, f6, f7;
446
447
982k
    f0 = MUL_F(x[3], FRAC_CONST(0.70710678118655));
448
982k
    f1 = x[0] + f0;
449
982k
    f2 = x[0] - f0;
450
982k
    f3 = MUL_F((x[1] - x[5]), FRAC_CONST(0.70710678118655));
451
982k
    f4 = MUL_F(x[2], FRAC_CONST(0.86602540378444)) + MUL_F(x[4], FRAC_CONST(0.5));
452
982k
    f5 = f4 - x[4];
453
982k
    f6 = MUL_F(x[1], FRAC_CONST(0.96592582628907)) + MUL_F(x[5], FRAC_CONST(0.25881904510252));
454
982k
    f7 = f6 - f3;
455
982k
    y[0] = f1 + f6 + f4;
456
982k
    y[1] = f2 + f3 - x[4];
457
982k
    y[2] = f7 + f2 - f5;
458
982k
    y[3] = f1 - f7 - f5;
459
982k
    y[4] = f1 - f3 - x[4];
460
982k
    y[5] = f2 - f6 + f4;
461
982k
}
ps_dec.c:DCT3_6_unscaled
Line
Count
Source
444
464k
{
445
464k
    real_t f0, f1, f2, f3, f4, f5, f6, f7;
446
447
464k
    f0 = MUL_F(x[3], FRAC_CONST(0.70710678118655));
448
464k
    f1 = x[0] + f0;
449
464k
    f2 = x[0] - f0;
450
464k
    f3 = MUL_F((x[1] - x[5]), FRAC_CONST(0.70710678118655));
451
464k
    f4 = MUL_F(x[2], FRAC_CONST(0.86602540378444)) + MUL_F(x[4], FRAC_CONST(0.5));
452
464k
    f5 = f4 - x[4];
453
464k
    f6 = MUL_F(x[1], FRAC_CONST(0.96592582628907)) + MUL_F(x[5], FRAC_CONST(0.25881904510252));
454
464k
    f7 = f6 - f3;
455
464k
    y[0] = f1 + f6 + f4;
456
464k
    y[1] = f2 + f3 - x[4];
457
464k
    y[2] = f7 + f2 - f5;
458
464k
    y[3] = f1 - f7 - f5;
459
464k
    y[4] = f1 - f3 - x[4];
460
464k
    y[5] = f2 - f6 + f4;
461
464k
}
ps_dec.c:DCT3_6_unscaled
Line
Count
Source
444
517k
{
445
517k
    real_t f0, f1, f2, f3, f4, f5, f6, f7;
446
447
517k
    f0 = MUL_F(x[3], FRAC_CONST(0.70710678118655));
448
517k
    f1 = x[0] + f0;
449
517k
    f2 = x[0] - f0;
450
517k
    f3 = MUL_F((x[1] - x[5]), FRAC_CONST(0.70710678118655));
451
517k
    f4 = MUL_F(x[2], FRAC_CONST(0.86602540378444)) + MUL_F(x[4], FRAC_CONST(0.5));
452
517k
    f5 = f4 - x[4];
453
517k
    f6 = MUL_F(x[1], FRAC_CONST(0.96592582628907)) + MUL_F(x[5], FRAC_CONST(0.25881904510252));
454
517k
    f7 = f6 - f3;
455
517k
    y[0] = f1 + f6 + f4;
456
517k
    y[1] = f2 + f3 - x[4];
457
517k
    y[2] = f7 + f2 - f5;
458
517k
    y[3] = f1 - f7 - f5;
459
517k
    y[4] = f1 - f3 - x[4];
460
517k
    y[5] = f2 - f6 + f4;
461
517k
}
462
463
/* complex filter, size 12 */
464
static void channel_filter12(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
465
                             qmf_t *buffer, qmf_t **X_hybrid)
466
15.9k
{
467
15.9k
    uint8_t i, n;
468
15.9k
    real_t input_re1[6], input_re2[6], input_im1[6], input_im2[6];
469
15.9k
    real_t out_re1[6], out_re2[6], out_im1[6], out_im2[6];
470
15.9k
    (void)hyb;  /* TODO: remove parameter? */
471
472
507k
    for (i = 0; i < frame_len; i++)
473
491k
    {
474
3.43M
        for (n = 0; n < 6; n++)
475
2.94M
        {
476
2.94M
            if (n == 0)
477
491k
            {
478
491k
                input_re1[0] = MUL_F(QMF_RE(buffer[6+i]), filter[6]);
479
491k
                input_re2[0] = MUL_F(QMF_IM(buffer[6+i]), filter[6]);
480
2.45M
            } else {
481
2.45M
                input_re1[6-n] = MUL_F((QMF_RE(buffer[n+i]) + QMF_RE(buffer[12-n+i])), filter[n]);
482
2.45M
                input_re2[6-n] = MUL_F((QMF_IM(buffer[n+i]) + QMF_IM(buffer[12-n+i])), filter[n]);
483
2.45M
            }
484
2.94M
            input_im2[n] = MUL_F((QMF_RE(buffer[n+i]) - QMF_RE(buffer[12-n+i])), filter[n]);
485
2.94M
            input_im1[n] = MUL_F((QMF_IM(buffer[n+i]) - QMF_IM(buffer[12-n+i])), filter[n]);
486
2.94M
        }
487
488
491k
        DCT3_6_unscaled(out_re1, input_re1);
489
491k
        DCT3_6_unscaled(out_re2, input_re2);
490
491
491k
        DCT3_6_unscaled(out_im1, input_im1);
492
491k
        DCT3_6_unscaled(out_im2, input_im2);
493
494
1.96M
        for (n = 0; n < 6; n += 2)
495
1.47M
        {
496
1.47M
            QMF_RE(X_hybrid[i][n]) = out_re1[n] - out_im1[n];
497
1.47M
            QMF_IM(X_hybrid[i][n]) = out_re2[n] + out_im2[n];
498
1.47M
            QMF_RE(X_hybrid[i][n+1]) = out_re1[n+1] + out_im1[n+1];
499
1.47M
            QMF_IM(X_hybrid[i][n+1]) = out_re2[n+1] - out_im2[n+1];
500
501
1.47M
            QMF_RE(X_hybrid[i][10-n]) = out_re1[n+1] - out_im1[n+1];
502
1.47M
            QMF_IM(X_hybrid[i][10-n]) = out_re2[n+1] + out_im2[n+1];
503
1.47M
            QMF_RE(X_hybrid[i][11-n]) = out_re1[n] + out_im1[n];
504
1.47M
            QMF_IM(X_hybrid[i][11-n]) = out_re2[n] - out_im2[n];
505
1.47M
        }
506
491k
    }
507
15.9k
}
ps_dec.c:channel_filter12
Line
Count
Source
466
7.99k
{
467
7.99k
    uint8_t i, n;
468
7.99k
    real_t input_re1[6], input_re2[6], input_im1[6], input_im2[6];
469
7.99k
    real_t out_re1[6], out_re2[6], out_im1[6], out_im2[6];
470
7.99k
    (void)hyb;  /* TODO: remove parameter? */
471
472
253k
    for (i = 0; i < frame_len; i++)
473
245k
    {
474
1.71M
        for (n = 0; n < 6; n++)
475
1.47M
        {
476
1.47M
            if (n == 0)
477
245k
            {
478
245k
                input_re1[0] = MUL_F(QMF_RE(buffer[6+i]), filter[6]);
479
245k
                input_re2[0] = MUL_F(QMF_IM(buffer[6+i]), filter[6]);
480
1.22M
            } else {
481
1.22M
                input_re1[6-n] = MUL_F((QMF_RE(buffer[n+i]) + QMF_RE(buffer[12-n+i])), filter[n]);
482
1.22M
                input_re2[6-n] = MUL_F((QMF_IM(buffer[n+i]) + QMF_IM(buffer[12-n+i])), filter[n]);
483
1.22M
            }
484
1.47M
            input_im2[n] = MUL_F((QMF_RE(buffer[n+i]) - QMF_RE(buffer[12-n+i])), filter[n]);
485
1.47M
            input_im1[n] = MUL_F((QMF_IM(buffer[n+i]) - QMF_IM(buffer[12-n+i])), filter[n]);
486
1.47M
        }
487
488
245k
        DCT3_6_unscaled(out_re1, input_re1);
489
245k
        DCT3_6_unscaled(out_re2, input_re2);
490
491
245k
        DCT3_6_unscaled(out_im1, input_im1);
492
245k
        DCT3_6_unscaled(out_im2, input_im2);
493
494
982k
        for (n = 0; n < 6; n += 2)
495
736k
        {
496
736k
            QMF_RE(X_hybrid[i][n]) = out_re1[n] - out_im1[n];
497
736k
            QMF_IM(X_hybrid[i][n]) = out_re2[n] + out_im2[n];
498
736k
            QMF_RE(X_hybrid[i][n+1]) = out_re1[n+1] + out_im1[n+1];
499
736k
            QMF_IM(X_hybrid[i][n+1]) = out_re2[n+1] - out_im2[n+1];
500
501
736k
            QMF_RE(X_hybrid[i][10-n]) = out_re1[n+1] - out_im1[n+1];
502
736k
            QMF_IM(X_hybrid[i][10-n]) = out_re2[n+1] + out_im2[n+1];
503
736k
            QMF_RE(X_hybrid[i][11-n]) = out_re1[n] + out_im1[n];
504
736k
            QMF_IM(X_hybrid[i][11-n]) = out_re2[n] - out_im2[n];
505
736k
        }
506
245k
    }
507
7.99k
}
ps_dec.c:channel_filter12
Line
Count
Source
466
7.99k
{
467
7.99k
    uint8_t i, n;
468
7.99k
    real_t input_re1[6], input_re2[6], input_im1[6], input_im2[6];
469
7.99k
    real_t out_re1[6], out_re2[6], out_im1[6], out_im2[6];
470
7.99k
    (void)hyb;  /* TODO: remove parameter? */
471
472
253k
    for (i = 0; i < frame_len; i++)
473
245k
    {
474
1.71M
        for (n = 0; n < 6; n++)
475
1.47M
        {
476
1.47M
            if (n == 0)
477
245k
            {
478
245k
                input_re1[0] = MUL_F(QMF_RE(buffer[6+i]), filter[6]);
479
245k
                input_re2[0] = MUL_F(QMF_IM(buffer[6+i]), filter[6]);
480
1.22M
            } else {
481
1.22M
                input_re1[6-n] = MUL_F((QMF_RE(buffer[n+i]) + QMF_RE(buffer[12-n+i])), filter[n]);
482
1.22M
                input_re2[6-n] = MUL_F((QMF_IM(buffer[n+i]) + QMF_IM(buffer[12-n+i])), filter[n]);
483
1.22M
            }
484
1.47M
            input_im2[n] = MUL_F((QMF_RE(buffer[n+i]) - QMF_RE(buffer[12-n+i])), filter[n]);
485
1.47M
            input_im1[n] = MUL_F((QMF_IM(buffer[n+i]) - QMF_IM(buffer[12-n+i])), filter[n]);
486
1.47M
        }
487
488
245k
        DCT3_6_unscaled(out_re1, input_re1);
489
245k
        DCT3_6_unscaled(out_re2, input_re2);
490
491
245k
        DCT3_6_unscaled(out_im1, input_im1);
492
245k
        DCT3_6_unscaled(out_im2, input_im2);
493
494
982k
        for (n = 0; n < 6; n += 2)
495
736k
        {
496
736k
            QMF_RE(X_hybrid[i][n]) = out_re1[n] - out_im1[n];
497
736k
            QMF_IM(X_hybrid[i][n]) = out_re2[n] + out_im2[n];
498
736k
            QMF_RE(X_hybrid[i][n+1]) = out_re1[n+1] + out_im1[n+1];
499
736k
            QMF_IM(X_hybrid[i][n+1]) = out_re2[n+1] - out_im2[n+1];
500
501
736k
            QMF_RE(X_hybrid[i][10-n]) = out_re1[n+1] - out_im1[n+1];
502
736k
            QMF_IM(X_hybrid[i][10-n]) = out_re2[n+1] + out_im2[n+1];
503
736k
            QMF_RE(X_hybrid[i][11-n]) = out_re1[n] + out_im1[n];
504
736k
            QMF_IM(X_hybrid[i][11-n]) = out_re2[n] - out_im2[n];
505
736k
        }
506
245k
    }
507
7.99k
}
508
509
/* Hybrid analysis: further split up QMF subbands
510
 * to improve frequency resolution
511
 */
512
static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
513
                            uint8_t use34, uint8_t numTimeSlotsRate)
514
20.3k
{
515
20.3k
    uint8_t k, n, band;
516
20.3k
    uint8_t offset = 0;
517
20.3k
    uint8_t qmf_bands = (use34) ? 5 : 3;
518
20.3k
    uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
519
520
97.3k
    for (band = 0; band < qmf_bands; band++)
521
77.0k
    {
522
        /* build working buffer */
523
77.0k
        memcpy(hyb->work, hyb->buffer[band], 12 * sizeof(qmf_t));
524
525
        /* add new samples */
526
2.47M
        for (n = 0; n < hyb->frame_len; n++)
527
2.39M
        {
528
2.39M
            QMF_RE(hyb->work[12 + n]) = QMF_RE(X[n + 6 /*delay*/][band]);
529
2.39M
            QMF_IM(hyb->work[12 + n]) = QMF_IM(X[n + 6 /*delay*/][band]);
530
2.39M
        }
531
532
        /* store samples */
533
77.0k
        memcpy(hyb->buffer[band], hyb->work + hyb->frame_len, 12 * sizeof(qmf_t));
534
535
536
77.0k
        switch(resolution[band])
537
77.0k
        {
538
24.7k
        case 2:
539
            /* Type B real filter, Q[p] = 2 */
540
24.7k
            channel_filter2(hyb, hyb->frame_len, p2_13_20, hyb->work, hyb->temp);
541
24.7k
            break;
542
23.9k
        case 4:
543
            /* Type A complex filter, Q[p] = 4 */
544
23.9k
            channel_filter4(hyb, hyb->frame_len, p4_13_34, hyb->work, hyb->temp);
545
23.9k
            break;
546
20.3k
        case 8:
547
            /* Type A complex filter, Q[p] = 8 */
548
20.3k
            channel_filter8(hyb, hyb->frame_len, (use34) ? p8_13_34 : p8_13_20,
549
20.3k
                hyb->work, hyb->temp);
550
20.3k
            break;
551
7.99k
        case 12:
552
            /* Type A complex filter, Q[p] = 12 */
553
7.99k
            channel_filter12(hyb, hyb->frame_len, p12_13_34, hyb->work, hyb->temp);
554
7.99k
            break;
555
77.0k
        }
556
557
2.47M
        for (n = 0; n < hyb->frame_len; n++)
558
2.39M
        {
559
14.9M
            for (k = 0; k < resolution[band]; k++)
560
12.5M
            {
561
12.5M
                QMF_RE(X_hybrid[n][offset + k]) = QMF_RE(hyb->temp[n][k]);
562
12.5M
                QMF_IM(X_hybrid[n][offset + k]) = QMF_IM(hyb->temp[n][k]);
563
12.5M
            }
564
2.39M
        }
565
77.0k
        offset += resolution[band];
566
77.0k
    }
567
568
    /* group hybrid channels */
569
20.3k
    if (!use34)
570
12.3k
    {
571
401k
        for (n = 0; n < numTimeSlotsRate; n++)
572
389k
        {
573
389k
            QMF_RE(X_hybrid[n][3]) += QMF_RE(X_hybrid[n][4]);
574
389k
            QMF_IM(X_hybrid[n][3]) += QMF_IM(X_hybrid[n][4]);
575
389k
            QMF_RE(X_hybrid[n][4]) = 0;
576
389k
            QMF_IM(X_hybrid[n][4]) = 0;
577
578
389k
            QMF_RE(X_hybrid[n][2]) += QMF_RE(X_hybrid[n][5]);
579
389k
            QMF_IM(X_hybrid[n][2]) += QMF_IM(X_hybrid[n][5]);
580
389k
            QMF_RE(X_hybrid[n][5]) = 0;
581
389k
            QMF_IM(X_hybrid[n][5]) = 0;
582
389k
        }
583
12.3k
    }
584
20.3k
}
585
586
static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
587
                             uint8_t use34, uint8_t numTimeSlotsRate)
588
40.7k
{
589
40.7k
    uint8_t k, n, band;
590
40.7k
    uint8_t offset = 0;
591
40.7k
    uint8_t qmf_bands = (use34) ? 5 : 3;
592
40.7k
    uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
593
40.7k
    (void)numTimeSlotsRate;  /* TODO: remove parameter? */
594
595
194k
    for(band = 0; band < qmf_bands; band++)
596
154k
    {
597
4.94M
        for (n = 0; n < hyb->frame_len; n++)
598
4.79M
        {
599
4.79M
            QMF_RE(X[n][band]) = 0;
600
4.79M
            QMF_IM(X[n][band]) = 0;
601
602
29.8M
            for (k = 0; k < resolution[band]; k++)
603
25.0M
            {
604
25.0M
                QMF_RE(X[n][band]) += QMF_RE(X_hybrid[n][offset + k]);
605
25.0M
                QMF_IM(X[n][band]) += QMF_IM(X_hybrid[n][offset + k]);
606
25.0M
            }
607
4.79M
        }
608
154k
        offset += resolution[band];
609
154k
    }
610
40.7k
}
611
612
/* limits the value i to the range [min,max] */
613
static int8_t delta_clip(int8_t i, int8_t min, int8_t max)
614
473k
{
615
473k
    if (i < min)
616
64.0k
        return min;
617
409k
    else if (i > max)
618
10.5k
        return max;
619
399k
    else
620
399k
        return i;
621
473k
}
622
623
//int iid = 0;
624
625
/* delta decode array */
626
static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
627
                         uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
628
                         int8_t min_index, int8_t max_index)
629
68.2k
{
630
68.2k
    int8_t i;
631
632
68.2k
    if (enable == 1)
633
35.6k
    {
634
35.6k
        if (dt_flag == 0)
635
21.5k
        {
636
            /* delta coded in frequency direction */
637
21.5k
            index[0] = 0 + index[0];
638
21.5k
            index[0] = delta_clip(index[0], min_index, max_index);
639
640
293k
            for (i = 1; i < nr_par; i++)
641
272k
            {
642
272k
                index[i] = index[i-1] + index[i];
643
272k
                index[i] = delta_clip(index[i], min_index, max_index);
644
272k
            }
645
21.5k
        } else {
646
            /* delta coded in time direction */
647
193k
            for (i = 0; i < nr_par; i++)
648
179k
            {
649
                //int8_t tmp2;
650
                //int8_t tmp = index[i];
651
652
                //printf("%d %d\n", index_prev[i*stride], index[i]);
653
                //printf("%d\n", index[i]);
654
655
179k
                index[i] = index_prev[i*stride] + index[i];
656
                //tmp2 = index[i];
657
179k
                index[i] = delta_clip(index[i], min_index, max_index);
658
659
                //if (iid)
660
                //{
661
                //    if (index[i] == 7)
662
                //    {
663
                //        printf("%d %d %d\n", index_prev[i*stride], tmp, tmp2);
664
                //    }
665
                //}
666
179k
            }
667
14.0k
        }
668
35.6k
    } else {
669
        /* set indices to zero */
670
61.3k
        for (i = 0; i < nr_par; i++)
671
28.8k
        {
672
28.8k
            index[i] = 0;
673
28.8k
        }
674
32.5k
    }
675
676
    /* coarse */
677
68.2k
    if (stride == 2)
678
44.6k
    {
679
304k
        for (i = (nr_par<<1)-1; i > 0; i--)
680
259k
        {
681
259k
            index[i] = index[i>>1];
682
259k
        }
683
44.6k
    }
684
68.2k
}
685
686
/* delta modulo decode array */
687
/* in: log2 value of the modulo value to allow using AND instead of MOD */
688
static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
689
                                uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
690
                                int8_t and_modulo)
691
68.2k
{
692
68.2k
    int8_t i;
693
694
68.2k
    if (enable == 1)
695
23.2k
    {
696
23.2k
        if (dt_flag == 0)
697
14.7k
        {
698
            /* delta coded in frequency direction */
699
14.7k
            index[0] = 0 + index[0];
700
14.7k
            index[0] &= and_modulo;
701
702
57.6k
            for (i = 1; i < nr_par; i++)
703
42.8k
            {
704
42.8k
                index[i] = index[i-1] + index[i];
705
42.8k
                index[i] &= and_modulo;
706
42.8k
            }
707
14.7k
        } else {
708
            /* delta coded in time direction */
709
27.8k
            for (i = 0; i < nr_par; i++)
710
19.3k
            {
711
19.3k
                index[i] = index_prev[i*stride] + index[i];
712
19.3k
                index[i] &= and_modulo;
713
19.3k
            }
714
8.49k
        }
715
44.9k
    } else {
716
        /* set indices to zero */
717
168k
        for (i = 0; i < nr_par; i++)
718
123k
        {
719
123k
            index[i] = 0;
720
123k
        }
721
44.9k
    }
722
723
    /* coarse */
724
68.2k
    if (stride == 2)
725
0
    {
726
0
        index[0] = 0;
727
0
        for (i = (nr_par<<1)-1; i > 0; i--)
728
0
        {
729
0
            index[i] = index[i>>1];
730
0
        }
731
0
    }
732
68.2k
}
733
734
#ifdef PS_LOW_POWER
735
static void map34indexto20(int8_t *index, uint8_t bins)
736
{
737
    index[0] = (2*index[0]+index[1])/3;
738
    index[1] = (index[1]+2*index[2])/3;
739
    index[2] = (2*index[3]+index[4])/3;
740
    index[3] = (index[4]+2*index[5])/3;
741
    index[4] = (index[6]+index[7])/2;
742
    index[5] = (index[8]+index[9])/2;
743
    index[6] = index[10];
744
    index[7] = index[11];
745
    index[8] = (index[12]+index[13])/2;
746
    index[9] = (index[14]+index[15])/2;
747
    index[10] = index[16];
748
749
    if (bins == 34)
750
    {
751
        index[11] = index[17];
752
        index[12] = index[18];
753
        index[13] = index[19];
754
        index[14] = (index[20]+index[21])/2;
755
        index[15] = (index[22]+index[23])/2;
756
        index[16] = (index[24]+index[25])/2;
757
        index[17] = (index[26]+index[27])/2;
758
        index[18] = (index[28]+index[29]+index[30]+index[31])/4;
759
        index[19] = (index[32]+index[33])/2;
760
    }
761
}
762
#endif
763
764
static void map20indexto34(int8_t *index, uint8_t bins)
765
31.0k
{
766
31.0k
    index[0] = index[0];
767
31.0k
    index[1] = (index[0] + index[1])/2;
768
31.0k
    index[2] = index[1];
769
31.0k
    index[3] = index[2];
770
31.0k
    index[4] = (index[2] + index[3])/2;
771
31.0k
    index[5] = index[3];
772
31.0k
    index[6] = index[4];
773
31.0k
    index[7] = index[4];
774
31.0k
    index[8] = index[5];
775
31.0k
    index[9] = index[5];
776
31.0k
    index[10] = index[6];
777
31.0k
    index[11] = index[7];
778
31.0k
    index[12] = index[8];
779
31.0k
    index[13] = index[8];
780
31.0k
    index[14] = index[9];
781
31.0k
    index[15] = index[9];
782
31.0k
    index[16] = index[10];
783
784
31.0k
    if (bins == 34)
785
13.5k
    {
786
13.5k
        index[17] = index[11];
787
13.5k
        index[18] = index[12];
788
13.5k
        index[19] = index[13];
789
13.5k
        index[20] = index[14];
790
13.5k
        index[21] = index[14];
791
13.5k
        index[22] = index[15];
792
13.5k
        index[23] = index[15];
793
13.5k
        index[24] = index[16];
794
13.5k
        index[25] = index[16];
795
13.5k
        index[26] = index[17];
796
13.5k
        index[27] = index[17];
797
13.5k
        index[28] = index[18];
798
13.5k
        index[29] = index[18];
799
13.5k
        index[30] = index[18];
800
13.5k
        index[31] = index[18];
801
13.5k
        index[32] = index[19];
802
13.5k
        index[33] = index[19];
803
13.5k
    }
804
31.0k
}
805
806
/* parse the bitstream data decoded in ps_data() */
807
static void ps_data_decode(ps_info *ps)
808
20.3k
{
809
20.3k
    uint8_t env, bin;
810
811
    /* ps data not available, use data from previous frame */
812
20.3k
    if (ps->ps_data_available == 0)
813
5.22k
    {
814
5.22k
        ps->num_env = 0;
815
5.22k
    }
816
817
54.4k
    for (env = 0; env < ps->num_env; env++)
818
34.1k
    {
819
34.1k
        int8_t *iid_index_prev;
820
34.1k
        int8_t *icc_index_prev;
821
34.1k
        int8_t *ipd_index_prev;
822
34.1k
        int8_t *opd_index_prev;
823
824
34.1k
        int8_t num_iid_steps = (ps->iid_mode < 3) ? 7 : 15 /*fine quant*/;
825
826
34.1k
        if (env == 0)
827
10.1k
        {
828
            /* take last envelope from previous frame */
829
10.1k
            iid_index_prev = ps->iid_index_prev;
830
10.1k
            icc_index_prev = ps->icc_index_prev;
831
10.1k
            ipd_index_prev = ps->ipd_index_prev;
832
10.1k
            opd_index_prev = ps->opd_index_prev;
833
