Coverage Report

Created: 2025-08-03 06:05

/proc/self/cwd/libfaad/ps_dec.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: ps_dec.c,v 1.16 2009/01/26 22:32:31 menno Exp $
29
**/
30
31
#include "common.h"
32
33
#ifdef PS_DEC
34
35
#include <stdlib.h>
36
#include <stdio.h>
37
#include "ps_dec.h"
38
#include "ps_tables.h"
39
40
/* constants */
41
52.4M
#define NEGATE_IPD_MASK            (0x1000)
42
393k
#define DECAY_SLOPE                FRAC_CONST(0.05)
43
#define COEF_SQRT2                 COEF_CONST(1.4142135623731)
44
45
/* tables */
46
/* filters are mirrored in coef 6, second half left out */
47
static const real_t p8_13_20[7] =
48
{
49
    FRAC_CONST(0.00746082949812),
50
    FRAC_CONST(0.02270420949825),
51
    FRAC_CONST(0.04546865930473),
52
    FRAC_CONST(0.07266113929591),
53
    FRAC_CONST(0.09885108575264),
54
    FRAC_CONST(0.11793710567217),
55
    FRAC_CONST(0.125)
56
};
57
58
static const real_t p2_13_20[7] =
59
{
60
    FRAC_CONST(0.0),
61
    FRAC_CONST(0.01899487526049),
62
    FRAC_CONST(0.0),
63
    FRAC_CONST(-0.07293139167538),
64
    FRAC_CONST(0.0),
65
    FRAC_CONST(0.30596630545168),
66
    FRAC_CONST(0.5)
67
};
68
69
static const real_t p12_13_34[7] =
70
{
71
    FRAC_CONST(0.04081179924692),
72
    FRAC_CONST(0.03812810994926),
73
    FRAC_CONST(0.05144908135699),
74
    FRAC_CONST(0.06399831151592),
75
    FRAC_CONST(0.07428313801106),
76
    FRAC_CONST(0.08100347892914),
77
    FRAC_CONST(0.08333333333333)
78
};
79
80
static const real_t p8_13_34[7] =
81
{
82
    FRAC_CONST(0.01565675600122),
83
    FRAC_CONST(0.03752716391991),
84
    FRAC_CONST(0.05417891378782),
85
    FRAC_CONST(0.08417044116767),
86
    FRAC_CONST(0.10307344158036),
87
    FRAC_CONST(0.12222452249753),
88
    FRAC_CONST(0.125)
89
};
90
91
static const real_t p4_13_34[7] =
92
{
93
    FRAC_CONST(-0.05908211155639),
94
    FRAC_CONST(-0.04871498374946),
95
    FRAC_CONST(0.0),
96
    FRAC_CONST(0.07778723915851),
97
    FRAC_CONST(0.16486303567403),
98
    FRAC_CONST(0.23279856662996),
99
    FRAC_CONST(0.25)
100
};
101
102
#ifdef PARAM_32KHZ
103
static const uint8_t delay_length_d[2][NO_ALLPASS_LINKS] = {
104
    { 1, 2, 3 } /* d_24kHz */,
105
    { 3, 4, 5 } /* d_48kHz */
106
};
107
#else
108
static const uint8_t delay_length_d[NO_ALLPASS_LINKS] = {
109
    3, 4, 5 /* d_48kHz */
110
};
111
#endif
112
static const real_t filter_a[NO_ALLPASS_LINKS] = { /* a(m) = exp(-d_48kHz(m)/7) */
113
    FRAC_CONST(0.65143905753106),
114
    FRAC_CONST(0.56471812200776),
115
    FRAC_CONST(0.48954165955695)
116
};
117
118
static const uint8_t group_border20[10+12 + 1] =
119
{
120
    6, 7, 0, 1, 2, 3, /* 6 subqmf subbands */
121
    9, 8,             /* 2 subqmf subbands */
122
    10, 11,           /* 2 subqmf subbands */
123
    3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 35, 64
124
};
125
126
static const uint8_t group_border34[32+18 + 1] =
127
{
128
     0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, /* 12 subqmf subbands */
129
     12, 13, 14, 15, 16, 17, 18, 19,                 /*  8 subqmf subbands */
130
     20, 21, 22, 23,                                 /*  4 subqmf subbands */
131
     24, 25, 26, 27,                                 /*  4 subqmf subbands */
132
     28, 29, 30, 31,                                 /*  4 subqmf subbands */
133
     32-27, 33-27, 34-27, 35-27, 36-27, 37-27, 38-27, 40-27, 42-27, 44-27, 46-27, 48-27, 51-27, 54-27, 57-27, 60-27, 64-27, 68-27, 91-27
134
};
135
136
static const uint16_t map_group2bk20[10+12] =
137
{
138
    (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
139
    0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
140
};
141
142
static const uint16_t map_group2bk34[32+18] =
143
{
144
    0,  1,  2,  3,  4,  5,  6,  6,  7, (NEGATE_IPD_MASK | 2), (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
145
    10, 10, 4,  5,  6,  7,  8,  9,
146
    10, 11, 12, 9,
147
    14, 11, 12, 13,
148
    14, 15, 16, 13,
149
    16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33
150
};
151
152
/* type definitions */
153
typedef struct
154
{
155
    uint8_t frame_len;
156
    uint8_t resolution20[3];
157
    uint8_t resolution34[5];
158
159
    qmf_t *work;
160
    qmf_t **buffer;
161
    qmf_t **temp;
162
} hyb_info;
163
164
/* static function declarations */
165
static void ps_data_decode(ps_info *ps);
166
static hyb_info *hybrid_init(uint8_t numTimeSlotsRate);
167
static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
168
                            qmf_t *buffer, qmf_t **X_hybrid);
169
static void INLINE DCT3_4_unscaled(real_t *y, real_t *x);
170
static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
171
                            qmf_t *buffer, qmf_t **X_hybrid);
172
static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
173
                            uint8_t use34, uint8_t numTimeSlotsRate);
174
static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
175
                             uint8_t use34, uint8_t numTimeSlotsRate);
176
static int8_t delta_clip(int8_t i, int8_t min, int8_t max);
177
static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
178
                         uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
179
                         int8_t min_index, int8_t max_index);
180
static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
181
                                uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
182
                                int8_t and_modulo);
183
static void map20indexto34(int8_t *index, uint8_t bins);
184
#ifdef PS_LOW_POWER
185
static void map34indexto20(int8_t *index, uint8_t bins);
186
#endif
187
static void ps_data_decode(ps_info *ps);
188
static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
189
                           qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
190
static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
191
                         qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
192
193
/*  */
194
195
196
static hyb_info *hybrid_init(uint8_t numTimeSlotsRate)
197
32.0k
{
198
32.0k
    uint8_t i;
199
200
32.0k
    hyb_info *hyb = (hyb_info*)faad_malloc(sizeof(hyb_info));
201
202
32.0k
    hyb->resolution34[0] = 12;
203
32.0k
    hyb->resolution34[1] = 8;
204
32.0k
    hyb->resolution34[2] = 4;
205
32.0k
    hyb->resolution34[3] = 4;
206
32.0k
    hyb->resolution34[4] = 4;
207
208
32.0k
    hyb->resolution20[0] = 8;
209
32.0k
    hyb->resolution20[1] = 2;
210
32.0k
    hyb->resolution20[2] = 2;
211
212
32.0k
    hyb->frame_len = numTimeSlotsRate;
213
214
32.0k
    hyb->work = (qmf_t*)faad_malloc((hyb->frame_len+12) * sizeof(qmf_t));
215
32.0k
    memset(hyb->work, 0, (hyb->frame_len+12) * sizeof(qmf_t));
216
217
32.0k
    hyb->buffer = (qmf_t**)faad_malloc(5 * sizeof(qmf_t*));
218
192k
    for (i = 0; i < 5; i++)
219
160k
    {
220
160k
        hyb->buffer[i] = (qmf_t*)faad_malloc(hyb->frame_len * sizeof(qmf_t));
221
160k
        memset(hyb->buffer[i], 0, hyb->frame_len * sizeof(qmf_t));
222
160k
    }
223
224
32.0k
    hyb->temp = (qmf_t**)faad_malloc(hyb->frame_len * sizeof(qmf_t*));
225
1.04M
    for (i = 0; i < hyb->frame_len; i++)
226
1.01M
    {
227
1.01M
        hyb->temp[i] = (qmf_t*)faad_malloc(12 /*max*/ * sizeof(qmf_t));
228
1.01M
    }
229
230
32.0k
    return hyb;
231
32.0k
}
232
233
static void hybrid_free(hyb_info *hyb)
234
32.0k
{
235
32.0k
    uint8_t i;
236
237
32.0k
  if (!hyb) return;
238
239
32.0k
    if (hyb->work)
240
32.0k
        faad_free(hyb->work);
241
242
192k
    for (i = 0; i < 5; i++)
243
160k
    {
244
160k
        if (hyb->buffer[i])
245
160k
            faad_free(hyb->buffer[i]);
246
160k
    }
247
32.0k
    if (hyb->buffer)
248
32.0k
        faad_free(hyb->buffer);
249
250
1.04M
    for (i = 0; i < hyb->frame_len; i++)
251
1.01M
    {
252
1.01M
        if (hyb->temp[i])
253
1.01M
            faad_free(hyb->temp[i]);
254
1.01M
    }
255
32.0k
    if (hyb->temp)
256
32.0k
        faad_free(hyb->temp);
257
258
32.0k
    faad_free(hyb);
259
32.0k
}
260
261
/* real filter, size 2 */
262
static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
263
                            qmf_t *buffer, qmf_t **X_hybrid)
264
50.5k
{
265
50.5k
    uint8_t i;
266
50.5k
    (void)hyb;  /* TODO: remove parameter? */
267
268
1.64M
    for (i = 0; i < frame_len; i++)
269
1.59M
    {
270
1.59M
        real_t r0 = MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i])));
271
1.59M
        real_t r1 = MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i])));
272
1.59M
        real_t r2 = MUL_F(filter[2],(QMF_RE(buffer[2+i]) + QMF_RE(buffer[10+i])));
273
1.59M
        real_t r3 = MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
274
1.59M
        real_t r4 = MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
275
1.59M
        real_t r5 = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
276
1.59M
        real_t r6 = MUL_F(filter[6],QMF_RE(buffer[6+i]));
277
1.59M
        real_t i0 = MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i])));
278
1.59M
        real_t i1 = MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i])));
279
1.59M
        real_t i2 = MUL_F(filter[2],(QMF_IM(buffer[2+i]) + QMF_IM(buffer[10+i])));
280
1.59M
        real_t i3 = MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
281
1.59M
        real_t i4 = MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
282
1.59M
        real_t i5 = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
283
1.59M
        real_t i6 = MUL_F(filter[6],QMF_IM(buffer[6+i]));
284
285
        /* q = 0 */
286
1.59M
        QMF_RE(X_hybrid[i][0]) = r0 + r1 + r2 + r3 + r4 + r5 + r6;
287
1.59M
        QMF_IM(X_hybrid[i][0]) = i0 + i1 + i2 + i3 + i4 + i5 + i6;
288
289
        /* q = 1 */
290
1.59M
        QMF_RE(X_hybrid[i][1]) = r0 - r1 + r2 - r3 + r4 - r5 + r6;
291
1.59M
        QMF_IM(X_hybrid[i][1]) = i0 - i1 + i2 - i3 + i4 - i5 + i6;
292
1.59M
    }
293
50.5k
}
ps_dec.c:channel_filter2
Line
Count
Source
264
25.2k
{
265
25.2k
    uint8_t i;
266
25.2k
    (void)hyb;  /* TODO: remove parameter? */
267
268
822k
    for (i = 0; i < frame_len; i++)
269
797k
    {
270
797k
        real_t r0 = MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i])));
271
797k
        real_t r1 = MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i])));
272
797k
        real_t r2 = MUL_F(filter[2],(QMF_RE(buffer[2+i]) + QMF_RE(buffer[10+i])));
273
797k
        real_t r3 = MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
274
797k
        real_t r4 = MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
275
797k
        real_t r5 = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
276
797k
        real_t r6 = MUL_F(filter[6],QMF_RE(buffer[6+i]));
277
797k
        real_t i0 = MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i])));
278
797k
        real_t i1 = MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i])));
279
797k
        real_t i2 = MUL_F(filter[2],(QMF_IM(buffer[2+i]) + QMF_IM(buffer[10+i])));
280
797k
        real_t i3 = MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
281
797k
        real_t i4 = MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
282
797k
        real_t i5 = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
283
797k
        real_t i6 = MUL_F(filter[6],QMF_IM(buffer[6+i]));
284
285
        /* q = 0 */
286
797k
        QMF_RE(X_hybrid[i][0]) = r0 + r1 + r2 + r3 + r4 + r5 + r6;
287
797k
        QMF_IM(X_hybrid[i][0]) = i0 + i1 + i2 + i3 + i4 + i5 + i6;
288
289
        /* q = 1 */
290
797k
        QMF_RE(X_hybrid[i][1]) = r0 - r1 + r2 - r3 + r4 - r5 + r6;
291
797k
        QMF_IM(X_hybrid[i][1]) = i0 - i1 + i2 - i3 + i4 - i5 + i6;
292
797k
    }
293
25.2k
}
ps_dec.c:channel_filter2
Line
Count
Source
264
25.2k
{
265
25.2k
    uint8_t i;
266
25.2k
    (void)hyb;  /* TODO: remove parameter? */
267
268
822k
    for (i = 0; i < frame_len; i++)
269
797k
    {
270
797k
        real_t r0 = MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i])));
271
797k
        real_t r1 = MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i])));
272
797k
        real_t r2 = MUL_F(filter[2],(QMF_RE(buffer[2+i]) + QMF_RE(buffer[10+i])));
273
797k
        real_t r3 = MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
274
797k
        real_t r4 = MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
275
797k
        real_t r5 = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
276
797k
        real_t r6 = MUL_F(filter[6],QMF_RE(buffer[6+i]));
277
797k
        real_t i0 = MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i])));
278
797k
        real_t i1 = MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i])));
279
797k
        real_t i2 = MUL_F(filter[2],(QMF_IM(buffer[2+i]) + QMF_IM(buffer[10+i])));
280
797k
        real_t i3 = MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
281
797k
        real_t i4 = MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
282
797k
        real_t i5 = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
283
797k
        real_t i6 = MUL_F(filter[6],QMF_IM(buffer[6+i]));
284
285
        /* q = 0 */
286
797k
        QMF_RE(X_hybrid[i][0]) = r0 + r1 + r2 + r3 + r4 + r5 + r6;
287
797k
        QMF_IM(X_hybrid[i][0]) = i0 + i1 + i2 + i3 + i4 + i5 + i6;
288
289
        /* q = 1 */
290
797k
        QMF_RE(X_hybrid[i][1]) = r0 - r1 + r2 - r3 + r4 - r5 + r6;
291
797k
        QMF_IM(X_hybrid[i][1]) = i0 - i1 + i2 - i3 + i4 - i5 + i6;
292
797k
    }
293
25.2k
}
294
295
/* complex filter, size 4 */
296
static void channel_filter4(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
297
                            qmf_t *buffer, qmf_t **X_hybrid)
298
24.1k
{
299
24.1k
    uint8_t i;
300
24.1k
    real_t input_re1[2], input_re2[2], input_im1[2], input_im2[2];
301
24.1k
    (void)hyb;  /* TODO: remove parameter? */
302
303
765k
    for (i = 0; i < frame_len; i++)
304
740k
    {
305
740k
        input_re1[0] = -MUL_F(filter[2], (QMF_RE(buffer[i+2]) + QMF_RE(buffer[i+10]))) +
306
740k
            MUL_F(filter[6], QMF_RE(buffer[i+6]));
307
740k
        input_re1[1] = MUL_F(FRAC_CONST(-0.70710678118655),
308
740k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) + QMF_RE(buffer[i+11]))) +
309
740k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) + QMF_RE(buffer[i+9]))) -
310
740k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) + QMF_RE(buffer[i+7])))));
311
312
740k
        input_im1[0] = MUL_F(filter[0], (QMF_IM(buffer[i+0]) - QMF_IM(buffer[i+12]))) -
313
740k
            MUL_F(filter[4], (QMF_IM(buffer[i+4]) - QMF_IM(buffer[i+8])));
314
740k
        input_im1[1] = MUL_F(FRAC_CONST(0.70710678118655),
315
740k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) - QMF_IM(buffer[i+11]))) -
316
740k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) - QMF_IM(buffer[i+9]))) -
317
740k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) - QMF_IM(buffer[i+7])))));
318
319
740k
        input_re2[0] = MUL_F(filter[0], (QMF_RE(buffer[i+0]) - QMF_RE(buffer[i+12]))) -
320
740k
            MUL_F(filter[4], (QMF_RE(buffer[i+4]) - QMF_RE(buffer[i+8])));
321
740k
        input_re2[1] = MUL_F(FRAC_CONST(0.70710678118655),
322
740k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) - QMF_RE(buffer[i+11]))) -
323
740k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) - QMF_RE(buffer[i+9]))) -
324
740k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) - QMF_RE(buffer[i+7])))));
325
326
740k
        input_im2[0] = -MUL_F(filter[2], (QMF_IM(buffer[i+2]) + QMF_IM(buffer[i+10]))) +
327
740k
            MUL_F(filter[6], QMF_IM(buffer[i+6]));
328
740k
        input_im2[1] = MUL_F(FRAC_CONST(-0.70710678118655),
329
740k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) + QMF_IM(buffer[i+11]))) +
330
740k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) + QMF_IM(buffer[i+9]))) -
331
740k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) + QMF_IM(buffer[i+7])))));
332
333
        /* q == 0 */
334
740k
        QMF_RE(X_hybrid[i][0]) =  input_re1[0] + input_re1[1] + input_im1[0] + input_im1[1];
335
740k
        QMF_IM(X_hybrid[i][0]) = -input_re2[0] - input_re2[1] + input_im2[0] + input_im2[1];
336
337
        /* q == 1 */
338
740k
        QMF_RE(X_hybrid[i][1]) =  input_re1[0] - input_re1[1] - input_im1[0] + input_im1[1];
339
740k
        QMF_IM(X_hybrid[i][1]) =  input_re2[0] - input_re2[1] + input_im2[0] - input_im2[1];
340
341
        /* q == 2 */
342
740k
        QMF_RE(X_hybrid[i][2]) =  input_re1[0] - input_re1[1] + input_im1[0] - input_im1[1];
343
740k
        QMF_IM(X_hybrid[i][2]) = -input_re2[0] + input_re2[1] + input_im2[0] - input_im2[1];
344
345
        /* q == 3 */
346
740k
        QMF_RE(X_hybrid[i][3]) =  input_re1[0] + input_re1[1] - input_im1[0] - input_im1[1];
347
740k
        QMF_IM(X_hybrid[i][3]) =  input_re2[0] + input_re2[1] + input_im2[0] + input_im2[1];
348
740k
    }
349
24.1k
}