23.9k
        } else {
834
            /* take index values from previous envelope */
835
23.9k
            iid_index_prev = ps->iid_index[env - 1];
836
23.9k
            icc_index_prev = ps->icc_index[env - 1];
837
23.9k
            ipd_index_prev = ps->ipd_index[env - 1];
838
23.9k
            opd_index_prev = ps->opd_index[env - 1];
839
23.9k
        }
840
841
//        iid = 1;
842
        /* delta decode iid parameters */
843
34.1k
        delta_decode(ps->enable_iid, ps->iid_index[env], iid_index_prev,
844
34.1k
            ps->iid_dt[env], ps->nr_iid_par,
845
34.1k
            (ps->iid_mode == 0 || ps->iid_mode == 3) ? 2 : 1,
846
34.1k
            -num_iid_steps, num_iid_steps);
847
//        iid = 0;
848
849
        /* delta decode icc parameters */
850
34.1k
        delta_decode(ps->enable_icc, ps->icc_index[env], icc_index_prev,
851
34.1k
            ps->icc_dt[env], ps->nr_icc_par,
852
34.1k
            (ps->icc_mode == 0 || ps->icc_mode == 3) ? 2 : 1,
853
34.1k
            0, 7);
854
855
        /* delta modulo decode ipd parameters */
856
34.1k
        delta_modulo_decode(ps->enable_ipdopd, ps->ipd_index[env], ipd_index_prev,
857
34.1k
            ps->ipd_dt[env], ps->nr_ipdopd_par, 1, 7);
858
859
        /* delta modulo decode opd parameters */
860
34.1k
        delta_modulo_decode(ps->enable_ipdopd, ps->opd_index[env], opd_index_prev,
861
34.1k
            ps->opd_dt[env], ps->nr_ipdopd_par, 1, 7);
862
34.1k
    }
863
864
    /* handle error case */
865
20.3k
    if (ps->num_env == 0)
866
10.1k
    {
867
        /* force to 1 */
868
10.1k
        ps->num_env = 1;
869
870
10.1k
        if (ps->enable_iid)
871
7.09k
        {
872
248k
            for (bin = 0; bin < 34; bin++)
873
241k
                ps->iid_index[0][bin] = ps->iid_index_prev[bin];
874
7.09k
        } else {
875
107k
            for (bin = 0; bin < 34; bin++)
876
104k
                ps->iid_index[0][bin] = 0;
877
3.07k
        }
878
879
10.1k
        if (ps->enable_icc)
880
4.93k
        {
881
172k
            for (bin = 0; bin < 34; bin++)
882
167k
                ps->icc_index[0][bin] = ps->icc_index_prev[bin];
883
5.23k
        } else {
884
183k
            for (bin = 0; bin < 34; bin++)
885
177k
                ps->icc_index[0][bin] = 0;
886
5.23k
        }
887
888
10.1k
        if (ps->enable_ipdopd)
889
1.12k
        {
890
20.2k
            for (bin = 0; bin < 17; bin++)
891
19.1k
            {
892
19.1k
                ps->ipd_index[0][bin] = ps->ipd_index_prev[bin];
893
19.1k
                ps->opd_index[0][bin] = ps->opd_index_prev[bin];
894
19.1k
            }
895
9.04k
        } else {
896
162k
            for (bin = 0; bin < 17; bin++)
897
153k
            {
898
153k
                ps->ipd_index[0][bin] = 0;
899
153k
                ps->opd_index[0][bin] = 0;
900
153k
            }
901
9.04k
        }
902
10.1k
    }
903
904
    /* update previous indices */
905
712k
    for (bin = 0; bin < 34; bin++)
906
691k
        ps->iid_index_prev[bin] = ps->iid_index[ps->num_env-1][bin];
907
712k
    for (bin = 0; bin < 34; bin++)
908
691k
        ps->icc_index_prev[bin] = ps->icc_index[ps->num_env-1][bin];
909
366k
    for (bin = 0; bin < 17; bin++)
910
345k
    {
911
345k
        ps->ipd_index_prev[bin] = ps->ipd_index[ps->num_env-1][bin];
912
345k
        ps->opd_index_prev[bin] = ps->opd_index[ps->num_env-1][bin];
913
345k
    }
914
915
20.3k
    ps->ps_data_available = 0;
916
917
20.3k
    if (ps->frame_class == 0)
918
12.4k
    {
919
12.4k
        ps->border_position[0] = 0;
920
21.7k
        for (env = 1; env < ps->num_env; env++)
921
9.26k
        {
922
9.26k
            ps->border_position[env] = (env * ps->numTimeSlotsRate) / ps->num_env;
923
9.26k
        }
924
12.4k
        ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
925
12.4k
    } else {
926
7.85k
        ps->border_position[0] = 0;
927
928
7.85k
        if (ps->border_position[ps->num_env] < ps->numTimeSlotsRate)
929
6.15k
        {
930
215k
            for (bin = 0; bin < 34; bin++)
931
209k
            {
932
209k
                ps->iid_index[ps->num_env][bin] = ps->iid_index[ps->num_env-1][bin];
933
209k
                ps->icc_index[ps->num_env][bin] = ps->icc_index[ps->num_env-1][bin];
934
209k
            }
935
110k
            for (bin = 0; bin < 17; bin++)
936
104k
            {
937
104k
                ps->ipd_index[ps->num_env][bin] = ps->ipd_index[ps->num_env-1][bin];
938
104k
                ps->opd_index[ps->num_env][bin] = ps->opd_index[ps->num_env-1][bin];
939
104k
            }
940
6.15k
            ps->num_env++;
941
6.15k
            ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
942
6.15k
        }
943
944
28.6k
        for (env = 1; env < ps->num_env; env++)
945
20.8k
        {
946
20.8k
            int8_t thr = ps->numTimeSlotsRate - (ps->num_env - env);
947
948
20.8k
            if (ps->border_position[env] > thr)
949
4.95k
            {
950
4.95k
                ps->border_position[env] = thr;
951
15.8k
            } else {
952
15.8k
                thr = ps->border_position[env-1]+1;
953
15.8k
                if (ps->border_position[env] < thr)
954
8.36k
                {
955
8.36k
                    ps->border_position[env] = thr;
956
8.36k
                }
957
15.8k
            }
958
20.8k
        }
959
7.85k
    }
960
961
    /* make sure that the indices of all parameters can be mapped
962
     * to the same hybrid synthesis filterbank
963
     */
964
#ifdef PS_LOW_POWER
965
    for (env = 0; env < ps->num_env; env++)
966
    {
967
        if (ps->iid_mode == 2 || ps->iid_mode == 5)
968
            map34indexto20(ps->iid_index[env], 34);
969
        if (ps->icc_mode == 2 || ps->icc_mode == 5)
970
            map34indexto20(ps->icc_index[env], 34);
971
972
        /* disable ipd/opd */
973
        for (bin = 0; bin < 17; bin++)
974
        {
975
            ps->aaIpdIndex[env][bin] = 0;
976
            ps->aaOpdIndex[env][bin] = 0;
977
        }
978
    }
979
#else
980
20.3k
    if (ps->use34hybrid_bands)
981
7.99k
    {
982
22.5k
        for (env = 0; env < ps->num_env; env++)
983
14.5k
        {
984
14.5k
            if (ps->iid_mode != 2 && ps->iid_mode != 5)
985
8.70k
                map20indexto34(ps->iid_index[env], 34);
986
14.5k
            if (ps->icc_mode != 2 && ps->icc_mode != 5)
987
4.89k
                map20indexto34(ps->icc_index[env], 34);
988
14.5k
            if (ps->ipd_mode != 2 && ps->ipd_mode != 5)
989
8.70k
            {
990
8.70k
                map20indexto34(ps->ipd_index[env], 17);
991
8.70k
                map20indexto34(ps->opd_index[env], 17);
992
8.70k
            }
993
14.5k
        }
994
7.99k
    }
995
20.3k
#endif
996
997
#if 0
998
    for (env = 0; env < ps->num_env; env++)
999
    {
1000
        printf("iid[env:%d]:", env);
1001
        for (bin = 0; bin < 34; bin++)
1002
        {
1003
            printf(" %d", ps->iid_index[env][bin]);
1004
        }
1005
        printf("\n");
1006
    }
1007
    for (env = 0; env < ps->num_env; env++)
1008
    {
1009
        printf("icc[env:%d]:", env);
1010
        for (bin = 0; bin < 34; bin++)
1011
        {
1012
            printf(" %d", ps->icc_index[env][bin]);
1013
        }
1014
        printf("\n");
1015
    }
1016
    for (env = 0; env < ps->num_env; env++)
1017
    {
1018
        printf("ipd[env:%d]:", env);
1019
        for (bin = 0; bin < 17; bin++)
1020
        {
1021
            printf(" %d", ps->ipd_index[env][bin]);
1022
        }
1023
        printf("\n");
1024
    }
1025
    for (env = 0; env < ps->num_env; env++)
1026
    {
1027
        printf("opd[env:%d]:", env);
1028
        for (bin = 0; bin < 17; bin++)
1029
        {
1030
            printf(" %d", ps->opd_index[env][bin]);
1031
        }
1032
        printf("\n");
1033
    }
1034
    printf("\n");
1035
#endif
1036
20.3k
}
1037
1038
/* decorrelate the mono signal using an allpass filter */
1039
static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
1040
                           qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
1041
20.3k
{
1042
20.3k
    uint8_t gr, n, bk;
1043
20.3k
    uint8_t temp_delay = 0;
1044
20.3k
    uint8_t sb, maxsb;
1045
20.3k
    const complex_t *Phi_Fract_SubQmf;
1046
20.3k
    uint8_t temp_delay_ser[NO_ALLPASS_LINKS];
1047
20.3k
    real_t P_SmoothPeakDecayDiffNrg, nrg;
1048
20.3k
    real_t P[32][34];
1049
20.3k
    real_t G_TransientRatio[32][34] = {{0}};
1050
20.3k
    complex_t inputLeft;
1051
1052
1053
    /* chose hybrid filterbank: 20 or 34 band case */
1054
20.3k
    if (ps->use34hybrid_bands)
1055
7.99k
    {
1056
7.99k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf34;
1057
12.3k
    } else{
1058
12.3k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf20;
1059
12.3k
    }
1060
1061
    /* clear the energy values */
1062
671k
    for (n = 0; n < 32; n++)
1063
651k
    {
1064
22.7M
        for (bk = 0; bk < 34; bk++)
1065
22.1M
        {
1066
22.1M
            P[n][bk] = 0;
1067
22.1M
        }
1068
651k
    }
1069
1070
    /* calculate the energy in each parameter band b(k) */
1071
691k
    for (gr = 0; gr < ps->num_groups; gr++)
1072
671k
    {
1073
        /* select the parameter index b(k) to which this group belongs */
1074
671k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1075
1076
        /* select the upper subband border for this group */
1077
671k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr]+1 : ps->group_border[gr+1];
1078
1079
2.27M
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1080
1.60M
        {
1081
51.6M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1082
50.0M
            {
1083
#ifdef FIXED_POINT
1084
                uint32_t in_re, in_im;
1085
#endif
1086
1087
                /* input from hybrid subbands or QMF subbands */
1088
50.0M
                if (gr < ps->num_hybrid_groups)
1089
11.7M
                {
1090
11.7M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1091
11.7M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1092
38.3M
                } else {
1093
38.3M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1094
38.3M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1095
38.3M
                }
1096
1097
                /* accumulate energy */
1098
#ifdef FIXED_POINT
1099
                /* NOTE: all input is scaled by 2^(-5) because of fixed point QMF
1100
                 * meaning that P will be scaled by 2^(-10) compared to floating point version
1101
                 */
1102
22.4M
                in_re = ((abs(RE(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1103
22.4M
                in_im = ((abs(IM(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1104
                P[n][bk] += in_re*in_re + in_im*in_im;
1105
#else
1106
27.6M
                P[n][bk] += MUL_R(RE(inputLeft),RE(inputLeft)) + MUL_R(IM(inputLeft),IM(inputLeft));
1107
#endif
1108
50.0M
            }
1109
1.60M
        }
1110
671k
    }
1111
1112
#if 0
1113
    for (n = 0; n < 32; n++)
1114
    {
1115
        for (bk = 0; bk < 34; bk++)
1116
        {
1117
#ifdef FIXED_POINT
1118
            printf("%d %d: %d\n", n, bk, P[n][bk] /*/(float)REAL_PRECISION*/);
1119
#else
1120
            printf("%d %d: %f\n", n, bk, P[n][bk]/1024.0);
1121
#endif
1122
        }
1123
    }
1124
#endif
1125
1126
    /* calculate transient reduction ratio for each parameter band b(k) */
1127
539k
    for (bk = 0; bk < ps->nr_par_bands; bk++)
1128
518k
    {
1129
16.6M
        for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1130
16.1M
        {
1131
16.1M
            const real_t gamma = COEF_CONST(1.5);
1132
1133
16.1M
            ps->P_PeakDecayNrg[bk] = MUL_F(ps->P_PeakDecayNrg[bk], ps->alpha_decay);
1134
16.1M
            if (ps->P_PeakDecayNrg[bk] < P[n][bk])
1135
153k
                ps->P_PeakDecayNrg[bk] = P[n][bk];
1136
1137
            /* apply smoothing filter to peak decay energy */
1138
16.1M
            P_SmoothPeakDecayDiffNrg = ps->P_SmoothPeakDecayDiffNrg_prev[bk];
1139
16.1M
            P_SmoothPeakDecayDiffNrg += MUL_F((ps->P_PeakDecayNrg[bk] - P[n][bk] - ps->P_SmoothPeakDecayDiffNrg_prev[bk]), ps->alpha_smooth);
1140
16.1M
            ps->P_SmoothPeakDecayDiffNrg_prev[bk] = P_SmoothPeakDecayDiffNrg;
1141
1142
            /* apply smoothing filter to energy */
1143
16.1M
            nrg = ps->P_prev[bk];
1144
16.1M
            nrg += MUL_F((P[n][bk] - ps->P_prev[bk]), ps->alpha_smooth);
1145
16.1M
            ps->P_prev[bk] = nrg;
1146
1147
            /* calculate transient ratio */
1148
16.1M
            if (MUL_C(P_SmoothPeakDecayDiffNrg, gamma) <= nrg)
1149
16.0M
            {
1150
16.0M
                G_TransientRatio[n][bk] = REAL_CONST(1.0);
1151
16.0M
            } else {
1152
120k
                G_TransientRatio[n][bk] = DIV_R(nrg, (MUL_C(P_SmoothPeakDecayDiffNrg, gamma)));
1153
120k
            }
1154
16.1M
        }
1155
518k
    }
1156
1157
#if 0
1158
    for (n = 0; n < 32; n++)
1159
    {
1160
        for (bk = 0; bk < 34; bk++)
1161
        {
1162
#ifdef FIXED_POINT
1163
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]/(float)REAL_PRECISION);
1164
#else
1165
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]);
1166
#endif
1167
        }
1168
    }
1169
#endif
1170
1171
    /* apply stereo decorrelation filter to the signal */
1172
691k
    for (gr = 0; gr < ps->num_groups; gr++)
1173
671k
    {
1174
671k
        if (gr < ps->num_hybrid_groups)
1175
379k
            maxsb = ps->group_border[gr] + 1;
1176
292k
        else
1177
292k
            maxsb = ps->group_border[gr + 1];
1178
1179
        /* QMF channel */
1180
2.27M
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1181
1.60M
        {
1182
1.60M
            real_t g_DecaySlope;
1183
1.60M
            real_t g_DecaySlope_filt[NO_ALLPASS_LINKS];
1184
1185
            /* g_DecaySlope: [0..1] */
1186
1.60M
            if (gr < ps->num_hybrid_groups || sb <= ps->decay_cutoff)
1187
399k
            {
1188
399k
                g_DecaySlope = FRAC_CONST(1.0);
1189
1.20M
            } else {
1190
1.20M
                int8_t decay = ps->decay_cutoff - sb;
1191
1.20M
                if (decay <= -20 /* -1/DECAY_SLOPE */)
1192
818k
                {
1193
818k
                    g_DecaySlope = 0;
1194
818k
                } else {
1195
                    /* decay(int)*decay_slope(frac) = g_DecaySlope(frac) */
1196
386k
                    g_DecaySlope = FRAC_CONST(1.0) + DECAY_SLOPE * decay;
1197
386k
                }
1198
1.20M
            }
1199
1200
            /* calculate g_DecaySlope_filt for every n multiplied by filter_a[n] */
1201
6.41M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1202
4.81M
            {
1203
4.81M
                g_DecaySlope_filt[n] = MUL_F(g_DecaySlope, filter_a[n]);
1204
4.81M
            }
1205
1206
1207
            /* set delay indices */
1208
1.60M
            temp_delay = ps->saved_delay;
1209
6.41M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1210
4.81M
                temp_delay_ser[n] = ps->delay_buf_index_ser[n];
1211
1212
51.6M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1213
50.0M
            {
1214
50.0M
                complex_t tmp, tmp0, R0;
1215
50.0M
                uint8_t m;
1216
1217
50.0M
                if (gr < ps->num_hybrid_groups)
1218
11.7M
                {
1219
                    /* hybrid filterbank input */
1220
11.7M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1221
11.7M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1222
38.3M
                } else {
1223
                    /* QMF filterbank input */
1224
38.3M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1225
38.3M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1226
38.3M
                }
1227
1228
50.0M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1229
26.0M
                {
1230
                    /* delay */
1231
1232
                    /* never hybrid subbands here, always QMF subbands */
1233
26.0M
                    RE(tmp) = RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1234
26.0M
                    IM(tmp) = IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1235
26.0M
                    RE(R0) = RE(tmp);
1236
26.0M
                    IM(R0) = IM(tmp);
1237
26.0M
                    RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = RE(inputLeft);
1238
26.0M
                    IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = IM(inputLeft);
1239
26.0M
                } else {
1240
                    /* allpass filter */
1241
23.9M
                    complex_t Phi_Fract;
1242
1243
                    /* fetch parameters */
1244
23.9M
                    if (gr < ps->num_hybrid_groups)
1245
11.7M
                    {
1246
                        /* select data from the hybrid subbands */
1247
11.7M
                        RE(tmp0) = RE(ps->delay_SubQmf[temp_delay][sb]);
1248
11.7M
                        IM(tmp0) = IM(ps->delay_SubQmf[temp_delay][sb]);
1249
1250
11.7M
                        RE(ps->delay_SubQmf[temp_delay][sb]) = RE(inputLeft);
1251
11.7M
                        IM(ps->delay_SubQmf[temp_delay][sb]) = IM(inputLeft);
1252
1253
11.7M
                        RE(Phi_Fract) = RE(Phi_Fract_SubQmf[sb]);
1254
11.7M
                        IM(Phi_Fract) = IM(Phi_Fract_SubQmf[sb]);
1255
12.2M
                    } else {
1256
                        /* select data from the QMF subbands */
1257
12.2M
                        RE(tmp0) = RE(ps->delay_Qmf[temp_delay][sb]);
1258
12.2M
                        IM(tmp0) = IM(ps->delay_Qmf[temp_delay][sb]);
1259
1260
12.2M
                        RE(ps->delay_Qmf[temp_delay][sb]) = RE(inputLeft);
1261
12.2M
                        IM(ps->delay_Qmf[temp_delay][sb]) = IM(inputLeft);
1262
1263
12.2M
                        RE(Phi_Fract) = RE(Phi_Fract_Qmf[sb]);
1264
12.2M
                        IM(Phi_Fract) = IM(Phi_Fract_Qmf[sb]);
1265
12.2M
                    }
1266
1267
                    /* z^(-2) * Phi_Fract[k] */
1268
23.9M
                    ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Phi_Fract), IM(Phi_Fract));
1269
1270
23.9M
                    RE(R0) = RE(tmp);
1271
23.9M
                    IM(R0) = IM(tmp);
1272
95.9M
                    for (m = 0; m < NO_ALLPASS_LINKS; m++)
1273
71.9M
                    {
1274
71.9M
                        complex_t Q_Fract_allpass, tmp2;
1275
1276
                        /* fetch parameters */
1277
71.9M
                        if (gr < ps->num_hybrid_groups)
1278
35.3M
                        {
1279
                            /* select data from the hybrid subbands */
1280
35.3M
                            RE(tmp0) = RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1281
35.3M
                            IM(tmp0) = IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1282
1283
35.3M
                            if (ps->use34hybrid_bands)
1284
23.5M
                            {
1285
23.5M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf34[sb][m]);
1286
23.5M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf34[sb][m]);
1287
23.5M
                            } else {
1288
11.7M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf20[sb][m]);
1289
11.7M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf20[sb][m]);
1290
11.7M
                            }
1291
36.6M
                        } else {
1292
                            /* select data from the QMF subbands */
1293
36.6M
                            RE(tmp0) = RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1294
36.6M
                            IM(tmp0) = IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1295
1296
36.6M
                            RE(Q_Fract_allpass) = RE(Q_Fract_allpass_Qmf[sb][m]);
1297
36.6M
                            IM(Q_Fract_allpass) = IM(Q_Fract_allpass_Qmf[sb][m]);
1298
36.6M
                        }
1299
1300
                        /* delay by a fraction */
1301
                        /* z^(-d(m)) * Q_Fract_allpass[k,m] */
1302
71.9M
                        ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Q_Fract_allpass), IM(Q_Fract_allpass));
1303
1304
                        /* -a(m) * g_DecaySlope[k] */
1305
71.9M
                        RE(tmp) += -MUL_F(g_DecaySlope_filt[m], RE(R0));
1306
71.9M