ps_dec.c:channel_filter4
Line
Count
Source
298
11.3k
{
299
11.3k
    uint8_t i;
300
11.3k
    real_t input_re1[2], input_re2[2], input_im1[2], input_im2[2];
301
11.3k
    (void)hyb;  /* TODO: remove parameter? */
302
303
359k
    for (i = 0; i < frame_len; i++)
304
348k
    {
305
348k
        input_re1[0] = -MUL_F(filter[2], (QMF_RE(buffer[i+2]) + QMF_RE(buffer[i+10]))) +
306
348k
            MUL_F(filter[6], QMF_RE(buffer[i+6]));
307
348k
        input_re1[1] = MUL_F(FRAC_CONST(-0.70710678118655),
308
348k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) + QMF_RE(buffer[i+11]))) +
309
348k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) + QMF_RE(buffer[i+9]))) -
310
348k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) + QMF_RE(buffer[i+7])))));
311
312
348k
        input_im1[0] = MUL_F(filter[0], (QMF_IM(buffer[i+0]) - QMF_IM(buffer[i+12]))) -
313
348k
            MUL_F(filter[4], (QMF_IM(buffer[i+4]) - QMF_IM(buffer[i+8])));
314
348k
        input_im1[1] = MUL_F(FRAC_CONST(0.70710678118655),
315
348k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) - QMF_IM(buffer[i+11]))) -
316
348k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) - QMF_IM(buffer[i+9]))) -
317
348k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) - QMF_IM(buffer[i+7])))));
318
319
348k
        input_re2[0] = MUL_F(filter[0], (QMF_RE(buffer[i+0]) - QMF_RE(buffer[i+12]))) -
320
348k
            MUL_F(filter[4], (QMF_RE(buffer[i+4]) - QMF_RE(buffer[i+8])));
321
348k
        input_re2[1] = MUL_F(FRAC_CONST(0.70710678118655),
322
348k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) - QMF_RE(buffer[i+11]))) -
323
348k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) - QMF_RE(buffer[i+9]))) -
324
348k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) - QMF_RE(buffer[i+7])))));
325
326
348k
        input_im2[0] = -MUL_F(filter[2], (QMF_IM(buffer[i+2]) + QMF_IM(buffer[i+10]))) +
327
348k
            MUL_F(filter[6], QMF_IM(buffer[i+6]));
328
348k
        input_im2[1] = MUL_F(FRAC_CONST(-0.70710678118655),
329
348k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) + QMF_IM(buffer[i+11]))) +
330
348k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) + QMF_IM(buffer[i+9]))) -
331
348k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) + QMF_IM(buffer[i+7])))));
332
333
        /* q == 0 */
334
348k
        QMF_RE(X_hybrid[i][0]) =  input_re1[0] + input_re1[1] + input_im1[0] + input_im1[1];
335
348k
        QMF_IM(X_hybrid[i][0]) = -input_re2[0] - input_re2[1] + input_im2[0] + input_im2[1];
336
337
        /* q == 1 */
338
348k
        QMF_RE(X_hybrid[i][1]) =  input_re1[0] - input_re1[1] - input_im1[0] + input_im1[1];
339
348k
        QMF_IM(X_hybrid[i][1]) =  input_re2[0] - input_re2[1] + input_im2[0] - input_im2[1];
340
341
        /* q == 2 */
342
348k
        QMF_RE(X_hybrid[i][2]) =  input_re1[0] - input_re1[1] + input_im1[0] - input_im1[1];
343
348k
        QMF_IM(X_hybrid[i][2]) = -input_re2[0] + input_re2[1] + input_im2[0] - input_im2[1];
344
345
        /* q == 3 */
346
348k
        QMF_RE(X_hybrid[i][3]) =  input_re1[0] + input_re1[1] - input_im1[0] - input_im1[1];
347
348k
        QMF_IM(X_hybrid[i][3]) =  input_re2[0] + input_re2[1] + input_im2[0] + input_im2[1];
348
348k
    }
349
11.3k
}
ps_dec.c:channel_filter4
Line
Count
Source
298
12.7k
{
299
12.7k
    uint8_t i;
300
12.7k
    real_t input_re1[2], input_re2[2], input_im1[2], input_im2[2];
301
12.7k
    (void)hyb;  /* TODO: remove parameter? */
302
303
405k
    for (i = 0; i < frame_len; i++)
304
392k
    {
305
392k
        input_re1[0] = -MUL_F(filter[2], (QMF_RE(buffer[i+2]) + QMF_RE(buffer[i+10]))) +
306
392k
            MUL_F(filter[6], QMF_RE(buffer[i+6]));
307
392k
        input_re1[1] = MUL_F(FRAC_CONST(-0.70710678118655),
308
392k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) + QMF_RE(buffer[i+11]))) +
309
392k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) + QMF_RE(buffer[i+9]))) -
310
392k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) + QMF_RE(buffer[i+7])))));
311
312
392k
        input_im1[0] = MUL_F(filter[0], (QMF_IM(buffer[i+0]) - QMF_IM(buffer[i+12]))) -
313
392k
            MUL_F(filter[4], (QMF_IM(buffer[i+4]) - QMF_IM(buffer[i+8])));
314
392k
        input_im1[1] = MUL_F(FRAC_CONST(0.70710678118655),
315
392k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) - QMF_IM(buffer[i+11]))) -
316
392k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) - QMF_IM(buffer[i+9]))) -
317
392k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) - QMF_IM(buffer[i+7])))));
318
319
392k
        input_re2[0] = MUL_F(filter[0], (QMF_RE(buffer[i+0]) - QMF_RE(buffer[i+12]))) -
320
392k
            MUL_F(filter[4], (QMF_RE(buffer[i+4]) - QMF_RE(buffer[i+8])));
321
392k
        input_re2[1] = MUL_F(FRAC_CONST(0.70710678118655),
322
392k
            (MUL_F(filter[1], (QMF_RE(buffer[i+1]) - QMF_RE(buffer[i+11]))) -
323
392k
            MUL_F(filter[3], (QMF_RE(buffer[i+3]) - QMF_RE(buffer[i+9]))) -
324
392k
            MUL_F(filter[5], (QMF_RE(buffer[i+5]) - QMF_RE(buffer[i+7])))));
325
326
392k
        input_im2[0] = -MUL_F(filter[2], (QMF_IM(buffer[i+2]) + QMF_IM(buffer[i+10]))) +
327
392k
            MUL_F(filter[6], QMF_IM(buffer[i+6]));
328
392k
        input_im2[1] = MUL_F(FRAC_CONST(-0.70710678118655),
329
392k
            (MUL_F(filter[1], (QMF_IM(buffer[i+1]) + QMF_IM(buffer[i+11]))) +
330
392k
            MUL_F(filter[3], (QMF_IM(buffer[i+3]) + QMF_IM(buffer[i+9]))) -
331
392k
            MUL_F(filter[5], (QMF_IM(buffer[i+5]) + QMF_IM(buffer[i+7])))));
332
333
        /* q == 0 */
334
392k
        QMF_RE(X_hybrid[i][0]) =  input_re1[0] + input_re1[1] + input_im1[0] + input_im1[1];
335
392k
        QMF_IM(X_hybrid[i][0]) = -input_re2[0] - input_re2[1] + input_im2[0] + input_im2[1];
336
337
        /* q == 1 */
338
392k
        QMF_RE(X_hybrid[i][1]) =  input_re1[0] - input_re1[1] - input_im1[0] + input_im1[1];
339
392k
        QMF_IM(X_hybrid[i][1]) =  input_re2[0] - input_re2[1] + input_im2[0] - input_im2[1];
340
341
        /* q == 2 */
342
392k
        QMF_RE(X_hybrid[i][2]) =  input_re1[0] - input_re1[1] + input_im1[0] - input_im1[1];
343
392k
        QMF_IM(X_hybrid[i][2]) = -input_re2[0] + input_re2[1] + input_im2[0] - input_im2[1];
344
345
        /* q == 3 */
346
392k
        QMF_RE(X_hybrid[i][3]) =  input_re1[0] + input_re1[1] - input_im1[0] - input_im1[1];
347
392k
        QMF_IM(X_hybrid[i][3]) =  input_re2[0] + input_re2[1] + input_im2[0] + input_im2[1];
348
392k
    }
349
12.7k
}
350
351
static void INLINE DCT3_4_unscaled(real_t *y, real_t *x)
352
2.58M
{
353
2.58M
    real_t f0, f1, f2, f3, f4, f5, f6, f7, f8;
354
355
2.58M
    f0 = MUL_F(x[2], FRAC_CONST(0.7071067811865476));
356
2.58M
    f1 = x[0] - f0;
357
2.58M
    f2 = x[0] + f0;
358
2.58M
    f3 = x[1] + x[3];
359
2.58M
    f4 = MUL_C(x[1], COEF_CONST(1.3065629648763766));
360
2.58M
    f5 = MUL_F(f3, FRAC_CONST(-0.9238795325112866));
361
2.58M
    f6 = MUL_F(x[3], FRAC_CONST(-0.5411961001461967));
362
2.58M
    f7 = f4 + f5;
363
2.58M
    f8 = f6 - f5;
364
2.58M
    y[3] = f2 - f8;
365
2.58M
    y[0] = f2 + f8;
366
2.58M
    y[2] = f1 - f7;
367
2.58M
    y[1] = f1 + f7;
368
2.58M
}
ps_dec.c:DCT3_4_unscaled
Line
Count
Source
352
1.14M
{
353
1.14M
    real_t f0, f1, f2, f3, f4, f5, f6, f7, f8;
354
355
1.14M
    f0 = MUL_F(x[2], FRAC_CONST(0.7071067811865476));
356
1.14M
    f1 = x[0] - f0;
357
1.14M
    f2 = x[0] + f0;
358
1.14M
    f3 = x[1] + x[3];
359
1.14M
    f4 = MUL_C(x[1], COEF_CONST(1.3065629648763766));
360
1.14M
    f5 = MUL_F(f3, FRAC_CONST(-0.9238795325112866));
361
1.14M
    f6 = MUL_F(x[3], FRAC_CONST(-0.5411961001461967));
362
1.14M
    f7 = f4 + f5;
363
1.14M
    f8 = f6 - f5;
364
1.14M
    y[3] = f2 - f8;
365
1.14M
    y[0] = f2 + f8;
366
1.14M
    y[2] = f1 - f7;
367
1.14M
    y[1] = f1 + f7;
368
1.14M
}
ps_dec.c:DCT3_4_unscaled
Line
Count
Source
352
1.43M
{
353
1.43M
    real_t f0, f1, f2, f3, f4, f5, f6, f7, f8;
354
355
1.43M
    f0 = MUL_F(x[2], FRAC_CONST(0.7071067811865476));
356
1.43M
    f1 = x[0] - f0;
357
1.43M
    f2 = x[0] + f0;
358
1.43M
    f3 = x[1] + x[3];
359
1.43M
    f4 = MUL_C(x[1], COEF_CONST(1.3065629648763766));
360
1.43M
    f5 = MUL_F(f3, FRAC_CONST(-0.9238795325112866));
361
1.43M
    f6 = MUL_F(x[3], FRAC_CONST(-0.5411961001461967));
362
1.43M
    f7 = f4 + f5;
363
1.43M
    f8 = f6 - f5;
364
1.43M
    y[3] = f2 - f8;
365
1.43M
    y[0] = f2 + f8;
366
1.43M
    y[2] = f1 - f7;
367
1.43M
    y[1] = f1 + f7;
368
1.43M
}
369
370
/* complex filter, size 8 */
371
static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
372
                            qmf_t *buffer, qmf_t **X_hybrid)
373
41.3k
{
374
41.3k
    uint8_t i, n;
375
41.3k
    real_t input_re1[4], input_re2[4], input_im1[4], input_im2[4];
376
41.3k
    real_t x[4];
377
41.3k
    (void)hyb;  /* TODO: remove parameter? */
378
379
1.33M
    for (i = 0; i < frame_len; i++)
380
1.29M
    {
381
1.29M
        input_re1[0] =  MUL_F(filter[6],QMF_RE(buffer[6+i]));
382
1.29M
        input_re1[1] =  MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
383
1.29M
        input_re1[2] = -MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i]))) + MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
384
1.29M
        input_re1[3] = -MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i]))) + MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
385
386
1.29M
        input_im1[0] = MUL_F(filter[5],(QMF_IM(buffer[7+i]) - QMF_IM(buffer[5+i])));
387
1.29M
        input_im1[1] = MUL_F(filter[0],(QMF_IM(buffer[12+i]) - QMF_IM(buffer[0+i]))) + MUL_F(filter[4],(QMF_IM(buffer[8+i]) - QMF_IM(buffer[4+i])));
388
1.29M
        input_im1[2] = MUL_F(filter[1],(QMF_IM(buffer[11+i]) - QMF_IM(buffer[1+i]))) + MUL_F(filter[3],(QMF_IM(buffer[9+i]) - QMF_IM(buffer[3+i])));
389
1.29M
        input_im1[3] = MUL_F(filter[2],(QMF_IM(buffer[10+i]) - QMF_IM(buffer[2+i])));
390
391
6.45M
        for (n = 0; n < 4; n++)
392
5.16M
        {
393
5.16M
            x[n] = input_re1[n] - input_im1[3-n];
394
5.16M
        }
395
1.29M
        DCT3_4_unscaled(x, x);
396
1.29M
        QMF_RE(X_hybrid[i][7]) = x[0];
397
1.29M
        QMF_RE(X_hybrid[i][5]) = x[2];
398
1.29M
        QMF_RE(X_hybrid[i][3]) = x[3];
399
1.29M
        QMF_RE(X_hybrid[i][1]) = x[1];
400
401
6.45M
        for (n = 0; n < 4; n++)
402
5.16M
        {
403
5.16M
            x[n] = input_re1[n] + input_im1[3-n];
404
5.16M
        }
405
1.29M
        DCT3_4_unscaled(x, x);
406
1.29M
        QMF_RE(X_hybrid[i][6]) = x[1];
407
1.29M
        QMF_RE(X_hybrid[i][4]) = x[3];
408
1.29M
        QMF_RE(X_hybrid[i][2]) = x[2];
409
1.29M
        QMF_RE(X_hybrid[i][0]) = x[0];
410
411
1.29M
        input_im2[0] =  MUL_F(filter[6],QMF_IM(buffer[6+i]));
412
1.29M
        input_im2[1] =  MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
413
1.29M
        input_im2[2] = -MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i]))) + MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
414
1.29M
        input_im2[3] = -MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i]))) + MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
415
416
1.29M
        input_re2[0] = MUL_F(filter[5],(QMF_RE(buffer[7+i]) - QMF_RE(buffer[5+i])));
417
1.29M
        input_re2[1] = MUL_F(filter[0],(QMF_RE(buffer[12+i]) - QMF_RE(buffer[0+i]))) + MUL_F(filter[4],(QMF_RE(buffer[8+i]) - QMF_RE(buffer[4+i])));
418
1.29M
        input_re2[2] = MUL_F(filter[1],(QMF_RE(buffer[11+i]) - QMF_RE(buffer[1+i]))) + MUL_F(filter[3],(QMF_RE(buffer[9+i]) - QMF_RE(buffer[3+i])));
419
1.29M
        input_re2[3] = MUL_F(filter[2],(QMF_RE(buffer[10+i]) - QMF_RE(buffer[2+i])));
420
421
6.45M
        for (n = 0; n < 4; n++)
422
5.16M
        {
423
5.16M
            x[n] = input_im2[n] + input_re2[3-n];
424
5.16M
        }
425
1.29M
        DCT3_4_unscaled(x, x);
426
1.29M
        QMF_IM(X_hybrid[i][7]) = x[0];
427
1.29M
        QMF_IM(X_hybrid[i][5]) = x[2];
428
1.29M
        QMF_IM(X_hybrid[i][3]) = x[3];
429
1.29M
        QMF_IM(X_hybrid[i][1]) = x[1];
430
431
6.45M
        for (n = 0; n < 4; n++)
432
5.16M
        {
433
5.16M
            x[n] = input_im2[n] - input_re2[3-n];
434
5.16M
        }
435
1.29M
        DCT3_4_unscaled(x, x);
436
1.29M
        QMF_IM(X_hybrid[i][6]) = x[1];
437
1.29M
        QMF_IM(X_hybrid[i][4]) = x[3];
438
1.29M
        QMF_IM(X_hybrid[i][2]) = x[2];
439
1.29M
        QMF_IM(X_hybrid[i][0]) = x[0];
440
1.29M
    }
441
41.3k
}
ps_dec.c:channel_filter8
Line
Count
Source
373
20.6k
{
374
20.6k
    uint8_t i, n;
375
20.6k
    real_t input_re1[4], input_re2[4], input_im1[4], input_im2[4];
376
20.6k
    real_t x[4];
377
20.6k
    (void)hyb;  /* TODO: remove parameter? */
378
379
666k
    for (i = 0; i < frame_len; i++)
380
645k
    {
381
645k
        input_re1[0] =  MUL_F(filter[6],QMF_RE(buffer[6+i]));
382
645k
        input_re1[1] =  MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
383
645k
        input_re1[2] = -MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i]))) + MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
384
645k
        input_re1[3] = -MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i]))) + MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
385
386
645k
        input_im1[0] = MUL_F(filter[5],(QMF_IM(buffer[7+i]) - QMF_IM(buffer[5+i])));
387
645k
        input_im1[1] = MUL_F(filter[0],(QMF_IM(buffer[12+i]) - QMF_IM(buffer[0+i]))) + MUL_F(filter[4],(QMF_IM(buffer[8+i]) - QMF_IM(buffer[4+i])));
388
645k
        input_im1[2] = MUL_F(filter[1],(QMF_IM(buffer[11+i]) - QMF_IM(buffer[1+i]))) + MUL_F(filter[3],(QMF_IM(buffer[9+i]) - QMF_IM(buffer[3+i])));
389
645k
        input_im1[3] = MUL_F(filter[2],(QMF_IM(buffer[10+i]) - QMF_IM(buffer[2+i])));
390
391
3.22M
        for (n = 0; n < 4; n++)
392
2.58M
        {
393
2.58M
            x[n] = input_re1[n] - input_im1[3-n];
394
2.58M
        }
395
645k
        DCT3_4_unscaled(x, x);
396
645k
        QMF_RE(X_hybrid[i][7]) = x[0];
397
645k
        QMF_RE(X_hybrid[i][5]) = x[2];
398
645k
        QMF_RE(X_hybrid[i][3]) = x[3];
399
645k
        QMF_RE(X_hybrid[i][1]) = x[1];
400
401
3.22M
        for (n = 0; n < 4; n++)
402
2.58M
        {
403
2.58M
            x[n] = input_re1[n] + input_im1[3-n];
404
2.58M
        }
405
645k
        DCT3_4_unscaled(x, x);
406
645k
        QMF_RE(X_hybrid[i][6]) = x[1];
407
645k
        QMF_RE(X_hybrid[i][4]) = x[3];
408
645k
        QMF_RE(X_hybrid[i][2]) = x[2];
409
645k
        QMF_RE(X_hybrid[i][0]) = x[0];
410
411
645k
        input_im2[0] =  MUL_F(filter[6],QMF_IM(buffer[6+i]));
412
645k
        input_im2[1] =  MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
413
645k
        input_im2[2] = -MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i]))) + MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
414
645k
        input_im2[3] = -MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i]))) + MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
415
416
645k
        input_re2[0] = MUL_F(filter[5],(QMF_RE(buffer[7+i]) - QMF_RE(buffer[5+i])));
417
645k
        input_re2[1] = MUL_F(filter[0],(QMF_RE(buffer[12+i]) - QMF_RE(buffer[0+i]))) + MUL_F(filter[4],(QMF_RE(buffer[8+i]) - QMF_RE(buffer[4+i])));
418
645k
        input_re2[2] = MUL_F(filter[1],(QMF_RE(buffer[11+i]) - QMF_RE(buffer[1+i]))) + MUL_F(filter[3],(QMF_RE(buffer[9+i]) - QMF_RE(buffer[3+i])));
419
645k
        input_re2[3] = MUL_F(filter[2],(QMF_RE(buffer[10+i]) - QMF_RE(buffer[2+i])));
420
421
3.22M
        for (n = 0; n < 4; n++)
422
2.58M
        {
423
2.58M
            x[n] = input_im2[n] + input_re2[3-n];
424
2.58M
        }
425
645k
        DCT3_4_unscaled(x, x);
426
645k
        QMF_IM(X_hybrid[i][7]) = x[0];
427
645k
        QMF_IM(X_hybrid[i][5]) = x[2];
428
645k
        QMF_IM(X_hybrid[i][3]) = x[3];
429
645k
        QMF_IM(X_hybrid[i][1]) = x[1];
430
431
3.22M
        for (n = 0; n < 4; n++)
432
2.58M
        {
433
2.58M
            x[n] = input_im2[n] - input_re2[3-n];
434
2.58M
        }
435
645k
        DCT3_4_unscaled(x, x);
436
645k
        QMF_IM(X_hybrid[i][6]) = x[1];
437
645k
        QMF_IM(X_hybrid[i][4]) = x[3];
438
645k
        QMF_IM(X_hybrid[i][2]) = x[2];
439
645k
        QMF_IM(X_hybrid[i][0]) = x[0];
440
645k
    }
441
20.6k
}
ps_dec.c:channel_filter8
Line
Count
Source
373
20.6k
{
374
20.6k
    uint8_t i, n;
375
20.6k
    real_t input_re1[4], input_re2[4], input_im1[4], input_im2[4];
376
20.6k
    real_t x[4];
377
20.6k
    (void)hyb;  /* TODO: remove parameter? */
378
379
666k
    for (i = 0; i < frame_len; i++)
380
645k
    {
381
645k
        input_re1[0] =  MUL_F(filter[6],QMF_RE(buffer[6+i]));
382
645k
        input_re1[1] =  MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
383
645k
        input_re1[2] = -MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i]))) + MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
384
645k