                        IM(tmp) += -MUL_F(g_DecaySlope_filt[m], IM(R0));
1307
1308
                        /* -a(m) * g_DecaySlope[k] * Q_Fract_allpass[k,m] * z^(-d(m)) */
1309
71.9M
                        RE(tmp2) = RE(R0) + MUL_F(g_DecaySlope_filt[m], RE(tmp));
1310
71.9M
                        IM(tmp2) = IM(R0) + MUL_F(g_DecaySlope_filt[m], IM(tmp));
1311
1312
                        /* store sample */
1313
71.9M
                        if (gr < ps->num_hybrid_groups)
1314
35.3M
                        {
1315
35.3M
                            RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1316
35.3M
                            IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1317
36.6M
                        } else {
1318
36.6M
                            RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1319
36.6M
                            IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1320
36.6M
                        }
1321
1322
                        /* store for next iteration (or as output value if last iteration) */
1323
71.9M
                        RE(R0) = RE(tmp);
1324
71.9M
                        IM(R0) = IM(tmp);
1325
71.9M
                    }
1326
23.9M
                }
1327
1328
                /* select b(k) for reading the transient ratio */
1329
50.0M
                bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1330
1331
                /* duck if a past transient is found */
1332
50.0M
                RE(R0) = MUL_R(G_TransientRatio[n][bk], RE(R0));
1333
50.0M
                IM(R0) = MUL_R(G_TransientRatio[n][bk], IM(R0));
1334
1335
50.0M
                if (gr < ps->num_hybrid_groups)
1336
11.7M
                {
1337
                    /* hybrid */
1338
11.7M
                    QMF_RE(X_hybrid_right[n][sb]) = RE(R0);
1339
11.7M
                    QMF_IM(X_hybrid_right[n][sb]) = IM(R0);
1340
38.3M
                } else {
1341
                    /* QMF */
1342
38.3M
                    QMF_RE(X_right[n][sb]) = RE(R0);
1343
38.3M
                    QMF_IM(X_right[n][sb]) = IM(R0);
1344
38.3M
                }
1345
1346
                /* Update delay buffer index */
1347
50.0M
                if (++temp_delay >= 2)
1348
25.0M
                {
1349
25.0M
                    temp_delay = 0;
1350
25.0M
                }
1351
1352
                /* update delay indices */
1353
50.0M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1354
26.0M
                {
1355
                    /* delay_D depends on the samplerate, it can hold the values 14 and 1 */
1356
26.0M
                    if (++ps->delay_buf_index_delay[sb] >= ps->delay_D[sb])
1357
18.9M
                    {
1358
18.9M
                        ps->delay_buf_index_delay[sb] = 0;
1359
18.9M
                    }
1360
26.0M
                }
1361
1362
200M
                for (m = 0; m < NO_ALLPASS_LINKS; m++)
1363
150M
                {
1364
150M
                    if (++temp_delay_ser[m] >= ps->num_sample_delay_ser[m])
1365
38.4M
                    {
1366
38.4M
                        temp_delay_ser[m] = 0;
1367
38.4M
                    }
1368
150M
                }
1369
50.0M
            }
1370
1.60M
        }
1371
671k
    }
1372
1373
    /* update delay indices */
1374
20.3k
    ps->saved_delay = temp_delay;
1375
81.4k
    for (n = 0; n < NO_ALLPASS_LINKS; n++)
1376
61.0k
        ps->delay_buf_index_ser[n] = temp_delay_ser[n];
1377
20.3k
}
ps_dec.c:ps_decorrelate
Line
Count
Source
1041
9.06k
{
1042
9.06k
    uint8_t gr, n, bk;
1043
9.06k
    uint8_t temp_delay = 0;
1044
9.06k
    uint8_t sb, maxsb;
1045
9.06k
    const complex_t *Phi_Fract_SubQmf;
1046
9.06k
    uint8_t temp_delay_ser[NO_ALLPASS_LINKS];
1047
9.06k
    real_t P_SmoothPeakDecayDiffNrg, nrg;
1048
9.06k
    real_t P[32][34];
1049
9.06k
    real_t G_TransientRatio[32][34] = {{0}};
1050
9.06k
    complex_t inputLeft;
1051
1052
1053
    /* chose hybrid filterbank: 20 or 34 band case */
1054
9.06k
    if (ps->use34hybrid_bands)
1055
3.77k
    {
1056
3.77k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf34;
1057
5.28k
    } else{
1058
5.28k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf20;
1059
5.28k
    }
1060
1061
    /* clear the energy values */
1062
299k
    for (n = 0; n < 32; n++)
1063
289k
    {
1064
10.1M
        for (bk = 0; bk < 34; bk++)
1065
9.85M
        {
1066
9.85M
            P[n][bk] = 0;
1067
9.85M
        }
1068
289k
    }
1069
1070
    /* calculate the energy in each parameter band b(k) */
1071
314k
    for (gr = 0; gr < ps->num_groups; gr++)
1072
305k
    {
1073
        /* select the parameter index b(k) to which this group belongs */
1074
305k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1075
1076
        /* select the upper subband border for this group */
1077
305k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr]+1 : ps->group_border[gr+1];
1078
1079
1.02M
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1080
718k
        {
1081
23.1M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1082
22.4M
            {
1083
22.4M
#ifdef FIXED_POINT
1084
22.4M
                uint32_t in_re, in_im;
1085
22.4M
#endif
1086
1087
                /* input from hybrid subbands or QMF subbands */
1088
22.4M
                if (gr < ps->num_hybrid_groups)
1089
5.39M
                {
1090
5.39M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1091
5.39M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1092
17.0M
                } else {
1093
17.0M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1094
17.0M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1095
17.0M
                }
1096
1097
                /* accumulate energy */
1098
22.4M
#ifdef FIXED_POINT
1099
                /* NOTE: all input is scaled by 2^(-5) because of fixed point QMF
1100
                 * meaning that P will be scaled by 2^(-10) compared to floating point version
1101
                 */
1102
22.4M
                in_re = ((abs(RE(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1103
22.4M
                in_im = ((abs(IM(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1104
22.4M
                P[n][bk] += in_re*in_re + in_im*in_im;
1105
#else
1106
                P[n][bk] += MUL_R(RE(inputLeft),RE(inputLeft)) + MUL_R(IM(inputLeft),IM(inputLeft));
1107
#endif
1108
22.4M
            }
1109
718k
        }
1110
305k
    }
1111
1112
#if 0
1113
    for (n = 0; n < 32; n++)
1114
    {
1115
        for (bk = 0; bk < 34; bk++)
1116
        {
1117
#ifdef FIXED_POINT
1118
            printf("%d %d: %d\n", n, bk, P[n][bk] /*/(float)REAL_PRECISION*/);
1119
#else
1120
            printf("%d %d: %f\n", n, bk, P[n][bk]/1024.0);
1121
#endif
1122
        }
1123
    }
1124
#endif
1125
1126
    /* calculate transient reduction ratio for each parameter band b(k) */
1127
243k
    for (bk = 0; bk < ps->nr_par_bands; bk++)
1128
234k
    {
1129
7.53M
        for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1130
7.30M
        {
1131
7.30M
            const real_t gamma = COEF_CONST(1.5);
1132
1133
7.30M
            ps->P_PeakDecayNrg[bk] = MUL_F(ps->P_PeakDecayNrg[bk], ps->alpha_decay);
1134
7.30M
            if (ps->P_PeakDecayNrg[bk] < P[n][bk])
1135
24.0k
                ps->P_PeakDecayNrg[bk] = P[n][bk];
1136
1137
            /* apply smoothing filter to peak decay energy */
1138
7.30M
            P_SmoothPeakDecayDiffNrg = ps->P_SmoothPeakDecayDiffNrg_prev[bk];
1139
7.30M
            P_SmoothPeakDecayDiffNrg += MUL_F((ps->P_PeakDecayNrg[bk] - P[n][bk] - ps->P_SmoothPeakDecayDiffNrg_prev[bk]), ps->alpha_smooth);
1140
7.30M
            ps->P_SmoothPeakDecayDiffNrg_prev[bk] = P_SmoothPeakDecayDiffNrg;
1141
1142
            /* apply smoothing filter to energy */
1143
7.30M
            nrg = ps->P_prev[bk];
1144
7.30M
            nrg += MUL_F((P[n][bk] - ps->P_prev[bk]), ps->alpha_smooth);
1145
7.30M
            ps->P_prev[bk] = nrg;
1146
1147
            /* calculate transient ratio */
1148
7.30M
            if (MUL_C(P_SmoothPeakDecayDiffNrg, gamma) <= nrg)
1149
7.28M
            {
1150
7.28M
                G_TransientRatio[n][bk] = REAL_CONST(1.0);
1151
7.28M
            } else {
1152
13.0k
                G_TransientRatio[n][bk] = DIV_R(nrg, (MUL_C(P_SmoothPeakDecayDiffNrg, gamma)));
1153
13.0k
            }
1154
7.30M
        }
1155
234k
    }
1156
1157
#if 0
1158
    for (n = 0; n < 32; n++)
1159
    {
1160
        for (bk = 0; bk < 34; bk++)
1161
        {
1162
#ifdef FIXED_POINT
1163
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]/(float)REAL_PRECISION);
1164
#else
1165
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]);
1166
#endif
1167
        }
1168
    }
1169
#endif
1170
1171
    /* apply stereo decorrelation filter to the signal */
1172
314k
    for (gr = 0; gr < ps->num_groups; gr++)
1173
305k
    {
1174
305k
        if (gr < ps->num_hybrid_groups)
1175
173k
            maxsb = ps->group_border[gr] + 1;
1176
131k
        else
1177
131k
            maxsb = ps->group_border[gr + 1];
1178
1179
        /* QMF channel */
1180
1.02M
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1181
718k
        {
1182
718k
            real_t g_DecaySlope;
1183
718k
            real_t g_DecaySlope_filt[NO_ALLPASS_LINKS];
1184
1185
            /* g_DecaySlope: [0..1] */
1186
718k
            if (gr < ps->num_hybrid_groups || sb <= ps->decay_cutoff)
1187
182k
            {
1188
182k
                g_DecaySlope = FRAC_CONST(1.0);
1189
536k
            } else {
1190
536k
                int8_t decay = ps->decay_cutoff - sb;
1191
536k
                if (decay <= -20 /* -1/DECAY_SLOPE */)
1192
363k
                {
1193
363k
                    g_DecaySlope = 0;
1194
363k
                } else {
1195
                    /* decay(int)*decay_slope(frac) = g_DecaySlope(frac) */
1196
172k
                    g_DecaySlope = FRAC_CONST(1.0) + DECAY_SLOPE * decay;
1197
172k
                }
1198
536k
            }
1199
1200
            /* calculate g_DecaySlope_filt for every n multiplied by filter_a[n] */
1201
2.87M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1202
2.15M
            {
1203
2.15M
                g_DecaySlope_filt[n] = MUL_F(g_DecaySlope, filter_a[n]);
1204
2.15M
            }
1205
1206
1207
            /* set delay indices */
1208
718k
            temp_delay = ps->saved_delay;
1209
2.87M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1210
2.15M
                temp_delay_ser[n] = ps->delay_buf_index_ser[n];
1211
1212
23.1M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1213
22.4M
            {
1214
22.4M
                complex_t tmp, tmp0, R0;
1215
22.4M
                uint8_t m;
1216
1217
22.4M
                if (gr < ps->num_hybrid_groups)
1218
5.39M
                {
1219
                    /* hybrid filterbank input */
1220
5.39M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1221
5.39M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1222
17.0M
                } else {
1223
                    /* QMF filterbank input */
1224
17.0M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1225
17.0M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1226
17.0M
                }
1227
1228
22.4M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1229
11.6M
                {
1230
                    /* delay */
1231
1232
                    /* never hybrid subbands here, always QMF subbands */
1233
11.6M
                    RE(tmp) = RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1234
11.6M
                    IM(tmp) = IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1235
11.6M
                    RE(R0) = RE(tmp);
1236
11.6M
                    IM(R0) = IM(tmp);
1237
11.6M
                    RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = RE(inputLeft);
1238
11.6M
                    IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = IM(inputLeft);
1239
11.6M
                } else {
1240
                    /* allpass filter */
1241
10.8M
                    complex_t Phi_Fract;
1242
1243
                    /* fetch parameters */
1244
10.8M
                    if (gr < ps->num_hybrid_groups)
1245
5.39M
                    {
1246
                        /* select data from the hybrid subbands */
1247
5.39M
                        RE(tmp0) = RE(ps->delay_SubQmf[temp_delay][sb]);
1248
5.39M
                        IM(tmp0) = IM(ps->delay_SubQmf[temp_delay][sb]);
1249
1250
5.39M
                        RE(ps->delay_SubQmf[temp_delay][sb]) = RE(inputLeft);
1251
5.39M
                        IM(ps->delay_SubQmf[temp_delay][sb]) = IM(inputLeft);
1252
1253
5.39M
                        RE(Phi_Fract) = RE(Phi_Fract_SubQmf[sb]);
1254
5.39M
                        IM(Phi_Fract) = IM(Phi_Fract_SubQmf[sb]);
1255
5.44M
                    } else {
1256
                        /* select data from the QMF subbands */
1257
5.44M
                        RE(tmp0) = RE(ps->delay_Qmf[temp_delay][sb]);
1258
5.44M
                        IM(tmp0) = IM(ps->delay_Qmf[temp_delay][sb]);
1259
1260
5.44M
                        RE(ps->delay_Qmf[temp_delay][sb]) = RE(inputLeft);
1261
5.44M
                        IM(ps->delay_Qmf[temp_delay][sb]) = IM(inputLeft);
1262
1263
5.44M
                        RE(Phi_Fract) = RE(Phi_Fract_Qmf[sb]);
1264
5.44M
                        IM(Phi_Fract) = IM(Phi_Fract_Qmf[sb]);
1265
5.44M
                    }
1266
1267
                    /* z^(-2) * Phi_Fract[k] */
1268
10.8M
                    ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Phi_Fract), IM(Phi_Fract));
1269
1270
10.8M
                    RE(R0) = RE(tmp);
1271
10.8M
                    IM(R0) = IM(tmp);
1272
43.3M
                    for (m = 0; m < NO_ALLPASS_LINKS; m++)
1273
32.5M
                    {
1274
32.5M
                        complex_t Q_Fract_allpass, tmp2;
1275
1276
                        /* fetch parameters */
1277
32.5M
                        if (gr < ps->num_hybrid_groups)
1278
16.1M
                        {
1279
                            /* select data from the hybrid subbands */
1280
16.1M
                            RE(tmp0) = RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1281
16.1M
                            IM(tmp0) = IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1282
1283
16.1M
                            if (ps->use34hybrid_bands)
1284
11.1M
                            {
1285
11.1M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf34[sb][m]);
1286
11.1M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf34[sb][m]);
1287
11.1M
                            } else {
1288
5.02M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf20[sb][m]);
1289
5.02M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf20[sb][m]);
1290
5.02M
                            }
1291
16.3M
                        } else {
1292
                            /* select data from the QMF subbands */
1293
16.3M
                            RE(tmp0) = RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1294
16.3M
                            IM(tmp0) = IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1295
1296
16.3M
                            RE(Q_Fract_allpass) = RE(Q_Fract_allpass_Qmf[sb][m]);
1297
16.3M
                            IM(Q_Fract_allpass) = IM(Q_Fract_allpass_Qmf[sb][m]);
1298
16.3M
                        }
1299
1300
                        /* delay by a fraction */
1301
                        /* z^(-d(m)) * Q_Fract_allpass[k,m] */
1302
32.5M
                        ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Q_Fract_allpass), IM(Q_Fract_allpass));
1303
1304
                        /* -a(m) * g_DecaySlope[k] */
1305
32.5M
                        RE(tmp) += -MUL_F(g_DecaySlope_filt[m], RE(R0));
1306
32.5M
                        IM(tmp) += -MUL_F(g_DecaySlope_filt[m], IM(R0));
1307
1308
                        /* -a(m) * g_DecaySlope[k] * Q_Fract_allpass[k,m] * z^(-d(m)) */
1309
32.5M
                        RE(tmp2) = RE(R0) + MUL_F(g_DecaySlope_filt[m], RE(tmp));
1310
32.5M
                        IM(tmp2) = IM(R0) + MUL_F(g_DecaySlope_filt[m], IM(tmp));
1311
1312
                        /* store sample */
1313
32.5M
                        if (gr < ps->num_hybrid_groups)
1314
16.1M
                        {
1315
16.1M
                            RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1316
16.1M
                            IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1317
16.3M
                        } else {
1318
16.3M
                            RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1319
16.3M
                            IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1320
16.3M
                        }
1321
1322
                        /* store for next iteration (or as output value if last iteration) */
1323
32.5M
                        RE(R0) = RE(tmp);
1324
32.5M
                        IM(R0) = IM(tmp);
1325
32.5M
                    }
1326
10.8M
                }
1327
1328
                /* select b(k) for reading the transient ratio */
1329
22.4M
                bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1330
1331
                /* duck if a past transient is found */
1332
22.4M
                RE(R0) = MUL_R(G_TransientRatio[n][bk], RE(R0));
1333
22.4M
                IM(R0) = MUL_R(G_TransientRatio[n][bk], IM(R0));
1334
1335
22.4M
                if (gr < ps->num_hybrid_groups)
1336
5.39M
                {
1337
                    /* hybrid */
1338
5.39M
                    QMF_RE(X_hybrid_right[n][sb]) = RE(R0);
1339
5.39M
                    QMF_IM(X_hybrid_right[n][sb]) = IM(R0);
1340
17.0M
                } else {
1341
                    /* QMF */
1342
17.0M
                    QMF_RE(X_right[n][sb]) = RE(R0);
1343
17.0M
                    QMF_IM(X_right[n][sb]) = IM(R0);
1344
17.0M
                }
1345
1346
                /* Update delay buffer index */
1347
22.4M
                if (++temp_delay >= 2)
1348
11.2M
                {
1349
11.2M
                    temp_delay = 0;
1350
11.2M
                }
1351
1352
                /* update delay indices */
1353
22.4M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1354
11.6M
                {
1355
                    /* delay_D depends on the samplerate, it can hold the values 14 and 1 */
1356
11.6M
                    if (++ps->delay_buf_index_delay[sb] >= ps->delay_D[sb])
1357
8.44M
                    {
1358
8.44M
                        ps->delay_buf_index_delay[sb] = 0;
1359
8.44M
                    }
1360
11.6M
                }
1361
1362
89.8M
                for (m = 0; m < NO_ALLPASS_LINKS; m++)
1363
67.4M
                {
1364
67.4M
                    if (++temp_delay_ser[m] >= ps->num_sample_delay_ser[m])
1365
17.1M
                    {
1366
17.1M
                        temp_delay_ser[m] = 0;
1367
17.1M
                    }
1368
67.4M
                }
1369
22.4M
            }
1370
718k
        }
1371
305k
    }
1372
1373
    /* update delay indices */
1374
9.06k
    ps->saved_delay = temp_delay;
1375
36.2k
    for (n = 0; n < NO_ALLPASS_LINKS; n++)
1376
27.1k
        ps->delay_buf_index_ser[n] = temp_delay_ser[n];
1377
9.06k
}
ps_dec.c:ps_decorrelate
Line
Count
Source
1041
11.2k
{
1042
11.2k
    uint8_t gr, n, bk;
1043
11.2k
    uint8_t temp_delay = 0;
1044
11.2k
    uint8_t sb, maxsb;
1045
11.2k
    const complex_t *Phi_Fract_SubQmf;
1046
11.2k
    uint8_t temp_delay_ser[NO_ALLPASS_LINKS];
1047
11.2k
    real_t P_SmoothPeakDecayDiffNrg, nrg;
1048
11.2k
    real_t P[32][34];
1049
11.2k
    real_t G_TransientRatio[32][34] = {{0}};
1050
11.2k
    complex_t inputLeft;
1051
1052
1053
    /* chose hybrid filterbank: 20 or 34 band case */
1054
11.2k
    if (ps->use34hybrid_bands)
1055
4.21k
    {
1056
4.21k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf34;
1057
7.07k
    } else{
1058
7.07k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf20;
1059
7.07k
    }
1060
1061
    /* clear the energy values */
1062
372k
    for (n = 0; n < 32; n++)
1063
361k
    {
1064
12.6M
        for (bk = 0; bk < 34; bk++)
1065
12.2M
        {
1066
12.2M
            P[n][bk] = 0;
1067
12.2M
        }
1068
361k
    }
1069
1070
    /* calculate the energy in each parameter band b(k) */
1071
377k
    for (gr = 0; gr < ps->num_groups; gr++)
1072
366k
    {
1073
        /* select the parameter index b(k) to which this group belongs */
1074
366k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1075
1076
        /* select the upper subband border for this group */
1077
366k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr]+1 : ps->group_border[gr+1];
1078
1079
1.25M
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1080
885k
        {
1081
28.4M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1082
27.6M
            {
1083
#ifdef FIXED_POINT
1084
                uint32_t in_re, in_im;
1085
#endif
1086
1087
                /* input from hybrid subbands or QMF subbands */
1088
27.6M
                if (gr < ps->num_hybrid_groups)
1089
6.37M
                {
1090
6.37M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1091
6.37M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1092
21.2M
                } else {
1093
21.2M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1094
21.2M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1095
21.2M
                }
1096
1097
                /* accumulate energy */
1098
#ifdef FIXED_POINT
1099
                /* NOTE: all input is scaled by 2^(-5) because of fixed point QMF
1100
                 * meaning that P will be scaled by 2^(-10) compared to floating point version
1101
                 */
1102
                in_re = ((abs(RE(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1103
                in_im = ((abs(IM(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1104
                P[n][bk] += in_re*in_re + in_im*in_im;
1105
#else
1106
27.6M
                P[n][bk] += MUL_R(RE(inputLeft),RE(inputLeft)) + MUL_R(IM(inputLeft),IM(inputLeft));
1107
27.6M
#endif
1108
27.6M
            }
1109
885k
        }
1110
366k
    }
1111
1112
#if 0
1113
    for (n = 0; n < 32; n++)
1114
    {
1115
        for (bk = 0; bk < 34; bk++)
1116
        {
1117
#ifdef FIXED_POINT
1118
            printf("%d %d: %d\n", n, bk, P[n][bk] /*/(float)REAL_PRECISION*/);
1119
#else
1120
            printf("%d %d: %f\n", n, bk, P[n][bk]/1024.0);
1121
#endif
1122
        }
1123
    }
1124
#endif
1125
1126
    /* calculate transient reduction ratio for each parameter band b(k) */
1127
296k
    for (bk = 0; bk < ps->nr_par_bands; bk++)
1128
284k
    {
1129
9.14M
        for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1130
8.85M
        {
1131
8.85M
            const real_t gamma = COEF_CONST(1.5);
1132
1133
8.85M
            ps->P_PeakDecayNrg[bk] = MUL_F(ps->P_PeakDecayNrg[bk], ps->alpha_decay);
1134
8.85M
            if (ps->P_PeakDecayNrg[bk] < P[n][bk])
1135
129k
                ps->P_PeakDecayNrg[bk] = P[n][bk];
1136
1137
            /* apply smoothing filter to peak decay energy */
1138
8.85M
            P_SmoothPeakDecayDiffNrg = ps->P_SmoothPeakDecayDiffNrg_prev[bk];
1139
8.85M
            P_SmoothPeakDecayDiffNrg += MUL_F((ps->P_PeakDecayNrg[bk] - P[n][bk] - ps->P_SmoothPeakDecayDiffNrg_prev[bk]), ps->alpha_smooth);
1140
8.85M
            ps->P_SmoothPeakDecayDiffNrg_prev[bk] = P_SmoothPeakDecayDiffNrg;
1141
1142
            /* apply smoothing filter to energy */
1143
8.85M
            nrg = ps->P_prev[bk];
1144
8.85M
            nrg += MUL_F((P[n][bk] - ps->P_prev[bk]), ps->alpha_smooth);
1145
8.85M
            ps->P_prev[bk] = nrg;
1146
1147
            /* calculate transient ratio */
1148
8.85M
            if (MUL_C(P_SmoothPeakDecayDiffNrg, gamma) <= nrg)
1149
8.75M
            {
1150
8.75M
                G_TransientRatio[n][bk] = REAL_CONST(1.0);
1151
8.75M
            } else {
1152
107k
                G_TransientRatio[n][bk] = DIV_R(nrg, (MUL_C(P_SmoothPeakDecayDiffNrg, gamma)));
1153
107k
            }
1154
8.85M
        }
1155
284k
    }
1156
1157
#if 0
1158
    for (n = 0; n < 32; n++)
1159
    {
1160
        for (bk = 0; bk < 34; bk++)
1161
        {
1162
#ifdef FIXED_POINT
1163
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]/(float)REAL_PRECISION);
1164
#else
1165
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]);
1166
#endif
1167
        }
1168
    }
1169
#endif
1170
1171
    /* apply stereo decorrelation filter to the signal */
1172
377k
    for (gr = 0; gr < ps->num_groups; gr++)
1173
366k
    {
1174
366k
        if (gr < ps->num_hybrid_groups)
1175
205k
            maxsb = ps->group_border[gr] + 1;
1176
160k
        else
1177
160k
            maxsb = ps->group_border[gr + 1];
1178
1179
        /* QMF channel */
1180
1.25M
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1181
885k
        {
1182
885k
            real_t g_DecaySlope;
1183
885k
            real_t g_DecaySlope_filt[NO_ALLPASS_LINKS];
1184
1185
            /* g_DecaySlope: [0..1] */
1186
885k
            if (gr < ps->num_hybrid_groups || sb <= ps->decay_cutoff)
1187
216k
            {
1188
216k
                g_DecaySlope = FRAC_CONST(1.0);
1189
668k
            } else {
1190
668k
                int8_t decay = ps->decay_cutoff - sb;
1191
668k
                if (decay <= -20 /* -1/DECAY_SLOPE */)
1192
454k
                {
1193
454k
                    g_DecaySlope = 0;
1194
454k
                } else {
1195
                    /* decay(int)*decay_slope(frac) = g_DecaySlope(frac) */
1196
214k
                    g_DecaySlope = FRAC_CONST(1.0) + DECAY_SLOPE * decay;
1197
214k
                }
1198
668k
            }
1199
1200
            /* calculate g_DecaySlope_filt for every n multiplied by filter_a[n] */
1201
3.54M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1202
2.65M
            {
1203
2.65M
                g_DecaySlope_filt[n] = MUL_F(g_DecaySlope, filter_a[n]);
1204
2.65M
            }
1205
1206
1207
            /* set delay indices */
1208
885k
            temp_delay = ps->saved_delay;
1209
3.54M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1210
2.65M
                temp_delay_ser[n] = ps->delay_buf_index_ser[n];
1211
1212
28.4M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1213
27.6M
            {
1214
27.6M
                complex_t tmp, tmp0, R0;
1215
27.6M
                uint8_t m;
1216
1217
27.6M
                if (gr < ps->num_hybrid_groups)
1218
6.37M
                {
1219
                    /* hybrid filterbank input */
1220
6.37M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1221
6.37M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1222
21.2M
                } else {
1223
                    /* QMF filterbank input */
1224
21.2M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1225
21.2M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1226
21.2M
                }
1227
1228
27.6M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1229
14.4M
                {
1230
                    /* delay */
1231
1232
                    /* never hybrid subbands here, always QMF subbands */
1233
14.4M
                    RE(tmp) = RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1234
14.4M
                    IM(tmp) = IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1235
14.4M
                    RE(R0) = RE(tmp);
1236
14.4M
                    IM(R0) = IM(tmp);
1237
14.4M
                    RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = RE(inputLeft);
1238
14.4M
                    IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = IM(inputLeft);
1239
14.4M
                } else {
1240
                    /* allpass filter */
1241
13.1M
                    complex_t Phi_Fract;
1242
1243
                    /* fetch parameters */
1244
13.1M
                    if (gr < ps->num_hybrid_groups)
1245
6.37M
                    {
1246
                        /* select data from the hybrid subbands */
1247
6.37M
                        RE(tmp0) = RE(ps->delay_SubQmf[temp_delay][sb]);
1248
6.37M
                        IM(tmp0) = IM(ps->delay_SubQmf[temp_delay][sb]);
1249
1250
6.37M
                        RE(ps->delay_SubQmf[temp_delay][sb]) = RE(inputLeft);
1251
6.37M
                        IM(ps->delay_SubQmf[temp_delay][sb]) = IM(inputLeft);
1252
1253
6.37M
                        RE(Phi_Fract) = RE(Phi_Fract_SubQmf[sb]);
1254
6.37M
                        IM(Phi_Fract) = IM(Phi_Fract_SubQmf[sb]);
1255
6.78M
                    } else {
1256
                        /* select data from the QMF subbands */
1257
6.78M
                        RE(tmp0) = RE(ps->delay_Qmf[temp_delay][sb]);
1258
6.78M
                        IM(tmp0) = IM(ps->delay_Qmf[temp_delay][sb]);
1259
1260
6.78M
                        RE(ps->delay_Qmf[temp_delay][sb]) = RE(inputLeft);
1261
6.78M
                        IM(ps->delay_Qmf[temp_delay][sb]) = IM(inputLeft);
1262
1263
6.78M
                        RE(Phi_Fract) = RE(Phi_Fract_Qmf[sb]);
1264
6.78M
                        IM(Phi_Fract) = IM(Phi_Fract_Qmf[sb]);
1265
6.78M
                    }
1266
1267
                    /* z^(-2) * Phi_Fract[k] */
1268
13.1M
                    ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Phi_Fract), IM(Phi_Fract));
1269
1270
13.1M
                    RE(R0) = RE(tmp);
1271
13.1M
                    IM(R0) = IM(tmp);
1272
52.6M
                    for (m = 0; m < NO_ALLPASS_LINKS; m++)
1273
39.4M
                    {
1274
39.4M
                        complex_t Q_Fract_allpass, tmp2;
1275
1276
                        /* fetch parameters */
1277
39.4M
                        if (gr < ps->num_hybrid_groups)
1278
19.1M
                        {
1279
                            /* select data from the hybrid subbands */
1280
19.1M
                            RE(tmp0) = RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1281
19.1M
                            IM(tmp0) = IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1282
1283
19.1M
                            if (ps->use34hybrid_bands)
1284
12.4M
                            {
1285
12.4M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf34[sb][m]);
1286
12.4M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf34[sb][m]);
1287
12.4M
                            } else {
1288
6.68M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf20[sb][m]);
1289
6.68M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf20[sb][m]);
1290
6.68M
                            }
1291
20.3M
                        } else {
1292
                            /* select data from the QMF subbands */
1293
20.3M
                            RE(tmp0) = RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1294
20.3M
                            IM(tmp0) = IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1295
1296
20.3M
                            RE(Q_Fract_allpass) = RE(Q_Fract_allpass_Qmf[sb][m]);
1297
20.3M
                            IM(Q_Fract_allpass) = IM(Q_Fract_allpass_Qmf[sb][m]);
1298
20.3M
                        }
1299
1300
                        /* delay by a fraction */
1301
                        /* z^(-d(m)) * Q_Fract_allpass[k,m] */
1302
39.4M
                        ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Q_Fract_allpass), IM(Q_Fract_allpass));
1303
1304
                        /* -a(m) * g_DecaySlope[k] */
1305
39.4M
                        RE(tmp) += -MUL_F(g_DecaySlope_filt[m], RE(R0));
1306
39.4M
                        IM(tmp) += -MUL_F(g_DecaySlope_filt[m], IM(R0));
1307
1308
                        /* -a(m) * g_DecaySlope[k] * Q_Fract_allpass[k,m] * z^(-d(m)) */
1309
39.4M
                        RE(tmp2) = RE(R0) + MUL_F(g_DecaySlope_filt[m], RE(tmp));
1310
39.4M
                        IM(tmp2) = IM(R0) + MUL_F(g_DecaySlope_filt[m], IM(tmp));
1311
1312
                        /* store sample */
1313
39.4M
                        if (gr < ps->num_hybrid_groups)
1314
19.1M
                        {
1315
19.1M
                            RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1316
19.1M
                            IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1317
20.3M
                        } else {
1318
20.3M
                            RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1319
20.3M
                            IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1320
20.3M
                        }
1321
1322
                        /* store for next iteration (or as output value if last iteration) */
1323
39.4M
                        RE(R0) = RE(tmp);
1324
39.4M
                        IM(R0) = IM(tmp);
1325
39.4M
                    }
1326
13.1M
                }
1327
1328
                /* select b(k) for reading the transient ratio */
1329
27.6M
                bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1330
1331
                /* duck if a past transient is found */
1332
27.6M
                RE(R0) = MUL_R(G_TransientRatio[n][bk], RE(R0));
1333
27.6M
                IM(R0) = MUL_R(G_TransientRatio[n][bk], IM(R0));
1334
1335
27.6M
                if (gr < ps->num_hybrid_groups)
1336
6.37M
                {
1337
                    /* hybrid */
1338
6.37M
                    QMF_RE(X_hybrid_right[n][sb]) = RE(R0);
1339
6.37M
                    QMF_IM(X_hybrid_right[n][sb]) = IM(R0);
1340
21.2M
                } else {
1341
                    /* QMF */
1342
21.2M
                    QMF_RE(X_right[n][sb]) = RE(R0);
1343
21.2M
                    QMF_IM(X_right[n][sb]) = IM(R0);
1344
21.2M
                }
1345
1346
                /* Update delay buffer index */
1347
27.6M
                if (++temp_delay >= 2)
1348
13.7M
                {
1349
13.7M
                    temp_delay = 0;
1350
13.7M
                }
1351
1352
                /* update delay indices */
1353
27.6M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1354
14.4M
                {
1355
                    /* delay_D depends on the samplerate, it can hold the values 14 and 1 */
1356
14.4M
                    if (++ps->delay_buf_index_delay[sb] >= ps->delay_D[sb])
1357
10.4M
                    {
1358
10.4M
                        ps->delay_buf_index_delay[sb] = 0;
1359
10.4M
                    }
1360
14.4M
                }
1361
1362
110M
                for (m = 0; m < NO_ALLPASS_LINKS; m++)
1363
82.8M
                {
1364
82.8M
                    if (++temp_delay_ser[m] >= ps->num_sample_delay_ser[m])
1365
21.2M
                    {
1366
21.2M
                        temp_delay_ser[m] = 0;
1367
21.2M
                    }
1368
82.8M
                }
1369
27.6M
            }
1370
885k
        }
1371
366k
    }
1372
1373
    /* update delay indices */
1374
11.2k
    ps->saved_delay = temp_delay;
1375
45.1k
    for (n = 0; n < NO_ALLPASS_LINKS; n++)
1376
33.8k
        ps->delay_buf_index_ser[n] = temp_delay_ser[n];
1377
11.2k
}
1378
1379
#if 0
1380
#ifdef FIXED_POINT
1381
#define step(shift) \
1382
    if ((0x40000000l >> shift) + root <= value)       \
1383
    {                                                 \
1384
        value -= (0x40000000l >> shift) + root;       \
1385
        root = (root >> 1) | (0x40000000l >> shift);  \
1386
    } else {                                          \
1387
        root = root >> 1;                             \
1388
    }
1389
1390
/* fixed point square root approximation */
1391
static real_t ps_sqrt(real_t value)
1392
{
1393
    real_t root = 0;
1394
1395
    step( 0); step( 2); step( 4); step( 6);
1396
    step( 8); step(10); step(12); step(14);
1397
    step(16); step(18); step(20); step(22);
1398
    step(24); step(26); step(28); step(30);
1399
1400
    if (root < value)
1401
        ++root;
1402
1403
    root <<= (REAL_BITS/2);
1404
1405
    return root;
1406
}
1407
#else
1408
#define ps_sqrt(A) sqrt(A)
1409
#endif
1410
#endif
1411
1412
static const real_t ipdopd_cos_tab[] = {
1413
    FRAC_CONST(1.000000000000000),
1414
    FRAC_CONST(0.707106781186548),
1415
    FRAC_CONST(0.000000000000000),
1416
    FRAC_CONST(-0.707106781186547),
1417
    FRAC_CONST(-1.000000000000000),
1418
    FRAC_CONST(-0.707106781186548),
1419
    FRAC_CONST(-0.000000000000000),
1420
    FRAC_CONST(0.707106781186547),
1421
    FRAC_CONST(1.000000000000000)
1422
};
1423
1424
static const real_t ipdopd_sin_tab[] = {
1425
    FRAC_CONST(0.000000000000000),
1426
    FRAC_CONST(0.707106781186547),
1427
    FRAC_CONST(1.000000000000000),
1428
    FRAC_CONST(0.707106781186548),
1429
    FRAC_CONST(0.000000000000000),
1430
    FRAC_CONST(-0.707106781186547),
1431
    FRAC_CONST(-1.000000000000000),
1432
    FRAC_CONST(-0.707106781186548),
1433
    FRAC_CONST(-0.000000000000000)
1434
};
1435
1436
static real_t magnitude_c(complex_t c)
1437
398k
{
1438
#ifdef FIXED_POINT
1439
405k
#define ps_abs(A) (((A) > 0) ? (A) : (-(A)))
1440
#define ALPHA FRAC_CONST(0.948059448969)
1441
#define BETA  FRAC_CONST(0.392699081699)
1442
1443
202k
    real_t abs_inphase = ps_abs(RE(c));
1444
202k
    real_t abs_quadrature = ps_abs(IM(c));
1445
1446
202k
    if (abs_inphase > abs_quadrature) {
1447
158k
        return MUL_F(abs_inphase, ALPHA) + MUL_F(abs_quadrature, BETA);
1448
158k
    } else {
1449
44.0k
        return MUL_F(abs_quadrature, ALPHA) + MUL_F(abs_inphase, BETA);
1450
44.0k
    }
1451
#else
1452
196k
    return sqrt(RE(c)*RE(c) + IM(c)*IM(c));
1453
#endif
1454
398k
}
ps_dec.c:magnitude_c
Line
Count
Source
1437
202k
{
1438
202k
#ifdef FIXED_POINT
1439
202k
#define ps_abs(A) (((A) > 0) ? (A) : (-(A)))
1440
202k
#define ALPHA FRAC_CONST(0.948059448969)
1441
202k
#define BETA  FRAC_CONST(0.392699081699)
1442
1443
202k
    real_t abs_inphase = ps_abs(RE(c));
1444
202k
    real_t abs_quadrature = ps_abs(IM(c));
1445
1446
202k
    if (abs_inphase > abs_quadrature) {
1447
158k
        return MUL_F(abs_inphase, ALPHA) + MUL_F(abs_quadrature, BETA);
1448
158k
    } else {
1449
44.0k
        return MUL_F(abs_quadrature, ALPHA) + MUL_F(abs_inphase, BETA);
1450
44.0k
    }
1451
#else
1452
    return sqrt(RE(c)*RE(c) + IM(c)*IM(c));
1453
#endif
1454
202k
}
ps_dec.c:magnitude_c
Line
Count
Source
1437
196k
{
1438
#ifdef FIXED_POINT
1439
#define ps_abs(A) (((A) > 0) ? (A) : (-(A)))
1440
#define ALPHA FRAC_CONST(0.948059448969)
1441
#define BETA  FRAC_CONST(0.392699081699)
1442
1443
    real_t abs_inphase = ps_abs(RE(c));
1444
    real_t abs_quadrature = ps_abs(IM(c));
1445
1446
    if (abs_inphase > abs_quadrature) {
1447
        return MUL_F(abs_inphase, ALPHA) + MUL_F(abs_quadrature, BETA);
1448
    } else {
1449
        return MUL_F(abs_quadrature, ALPHA) + MUL_F(abs_inphase, BETA);
1450
    }
1451
#else
1452
196k
    return sqrt(RE(c)*RE(c) + IM(c)*IM(c));
1453
196k
#endif
1454
196k
}
1455
1456
static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
1457
                         qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
1458
20.3k
{
1459
20.3k
    uint8_t n;
1460
20.3k
    uint8_t gr;
1461
20.3k
    uint8_t bk = 0;
1462
20.3k
    uint8_t sb, maxsb;
1463
20.3k
    uint8_t env;
1464
20.3k
    uint8_t nr_ipdopd_par;
1465
20.3k
    complex_t h11, h12, h21, h22;  // COEF
1466
20.3k
    complex_t H11, H12, H21, H22;  // COEF
1467
20.3k
    complex_t deltaH11, deltaH12, deltaH21, deltaH22;  // COEF
1468
20.3k
    complex_t tempLeft, tempRight; // FRAC
1469
20.3k
    complex_t phaseLeft, phaseRight; // FRAC
1470
20.3k
    real_t L;
1471
20.3k
    const real_t *sf_iid;
1472
20.3k
    uint8_t no_iid_steps;
1473
1474
20.3k
    if (ps->iid_mode >= 3)
1475
8.45k
    {
1476
8.45k
        no_iid_steps = 15;
1477
8.45k
        sf_iid = sf_iid_fine;
1478
11.8k
    } else {
1479
11.8k
        no_iid_steps = 7;
1480
11.8k
        sf_iid = sf_iid_normal;
1481
11.8k
    }
1482
1483
20.3k
    if (ps->ipd_mode == 0 || ps->ipd_mode == 3)
1484
11.9k
    {
1485
11.9k
        nr_ipdopd_par = 11; /* resolution */
1486
11.9k
    } else {
1487
8.39k
        nr_ipdopd_par = ps->nr_ipdopd_par;
1488
8.39k
    }
1489
1490
691k
    for (gr = 0; gr < ps->num_groups; gr++)
1491
671k
    {
1492
671k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1493
1494
        /* use one channel per group in the subqmf domain */
1495
671k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr] + 1 : ps->group_border[gr + 1];
1496
1497
2.18M
        for (env = 0; env < ps->num_env; env++)
1498
1.51M
        {
1499
1.51M
            uint8_t abs_iid = (uint8_t)abs(ps->iid_index[env][bk]);
1500
            /* index range is supposed to be -7...7 or -15...15 depending on iid_mode
1501
                (Table 8.24, ISO/IEC 14496-3:2005).