        input_re1[3] = -MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i]))) + MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
385
386
645k
        input_im1[0] = MUL_F(filter[5],(QMF_IM(buffer[7+i]) - QMF_IM(buffer[5+i])));
387
645k
        input_im1[1] = MUL_F(filter[0],(QMF_IM(buffer[12+i]) - QMF_IM(buffer[0+i]))) + MUL_F(filter[4],(QMF_IM(buffer[8+i]) - QMF_IM(buffer[4+i])));
388
645k
        input_im1[2] = MUL_F(filter[1],(QMF_IM(buffer[11+i]) - QMF_IM(buffer[1+i]))) + MUL_F(filter[3],(QMF_IM(buffer[9+i]) - QMF_IM(buffer[3+i])));
389
645k
        input_im1[3] = MUL_F(filter[2],(QMF_IM(buffer[10+i]) - QMF_IM(buffer[2+i])));
390
391
3.22M
        for (n = 0; n < 4; n++)
392
2.58M
        {
393
2.58M
            x[n] = input_re1[n] - input_im1[3-n];
394
2.58M
        }
395
645k
        DCT3_4_unscaled(x, x);
396
645k
        QMF_RE(X_hybrid[i][7]) = x[0];
397
645k
        QMF_RE(X_hybrid[i][5]) = x[2];
398
645k
        QMF_RE(X_hybrid[i][3]) = x[3];
399
645k
        QMF_RE(X_hybrid[i][1]) = x[1];
400
401
3.22M
        for (n = 0; n < 4; n++)
402
2.58M
        {
403
2.58M
            x[n] = input_re1[n] + input_im1[3-n];
404
2.58M
        }
405
645k
        DCT3_4_unscaled(x, x);
406
645k
        QMF_RE(X_hybrid[i][6]) = x[1];
407
645k
        QMF_RE(X_hybrid[i][4]) = x[3];
408
645k
        QMF_RE(X_hybrid[i][2]) = x[2];
409
645k
        QMF_RE(X_hybrid[i][0]) = x[0];
410
411
645k
        input_im2[0] =  MUL_F(filter[6],QMF_IM(buffer[6+i]));
412
645k
        input_im2[1] =  MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
413
645k
        input_im2[2] = -MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i]))) + MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
414
645k
        input_im2[3] = -MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i]))) + MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
415
416
645k
        input_re2[0] = MUL_F(filter[5],(QMF_RE(buffer[7+i]) - QMF_RE(buffer[5+i])));
417
645k
        input_re2[1] = MUL_F(filter[0],(QMF_RE(buffer[12+i]) - QMF_RE(buffer[0+i]))) + MUL_F(filter[4],(QMF_RE(buffer[8+i]) - QMF_RE(buffer[4+i])));
418
645k
        input_re2[2] = MUL_F(filter[1],(QMF_RE(buffer[11+i]) - QMF_RE(buffer[1+i]))) + MUL_F(filter[3],(QMF_RE(buffer[9+i]) - QMF_RE(buffer[3+i])));
419
645k
        input_re2[3] = MUL_F(filter[2],(QMF_RE(buffer[10+i]) - QMF_RE(buffer[2+i])));
420
421
3.22M
        for (n = 0; n < 4; n++)
422
2.58M
        {
423
2.58M
            x[n] = input_im2[n] + input_re2[3-n];
424
2.58M
        }
425
645k
        DCT3_4_unscaled(x, x);
426
645k
        QMF_IM(X_hybrid[i][7]) = x[0];
427
645k
        QMF_IM(X_hybrid[i][5]) = x[2];
428
645k
        QMF_IM(X_hybrid[i][3]) = x[3];
429
645k
        QMF_IM(X_hybrid[i][1]) = x[1];
430
431
3.22M
        for (n = 0; n < 4; n++)
432
2.58M
        {
433
2.58M
            x[n] = input_im2[n] - input_re2[3-n];
434
2.58M
        }
435
645k
        DCT3_4_unscaled(x, x);
436
645k
        QMF_IM(X_hybrid[i][6]) = x[1];
437
645k
        QMF_IM(X_hybrid[i][4]) = x[3];
438
645k
        QMF_IM(X_hybrid[i][2]) = x[2];
439
645k
        QMF_IM(X_hybrid[i][0]) = x[0];
440
645k
    }
441
20.6k
}
442
443
static void INLINE DCT3_6_unscaled(real_t *y, real_t *x)
444
987k
{
445
987k
    real_t f0, f1, f2, f3, f4, f5, f6, f7;
446
447
987k
    f0 = MUL_F(x[3], FRAC_CONST(0.70710678118655));
448
987k
    f1 = x[0] + f0;
449
987k
    f2 = x[0] - f0;
450
987k
    f3 = MUL_F((x[1] - x[5]), FRAC_CONST(0.70710678118655));
451
987k
    f4 = MUL_F(x[2], FRAC_CONST(0.86602540378444)) + MUL_F(x[4], FRAC_CONST(0.5));
452
987k
    f5 = f4 - x[4];
453
987k
    f6 = MUL_F(x[1], FRAC_CONST(0.96592582628907)) + MUL_F(x[5], FRAC_CONST(0.25881904510252));
454
987k
    f7 = f6 - f3;
455
987k
    y[0] = f1 + f6 + f4;
456
987k
    y[1] = f2 + f3 - x[4];
457
987k
    y[2] = f7 + f2 - f5;
458
987k
    y[3] = f1 - f7 - f5;
459
987k
    y[4] = f1 - f3 - x[4];
460
987k
    y[5] = f2 - f6 + f4;
461
987k
}
ps_dec.c:DCT3_6_unscaled
Line
Count
Source
444
464k
{
445
464k
    real_t f0, f1, f2, f3, f4, f5, f6, f7;
446
447
464k
    f0 = MUL_F(x[3], FRAC_CONST(0.70710678118655));
448
464k
    f1 = x[0] + f0;
449
464k
    f2 = x[0] - f0;
450
464k
    f3 = MUL_F((x[1] - x[5]), FRAC_CONST(0.70710678118655));
451
464k
    f4 = MUL_F(x[2], FRAC_CONST(0.86602540378444)) + MUL_F(x[4], FRAC_CONST(0.5));
452
464k
    f5 = f4 - x[4];
453
464k
    f6 = MUL_F(x[1], FRAC_CONST(0.96592582628907)) + MUL_F(x[5], FRAC_CONST(0.25881904510252));
454
464k
    f7 = f6 - f3;
455
464k
    y[0] = f1 + f6 + f4;
456
464k
    y[1] = f2 + f3 - x[4];
457
464k
    y[2] = f7 + f2 - f5;
458
464k
    y[3] = f1 - f7 - f5;
459
464k
    y[4] = f1 - f3 - x[4];
460
464k
    y[5] = f2 - f6 + f4;
461
464k
}
ps_dec.c:DCT3_6_unscaled
Line
Count
Source
444
523k
{
445
523k
    real_t f0, f1, f2, f3, f4, f5, f6, f7;
446
447
523k
    f0 = MUL_F(x[3], FRAC_CONST(0.70710678118655));
448
523k
    f1 = x[0] + f0;
449
523k
    f2 = x[0] - f0;
450
523k
    f3 = MUL_F((x[1] - x[5]), FRAC_CONST(0.70710678118655));
451
523k
    f4 = MUL_F(x[2], FRAC_CONST(0.86602540378444)) + MUL_F(x[4], FRAC_CONST(0.5));
452
523k
    f5 = f4 - x[4];
453
523k
    f6 = MUL_F(x[1], FRAC_CONST(0.96592582628907)) + MUL_F(x[5], FRAC_CONST(0.25881904510252));
454
523k
    f7 = f6 - f3;
455
523k
    y[0] = f1 + f6 + f4;
456
523k
    y[1] = f2 + f3 - x[4];
457
523k
    y[2] = f7 + f2 - f5;
458
523k
    y[3] = f1 - f7 - f5;
459
523k
    y[4] = f1 - f3 - x[4];
460
523k
    y[5] = f2 - f6 + f4;
461
523k
}
462
463
/* complex filter, size 12 */
464
static void channel_filter12(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
465
                             qmf_t *buffer, qmf_t **X_hybrid)
466
16.0k
{
467
16.0k
    uint8_t i, n;
468
16.0k
    real_t input_re1[6], input_re2[6], input_im1[6], input_im2[6];
469
16.0k
    real_t out_re1[6], out_re2[6], out_im1[6], out_im2[6];
470
16.0k
    (void)hyb;  /* TODO: remove parameter? */
471
472
510k
    for (i = 0; i < frame_len; i++)
473
493k
    {
474
3.45M
        for (n = 0; n < 6; n++)
475
2.96M
        {
476
2.96M
            if (n == 0)
477
493k
            {
478
493k
                input_re1[0] = MUL_F(QMF_RE(buffer[6+i]), filter[6]);
479
493k
                input_re2[0] = MUL_F(QMF_IM(buffer[6+i]), filter[6]);
480
2.46M
            } else {
481
2.46M
                input_re1[6-n] = MUL_F((QMF_RE(buffer[n+i]) + QMF_RE(buffer[12-n+i])), filter[n]);
482
2.46M
                input_re2[6-n] = MUL_F((QMF_IM(buffer[n+i]) + QMF_IM(buffer[12-n+i])), filter[n]);
483
2.46M
            }
484
2.96M
            input_im2[n] = MUL_F((QMF_RE(buffer[n+i]) - QMF_RE(buffer[12-n+i])), filter[n]);
485
2.96M
            input_im1[n] = MUL_F((QMF_IM(buffer[n+i]) - QMF_IM(buffer[12-n+i])), filter[n]);
486
2.96M
        }
487
488
493k
        DCT3_6_unscaled(out_re1, input_re1);
489
493k
        DCT3_6_unscaled(out_re2, input_re2);
490
491
493k
        DCT3_6_unscaled(out_im1, input_im1);
492
493k
        DCT3_6_unscaled(out_im2, input_im2);
493
494
1.97M
        for (n = 0; n < 6; n += 2)
495
1.48M
        {
496
1.48M
            QMF_RE(X_hybrid[i][n]) = out_re1[n] - out_im1[n];
497
1.48M
            QMF_IM(X_hybrid[i][n]) = out_re2[n] + out_im2[n];
498
1.48M
            QMF_RE(X_hybrid[i][n+1]) = out_re1[n+1] + out_im1[n+1];
499
1.48M
            QMF_IM(X_hybrid[i][n+1]) = out_re2[n+1] - out_im2[n+1];
500
501
1.48M
            QMF_RE(X_hybrid[i][10-n]) = out_re1[n+1] - out_im1[n+1];
502
1.48M
            QMF_IM(X_hybrid[i][10-n]) = out_re2[n+1] + out_im2[n+1];
503
1.48M
            QMF_RE(X_hybrid[i][11-n]) = out_re1[n] + out_im1[n];
504
1.48M
            QMF_IM(X_hybrid[i][11-n]) = out_re2[n] - out_im2[n];
505
1.48M
        }
506
493k
    }
507
16.0k
}
ps_dec.c:channel_filter12
Line
Count
Source
466
8.04k
{
467
8.04k
    uint8_t i, n;
468
8.04k
    real_t input_re1[6], input_re2[6], input_im1[6], input_im2[6];
469
8.04k
    real_t out_re1[6], out_re2[6], out_im1[6], out_im2[6];
470
8.04k
    (void)hyb;  /* TODO: remove parameter? */
471
472
255k
    for (i = 0; i < frame_len; i++)
473
246k
    {
474
1.72M
        for (n = 0; n < 6; n++)
475
1.48M
        {
476
1.48M
            if (n == 0)
477
246k
            {
478
246k
                input_re1[0] = MUL_F(QMF_RE(buffer[6+i]), filter[6]);
479
246k
                input_re2[0] = MUL_F(QMF_IM(buffer[6+i]), filter[6]);
480
1.23M
            } else {
481
1.23M
                input_re1[6-n] = MUL_F((QMF_RE(buffer[n+i]) + QMF_RE(buffer[12-n+i])), filter[n]);
482
1.23M
                input_re2[6-n] = MUL_F((QMF_IM(buffer[n+i]) + QMF_IM(buffer[12-n+i])), filter[n]);
483
1.23M
            }
484
1.48M
            input_im2[n] = MUL_F((QMF_RE(buffer[n+i]) - QMF_RE(buffer[12-n+i])), filter[n]);
485
1.48M
            input_im1[n] = MUL_F((QMF_IM(buffer[n+i]) - QMF_IM(buffer[12-n+i])), filter[n]);
486
1.48M
        }
487
488
246k
        DCT3_6_unscaled(out_re1, input_re1);
489
246k
        DCT3_6_unscaled(out_re2, input_re2);
490
491
246k
        DCT3_6_unscaled(out_im1, input_im1);
492
246k
        DCT3_6_unscaled(out_im2, input_im2);
493
494
987k
        for (n = 0; n < 6; n += 2)
495
740k
        {
496
740k
            QMF_RE(X_hybrid[i][n]) = out_re1[n] - out_im1[n];
497
740k
            QMF_IM(X_hybrid[i][n]) = out_re2[n] + out_im2[n];
498
740k
            QMF_RE(X_hybrid[i][n+1]) = out_re1[n+1] + out_im1[n+1];
499
740k
            QMF_IM(X_hybrid[i][n+1]) = out_re2[n+1] - out_im2[n+1];
500
501
740k
            QMF_RE(X_hybrid[i][10-n]) = out_re1[n+1] - out_im1[n+1];
502
740k
            QMF_IM(X_hybrid[i][10-n]) = out_re2[n+1] + out_im2[n+1];
503
740k
            QMF_RE(X_hybrid[i][11-n]) = out_re1[n] + out_im1[n];
504
740k
            QMF_IM(X_hybrid[i][11-n]) = out_re2[n] - out_im2[n];
505
740k
        }
506
246k
    }
507
8.04k
}
ps_dec.c:channel_filter12
Line
Count
Source
466
8.04k
{
467
8.04k
    uint8_t i, n;
468
8.04k
    real_t input_re1[6], input_re2[6], input_im1[6], input_im2[6];
469
8.04k
    real_t out_re1[6], out_re2[6], out_im1[6], out_im2[6];
470
8.04k
    (void)hyb;  /* TODO: remove parameter? */
471
472
255k
    for (i = 0; i < frame_len; i++)
473
246k
    {
474
1.72M
        for (n = 0; n < 6; n++)
475
1.48M
        {
476
1.48M
            if (n == 0)
477
246k
            {
478
246k
                input_re1[0] = MUL_F(QMF_RE(buffer[6+i]), filter[6]);
479
246k
                input_re2[0] = MUL_F(QMF_IM(buffer[6+i]), filter[6]);
480
1.23M
            } else {
481
1.23M
                input_re1[6-n] = MUL_F((QMF_RE(buffer[n+i]) + QMF_RE(buffer[12-n+i])), filter[n]);
482
1.23M
                input_re2[6-n] = MUL_F((QMF_IM(buffer[n+i]) + QMF_IM(buffer[12-n+i])), filter[n]);
483
1.23M
            }
484
1.48M
            input_im2[n] = MUL_F((QMF_RE(buffer[n+i]) - QMF_RE(buffer[12-n+i])), filter[n]);
485
1.48M
            input_im1[n] = MUL_F((QMF_IM(buffer[n+i]) - QMF_IM(buffer[12-n+i])), filter[n]);
486
1.48M
        }
487
488
246k
        DCT3_6_unscaled(out_re1, input_re1);
489
246k
        DCT3_6_unscaled(out_re2, input_re2);
490
491
246k
        DCT3_6_unscaled(out_im1, input_im1);
492
246k
        DCT3_6_unscaled(out_im2, input_im2);
493
494
987k
        for (n = 0; n < 6; n += 2)
495
740k
        {
496
740k
            QMF_RE(X_hybrid[i][n]) = out_re1[n] - out_im1[n];
497
740k
            QMF_IM(X_hybrid[i][n]) = out_re2[n] + out_im2[n];
498
740k
            QMF_RE(X_hybrid[i][n+1]) = out_re1[n+1] + out_im1[n+1];
499
740k
            QMF_IM(X_hybrid[i][n+1]) = out_re2[n+1] - out_im2[n+1];
500
501
740k
            QMF_RE(X_hybrid[i][10-n]) = out_re1[n+1] - out_im1[n+1];
502
740k
            QMF_IM(X_hybrid[i][10-n]) = out_re2[n+1] + out_im2[n+1];
503
740k
            QMF_RE(X_hybrid[i][11-n]) = out_re1[n] + out_im1[n];
504
740k
            QMF_IM(X_hybrid[i][11-n]) = out_re2[n] - out_im2[n];
505
740k
        }
506
246k
    }
507
8.04k
}
508
509
/* Hybrid analysis: further split up QMF subbands
510
 * to improve frequency resolution
511
 */
512
static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
513
                            uint8_t use34, uint8_t numTimeSlotsRate)
514
20.6k
{
515
20.6k
    uint8_t k, n, band;
516
20.6k
    uint8_t offset = 0;
517
20.6k
    uint8_t qmf_bands = (use34) ? 5 : 3;
518
20.6k
    uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
519
520
98.8k
    for (band = 0; band < qmf_bands; band++)
521
78.1k
    {
522
        /* build working buffer */
523
78.1k
        memcpy(hyb->work, hyb->buffer[band], 12 * sizeof(qmf_t));
524
525
        /* add new samples */
526
2.50M
        for (n = 0; n < hyb->frame_len; n++)
527
2.43M
        {
528
2.43M
            QMF_RE(hyb->work[12 + n]) = QMF_RE(X[n + 6 /*delay*/][band]);
529
2.43M
            QMF_IM(hyb->work[12 + n]) = QMF_IM(X[n + 6 /*delay*/][band]);
530
2.43M
        }
531
532
        /* store samples */
533
78.1k
        memcpy(hyb->buffer[band], hyb->work + hyb->frame_len, 12 * sizeof(qmf_t));
534
535
536
78.1k
        switch(resolution[band])
537
78.1k
        {
538
25.2k
        case 2:
539
            /* Type B real filter, Q[p] = 2 */
540
25.2k
            channel_filter2(hyb, hyb->frame_len, p2_13_20, hyb->work, hyb->temp);
541
25.2k
            break;
542
24.1k
        case 4:
543
            /* Type A complex filter, Q[p] = 4 */
544
24.1k
            channel_filter4(hyb, hyb->frame_len, p4_13_34, hyb->work, hyb->temp);
545
24.1k
            break;
546
20.6k
        case 8:
547
            /* Type A complex filter, Q[p] = 8 */
548
20.6k
            channel_filter8(hyb, hyb->frame_len, (use34) ? p8_13_34 : p8_13_20,
549
20.6k
                hyb->work, hyb->temp);
550
20.6k
            break;
551
8.04k
        case 12:
552
            /* Type A complex filter, Q[p] = 12 */
553
8.04k
            channel_filter12(hyb, hyb->frame_len, p12_13_34, hyb->work, hyb->temp);
554
8.04k
            break;
555
78.1k
        }
556
557
2.50M
        for (n = 0; n < hyb->frame_len; n++)
558
2.43M
        {
559
15.1M
            for (k = 0; k < resolution[band]; k++)
560
12.6M
            {
561
12.6M
                QMF_RE(X_hybrid[n][offset + k]) = QMF_RE(hyb->temp[n][k]);
562
12.6M
                QMF_IM(X_hybrid[n][offset + k]) = QMF_IM(hyb->temp[n][k]);
563
12.6M
            }
564
2.43M
        }
565
78.1k
        offset += resolution[band];
566
78.1k
    }
567
568
    /* group hybrid channels */
569
20.6k
    if (!use34)
570
12.6k
    {
571
411k
        for (n = 0; n < numTimeSlotsRate; n++)
572
398k
        {
573
398k
            QMF_RE(X_hybrid[n][3]) += QMF_RE(X_hybrid[n][4]);
574
398k
            QMF_IM(X_hybrid[n][3]) += QMF_IM(X_hybrid[n][4]);
575
398k
            QMF_RE(X_hybrid[n][4]) = 0;
576
398k
            QMF_IM(X_hybrid[n][4]) = 0;
577
578
398k
            QMF_RE(X_hybrid[n][2]) += QMF_RE(X_hybrid[n][5]);
579
398k
            QMF_IM(X_hybrid[n][2]) += QMF_IM(X_hybrid[n][5]);
580
398k
            QMF_RE(X_hybrid[n][5]) = 0;
581
398k
            QMF_IM(X_hybrid[n][5]) = 0;
582
398k
        }
583
12.6k
    }
584
20.6k
}
585
586
static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
587
                             uint8_t use34, uint8_t numTimeSlotsRate)
588
41.3k
{
589
41.3k
    uint8_t k, n, band;
590
41.3k
    uint8_t offset = 0;
591
41.3k
    uint8_t qmf_bands = (use34) ? 5 : 3;
592
41.3k
    uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
593
41.3k
    (void)numTimeSlotsRate;  /* TODO: remove parameter? */
594
595
197k
    for(band = 0; band < qmf_bands; band++)
596
156k
    {
597
5.01M
        for (n = 0; n < hyb->frame_len; n++)
598
4.86M
        {
599
4.86M
            QMF_RE(X[n][band]) = 0;
600
4.86M
            QMF_IM(X[n][band]) = 0;
601
602
30.2M
            for (k = 0; k < resolution[band]; k++)
603
25.3M
            {
604
25.3M
                QMF_RE(X[n][band]) += QMF_RE(X_hybrid[n][offset + k]);
605
25.3M
                QMF_IM(X[n][band]) += QMF_IM(X_hybrid[n][offset + k]);
606
25.3M
            }
607
4.86M
        }
608
156k
        offset += resolution[band];
609
156k
    }
610
41.3k
}
611
612
/* limits the value i to the range [min,max] */
613
static int8_t delta_clip(int8_t i, int8_t min, int8_t max)
614
468k
{
615
468k
    if (i < min)
616
62.4k
        return min;
617
406k
    else if (i > max)
618
10.8k
        return max;
619
395k
    else
620
395k
        return i;
621
468k
}
622
623
//int iid = 0;
624
625
/* delta decode array */
626
static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
627
                         uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
628
                         int8_t min_index, int8_t max_index)
629
69.2k
{
630
69.2k
    int8_t i;
631
632
69.2k
    if (enable == 1)
633
36.2k
    {
634
36.2k
        if (dt_flag == 0)
635
21.9k
        {
636
            /* delta coded in frequency direction */
637
21.9k
            index[0] = 0 + index[0];
638
21.9k
            index[0] = delta_clip(index[0], min_index, max_index);
639
640
292k
            for (i = 1; i < nr_par; i++)