1502
                if it is outside these boundaries, this is most likely an error. sanitize
1503
                it and try to process further. */
1504
1.51M
            if (ps->iid_index[env][bk] < -no_iid_steps) {
1505
450
                fprintf(stderr, "Warning: invalid iid_index: %d < %d\n", ps->iid_index[env][bk],
1506
450
                    -no_iid_steps);
1507
450
                ps->iid_index[env][bk] = -no_iid_steps;
1508
450
                abs_iid = no_iid_steps;
1509
1.51M
            } else if (ps->iid_index[env][bk] > no_iid_steps) {
1510
302
                fprintf(stderr, "Warning: invalid iid_index: %d > %d\n", ps->iid_index[env][bk],
1511
302
                    no_iid_steps);
1512
302
                ps->iid_index[env][bk] = no_iid_steps;
1513
302
                abs_iid = no_iid_steps;
1514
302
            }
1515
1.51M
            if (ps->icc_index[env][bk] < 0) {
1516
628
                fprintf(stderr, "Warning: invalid icc_index: %d < 0\n", ps->icc_index[env][bk]);
1517
628
                ps->icc_index[env][bk] = 0;
1518
1.51M
            } else if (ps->icc_index[env][bk] > 7) {
1519
0
                fprintf(stderr, "Warning: invalid icc_index: %d > 7\n", ps->icc_index[env][bk]);
1520
0
                ps->icc_index[env][bk] = 7;
1521
0
            }
1522
1523
1.51M
            if (ps->icc_mode < 3)
1524
893k
            {
1525
                /* type 'A' mixing as described in 8.6.4.6.2.1 */
1526
893k
                real_t c_1, c_2;  // COEF
1527
893k
                real_t cosa, sina;  // COEF
1528
893k
                real_t cosb, sinb;  // COEF
1529
893k
                real_t ab1, ab2;  // COEF
1530
893k
                real_t ab3, ab4;  // COEF
1531
1532
                /*
1533
                c_1 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps + iid_index] / 10.0)));
1534
                c_2 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps - iid_index] / 10.0)));
1535
                alpha = 0.5 * acos(quant_rho[icc_index]);
1536
                beta = alpha * ( c_1 - c_2 ) / sqrt(2.0);
1537
                */
1538
1539
                //printf("%d\n", ps->iid_index[env][bk]);
1540
1541
                /* calculate the scalefactors c_1 and c_2 from the intensity differences */
1542
893k
                c_1 = sf_iid[no_iid_steps + ps->iid_index[env][bk]];
1543
893k
                c_2 = sf_iid[no_iid_steps - ps->iid_index[env][bk]];
1544
1545
                /* calculate alpha and beta using the ICC parameters */
1546
893k
                cosa = cos_alphas[ps->icc_index[env][bk]];
1547
893k
                sina = sin_alphas[ps->icc_index[env][bk]];
1548
1549
893k
                if (ps->iid_mode >= 3)
1550
309k
                {
1551
309k
                    cosb = cos_betas_fine[abs_iid][ps->icc_index[env][bk]];
1552
309k
                    sinb = sin_betas_fine[abs_iid][ps->icc_index[env][bk]];
1553
584k
                } else {
1554
584k
                    cosb = cos_betas_normal[abs_iid][ps->icc_index[env][bk]];
1555
584k
                    sinb = sin_betas_normal[abs_iid][ps->icc_index[env][bk]];
1556
584k
                }
1557
1558
893k
                ab1 = MUL_C(cosb, cosa);
1559
893k
                ab2 = MUL_C(sinb, sina);
1560
893k
                ab3 = MUL_C(sinb, cosa);
1561
893k
                ab4 = MUL_C(cosb, sina);
1562
1563
                /* h_xy: COEF */
1564
893k
                RE(h11) = MUL_C(c_2, (ab1 - ab2));
1565
893k
                RE(h12) = MUL_C(c_1, (ab1 + ab2));
1566
893k
                RE(h21) = MUL_C(c_2, (ab3 + ab4));
1567
893k
                RE(h22) = MUL_C(c_1, (ab3 - ab4));
1568
893k
            } else {
1569
                /* type 'B' mixing as described in 8.6.4.6.2.2 */
1570
623k
                real_t sina, cosa;  // COEF
1571
623k
                real_t cosg, sing;  // COEF
1572
1573
                /*
1574
                real_t c, rho, mu, alpha, gamma;
1575
                uint8_t i;
1576
1577
                i = ps->iid_index[env][bk];
1578
                c = (real_t)pow(10.0, ((i)?(((i>0)?1:-1)*quant_iid[((i>0)?i:-i)-1]):0.)/20.0);
1579
                rho = quant_rho[ps->icc_index[env][bk]];
1580
1581
                if (rho == 0.0f && c == 1.)
1582
                {
1583
                    alpha = (real_t)M_PI/4.0f;
1584
                    rho = 0.05f;
1585
                } else {
1586
                    if (rho <= 0.05f)
1587
                    {
1588
                        rho = 0.05f;
1589
                    }
1590
                    alpha = 0.5f*(real_t)atan( (2.0f*c*rho) / (c*c-1.0f) );
1591
1592
                    if (alpha < 0.)
1593
                    {
1594
                        alpha += (real_t)M_PI/2.0f;
1595
                    }
1596
                    if (rho < 0.)
1597
                    {
1598
                        alpha += (real_t)M_PI;
1599
                    }
1600
                }
1601
                mu = c+1.0f/c;
1602
                mu = 1+(4.0f*rho*rho-4.0f)/(mu*mu);
1603
                gamma = (real_t)atan(sqrt((1.0f-sqrt(mu))/(1.0f+sqrt(mu))));
1604
                */
1605
1606
623k
                if (ps->iid_mode >= 3)
1607
403k
                {
1608
403k
                    cosa = sincos_alphas_B_fine[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1609
403k
                    sina = sincos_alphas_B_fine[30 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1610
403k
                    cosg = cos_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1611
403k
                    sing = sin_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1612
403k
                } else {
1613
219k
                    cosa = sincos_alphas_B_normal[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1614
219k
                    sina = sincos_alphas_B_normal[14 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1615
219k
                    cosg = cos_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1616
219k
                    sing = sin_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1617
219k
                }
1618
1619
623k
                RE(h11) = MUL_C(COEF_SQRT2, MUL_C(cosa, cosg));
1620
623k
                RE(h12) = MUL_C(COEF_SQRT2, MUL_C(sina, cosg));
1621
623k
                RE(h21) = MUL_C(COEF_SQRT2, MUL_C(-cosa, sing));
1622
623k
                RE(h22) = MUL_C(COEF_SQRT2, MUL_C(sina, sing));
1623
623k
            }
1624
1.51M
            IM(h11) = IM(h12) = IM(h21) = IM(h22) = 0;
1625
1626
            /* calculate phase rotation parameters H_xy */
1627
            /* note that the imaginary part of these parameters are only calculated when
1628
               IPD and OPD are enabled
1629
             */
1630
1.51M
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1631
199k
            {
1632
199k
                int8_t i;
1633
199k
                real_t xy, pq, xypq;  // FRAC
1634
1635
                /* ringbuffer index */
1636
199k
                i = ps->phase_hist;
1637
1638
                /* previous value */
1639
#ifdef FIXED_POINT
1640
                /* divide by 4*2, shift right 3 bits;
1641
                   extra halving to avoid overflows; it is ok, because result is normalized */
1642
101k
                RE(tempLeft)  = RE(ps->ipd_prev[bk][i]) >> 3;
1643
101k
                IM(tempLeft)  = IM(ps->ipd_prev[bk][i]) >> 3;
1644
101k
                RE(tempRight) = RE(ps->opd_prev[bk][i]) >> 3;
1645
101k
                IM(tempRight) = IM(ps->opd_prev[bk][i]) >> 3;
1646
#else
1647
98.1k
                RE(tempLeft)  = MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1648
98.1k
                IM(tempLeft)  = MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1649
98.1k
                RE(tempRight) = MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1650
98.1k
                IM(tempRight) = MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1651
#endif
1652
1653
                /* save current value */
1654
199k
                RE(ps->ipd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->ipd_index[env][bk])];
1655
199k
                IM(ps->ipd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->ipd_index[env][bk])];
1656
199k
                RE(ps->opd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->opd_index[env][bk])];
1657
199k
                IM(ps->opd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->opd_index[env][bk])];
1658
1659
                /* add current value */
1660
#ifdef FIXED_POINT
1661
                /* extra halving to avoid overflows */
1662
101k
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]) >> 1;
1663
101k
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]) >> 1;
1664
101k
                RE(tempRight) += RE(ps->opd_prev[bk][i]) >> 1;
1665
101k
                IM(tempRight) += IM(ps->opd_prev[bk][i]) >> 1;
1666
#else
1667
98.1k
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]);
1668
98.1k
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]);
1669
98.1k
                RE(tempRight) += RE(ps->opd_prev[bk][i]);
1670
98.1k
                IM(tempRight) += IM(ps->opd_prev[bk][i]);
1671
#endif
1672
1673
                /* ringbuffer index */
1674
199k
                if (i == 0)
1675
100k
                {
1676
100k
                    i = 2;
1677
100k
                }
1678
199k
                i--;
1679
1680
                /* get value before previous */
1681
#ifdef FIXED_POINT
1682
                /* dividing by 2*2, shift right 2 bits; extra halving to avoid overflows */
1683
101k
                RE(tempLeft)  += (RE(ps->ipd_prev[bk][i]) >> 2);
1684
101k
                IM(tempLeft)  += (IM(ps->ipd_prev[bk][i]) >> 2);
1685
101k
                RE(tempRight) += (RE(ps->opd_prev[bk][i]) >> 2);
1686
101k
                IM(tempRight) += (IM(ps->opd_prev[bk][i]) >> 2);
1687
#else
1688
98.1k
                RE(tempLeft)  += MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1689
98.1k
                IM(tempLeft)  += MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1690
98.1k
                RE(tempRight) += MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1691
98.1k
                IM(tempRight) += MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1692
#endif
1693
1694
#if 0 /* original code */
1695
                ipd = (float)atan2(IM(tempLeft), RE(tempLeft));
1696
                opd = (float)atan2(IM(tempRight), RE(tempRight));
1697
1698
                /* phase rotation */
1699
                RE(phaseLeft) = (float)cos(opd);
1700
                IM(phaseLeft) = (float)sin(opd);
1701
                opd -= ipd;
1702
                RE(phaseRight) = (float)cos(opd);
1703
                IM(phaseRight) = (float)sin(opd);
1704
#else
1705
1706
                // x = IM(tempLeft)
1707
                // y = RE(tempLeft)
1708
                // p = IM(tempRight)
1709
                // q = RE(tempRight)
1710
                // cos(atan2(x,y)) = y/sqrt((x*x) + (y*y))
1711
                // sin(atan2(x,y)) = x/sqrt((x*x) + (y*y))
1712
                // cos(atan2(x,y)-atan2(p,q)) = (y*q + x*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1713
                // sin(atan2(x,y)-atan2(p,q)) = (x*q - y*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1714
1715
199k
                xy = magnitude_c(tempRight);
1716
199k
                pq = magnitude_c(tempLeft);
1717
1718
199k
                if (xy != 0)
1719
199k
                {
1720
199k
                    RE(phaseLeft) = DIV_F(RE(tempRight), xy);
1721
199k
                    IM(phaseLeft) = DIV_F(IM(tempRight), xy);
1722
199k
                } else {
1723
0
                    RE(phaseLeft) = 0;
1724
0
                    IM(phaseLeft) = 0;
1725
0
                }
1726
1727
199k
                xypq = MUL_F(xy, pq);
1728
1729
199k
                if (xypq != 0)
1730
199k
                {
1731
199k
                    real_t tmp1 = MUL_F(RE(tempRight), RE(tempLeft)) + MUL_F(IM(tempRight), IM(tempLeft));
1732
199k
                    real_t tmp2 = MUL_F(IM(tempRight), RE(tempLeft)) - MUL_F(RE(tempRight), IM(tempLeft));
1733
1734
199k
                    RE(phaseRight) = DIV_F(tmp1, xypq);
1735
199k
                    IM(phaseRight) = DIV_F(tmp2, xypq);
1736
199k
                } else {
1737
0
                    RE(phaseRight) = 0;
1738
0
                    IM(phaseRight) = 0;
1739
0
                }
1740
1741
199k
#endif
1742
1743
                /* MUL_F(COEF, REAL) = COEF */
1744
199k
                IM(h11) = MUL_F(RE(h11), IM(phaseLeft));
1745
199k
                IM(h12) = MUL_F(RE(h12), IM(phaseRight));
1746
199k
                IM(h21) = MUL_F(RE(h21), IM(phaseLeft));
1747
199k
                IM(h22) = MUL_F(RE(h22), IM(phaseRight));
1748
1749
199k
                RE(h11) = MUL_F(RE(h11), RE(phaseLeft));
1750
199k
                RE(h12) = MUL_F(RE(h12), RE(phaseRight));
1751
199k
                RE(h21) = MUL_F(RE(h21), RE(phaseLeft));
1752
199k
                RE(h22) = MUL_F(RE(h22), RE(phaseRight));
1753
199k
            }
1754
1755
            /* length of the envelope n_e+1 - n_e (in time samples) */
1756
            /* 0 < L <= 32: integer */
1757
1.51M
            L = (real_t)(ps->border_position[env + 1] - ps->border_position[env]);
1758
1759
            /* obtain final H_xy by means of linear interpolation */
1760
1.51M
            RE(deltaH11) = (RE(h11) - RE(ps->h11_prev[gr])) / L;
1761
1.51M
            RE(deltaH12) = (RE(h12) - RE(ps->h12_prev[gr])) / L;
1762
1.51M
            RE(deltaH21) = (RE(h21) - RE(ps->h21_prev[gr])) / L;
1763
1.51M
            RE(deltaH22) = (RE(h22) - RE(ps->h22_prev[gr])) / L;
1764
1765
1.51M
            RE(H11) = RE(ps->h11_prev[gr]);
1766
1.51M
            RE(H12) = RE(ps->h12_prev[gr]);
1767
1.51M
            RE(H21) = RE(ps->h21_prev[gr]);
1768
1.51M
            RE(H22) = RE(ps->h22_prev[gr]);
1769
1.51M
            IM(H11) = IM(H12) = IM(H21) = IM(H22) = 0;
1770
1771
1.51M
            RE(ps->h11_prev[gr]) = RE(h11);
1772
1.51M
            RE(ps->h12_prev[gr]) = RE(h12);
1773
1.51M
            RE(ps->h21_prev[gr]) = RE(h21);
1774
1.51M
            RE(ps->h22_prev[gr]) = RE(h22);
1775
1776
            /* only calculate imaginary part when needed */
1777
1.51M
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1778
199k
            {
1779
                /* obtain final H_xy by means of linear interpolation */
1780
199k
                IM(deltaH11) = (IM(h11) - IM(ps->h11_prev[gr])) / L;
1781
199k
                IM(deltaH12) = (IM(h12) - IM(ps->h12_prev[gr])) / L;
1782
199k
                IM(deltaH21) = (IM(h21) - IM(ps->h21_prev[gr])) / L;
1783
199k
                IM(deltaH22) = (IM(h22) - IM(ps->h22_prev[gr])) / L;
1784
1785
199k
                IM(H11) = IM(ps->h11_prev[gr]);
1786
199k
                IM(H12) = IM(ps->h12_prev[gr]);
1787
199k
                IM(H21) = IM(ps->h21_prev[gr]);
1788
199k
                IM(H22) = IM(ps->h22_prev[gr]);
1789
1790
199k
                if ((NEGATE_IPD_MASK & ps->map_group2bk[gr]) != 0)
1791
28.6k
                {
1792
28.6k
                    IM(deltaH11) = -IM(deltaH11);
1793
28.6k
                    IM(deltaH12) = -IM(deltaH12);
1794
28.6k
                    IM(deltaH21) = -IM(deltaH21);
1795
28.6k
                    IM(deltaH22) = -IM(deltaH22);
1796
1797
28.6k
                    IM(H11) = -IM(H11);
1798
28.6k
                    IM(H12) = -IM(H12);
1799
28.6k
                    IM(H21) = -IM(H21);
1800
28.6k
                    IM(H22) = -IM(H22);
1801
28.6k
                }
1802
1803
199k
                IM(ps->h11_prev[gr]) = IM(h11);
1804
199k
                IM(ps->h12_prev[gr]) = IM(h12);
1805
199k
                IM(ps->h21_prev[gr]) = IM(h21);
1806
199k
                IM(ps->h22_prev[gr]) = IM(h22);
1807
199k
            }
1808
1809
            /* apply H_xy to the current envelope band of the decorrelated subband */
1810
22.3M
            for (n = ps->border_position[env]; n < ps->border_position[env + 1]; n++)
1811
20.8M
            {
1812
                /* addition finalises the interpolation over every n */
1813
20.8M
                RE(H11) += RE(deltaH11);
1814
20.8M
                RE(H12) += RE(deltaH12);
1815
20.8M
                RE(H21) += RE(deltaH21);
1816
20.8M
                RE(H22) += RE(deltaH22);
1817
20.8M
                if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1818
1.99M
                {
1819
1.99M
                    IM(H11) += IM(deltaH11);
1820
1.99M
                    IM(H12) += IM(deltaH12);
1821
1.99M
                    IM(H21) += IM(deltaH21);
1822
1.99M
                    IM(H22) += IM(deltaH22);
1823
1.99M
                }
1824
1825
                /* channel is an alias to the subband */
1826
70.9M
                for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1827
50.0M
                {
1828
50.0M
                    complex_t inLeft, inRight;  // precision_of in(Left|Right) == precision_of X_(left|right)
1829
1830
                    /* load decorrelated samples */
1831
50.0M
                    if (gr < ps->num_hybrid_groups)
1832
11.7M
                    {
1833
11.7M
                        RE(inLeft) =  RE(X_hybrid_left[n][sb]);
1834
11.7M
                        IM(inLeft) =  IM(X_hybrid_left[n][sb]);
1835
11.7M
                        RE(inRight) = RE(X_hybrid_right[n][sb]);
1836
11.7M
                        IM(inRight) = IM(X_hybrid_right[n][sb]);
1837
38.3M
                    } else {
1838
38.3M
                        RE(inLeft) =  RE(X_left[n][sb]);
1839
38.3M
                        IM(inLeft) =  IM(X_left[n][sb]);
1840
38.3M
                        RE(inRight) = RE(X_right[n][sb]);
1841
38.3M
                        IM(inRight) = IM(X_right[n][sb]);
1842
38.3M
                    }
1843
1844
                    /* precision_of temp(Left|Right) == precision_of X_(left|right) */
1845
1846
                    /* apply mixing */
1847
50.0M
                    RE(tempLeft) =  MUL_C(RE(H11), RE(inLeft)) + MUL_C(RE(H21), RE(inRight));
1848
50.0M
                    IM(tempLeft) =  MUL_C(RE(H11), IM(inLeft)) + MUL_C(RE(H21), IM(inRight));
1849
50.0M
                    RE(tempRight) = MUL_C(RE(H12), RE(inLeft)) + MUL_C(RE(H22), RE(inRight));
1850
50.0M
                    IM(tempRight) = MUL_C(RE(H12), IM(inLeft)) + MUL_C(RE(H22), IM(inRight));
1851
1852
                    /* only perform imaginary operations when needed */
1853
50.0M
                    if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1854
2.00M
                    {
1855
                        /* apply rotation */
1856
2.00M
                        RE(tempLeft)  -= MUL_C(IM(H11), IM(inLeft)) + MUL_C(IM(H21), IM(inRight));
1857
2.00M
                        IM(tempLeft)  += MUL_C(IM(H11), RE(inLeft)) + MUL_C(IM(H21), RE(inRight));
1858
2.00M
                        RE(tempRight) -= MUL_C(IM(H12), IM(inLeft)) + MUL_C(IM(H22), IM(inRight));
1859
2.00M
                        IM(tempRight) += MUL_C(IM(H12), RE(inLeft)) + MUL_C(IM(H22), RE(inRight));
1860
2.00M
                    }
1861
1862
                    /* store final samples */
1863
50.0M
                    if (gr < ps->num_hybrid_groups)
1864
11.7M
                    {
1865
11.7M
                        RE(X_hybrid_left[n][sb])  = RE(tempLeft);
1866
11.7M
                        IM(X_hybrid_left[n][sb])  = IM(tempLeft);
1867
11.7M
                        RE(X_hybrid_right[n][sb]) = RE(tempRight);
1868
11.7M
                        IM(X_hybrid_right[n][sb]) = IM(tempRight);
1869
38.3M
                    } else {
1870
38.3M
                        RE(X_left[n][sb])  = RE(tempLeft);
1871
38.3M
                        IM(X_left[n][sb])  = IM(tempLeft);
1872
38.3M
                        RE(X_right[n][sb]) = RE(tempRight);
1873
38.3M
                        IM(X_right[n][sb]) = IM(tempRight);
1874
38.3M
                    }
1875
50.0M
                }
1876
20.8M
            }
1877
1878
            /* shift phase smoother's circular buffer index */
1879
1.51M
            ps->phase_hist++;
1880
1.51M
            if (ps->phase_hist == 2)
1881
758k
            {
1882
758k
                ps->phase_hist = 0;
1883
758k
            }
1884
1.51M
        }
1885
671k
    }
1886
20.3k
}
ps_dec.c:ps_mix_phase
Line
Count
Source
1458
9.06k
{
1459
9.06k
    uint8_t n;
1460
9.06k
    uint8_t gr;
1461
9.06k
    uint8_t bk = 0;
1462
9.06k
    uint8_t sb, maxsb;
1463
9.06k
    uint8_t env;
1464
9.06k
    uint8_t nr_ipdopd_par;
1465
9.06k
    complex_t h11, h12, h21, h22;  // COEF
1466
9.06k
    complex_t H11, H12, H21, H22;  // COEF
1467
9.06k
    complex_t deltaH11, deltaH12, deltaH21, deltaH22;  // COEF
1468
9.06k
    complex_t tempLeft, tempRight; // FRAC
1469
9.06k
    complex_t phaseLeft, phaseRight; // FRAC
1470
9.06k
    real_t L;
1471
9.06k
    const real_t *sf_iid;
1472
9.06k
    uint8_t no_iid_steps;
1473
1474
9.06k
    if (ps->iid_mode >= 3)
1475
3.58k
    {
1476
3.58k
        no_iid_steps = 15;
1477
3.58k
        sf_iid = sf_iid_fine;
1478
5.47k
    } else {
1479
5.47k
        no_iid_steps = 7;
1480
5.47k
        sf_iid = sf_iid_normal;
1481
5.47k
    }
1482
1483
9.06k
    if (ps->ipd_mode == 0 || ps->ipd_mode == 3)
1484
5.04k
    {
1485
5.04k
        nr_ipdopd_par = 11; /* resolution */
1486
5.04k
    } else {
1487
4.01k
        nr_ipdopd_par = ps->nr_ipdopd_par;
1488
4.01k
    }
1489
1490
314k
    for (gr = 0; gr < ps->num_groups; gr++)
1491
305k
    {
1492
305k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1493
1494
        /* use one channel per group in the subqmf domain */
1495
305k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr] + 1 : ps->group_border[gr + 1];
1496
1497
1.01M
        for (env = 0; env < ps->num_env; env++)
1498
708k
        {
1499
708k
            uint8_t abs_iid = (uint8_t)abs(ps->iid_index[env][bk]);
1500
            /* index range is supposed to be -7...7 or -15...15 depending on iid_mode
1501
                (Table 8.24, ISO/IEC 14496-3:2005).