641
270k
            {
642
270k
                index[i] = index[i-1] + index[i];
643
270k
                index[i] = delta_clip(index[i], min_index, max_index);
644
270k
            }
645
21.9k
        } else {
646
            /* delta coded in time direction */
647
190k
            for (i = 0; i < nr_par; i++)
648
176k
            {
649
                //int8_t tmp2;
650
                //int8_t tmp = index[i];
651
652
                //printf("%d %d\n", index_prev[i*stride], index[i]);
653
                //printf("%d\n", index[i]);
654
655
176k
                index[i] = index_prev[i*stride] + index[i];
656
                //tmp2 = index[i];
657
176k
                index[i] = delta_clip(index[i], min_index, max_index);
658
659
                //if (iid)
660
                //{
661
                //    if (index[i] == 7)
662
                //    {
663
                //        printf("%d %d %d\n", index_prev[i*stride], tmp, tmp2);
664
                //    }
665
                //}
666
176k
            }
667
14.3k
        }
668
36.2k
    } else {
669
        /* set indices to zero */
670
59.7k
        for (i = 0; i < nr_par; i++)
671
26.7k
        {
672
26.7k
            index[i] = 0;
673
26.7k
        }
674
33.0k
    }
675
676
    /* coarse */
677
69.2k
    if (stride == 2)
678
45.0k
    {
679
301k
        for (i = (nr_par<<1)-1; i > 0; i--)
680
256k
        {
681
256k
            index[i] = index[i>>1];
682
256k
        }
683
45.0k
    }
684
69.2k
}
685
686
/* delta modulo decode array */
687
/* in: log2 value of the modulo value to allow using AND instead of MOD */
688
static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
689
                                uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
690
                                int8_t and_modulo)
691
69.2k
{
692
69.2k
    int8_t i;
693
694
69.2k
    if (enable == 1)
695
22.4k
    {
696
22.4k
        if (dt_flag == 0)
697
14.3k
        {
698
            /* delta coded in frequency direction */
699
14.3k
            index[0] = 0 + index[0];
700
14.3k
            index[0] &= and_modulo;
701
702
55.2k
            for (i = 1; i < nr_par; i++)
703
40.8k
            {
704
40.8k
                index[i] = index[i-1] + index[i];
705
40.8k
                index[i] &= and_modulo;
706
40.8k
            }
707
14.3k
        } else {
708
            /* delta coded in time direction */
709
26.3k
            for (i = 0; i < nr_par; i++)
710
18.2k
            {
711
18.2k
                index[i] = index_prev[i*stride] + index[i];
712
18.2k
                index[i] &= and_modulo;
713
18.2k
            }
714
8.08k
        }
715
46.8k
    } else {
716
        /* set indices to zero */
717
172k
        for (i = 0; i < nr_par; i++)
718
125k
        {
719
125k
            index[i] = 0;
720
125k
        }
721
46.8k
    }
722
723
    /* coarse */
724
69.2k
    if (stride == 2)
725
0
    {
726
0
        index[0] = 0;
727
0
        for (i = (nr_par<<1)-1; i > 0; i--)
728
0
        {
729
0
            index[i] = index[i>>1];
730
0
        }
731
0
    }
732
69.2k
}
733
734
#ifdef PS_LOW_POWER
735
static void map34indexto20(int8_t *index, uint8_t bins)
736
{
737
    index[0] = (2*index[0]+index[1])/3;
738
    index[1] = (index[1]+2*index[2])/3;
739
    index[2] = (2*index[3]+index[4])/3;
740
    index[3] = (index[4]+2*index[5])/3;
741
    index[4] = (index[6]+index[7])/2;
742
    index[5] = (index[8]+index[9])/2;
743
    index[6] = index[10];
744
    index[7] = index[11];
745
    index[8] = (index[12]+index[13])/2;
746
    index[9] = (index[14]+index[15])/2;
747
    index[10] = index[16];
748
749
    if (bins == 34)
750
    {
751
        index[11] = index[17];
752
        index[12] = index[18];
753
        index[13] = index[19];
754
        index[14] = (index[20]+index[21])/2;
755
        index[15] = (index[22]+index[23])/2;
756
        index[16] = (index[24]+index[25])/2;
757
        index[17] = (index[26]+index[27])/2;
758
        index[18] = (index[28]+index[29]+index[30]+index[31])/4;
759
        index[19] = (index[32]+index[33])/2;
760
    }
761
}
762
#endif
763
764
static void map20indexto34(int8_t *index, uint8_t bins)
765
30.6k
{
766
30.6k
    index[0] = index[0];
767
30.6k
    index[1] = (index[0] + index[1])/2;
768
30.6k
    index[2] = index[1];
769
30.6k
    index[3] = index[2];
770
30.6k
    index[4] = (index[2] + index[3])/2;
771
30.6k
    index[5] = index[3];
772
30.6k
    index[6] = index[4];
773
30.6k
    index[7] = index[4];
774
30.6k
    index[8] = index[5];
775
30.6k
    index[9] = index[5];
776
30.6k
    index[10] = index[6];
777
30.6k
    index[11] = index[7];
778
30.6k
    index[12] = index[8];
779
30.6k
    index[13] = index[8];
780
30.6k
    index[14] = index[9];
781
30.6k
    index[15] = index[9];
782
30.6k
    index[16] = index[10];
783
784
30.6k
    if (bins == 34)
785
13.6k
    {
786
13.6k
        index[17] = index[11];
787
13.6k
        index[18] = index[12];
788
13.6k
        index[19] = index[13];
789
13.6k
        index[20] = index[14];
790
13.6k
        index[21] = index[14];
791
13.6k
        index[22] = index[15];
792
13.6k
        index[23] = index[15];
793
13.6k
        index[24] = index[16];
794
13.6k
        index[25] = index[16];
795
13.6k
        index[26] = index[17];
796
13.6k
        index[27] = index[17];
797
13.6k
        index[28] = index[18];
798
13.6k
        index[29] = index[18];
799
13.6k
        index[30] = index[18];
800
13.6k
        index[31] = index[18];
801
13.6k
        index[32] = index[19];
802
13.6k
        index[33] = index[19];
803
13.6k
    }
804
30.6k
}
805
806
/* parse the bitstream data decoded in ps_data() */
807
static void ps_data_decode(ps_info *ps)
808
20.6k
{
809
20.6k
    uint8_t env, bin;
810
811
    /* ps data not available, use data from previous frame */
812
20.6k
    if (ps->ps_data_available == 0)
813
5.33k
    {
814
5.33k
        ps->num_env = 0;
815
5.33k
    }
816
817
55.3k
    for (env = 0; env < ps->num_env; env++)
818
34.6k
    {
819
34.6k
        int8_t *iid_index_prev;
820
34.6k
        int8_t *icc_index_prev;
821
34.6k
        int8_t *ipd_index_prev;
822
34.6k
        int8_t *opd_index_prev;
823
824
34.6k
        int8_t num_iid_steps = (ps->iid_mode < 3) ? 7 : 15 /*fine quant*/;
825
826
34.6k
        if (env == 0)
827
10.3k
        {
828
            /* take last envelope from previous frame */
829
10.3k
            iid_index_prev = ps->iid_index_prev;
830
10.3k
            icc_index_prev = ps->icc_index_prev;
831
10.3k
            ipd_index_prev = ps->ipd_index_prev;
832
10.3k
            opd_index_prev = ps->opd_index_prev;
833
24.3k
        } else {
834
            /* take index values from previous envelope */
835
24.3k
            iid_index_prev = ps->iid_index[env - 1];
836
24.3k
            icc_index_prev = ps->icc_index[env - 1];
837
24.3k
            ipd_index_prev = ps->ipd_index[env - 1];
838
24.3k
            opd_index_prev = ps->opd_index[env - 1];
839
24.3k
        }
840
841
//        iid = 1;
842
        /* delta decode iid parameters */
843
34.6k
        delta_decode(ps->enable_iid, ps->iid_index[env], iid_index_prev,
844
34.6k
            ps->iid_dt[env], ps->nr_iid_par,
845
34.6k
            (ps->iid_mode == 0 || ps->iid_mode == 3) ? 2 : 1,
846
34.6k
            -num_iid_steps, num_iid_steps);
847
//        iid = 0;
848
849
        /* delta decode icc parameters */
850
34.6k
        delta_decode(ps->enable_icc, ps->icc_index[env], icc_index_prev,
851
34.6k
            ps->icc_dt[env], ps->nr_icc_par,
852
34.6k
            (ps->icc_mode == 0 || ps->icc_mode == 3) ? 2 : 1,
853
34.6k
            0, 7);
854
855
        /* delta modulo decode ipd parameters */
856
34.6k
        delta_modulo_decode(ps->enable_ipdopd, ps->ipd_index[env], ipd_index_prev,
857
34.6k
            ps->ipd_dt[env], ps->nr_ipdopd_par, 1, 7);
858
859
        /* delta modulo decode opd parameters */
860
34.6k
        delta_modulo_decode(ps->enable_ipdopd, ps->opd_index[env], opd_index_prev,
861
34.6k
            ps->opd_dt[env], ps->nr_ipdopd_par, 1, 7);
862
34.6k
    }
863
864
    /* handle error case */
865
20.6k
    if (ps->num_env == 0)
866
10.3k
    {
867
        /* force to 1 */
868
10.3k
        ps->num_env = 1;
869
870
10.3k
        if (ps->enable_iid)
871
7.28k
        {
872
254k
            for (bin = 0; bin < 34; bin++)
873
247k
                ps->iid_index[0][bin] = ps->iid_index_prev[bin];
874
7.28k
        } else {
875
108k
            for (bin = 0; bin < 34; bin++)