1502
                if it is outside these boundaries, this is most likely an error. sanitize
1503
                it and try to process further. */
1504
708k
            if (ps->iid_index[env][bk] < -no_iid_steps) {
1505
153
                fprintf(stderr, "Warning: invalid iid_index: %d < %d\n", ps->iid_index[env][bk],
1506
153
                    -no_iid_steps);
1507
153
                ps->iid_index[env][bk] = -no_iid_steps;
1508
153
                abs_iid = no_iid_steps;
1509
708k
            } else if (ps->iid_index[env][bk] > no_iid_steps) {
1510
133
                fprintf(stderr, "Warning: invalid iid_index: %d > %d\n", ps->iid_index[env][bk],
1511
133
                    no_iid_steps);
1512
133
                ps->iid_index[env][bk] = no_iid_steps;
1513
133
                abs_iid = no_iid_steps;
1514
133
            }
1515
708k
            if (ps->icc_index[env][bk] < 0) {
1516
227
                fprintf(stderr, "Warning: invalid icc_index: %d < 0\n", ps->icc_index[env][bk]);
1517
227
                ps->icc_index[env][bk] = 0;
1518
708k
            } else if (ps->icc_index[env][bk] > 7) {
1519
0
                fprintf(stderr, "Warning: invalid icc_index: %d > 7\n", ps->icc_index[env][bk]);
1520
0
                ps->icc_index[env][bk] = 7;
1521
0
            }
1522
1523
708k
            if (ps->icc_mode < 3)
1524
351k
            {
1525
                /* type 'A' mixing as described in 8.6.4.6.2.1 */
1526
351k
                real_t c_1, c_2;  // COEF
1527
351k
                real_t cosa, sina;  // COEF
1528
351k
                real_t cosb, sinb;  // COEF
1529
351k
                real_t ab1, ab2;  // COEF
1530
351k
                real_t ab3, ab4;  // COEF
1531
1532
                /*
1533
                c_1 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps + iid_index] / 10.0)));
1534
                c_2 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps - iid_index] / 10.0)));
1535
                alpha = 0.5 * acos(quant_rho[icc_index]);
1536
                beta = alpha * ( c_1 - c_2 ) / sqrt(2.0);
1537
                */
1538
1539
                //printf("%d\n", ps->iid_index[env][bk]);
1540
1541
                /* calculate the scalefactors c_1 and c_2 from the intensity differences */
1542
351k
                c_1 = sf_iid[no_iid_steps + ps->iid_index[env][bk]];
1543
351k
                c_2 = sf_iid[no_iid_steps - ps->iid_index[env][bk]];
1544
1545
                /* calculate alpha and beta using the ICC parameters */
1546
351k
                cosa = cos_alphas[ps->icc_index[env][bk]];
1547
351k
                sina = sin_alphas[ps->icc_index[env][bk]];
1548
1549
351k
                if (ps->iid_mode >= 3)
1550
69.5k
                {
1551
69.5k
                    cosb = cos_betas_fine[abs_iid][ps->icc_index[env][bk]];
1552
69.5k
                    sinb = sin_betas_fine[abs_iid][ps->icc_index[env][bk]];
1553
281k
                } else {
1554
281k
                    cosb = cos_betas_normal[abs_iid][ps->icc_index[env][bk]];
1555
281k
                    sinb = sin_betas_normal[abs_iid][ps->icc_index[env][bk]];
1556
281k
                }
1557
1558
351k
                ab1 = MUL_C(cosb, cosa);
1559
351k
                ab2 = MUL_C(sinb, sina);
1560
351k
                ab3 = MUL_C(sinb, cosa);
1561
351k
                ab4 = MUL_C(cosb, sina);
1562
1563
                /* h_xy: COEF */
1564
351k
                RE(h11) = MUL_C(c_2, (ab1 - ab2));
1565
351k
                RE(h12) = MUL_C(c_1, (ab1 + ab2));
1566
351k
                RE(h21) = MUL_C(c_2, (ab3 + ab4));
1567
351k
                RE(h22) = MUL_C(c_1, (ab3 - ab4));
1568
357k
            } else {
1569
                /* type 'B' mixing as described in 8.6.4.6.2.2 */
1570
357k
                real_t sina, cosa;  // COEF
1571
357k
                real_t cosg, sing;  // COEF
1572
1573
                /*
1574
                real_t c, rho, mu, alpha, gamma;
1575
                uint8_t i;
1576
1577
                i = ps->iid_index[env][bk];
1578
                c = (real_t)pow(10.0, ((i)?(((i>0)?1:-1)*quant_iid[((i>0)?i:-i)-1]):0.)/20.0);
1579
                rho = quant_rho[ps->icc_index[env][bk]];
1580
1581
                if (rho == 0.0f && c == 1.)
1582
                {
1583
                    alpha = (real_t)M_PI/4.0f;
1584
                    rho = 0.05f;
1585
                } else {
1586
                    if (rho <= 0.05f)
1587
                    {
1588
                        rho = 0.05f;
1589
                    }
1590
                    alpha = 0.5f*(real_t)atan( (2.0f*c*rho) / (c*c-1.0f) );
1591
1592
                    if (alpha < 0.)
1593
                    {
1594
                        alpha += (real_t)M_PI/2.0f;
1595
                    }
1596
                    if (rho < 0.)
1597
                    {
1598
                        alpha += (real_t)M_PI;
1599
                    }
1600
                }
1601
                mu = c+1.0f/c;
1602
                mu = 1+(4.0f*rho*rho-4.0f)/(mu*mu);
1603
                gamma = (real_t)atan(sqrt((1.0f-sqrt(mu))/(1.0f+sqrt(mu))));
1604
                */
1605
1606
357k
                if (ps->iid_mode >= 3)
1607
245k
                {
1608
245k
                    cosa = sincos_alphas_B_fine[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1609
245k
                    sina = sincos_alphas_B_fine[30 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1610
245k
                    cosg = cos_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1611
245k
                    sing = sin_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1612
245k
                } else {
1613
111k
                    cosa = sincos_alphas_B_normal[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1614
111k
                    sina = sincos_alphas_B_normal[14 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1615
111k
                    cosg = cos_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1616
111k
                    sing = sin_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1617
111k
                }
1618
1619
357k
                RE(h11) = MUL_C(COEF_SQRT2, MUL_C(cosa, cosg));
1620
357k
                RE(h12) = MUL_C(COEF_SQRT2, MUL_C(sina, cosg));
1621
357k
                RE(h21) = MUL_C(COEF_SQRT2, MUL_C(-cosa, sing));
1622
357k
                RE(h22) = MUL_C(COEF_SQRT2, MUL_C(sina, sing));
1623
357k
            }
1624
708k
            IM(h11) = IM(h12) = IM(h21) = IM(h22) = 0;
1625
1626
            /* calculate phase rotation parameters H_xy */
1627
            /* note that the imaginary part of these parameters are only calculated when
1628
               IPD and OPD are enabled
1629
             */
1630
708k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1631
101k
            {
1632
101k
                int8_t i;
1633
101k
                real_t xy, pq, xypq;  // FRAC
1634
1635
                /* ringbuffer index */
1636
101k
                i = ps->phase_hist;
1637
1638
                /* previous value */
1639
101k
#ifdef FIXED_POINT
1640
                /* divide by 4*2, shift right 3 bits;
1641
                   extra halving to avoid overflows; it is ok, because result is normalized */
1642
101k
                RE(tempLeft)  = RE(ps->ipd_prev[bk][i]) >> 3;
1643
101k
                IM(tempLeft)  = IM(ps->ipd_prev[bk][i]) >> 3;
1644
101k
                RE(tempRight) = RE(ps->opd_prev[bk][i]) >> 3;
1645
101k
                IM(tempRight) = IM(ps->opd_prev[bk][i]) >> 3;
1646
#else
1647
                RE(tempLeft)  = MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1648
                IM(tempLeft)  = MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1649
                RE(tempRight) = MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1650
                IM(tempRight) = MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1651
#endif
1652
1653
                /* save current value */
1654
101k
                RE(ps->ipd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->ipd_index[env][bk])];
1655
101k
                IM(ps->ipd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->ipd_index[env][bk])];
1656
101k
                RE(ps->opd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->opd_index[env][bk])];
1657
101k
                IM(ps->opd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->opd_index[env][bk])];
1658
1659
                /* add current value */
1660
101k
#ifdef FIXED_POINT
1661
                /* extra halving to avoid overflows */
1662
101k
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]) >> 1;
1663
101k
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]) >> 1;
1664
101k
                RE(tempRight) += RE(ps->opd_prev[bk][i]) >> 1;
1665
101k
                IM(tempRight) += IM(ps->opd_prev[bk][i]) >> 1;
1666
#else
1667
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]);
1668
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]);
1669
                RE(tempRight) += RE(ps->opd_prev[bk][i]);
1670
                IM(tempRight) += IM(ps->opd_prev[bk][i]);
1671
#endif
1672
1673
                /* ringbuffer index */
1674
101k
                if (i == 0)
1675
51.1k
                {
1676
51.1k
                    i = 2;
1677
51.1k
                }
1678
101k
                i--;
1679
1680
                /* get value before previous */
1681
101k
#ifdef FIXED_POINT
1682
                /* dividing by 2*2, shift right 2 bits; extra halving to avoid overflows */
1683
101k
                RE(tempLeft)  += (RE(ps->ipd_prev[bk][i]) >> 2);
1684
101k
                IM(tempLeft)  += (IM(ps->ipd_prev[bk][i]) >> 2);
1685
101k
                RE(tempRight) += (RE(ps->opd_prev[bk][i]) >> 2);
1686
101k
                IM(tempRight) += (IM(ps->opd_prev[bk][i]) >> 2);
1687
#else
1688
                RE(tempLeft)  += MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1689
                IM(tempLeft)  += MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1690
                RE(tempRight) += MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1691
                IM(tempRight) += MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1692
#endif
1693
1694
#if 0 /* original code */
1695
                ipd = (float)atan2(IM(tempLeft), RE(tempLeft));
1696
                opd = (float)atan2(IM(tempRight), RE(tempRight));
1697
1698
                /* phase rotation */
1699
                RE(phaseLeft) = (float)cos(opd);
1700
                IM(phaseLeft) = (float)sin(opd);
1701
                opd -= ipd;
1702
                RE(phaseRight) = (float)cos(opd);
1703
                IM(phaseRight) = (float)sin(opd);
1704
#else
1705
1706
                // x = IM(tempLeft)
1707
                // y = RE(tempLeft)
1708
                // p = IM(tempRight)
1709
                // q = RE(tempRight)
1710
                // cos(atan2(x,y)) = y/sqrt((x*x) + (y*y))
1711
                // sin(atan2(x,y)) = x/sqrt((x*x) + (y*y))
1712
                // cos(atan2(x,y)-atan2(p,q)) = (y*q + x*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1713
                // sin(atan2(x,y)-atan2(p,q)) = (x*q - y*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1714
1715
101k
                xy = magnitude_c(tempRight);
1716
101k
                pq = magnitude_c(tempLeft);
1717
1718
101k
                if (xy != 0)
1719
101k
                {
1720
101k
                    RE(phaseLeft) = DIV_F(RE(tempRight), xy);
1721
101k
                    IM(phaseLeft) = DIV_F(IM(tempRight), xy);
1722
101k
                } else {
1723
0
                    RE(phaseLeft) = 0;
1724
0
                    IM(phaseLeft) = 0;
1725
0
                }
1726
1727
101k
                xypq = MUL_F(xy, pq);
1728
1729
101k
                if (xypq != 0)
1730
101k
                {
1731
101k
                    real_t tmp1 = MUL_F(RE(tempRight), RE(tempLeft)) + MUL_F(IM(tempRight), IM(tempLeft));
1732
101k
                    real_t tmp2 = MUL_F(IM(tempRight), RE(tempLeft)) - MUL_F(RE(tempRight), IM(tempLeft));
1733
1734
101k
                    RE(phaseRight) = DIV_F(tmp1, xypq);
1735
101k
                    IM(phaseRight) = DIV_F(tmp2, xypq);
1736
101k
                } else {
1737
0
                    RE(phaseRight) = 0;
1738
0
                    IM(phaseRight) = 0;
1739
0
                }
1740
1741
101k
#endif
1742
1743
                /* MUL_F(COEF, REAL) = COEF */
1744
101k
                IM(h11) = MUL_F(RE(h11), IM(phaseLeft));
1745
101k
                IM(h12) = MUL_F(RE(h12), IM(phaseRight));
1746
101k
                IM(h21) = MUL_F(RE(h21), IM(phaseLeft));
1747
101k
                IM(h22) = MUL_F(RE(h22), IM(phaseRight));
1748
1749
101k
                RE(h11) = MUL_F(RE(h11), RE(phaseLeft));
1750
101k
                RE(h12) = MUL_F(RE(h12), RE(phaseRight));
1751
101k
                RE(h21) = MUL_F(RE(h21), RE(phaseLeft));
1752
101k
                RE(h22) = MUL_F(RE(h22), RE(phaseRight));
1753
101k
            }
1754
1755
            /* length of the envelope n_e+1 - n_e (in time samples) */
1756
            /* 0 < L <= 32: integer */
1757
708k
            L = (real_t)(ps->border_position[env + 1] - ps->border_position[env]);
1758
1759
            /* obtain final H_xy by means of linear interpolation */
1760
708k
            RE(deltaH11) = (RE(h11) - RE(ps->h11_prev[gr])) / L;
1761
708k
            RE(deltaH12) = (RE(h12) - RE(ps->h12_prev[gr])) / L;
1762
708k
            RE(deltaH21) = (RE(h21) - RE(ps->h21_prev[gr])) / L;
1763
708k
            RE(deltaH22) = (RE(h22) - RE(ps->h22_prev[gr])) / L;
1764
1765
708k
            RE(H11) = RE(ps->h11_prev[gr]);
1766
708k
            RE(H12) = RE(ps->h12_prev[gr]);
1767
708k
            RE(H21) = RE(ps->h21_prev[gr]);
1768
708k
            RE(H22) = RE(ps->h22_prev[gr]);
1769
708k
            IM(H11) = IM(H12) = IM(H21) = IM(H22) = 0;
1770
1771
708k
            RE(ps->h11_prev[gr]) = RE(h11);
1772
708k
            RE(ps->h12_prev[gr]) = RE(h12);
1773
708k
            RE(ps->h21_prev[gr]) = RE(h21);
1774
708k
            RE(ps->h22_prev[gr]) = RE(h22);
1775
1776
            /* only calculate imaginary part when needed */
1777
708k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1778
101k
            {
1779
                /* obtain final H_xy by means of linear interpolation */
1780
101k
                IM(deltaH11) = (IM(h11) - IM(ps->h11_prev[gr])) / L;
1781
101k
                IM(deltaH12) = (IM(h12) - IM(ps->h12_prev[gr])) / L;
1782
101k
                IM(deltaH21) = (IM(h21) - IM(ps->h21_prev[gr])) / L;
1783
101k
                IM(deltaH22) = (IM(h22) - IM(ps->h22_prev[gr])) / L;
1784
1785
101k
                IM(H11) = IM(ps->h11_prev[gr]);
1786
101k
                IM(H12) = IM(ps->h12_prev[gr]);
1787
101k
                IM(H21) = IM(ps->h21_prev[gr]);
1788
101k
                IM(H22) = IM(ps->h22_prev[gr]);
1789
1790
101k
                if ((NEGATE_IPD_MASK & ps->map_group2bk[gr]) != 0)
1791
14.6k
                {
1792
14.6k
                    IM(deltaH11) = -IM(deltaH11);
1793
14.6k
                    IM(deltaH12) = -IM(deltaH12);
1794
14.6k
                    IM(deltaH21) = -IM(deltaH21);
1795
14.6k
                    IM(deltaH22) = -IM(deltaH22);
1796
1797
14.6k
                    IM(H11) = -IM(H11);
1798
14.6k
                    IM(H12) = -IM(H12);
1799
14.6k
                    IM(H21) = -IM(H21);
1800
14.6k
                    IM(H22) = -IM(H22);
1801
14.6k
                }
1802
1803
101k
                IM(ps->h11_prev[gr]) = IM(h11);
1804
101k
                IM(ps->h12_prev[gr]) = IM(h12);
1805
101k
                IM(ps->h21_prev[gr]) = IM(h21);
1806
101k
                IM(ps->h22_prev[gr]) = IM(h22);
1807
101k
            }
1808
1809
            /* apply H_xy to the current envelope band of the decorrelated subband */
1810
10.2M
            for (n = ps->border_position[env]; n < ps->border_position[env + 1]; n++)
1811
9.49M
            {
1812
                /* addition finalises the interpolation over every n */
1813
9.49M
                RE(H11) += RE(deltaH11);
1814
9.49M
                RE(H12) += RE(deltaH12);
1815
9.49M
                RE(H21) += RE(deltaH21);
1816
9.49M
                RE(H22) += RE(deltaH22);
1817
9.49M
                if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1818
993k
                {
1819
993k
                    IM(H11) += IM(deltaH11);
1820
993k
                    IM(H12) += IM(deltaH12);
1821
993k
                    IM(H21) += IM(deltaH21);
1822
993k
                    IM(H22) += IM(deltaH22);
1823
993k
                }
1824
1825
                /* channel is an alias to the subband */
1826
31.9M
                for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1827
22.4M
                {
1828
22.4M
                    complex_t inLeft, inRight;  // precision_of in(Left|Right) == precision_of X_(left|right)
1829
1830
                    /* load decorrelated samples */
1831
22.4M
                    if (gr < ps->num_hybrid_groups)
1832
5.39M
                    {
1833
5.39M
                        RE(inLeft) =  RE(X_hybrid_left[n][sb]);
1834
5.39M
                        IM(inLeft) =  IM(X_hybrid_left[n][sb]);
1835
5.39M
                        RE(inRight) = RE(X_hybrid_right[n][sb]);
1836
5.39M
                        IM(inRight) = IM(X_hybrid_right[n][sb]);
1837
17.0M
                    } else {
1838
17.0M
                        RE(inLeft) =  RE(X_left[n][sb]);
1839
17.0M
                        IM(inLeft) =  IM(X_left[n][sb]);
1840
17.0M
                        RE(inRight) = RE(X_right[n][sb]);
1841
17.0M
                        IM(inRight) = IM(X_right[n][sb]);
1842
17.0M
                    }
1843
1844
                    /* precision_of temp(Left|Right) == precision_of X_(left|right) */
1845
1846
                    /* apply mixing */
1847
22.4M
                    RE(tempLeft) =  MUL_C(RE(H11), RE(inLeft)) + MUL_C(RE(H21), RE(inRight));
1848
22.4M
                    IM(tempLeft) =  MUL_C(RE(H11), IM(inLeft)) + MUL_C(RE(H21), IM(inRight));
1849
22.4M
                    RE(tempRight) = MUL_C(RE(H12), RE(inLeft)) + MUL_C(RE(H22), RE(inRight));
1850
22.4M
                    IM(tempRight) = MUL_C(RE(H12), IM(inLeft)) + MUL_C(RE(H22), IM(inRight));
1851
1852
                    /* only perform imaginary operations when needed */
1853
22.4M
                    if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1854
995k
                    {
1855
                        /* apply rotation */
1856
995k
                        RE(tempLeft)  -= MUL_C(IM(H11), IM(inLeft)) + MUL_C(IM(H21), IM(inRight));
1857
995k
                        IM(tempLeft)  += MUL_C(IM(H11), RE(inLeft)) + MUL_C(IM(H21), RE(inRight));
1858
995k
                        RE(tempRight) -= MUL_C(IM(H12), IM(inLeft)) + MUL_C(IM(H22), IM(inRight));
1859
995k
                        IM(tempRight) += MUL_C(IM(H12), RE(inLeft)) + MUL_C(IM(H22), RE(inRight));
1860
995k
                    }
1861
1862
                    /* store final samples */
1863
22.4M
                    if (gr < ps->num_hybrid_groups)
1864
5.39M
                    {
1865
5.39M
                        RE(X_hybrid_left[n][sb])  = RE(tempLeft);
1866
5.39M
                        IM(X_hybrid_left[n][sb])  = IM(tempLeft);
1867
5.39M
                        RE(X_hybrid_right[n][sb]) = RE(tempRight);
1868
5.39M
                        IM(X_hybrid_right[n][sb]) = IM(tempRight);
1869
17.0M
                    } else {
1870
17.0M
                        RE(X_left[n][sb])  = RE(tempLeft);
1871
17.0M
                        IM(X_left[n][sb])  = IM(tempLeft);
1872
17.0M
                        RE(X_right[n][sb]) = RE(tempRight);
1873
17.0M
                        IM(X_right[n][sb]) = IM(tempRight);
1874
17.0M
                    }
1875
22.4M
                }
1876
9.49M
            }
1877
1878
            /* shift phase smoother's circular buffer index */
1879
708k
            ps->phase_hist++;
1880
708k
            if (ps->phase_hist == 2)
1881
354k
            {
1882
354k
                ps->phase_hist = 0;
1883
354k
            }
1884
708k
        }
1885
305k
    }
1886
9.06k
}
ps_dec.c:ps_mix_phase
Line
Count
Source
1458
11.2k
{
1459
11.2k
    uint8_t n;
1460
11.2k
    uint8_t gr;
1461
11.2k
    uint8_t bk = 0;
1462
11.2k
    uint8_t sb, maxsb;
1463
11.2k
    uint8_t env;
1464
11.2k
    uint8_t nr_ipdopd_par;
1465
11.2k
    complex_t h11, h12, h21, h22;  // COEF
1466
11.2k
    complex_t H11, H12, H21, H22;  // COEF
1467
11.2k
    complex_t deltaH11, deltaH12, deltaH21, deltaH22;  // COEF
1468
11.2k
    complex_t tempLeft, tempRight; // FRAC
1469
11.2k
    complex_t phaseLeft, phaseRight; // FRAC
1470
11.2k
    real_t L;
1471
11.2k
    const real_t *sf_iid;
1472
11.2k
    uint8_t no_iid_steps;
1473
1474
11.2k
    if (ps->iid_mode >= 3)
1475
4.87k
    {
1476
4.87k
        no_iid_steps = 15;
1477
4.87k
        sf_iid = sf_iid_fine;
1478
6.41k
    } else {
1479
6.41k
        no_iid_steps = 7;
1480
6.41k
        sf_iid = sf_iid_normal;
1481
6.41k
    }
1482
1483
11.2k
    if (ps->ipd_mode == 0 || ps->ipd_mode == 3)
1484
6.91k
    {
1485
6.91k
        nr_ipdopd_par = 11; /* resolution */
1486
6.91k
    } else {
1487
4.37k
        nr_ipdopd_par = ps->nr_ipdopd_par;
1488
4.37k
    }
1489
1490
377k
    for (gr = 0; gr < ps->num_groups; gr++)
1491
366k
    {
1492
366k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1493
1494
        /* use one channel per group in the subqmf domain */
1495
366k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr] + 1 : ps->group_border[gr + 1];
1496
1497
1.17M
        for (env = 0; env < ps->num_env; env++)
1498
808k
        {
1499
808k
            uint8_t abs_iid = (uint8_t)abs(ps->iid_index[env][bk]);
1500
            /* index range is supposed to be -7...7 or -15...15 depending on iid_mode
1501
                (Table 8.24, ISO/IEC 14496-3:2005).
1502
                if it is outside these boundaries, this is most likely an error. sanitize
1503
                it and try to process further. */
1504
808k
            if (ps->iid_index[env][bk] < -no_iid_steps) {
1505
297
                fprintf(stderr, "Warning: invalid iid_index: %d < %d\n", ps->iid_index[env][bk],
1506
297
                    -no_iid_steps);
1507
297
                ps->iid_index[env][bk] = -no_iid_steps;
1508
297
                abs_iid = no_iid_steps;
1509
808k
            } else if (ps->iid_index[env][bk] > no_iid_steps) {
1510
169
                fprintf(stderr, "Warning: invalid iid_index: %d > %d\n", ps->iid_index[env][bk],
1511
169
                    no_iid_steps);
1512
169
                ps->iid_index[env][bk] = no_iid_steps;
1513
169
                abs_iid = no_iid_steps;
1514
169
            }
1515
808k
            if (ps->icc_index[env][bk] < 0) {
1516
401
                fprintf(stderr, "Warning: invalid icc_index: %d < 0\n", ps->icc_index[env][bk]);
1517
401
                ps->icc_index[env][bk] = 0;
1518
807k
            } else if (ps->icc_index[env][bk] > 7) {
1519
0
                fprintf(stderr, "Warning: invalid icc_index: %d > 7\n", ps->icc_index[env][bk]);
1520
0
                ps->icc_index[env][bk] = 7;
1521
0
            }
1522
1523
808k
            if (ps->icc_mode < 3)
1524
542k
            {
1525
                /* type 'A' mixing as described in 8.6.4.6.2.1 */
1526
542k
                real_t c_1, c_2;  // COEF
1527
542k
                real_t cosa, sina;  // COEF
1528
542k
                real_t cosb, sinb;  // COEF
1529
542k
                real_t ab1, ab2;  // COEF
1530
542k
                real_t ab3, ab4;  // COEF
1531
1532
                /*
1533
                c_1 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps + iid_index] / 10.0)));
1534
                c_2 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps - iid_index] / 10.0)));
1535
                alpha = 0.5 * acos(quant_rho[icc_index]);
1536
                beta = alpha * ( c_1 - c_2 ) / sqrt(2.0);
1537
                */
1538
1539
                //printf("%d\n", ps->iid_index[env][bk]);
1540
1541
                /* calculate the scalefactors c_1 and c_2 from the intensity differences */
1542
542k
                c_1 = sf_iid[no_iid_steps + ps->iid_index[env][bk]];
1543
542k
                c_2 = sf_iid[no_iid_steps - ps->iid_index[env][bk]];
1544
1545
                /* calculate alpha and beta using the ICC parameters */
1546
542k
                cosa = cos_alphas[ps->icc_index[env][bk]];
1547
542k
                sina = sin_alphas[ps->icc_index[env][bk]];
1548
1549
542k
                if (ps->iid_mode >= 3)
1550
239k
                {
1551
239k
                    cosb = cos_betas_fine[abs_iid][ps->icc_index[env][bk]];
1552
239k
                    sinb = sin_betas_fine[abs_iid][ps->icc_index[env][bk]];
1553
302k
                } else {
1554
302k
                    cosb = cos_betas_normal[abs_iid][ps->icc_index[env][bk]];
1555
302k
                    sinb = sin_betas_normal[abs_iid][ps->icc_index[env][bk]];
1556
302k
                }
1557
1558
542k
                ab1 = MUL_C(cosb, cosa);
1559
542k
                ab2 = MUL_C(sinb, sina);
1560
542k
                ab3 = MUL_C(sinb, cosa);
1561
542k
                ab4 = MUL_C(cosb, sina);
1562
1563
                /* h_xy: COEF */
1564
542k
                RE(h11) = MUL_C(c_2, (ab1 - ab2));
1565
542k
                RE(h12) = MUL_C(c_1, (ab1 + ab2));
1566
542k
                RE(h21) = MUL_C(c_2, (ab3 + ab4));
1567
542k
                RE(h22) = MUL_C(c_1, (ab3 - ab4));
1568
542k
            } else {
1569
                /* type 'B' mixing as described in 8.6.4.6.2.2 */
1570
266k
                real_t sina, cosa;  // COEF
1571
266k
                real_t cosg, sing;  // COEF
1572
1573
                /*
1574
                real_t c, rho, mu, alpha, gamma;
1575
                uint8_t i;
1576
1577
                i = ps->iid_index[env][bk];
1578
                c = (real_t)pow(10.0, ((i)?(((i>0)?1:-1)*quant_iid[((i>0)?i:-i)-1]):0.)/20.0);
1579
                rho = quant_rho[ps->icc_index[env][bk]];
1580
1581
                if (rho == 0.0f && c == 1.)
1582
                {
1583
                    alpha = (real_t)M_PI/4.0f;
1584
                    rho = 0.05f;
1585
                } else {
1586
                    if (rho <= 0.05f)
1587
                    {
1588
                        rho = 0.05f;
1589
                    }
1590
                    alpha = 0.5f*(real_t)atan( (2.0f*c*rho) / (c*c-1.0f) );
1591
1592
                    if (alpha < 0.)
1593
                    {
1594
                        alpha += (real_t)M_PI/2.0f;
1595
                    }
1596
                    if (rho < 0.)
1597
                    {
1598
                        alpha += (real_t)M_PI;
1599
                    }
1600
                }
1601
                mu = c+1.0f/c;
1602
                mu = 1+(4.0f*rho*rho-4.0f)/(mu*mu);
1603
                gamma = (real_t)atan(sqrt((1.0f-sqrt(mu))/(1.0f+sqrt(mu))));
1604
                */
1605
1606
266k
                if (ps->iid_mode >= 3)
1607
157k
                {
1608
157k
                    cosa = sincos_alphas_B_fine[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1609
157k
                    sina = sincos_alphas_B_fine[30 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1610
157k
                    cosg = cos_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1611
157k
                    sing = sin_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1612
157k
                } else {
1613
108k
                    cosa = sincos_alphas_B_normal[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1614
108k
                    sina = sincos_alphas_B_normal[14 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1615
108k
                    cosg = cos_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1616
108k
                    sing = sin_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1617
108k
                }
1618
1619
266k
                RE(h11) = MUL_C(COEF_SQRT2, MUL_C(cosa, cosg));
1620
266k
                RE(h12) = MUL_C(COEF_SQRT2, MUL_C(sina, cosg));
1621
266k
                RE(h21) = MUL_C(COEF_SQRT2, MUL_C(-cosa, sing));
1622
266k
                RE(h22) = MUL_C(COEF_SQRT2, MUL_C(sina, sing));
1623
266k
            }
1624
808k
            IM(h11) = IM(h12) = IM(h21) = IM(h22) = 0;
1625
1626
            /* calculate phase rotation parameters H_xy */
1627
            /* note that the imaginary part of these parameters are only calculated when
1628
               IPD and OPD are enabled
1629
             */
1630
808k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1631
98.1k
            {
1632
98.1k
                int8_t i;
1633
98.1k
                real_t xy, pq, xypq;  // FRAC
1634
1635
                /* ringbuffer index */
1636
98.1k
                i = ps->phase_hist;
1637
1638
                /* previous value */
1639
#ifdef FIXED_POINT
1640
                /* divide by 4*2, shift right 3 bits;
1641
                   extra halving to avoid overflows; it is ok, because result is normalized */
1642
                RE(tempLeft)  = RE(ps->ipd_prev[bk][i]) >> 3;
1643
                IM(tempLeft)  = IM(ps->ipd_prev[bk][i]) >> 3;
1644
                RE(tempRight) = RE(ps->opd_prev[bk][i]) >> 3;
1645
                IM(tempRight) = IM(ps->opd_prev[bk][i]) >> 3;
1646
#else
1647
98.1k
                RE(tempLeft)  = MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1648
98.1k
                IM(tempLeft)  = MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1649
98.1k
                RE(tempRight) = MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1650
98.1k
                IM(tempRight) = MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1651
98.1k
#endif
1652
1653
                /* save current value */
1654
98.1k
                RE(ps->ipd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->ipd_index[env][bk])];
1655
98.1k
                IM(ps->ipd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->ipd_index[env][bk])];
1656
98.1k
                RE(ps->opd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->opd_index[env][bk])];
1657
98.1k
                IM(ps->opd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->opd_index[env][bk])];
1658
1659
                /* add current value */
1660
#ifdef FIXED_POINT
1661
                /* extra halving to avoid overflows */
1662
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]) >> 1;
1663
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]) >> 1;
1664
                RE(tempRight) += RE(ps->opd_prev[bk][i]) >> 1;
1665
                IM(tempRight) += IM(ps->opd_prev[bk][i]) >> 1;
1666
#else
1667
98.1k
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]);
1668
98.1k
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]);
1669
98.1k
                RE(tempRight) += RE(ps->opd_prev[bk][i]);
1670
98.1k
                IM(tempRight) += IM(ps->opd_prev[bk][i]);
1671
98.1k
#endif
1672
1673
                /* ringbuffer index */
1674
98.1k
                if (i == 0)
1675
49.6k
                {
1676
49.6k
                    i = 2;
1677
49.6k
                }
1678
98.1k
                i--;
1679
1680
                /* get value before previous */
1681
#ifdef FIXED_POINT
1682
                /* dividing by 2*2, shift right 2 bits; extra halving to avoid overflows */
1683
                RE(tempLeft)  += (RE(ps->ipd_prev[bk][i]) >> 2);
1684
                IM(tempLeft)  += (IM(ps->ipd_prev[bk][i]) >> 2);
1685
                RE(tempRight) += (RE(ps->opd_prev[bk][i]) >> 2);
1686
                IM(tempRight) += (IM(ps->opd_prev[bk][i]) >> 2);
1687
#else
1688
98.1k
                RE(tempLeft)  += MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1689
98.1k
                IM(tempLeft)  += MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1690
98.1k
                RE(tempRight) += MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1691
98.1k
                IM(tempRight) += MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1692
98.1k
#endif
1693
1694
#if 0 /* original code */
1695
                ipd = (float)atan2(IM(tempLeft), RE(tempLeft));
1696
                opd = (float)atan2(IM(tempRight), RE(tempRight));
1697
1698
                /* phase rotation */
1699
                RE(phaseLeft) = (float)cos(opd);
1700
                IM(phaseLeft) = (float)sin(opd);
1701
                opd -= ipd;
1702
                RE(phaseRight) = (float)cos(opd);
1703
                IM(phaseRight) = (float)sin(opd);
1704
#else
1705
1706
                // x = IM(tempLeft)
1707
                // y = RE(tempLeft)
1708
                // p = IM(tempRight)
1709
                // q = RE(tempRight)
1710
                // cos(atan2(x,y)) = y/sqrt((x*x) + (y*y))
1711
                // sin(atan2(x,y)) = x/sqrt((x*x) + (y*y))
1712
                // cos(atan2(x,y)-atan2(p,q)) = (y*q + x*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1713
                // sin(atan2(x,y)-atan2(p,q)) = (x*q - y*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1714
1715
98.1k
                xy = magnitude_c(tempRight);
1716
98.1k
                pq = magnitude_c(tempLeft);
1717
1718
98.1k
                if (xy != 0)
1719
98.1k
                {
1720
98.1k
                    RE(phaseLeft) = DIV_F(RE(tempRight), xy);
1721
98.1k
                    IM(phaseLeft) = DIV_F(IM(tempRight), xy);
1722
98.1k
                } else {
1723
0
                    RE(phaseLeft) = 0;
1724
0
                    IM(phaseLeft) = 0;
1725
0
                }
1726
1727
98.1k
                xypq = MUL_F(xy, pq);
1728
1729
98.1k
                if (xypq != 0)
1730
98.1k
                {
1731
98.1k
                    real_t tmp1 = MUL_F(RE(tempRight), RE(tempLeft)) + MUL_F(IM(tempRight), IM(tempLeft));
1732
98.1k
                    real_t tmp2 = MUL_F(IM(tempRight), RE(tempLeft)) - MUL_F(RE(tempRight), IM(tempLeft));
1733
1734
98.1k
                    RE(phaseRight) = DIV_F(tmp1, xypq);
1735
98.1k
                    IM(phaseRight) = DIV_F(tmp2, xypq);
1736
98.1k
                } else {
1737
0
                    RE(phaseRight) = 0;
1738
0
                    IM(phaseRight) = 0;
1739
0
                }
1740
1741
98.1k
#endif
1742
1743
                /* MUL_F(COEF, REAL) = COEF */
1744
98.1k
                IM(h11) = MUL_F(RE(h11), IM(phaseLeft));
1745
98.1k
                IM(h12) = MUL_F(RE(h12), IM(phaseRight));
1746
98.1k
                IM(h21) = MUL_F(RE(h21), IM(phaseLeft));
1747
98.1k
                IM(h22) = MUL_F(RE(h22), IM(phaseRight));
1748
1749
98.1k
                RE(h11) = MUL_F(RE(h11), RE(phaseLeft));
1750
98.1k
                RE(h12) = MUL_F(RE(h12), RE(phaseRight));
1751
98.1k
                RE(h21) = MUL_F(RE(h21), RE(phaseLeft));
1752
98.1k
                RE(h22) = MUL_F(RE(h22), RE(phaseRight));
1753
98.1k
            }
1754
1755
            /* length of the envelope n_e+1 - n_e (in time samples) */
1756
            /* 0 < L <= 32: integer */
1757
808k
            L = (real_t)(ps->border_position[env + 1] - ps->border_position[env]);
1758
1759
            /* obtain final H_xy by means of linear interpolation */
1760
808k
            RE(deltaH11) = (RE(h11) - RE(ps->h11_prev[gr])) / L;
1761
808k
            RE(deltaH12) = (RE(h12) - RE(ps->h12_prev[gr])) / L;
1762
808k
            RE(deltaH21) = (RE(h21) - RE(ps->h21_prev[gr])) / L;
1763
808k
            RE(deltaH22) = (RE(h22) - RE(ps->h22_prev[gr])) / L;
1764
1765
808k
            RE(H11) = RE(ps->h11_prev[gr]);
1766
808k
            RE(H12) = RE(ps->h12_prev[gr]);
1767
808k
            RE(H21) = RE(ps->h21_prev[gr]);
1768
808k
            RE(H22) = RE(ps->h22_prev[gr]);
1769
808k
            IM(H11) = IM(H12) = IM(H21) = IM(H22) = 0;
1770
1771
808k
            RE(ps->h11_prev[gr]) = RE(h11);
1772
808k
            RE(ps->h12_prev[gr]) = RE(h12);
1773
808k
            RE(ps->h21_prev[gr]) = RE(h21);
1774
808k
            RE(ps->h22_prev[gr]) = RE(h22);
1775
1776
            /* only calculate imaginary part when needed */
1777
808k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1778
98.1k
            {
1779
                /* obtain final H_xy by means of linear interpolation */
1780
98.1k
                IM(deltaH11) = (IM(h11) - IM(ps->h11_prev[gr])) / L;
1781
98.1k
                IM(deltaH12) = (IM(h12) - IM(ps->h12_prev[gr])) / L;
1782
98.1k
                IM(deltaH21) = (IM(h21) - IM(ps->h21_prev[gr])) / L;
1783
98.1k
                IM(deltaH22) = (IM(h22) - IM(ps->h22_prev[gr])) / L;
1784
1785
98.1k
                IM(H11) = IM(ps->h11_prev[gr]);
1786
98.1k
                IM(H12) = IM(ps->h12_prev[gr]);
1787
98.1k
                IM(H21) = IM(ps->h21_prev[gr]);
1788
98.1k
                IM(H22) = IM(ps->h22_prev[gr]);
1789
1790
98.1k
                if ((NEGATE_IPD_MASK & ps->map_group2bk[gr]) != 0)
1791
14.0k
                {
1792
14.0k
                    IM(deltaH11) = -IM(deltaH11);
1793
14.0k
                    IM(deltaH12) = -IM(deltaH12);
1794
14.0k
                    IM(deltaH21) = -IM(deltaH21);
1795
14.0k
                    IM(deltaH22) = -IM(deltaH22);
1796
1797
14.0k
                    IM(H11) = -IM(H11);
1798
14.0k
                    IM(H12) = -IM(H12);
1799
14.0k
                    IM(H21) = -IM(H21);
1800
14.0k
                    IM(H22) = -IM(H22);
1801
14.0k
                }
1802
1803
98.1k
                IM(ps->h11_prev[gr]) = IM(h11);
1804
98.1k
                IM(ps->h12_prev[gr]) = IM(h12);
1805
98.1k
                IM(ps->h21_prev[gr]) = IM(h21);
1806
98.1k
                IM(ps->h22_prev[gr]) = IM(h22);
1807
98.1k
            }
1808
1809
            /* apply H_xy to the current envelope band of the decorrelated subband */
1810
12.1M
            for (n = ps->border_position[env]; n < ps->border_position[env + 1]; n++)
1811
11.3M
            {
1812
                /* addition finalises the interpolation over every n */
1813
11.3M
                RE(H11) += RE(deltaH11);
1814
11.3M
                RE(H12) += RE(deltaH12);
1815
11.3M
                RE(H21) += RE(deltaH21);
1816
11.3M
                RE(H22) += RE(deltaH22);
1817
11.3M
                if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1818
1.00M
                {
1819
1.00M
                    IM(H11) += IM(deltaH11);
1820
1.00M
                    IM(H12) += IM(deltaH12);
1821
1.00M
                    IM(H21) += IM(deltaH21);
1822
1.00M
                    IM(H22) += IM(deltaH22);
1823
1.00M
                }
1824
1825
                /* channel is an alias to the subband */
1826
38.9M
                for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1827
27.6M
                {
1828
27.6M
                    complex_t inLeft, inRight;  // precision_of in(Left|Right) == precision_of X_(left|right)
1829
1830
                    /* load decorrelated samples */
1831
27.6M
                    if (gr < ps->num_hybrid_groups)
1832
6.37M
                    {
1833
6.37M
                        RE(inLeft) =  RE(X_hybrid_left[n][sb]);
1834
6.37M
                        IM(inLeft) =  IM(X_hybrid_left[n][sb]);
1835
6.37M
                        RE(inRight) = RE(X_hybrid_right[n][sb]);
1836
6.37M
                        IM(inRight) = IM(X_hybrid_right[n][sb]);
1837
21.2M
                    } else {
1838
21.2M
                        RE(inLeft) =  RE(X_left[n][sb]);
1839
21.2M
                        IM(inLeft) =  IM(X_left[n][sb]);
1840
21.2M
                        RE(inRight) = RE(X_right[n][sb]);
1841
21.2M
                        IM(inRight) = IM(X_right[n][sb]);
1842
21.2M
                    }
1843
1844
                    /* precision_of temp(Left|Right) == precision_of X_(left|right) */
1845
1846
                    /* apply mixing */
1847
27.6M
                    RE(tempLeft) =  MUL_C(RE(H11), RE(inLeft)) + MUL_C(RE(H21), RE(inRight));
1848
27.6M
                    IM(tempLeft) =  MUL_C(RE(H11), IM(inLeft)) + MUL_C(RE(H21), IM(inRight));
1849
27.6M
                    RE(tempRight) = MUL_C(RE(H12), RE(inLeft)) + MUL_C(RE(H22), RE(inRight));
1850
27.6M
                    IM(tempRight) = MUL_C(RE(H12), IM(inLeft)) + MUL_C(RE(H22), IM(inRight));
1851
1852
                    /* only perform imaginary operations when needed */
1853
27.6M
                    if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1854
1.00M
                    {
1855
                        /* apply rotation */
1856
1.00M
                        RE(tempLeft)  -= MUL_C(IM(H11), IM(inLeft)) + MUL_C(IM(H21), IM(inRight));
1857
1.00M
                        IM(tempLeft)  += MUL_C(IM(H11), RE(inLeft)) + MUL_C(IM(H21), RE(inRight));
1858
1.00M
                        RE(tempRight) -= MUL_C(IM(H12), IM(inLeft)) + MUL_C(IM(H22), IM(inRight));
1859
1.00M
                        IM(tempRight) += MUL_C(IM(H12), RE(inLeft)) + MUL_C(IM(H22), RE(inRight));
1860
1.00M
                    }
1861
1862
                    /* store final samples */
1863
27.6M
                    if (gr < ps->num_hybrid_groups)
1864
6.37M
                    {
1865
6.37M
                        RE(X_hybrid_left[n][sb])  = RE(tempLeft);
1866
6.37M
                        IM(X_hybrid_left[n][sb])  = IM(tempLeft);
1867
6.37M
                        RE(X_hybrid_right[n][sb]) = RE(tempRight);
1868
6.37M
                        IM(X_hybrid_right[n][sb]) = IM(tempRight);
1869
21.2M
                    } else {
1870
21.2M
                        RE(X_left[n][sb])  = RE(tempLeft);
1871
21.2M
                        IM(X_left[n][sb])  = IM(tempLeft);
1872
21.2M
                        RE(X_right[n][sb]) = RE(tempRight);
1873
21.2M
                        IM(X_right[n][sb]) = IM(tempRight);
1874
21.2M
                    }
1875
27.6M
                }
1876
11.3M
            }
1877
1878
            /* shift phase smoother's circular buffer index */
1879
808k
            ps->phase_hist++;
1880
808k
            if (ps->phase_hist == 2)
1881
404k
            {
1882
404k
                ps->phase_hist = 0;
1883
404k
            }
1884
808k
        }
1885
366k
    }
1886
11.2k
}
1887
1888
void ps_free(ps_info *ps)
1889
32.1k
{
1890
    /* free hybrid filterbank structures */
1891
32.1k
    hybrid_free(ps->hyb);
1892
1893
32.1k
    faad_free(ps);
1894
32.1k
}
1895
1896
ps_info *ps_init(uint8_t sr_index, uint8_t numTimeSlotsRate)
1897
32.1k
{
1898
32.1k
    uint8_t i;
1899
32.1k
    uint8_t short_delay_band;
1900
1901
32.1k
    ps_info *ps = (ps_info*)faad_malloc(sizeof(ps_info));
1902
32.1k
    memset(ps, 0, sizeof(ps_info));
1903
1904
32.1k
    ps->hyb = hybrid_init(numTimeSlotsRate);
1905
32.1k
    ps->numTimeSlotsRate = numTimeSlotsRate;
1906
1907
32.1k
    ps->ps_data_available = 0;
1908
1909
    /* delay stuff*/
1910
32.1k
    ps->saved_delay = 0;
1911
1912
2.08M
    for (i = 0; i < 64; i++)
1913
2.05M
    {
1914
2.05M
        ps->delay_buf_index_delay[i] = 0;
1915
2.05M
    }
1916
1917
128k
    for (i = 0; i < NO_ALLPASS_LINKS; i++)
1918
96.4k
    {
1919
96.4k
        ps->delay_buf_index_ser[i] = 0;
1920
#ifdef PARAM_32KHZ
1921
        if (sr_index <= 5) /* >= 32 kHz*/
1922
        {
1923
            ps->num_sample_delay_ser[i] = delay_length_d[1][i];
1924
        } else {
1925
            ps->num_sample_delay_ser[i] = delay_length_d[0][i];
1926
        }
1927
#else
1928
96.4k
        (void)sr_index;
1929
        /* THESE ARE CONSTANTS NOW */
1930
96.4k
        ps->num_sample_delay_ser[i] = delay_length_d[i];
1931
96.4k
#endif
1932
96.4k
    }
1933
1934
#ifdef PARAM_32KHZ
1935
    if (sr_index <= 5) /* >= 32 kHz*/
1936
    {
1937
        short_delay_band = 35;
1938
        ps->nr_allpass_bands = 22;
1939
        ps->alpha_decay = FRAC_CONST(0.76592833836465);
1940
        ps->alpha_smooth = FRAC_CONST(0.25);
1941
    } else {
1942
        short_delay_band = 64;
1943
        ps->nr_allpass_bands = 45;
1944
        ps->alpha_decay = FRAC_CONST(0.58664621951003);
1945
        ps->alpha_smooth = FRAC_CONST(0.6);
1946
    }
1947
#else
1948
    /* THESE ARE CONSTANTS NOW */
1949
32.1k
    short_delay_band = 35;
1950
32.1k
    ps->nr_allpass_bands = 22;
1951
32.1k
    ps->alpha_decay = FRAC_CONST(0.76592833836465);
1952
32.1k
    ps->alpha_smooth = FRAC_CONST(0.25);
1953
32.1k
#endif
1954
1955
    /* THESE ARE CONSTANT NOW IF PS IS INDEPENDANT OF SAMPLERATE */
1956
1.15M
    for (i = 0; i < short_delay_band; i++)
1957
1.12M
    {
1958
1.12M
        ps->delay_D[i] = 14;
1959
1.12M
    }
1960
964k
    for (i = short_delay_band; i < 64; i++)
1961
932k
    {
1962
932k
        ps->delay_D[i] = 1;
1963
932k
    }
1964
1965
    /* mixing and phase */
1966
1.63M
    for (i = 0; i < 50; i++)
1967
1.60M
    {
1968
1.60M
        RE(ps->h11_prev[i]) = 1;
1969
1.60M
        IM(ps->h11_prev[i]) = 1;
1970
1.60M
        RE(ps->h12_prev[i]) = 1;
1971
1.60M
        IM(ps->h12_prev[i]) = 1;
1972
1.60M
    }
1973
1974
32.1k
    ps->phase_hist = 0;
1975
1976
675k
    for (i = 0; i < 20; i++)
1977
642k
    {
1978
642k
        RE(ps->ipd_prev[i][0]) = 0;
1979
642k
        IM(ps->ipd_prev[i][0]) = 0;
1980
642k
        RE(ps->ipd_prev[i][1]) = 0;
1981
642k
        IM(ps->ipd_prev[i][1]) = 0;
1982
642k
        RE(ps->opd_prev[i][0]) = 0;
1983
642k
        IM(ps->opd_prev[i][0]) = 0;
1984
642k
        RE(ps->opd_prev[i][1]) = 0;
1985
642k
        IM(ps->opd_prev[i][1]) = 0;
1986
642k
    }
1987
1988
32.1k
    return ps;
1989
32.1k
}
ps_init
Line
Count
Source
1897
15.1k
{
1898
15.1k
    uint8_t i;
1899
15.1k
    uint8_t short_delay_band;
1900
1901
15.1k
    ps_info *ps = (ps_info*)faad_malloc(sizeof(ps_info));
1902
15.1k
    memset(ps, 0, sizeof(ps_info));
1903
1904
15.1k
    ps->hyb = hybrid_init(numTimeSlotsRate);
1905
15.1k
    ps->numTimeSlotsRate = numTimeSlotsRate;
1906
1907
15.1k
    ps->ps_data_available = 0;
1908
1909
    /* delay stuff*/
1910
15.1k
    ps->saved_delay = 0;
1911
1912
986k
    for (i = 0; i < 64; i++)
1913
971k
    {
1914
971k
        ps->delay_buf_index_delay[i] = 0;
1915
971k
    }
1916
1917
60.7k
    for (i = 0; i < NO_ALLPASS_LINKS; i++)
1918
45.5k
    {
1919
45.5k
        ps->delay_buf_index_ser[i] = 0;
1920
#ifdef PARAM_32KHZ
1921
        if (sr_index <= 5) /* >= 32 kHz*/
1922
        {
1923
            ps->num_sample_delay_ser[i] = delay_length_d[1][i];
1924
        } else {
1925
            ps->num_sample_delay_ser[i] = delay_length_d[0][i];
1926
        }
1927
#else
1928
45.5k
        (void)sr_index;
1929
        /* THESE ARE CONSTANTS NOW */
1930
45.5k
        ps->num_sample_delay_ser[i] = delay_length_d[i];
1931
45.5k
#endif
1932
45.5k
    }
1933
1934
#ifdef PARAM_32KHZ
1935
    if (sr_index <= 5) /* >= 32 kHz*/
1936
    {
1937
        short_delay_band = 35;
1938
        ps->nr_allpass_bands = 22;
1939
        ps->alpha_decay = FRAC_CONST(0.76592833836465);
1940
        ps->alpha_smooth = FRAC_CONST(0.25);
1941
    } else {
1942
        short_delay_band = 64;
1943
        ps->nr_allpass_bands = 45;
1944
        ps->alpha_decay = FRAC_CONST(0.58664621951003);
1945
        ps->alpha_smooth = FRAC_CONST(0.6);
1946
    }
1947
#else
1948
    /* THESE ARE CONSTANTS NOW */
1949
15.1k
    short_delay_band = 35;
1950
15.1k
    ps->nr_allpass_bands = 22;
1951
15.1k
    ps->alpha_decay = FRAC_CONST(0.76592833836465);
1952
15.1k
    ps->alpha_smooth = FRAC_CONST(0.25);
1953
15.1k
#endif
1954
1955
    /* THESE ARE CONSTANT NOW IF PS IS INDEPENDANT OF SAMPLERATE */
1956
546k
    for (i = 0; i < short_delay_band; i++)
1957
531k
    {
1958
531k
        ps->delay_D[i] = 14;
1959
531k
    }
1960
455k
    for (i = short_delay_band; i < 64; i++)
1961
440k
    {
1962
440k
        ps->delay_D[i] = 1;
1963
440k
    }
1964
1965
    /* mixing and phase */
1966
773k
    for (i = 0; i < 50; i++)
1967
758k
    {
1968
758k
        RE(ps->h11_prev[i]) = 1;
1969
758k
        IM(ps->h11_prev[i]) = 1;
1970
758k
        RE(ps->h12_prev[i]) = 1;
1971
758k
        IM(ps->h12_prev[i]) = 1;
1972
758k
    }
1973
1974
15.1k
    ps->phase_hist = 0;
1975
1976
318k
    for (i = 0; i < 20; i++)
1977
303k
    {
1978
303k
        RE(ps->ipd_prev[i][0]) = 0;
1979
303k
        IM(ps->ipd_prev[i][0]) = 0;
1980
303k
        RE(ps->ipd_prev[i][1]) = 0;
1981
303k
        IM(ps->ipd_prev[i][1]) = 0;
1982
303k
        RE(ps->opd_prev[i][0]) = 0;
1983
303k
        IM(ps->opd_prev[i][0]) = 0;
1984
303k
        RE(ps->opd_prev[i][1]) = 0;
1985
303k
        IM(ps->opd_prev[i][1]) = 0;
1986
303k
    }
1987
1988
15.1k
    return ps;
1989
15.1k
}
ps_init
Line
Count
Source
1897
16.9k
{
1898
16.9k
    uint8_t i;
1899
16.9k
    uint8_t short_delay_band;
1900
1901
16.9k
    ps_info *ps = (ps_info*)faad_malloc(sizeof(ps_info));
1902
16.9k
    memset(ps, 0, sizeof(ps_info));
1903
1904
16.9k
    ps->hyb = hybrid_init(numTimeSlotsRate);
1905
16.9k
    ps->numTimeSlotsRate = numTimeSlotsRate;
1906
1907
16.9k
    ps->ps_data_available = 0;
1908
1909
    /* delay stuff*/
1910
16.9k
    ps->saved_delay = 0;
1911
1912
1.10M
    for (i = 0; i < 64; i++)
1913
1.08M
    {
1914
1.08M
        ps->delay_buf_index_delay[i] = 0;
1915
1.08M
    }
1916
1917
67.8k
    for (i = 0; i < NO_ALLPASS_LINKS; i++)
1918
50.9k
    {
1919
50.9k
        ps->delay_buf_index_ser[i] = 0;
1920
#ifdef PARAM_32KHZ
1921
        if (sr_index <= 5) /* >= 32 kHz*/
1922
        {
1923
            ps->num_sample_delay_ser[i] = delay_length_d[1][i];
1924
        } else {
1925
            ps->num_sample_delay_ser[i] = delay_length_d[0][i];
1926
        }
1927
#else
1928
50.9k
        (void)sr_index;
1929
        /* THESE ARE CONSTANTS NOW */
1930
50.9k
        ps->num_sample_delay_ser[i] = delay_length_d[i];
1931
50.9k
#endif
1932
50.9k
    }
1933
1934
#ifdef PARAM_32KHZ
1935
    if (sr_index <= 5) /* >= 32 kHz*/
1936
    {
1937
        short_delay_band = 35;
1938
        ps->nr_allpass_bands = 22;
1939
        ps->alpha_decay = FRAC_CONST(0.76592833836465);
1940
        ps->alpha_smooth = FRAC_CONST(0.25);
1941
    } else {
1942
        short_delay_band = 64;
1943
        ps->nr_allpass_bands = 45;
1944
        ps->alpha_decay = FRAC_CONST(0.58664621951003);
1945
        ps->alpha_smooth = FRAC_CONST(0.6);
1946
    }
1947
#else
1948
    /* THESE ARE CONSTANTS NOW */
1949
16.9k
    short_delay_band = 35;
1950
16.9k
    ps->nr_allpass_bands = 22;
1951
16.9k
    ps->alpha_decay = FRAC_CONST(0.76592833836465);
1952
16.9k
    ps->alpha_smooth = FRAC_CONST(0.25);
1953
16.9k
#endif
1954
1955
    /* THESE ARE CONSTANT NOW IF PS IS INDEPENDANT OF SAMPLERATE */
1956
610k
    for (i = 0; i < short_delay_band; i++)
1957
593k
    {
1958
593k
        ps->delay_D[i] = 14;
1959
593k
    }
1960
509k
    for (i = short_delay_band; i < 64; i++)
1961
492k
    {
1962
492k
        ps->delay_D[i] = 1;
1963
492k
    }
1964
1965
    /* mixing and phase */
1966
865k
    for (i = 0; i < 50; i++)
1967
848k
    {
1968
848k
        RE(ps->h11_prev[i]) = 1;
1969
848k
        IM(ps->h11_prev[i]) = 1;
1970
848k
        RE(ps->h12_prev[i]) = 1;
1971
848k
        IM(ps->h12_prev[i]) = 1;
1972
848k
    }
1973
1974
16.9k
    ps->phase_hist = 0;
1975
1976
356k
    for (i = 0; i < 20; i++)
1977
339k
    {
1978
339k
        RE(ps->ipd_prev[i][0]) = 0;
1979
339k
        IM(ps->ipd_prev[i][0]) = 0;
1980
339k
        RE(ps->ipd_prev[i][1]) = 0;
1981
339k
        IM(ps->ipd_prev[i][1]) = 0;
1982
339k
        RE(ps->opd_prev[i][0]) = 0;
1983
339k
        IM(ps->opd_prev[i][0]) = 0;
1984
339k
        RE(ps->opd_prev[i][1]) = 0;
1985
339k
        IM(ps->opd_prev[i][1]) = 0;
1986
339k
    }
1987
1988
16.9k
    return ps;
1989
16.9k
}
1990
1991
/* main Parametric Stereo decoding function */
1992
uint8_t ps_decode(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64])
1993
20.3k
{
1994
20.3k
    qmf_t X_hybrid_left[32][32] = {{{0}}};
1995
20.3k
    qmf_t X_hybrid_right[32][32] = {{{0}}};
1996
1997
    /* delta decoding of the bitstream data */
1998
20.3k
    ps_data_decode(ps);
1999
2000
    /* set up some parameters depending on filterbank type */
2001
20.3k
    if (ps->use34hybrid_bands)
2002
7.99k
    {
2003
7.99k
        ps->group_border = (uint8_t*)group_border34;
2004
7.99k
        ps->map_group2bk = (uint16_t*)map_group2bk34;
2005
7.99k
        ps->num_groups = 32+18;
2006
7.99k
        ps->num_hybrid_groups = 32;
2007
7.99k
        ps->nr_par_bands = 34;
2008
7.99k
        ps->decay_cutoff = 5;
2009
12.3k
    } else {
2010
12.3k
        ps->group_border = (uint8_t*)group_border20;
2011
12.3k
        ps->map_group2bk = (uint16_t*)map_group2bk20;
2012
12.3k
        ps->num_groups = 10+12;
2013
12.3k
        ps->num_hybrid_groups = 10;
2014
12.3k
        ps->nr_par_bands = 20;
2015
12.3k
        ps->decay_cutoff = 3;
2016
12.3k
    }
2017
2018
    /* Perform further analysis on the lowest subbands to get a higher
2019
     * frequency resolution
2020
     */
2021
20.3k
    hybrid_analysis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
2022
20.3k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2023
2024
    /* decorrelate mono signal */
2025
20.3k
    ps_decorrelate(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
2026
2027
    /* apply mixing and phase parameters */
2028
20.3k
    ps_mix_phase(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
2029
2030
    /* hybrid synthesis, to rebuild the SBR QMF matrices */
2031
20.3k
    hybrid_synthesis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
2032
20.3k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2033
2034
20.3k
    hybrid_synthesis((hyb_info*)ps->hyb, X_right, X_hybrid_right,
2035
20.3k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2036
2037
20.3k
    return 0;
2038
20.3k
}
2039
2040
#endif