876
105k
                ps->iid_index[0][bin] = 0;
877
3.09k
        }
878
879
10.3k
        if (ps->enable_icc)
880
4.96k
        {
881
173k
            for (bin = 0; bin < 34; bin++)
882
168k
                ps->icc_index[0][bin] = ps->icc_index_prev[bin];
883
5.40k
        } else {
884
189k
            for (bin = 0; bin < 34; bin++)
885
183k
                ps->icc_index[0][bin] = 0;
886
5.40k
        }
887
888
10.3k
        if (ps->enable_ipdopd)
889
1.04k
        {
890
18.8k
            for (bin = 0; bin < 17; bin++)
891
17.7k
            {
892
17.7k
                ps->ipd_index[0][bin] = ps->ipd_index_prev[bin];
893
17.7k
                ps->opd_index[0][bin] = ps->opd_index_prev[bin];
894
17.7k
            }
895
9.32k
        } else {
896
167k
            for (bin = 0; bin < 17; bin++)
897
158k
            {
898
158k
                ps->ipd_index[0][bin] = 0;
899
158k
                ps->opd_index[0][bin] = 0;
900
158k
            }
901
9.32k
        }
902
10.3k
    }
903
904
    /* update previous indices */
905
724k
    for (bin = 0; bin < 34; bin++)
906
703k
        ps->iid_index_prev[bin] = ps->iid_index[ps->num_env-1][bin];
907
724k
    for (bin = 0; bin < 34; bin++)
908
703k
        ps->icc_index_prev[bin] = ps->icc_index[ps->num_env-1][bin];
909
372k
    for (bin = 0; bin < 17; bin++)
910
351k
    {
911
351k
        ps->ipd_index_prev[bin] = ps->ipd_index[ps->num_env-1][bin];
912
351k
        ps->opd_index_prev[bin] = ps->opd_index[ps->num_env-1][bin];
913
351k
    }
914
915
20.6k
    ps->ps_data_available = 0;
916
917
20.6k
    if (ps->frame_class == 0)
918
12.7k
    {
919
12.7k
        ps->border_position[0] = 0;
920
21.9k
        for (env = 1; env < ps->num_env; env++)
921
9.20k
        {
922
9.20k
            ps->border_position[env] = (env * ps->numTimeSlotsRate) / ps->num_env;
923
9.20k
        }
924
12.7k
        ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
925
12.7k
    } else {
926
7.97k
        ps->border_position[0] = 0;
927
928
7.97k
        if (ps->border_position[ps->num_env] < ps->numTimeSlotsRate)
929
6.26k
        {
930
219k
            for (bin = 0; bin < 34; bin++)
931
212k
            {
932
212k
                ps->iid_index[ps->num_env][bin] = ps->iid_index[ps->num_env-1][bin];
933
212k
                ps->icc_index[ps->num_env][bin] = ps->icc_index[ps->num_env-1][bin];
934
212k
            }
935
112k
            for (bin = 0; bin < 17; bin++)
936
106k
            {
937
106k
                ps->ipd_index[ps->num_env][bin] = ps->ipd_index[ps->num_env-1][bin];
938
106k
                ps->opd_index[ps->num_env][bin] = ps->opd_index[ps->num_env-1][bin];
939
106k
            }
940
6.26k
            ps->num_env++;
941
6.26k
            ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
942
6.26k
        }
943
944
29.3k
        for (env = 1; env < ps->num_env; env++)
945
21.3k
        {
946
21.3k
            int8_t thr = ps->numTimeSlotsRate - (ps->num_env - env);
947
948
21.3k
            if (ps->border_position[env] > thr)
949
5.09k
            {
950
5.09k
                ps->border_position[env] = thr;
951
16.2k
            } else {
952
16.2k
                thr = ps->border_position[env-1]+1;
953
16.2k
                if (ps->border_position[env] < thr)
954
8.70k
                {
955
8.70k
                    ps->border_position[env] = thr;
956
8.70k
                }
957
16.2k
            }
958
21.3k
        }
959
7.97k
    }
960
961
    /* make sure that the indices of all parameters can be mapped
962
     * to the same hybrid synthesis filterbank
963
     */
964
#ifdef PS_LOW_POWER
965
    for (env = 0; env < ps->num_env; env++)
966
    {
967
        if (ps->iid_mode == 2 || ps->iid_mode == 5)
968
            map34indexto20(ps->iid_index[env], 34);
969
        if (ps->icc_mode == 2 || ps->icc_mode == 5)
970
            map34indexto20(ps->icc_index[env], 34);
971
972
        /* disable ipd/opd */
973
        for (bin = 0; bin < 17; bin++)
974
        {
975
            ps->aaIpdIndex[env][bin] = 0;
976
            ps->aaOpdIndex[env][bin] = 0;
977
        }
978
    }
979
#else
980
20.6k
    if (ps->use34hybrid_bands)
981
8.04k
    {
982
22.5k
        for (env = 0; env < ps->num_env; env++)
983
14.5k
        {
984
14.5k
            if (ps->iid_mode != 2 && ps->iid_mode != 5)
985
8.47k
                map20indexto34(ps->iid_index[env], 34);
986
14.5k
            if (ps->icc_mode != 2 && ps->icc_mode != 5)
987
5.16k
                map20indexto34(ps->icc_index[env], 34);
988
14.5k
            if (ps->ipd_mode != 2 && ps->ipd_mode != 5)
989
8.47k
            {
990
8.47k
                map20indexto34(ps->ipd_index[env], 17);
991
8.47k
                map20indexto34(ps->opd_index[env], 17);
992
8.47k
            }
993
14.5k
        }
994
8.04k
    }
995
20.6k
#endif
996
997
#if 0
998
    for (env = 0; env < ps->num_env; env++)
999
    {
1000
        printf("iid[env:%d]:", env);
1001
        for (bin = 0; bin < 34; bin++)
1002
        {
1003
            printf(" %d", ps->iid_index[env][bin]);
1004
        }
1005
        printf("\n");
1006
    }
1007
    for (env = 0; env < ps->num_env; env++)
1008
    {
1009
        printf("icc[env:%d]:", env);
1010
        for (bin = 0; bin < 34; bin++)
1011
        {
1012
            printf(" %d", ps->icc_index[env][bin]);
1013
        }
1014
        printf("\n");
1015
    }
1016
    for (env = 0; env < ps->num_env; env++)
1017
    {
1018
        printf("ipd[env:%d]:", env);
1019
        for (bin = 0; bin < 17; bin++)
1020
        {
1021
            printf(" %d", ps->ipd_index[env][bin]);
1022
        }
1023
        printf("\n");
1024
    }
1025
    for (env = 0; env < ps->num_env; env++)
1026
    {
1027
        printf("opd[env:%d]:", env);
1028
        for (bin = 0; bin < 17; bin++)
1029
        {
1030
            printf(" %d", ps->opd_index[env][bin]);
1031
        }
1032
        printf("\n");
1033
    }
1034
    printf("\n");
1035
#endif
1036
20.6k
}
1037
1038
/* decorrelate the mono signal using an allpass filter */
1039
static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
1040
                           qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
1041
20.6k
{
1042
20.6k
    uint8_t gr, n, bk;
1043
20.6k
    uint8_t temp_delay = 0;
1044
20.6k
    uint8_t sb, maxsb;
1045
20.6k
    const complex_t *Phi_Fract_SubQmf;
1046
20.6k
    uint8_t temp_delay_ser[NO_ALLPASS_LINKS];
1047
20.6k
    real_t P_SmoothPeakDecayDiffNrg, nrg;
1048
20.6k
    real_t P[32][34];
1049
20.6k
    real_t G_TransientRatio[32][34] = {{0}};
1050
20.6k
    complex_t inputLeft;
1051
1052
1053
    /* chose hybrid filterbank: 20 or 34 band case */
1054
20.6k
    if (ps->use34hybrid_bands)
1055
8.04k
    {
1056
8.04k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf34;
1057
12.6k
    } else{
1058
12.6k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf20;
1059
12.6k
    }
1060
1061
    /* clear the energy values */
1062
682k
    for (n = 0; n < 32; n++)
1063
662k
    {
1064
23.1M
        for (bk = 0; bk < 34; bk++)
1065
22.5M
        {
1066
22.5M
            P[n][bk] = 0;
1067
22.5M
        }
1068
662k
    }
1069
1070
    /* calculate the energy in each parameter band b(k) */
1071
701k
    for (gr = 0; gr < ps->num_groups; gr++)
1072
680k
    {
1073
        /* select the parameter index b(k) to which this group belongs */
1074
680k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1075
1076
        /* select the upper subband border for this group */
1077
680k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr]+1 : ps->group_border[gr+1];
1078
1079
2.31M
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1080
1.63M
        {
1081
52.4M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1082
50.8M
            {
1083
#ifdef FIXED_POINT
1084
                uint32_t in_re, in_im;
1085
#endif
1086
1087
                /* input from hybrid subbands or QMF subbands */
1088
50.8M
                if (gr < ps->num_hybrid_groups)
1089
11.9M
                {
1090
11.9M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1091
11.9M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1092
38.9M
                } else {
1093
38.9M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1094
38.9M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1095
38.9M
                }
1096
1097
                /* accumulate energy */
1098
#ifdef FIXED_POINT
1099
                /* NOTE: all input is scaled by 2^(-5) because of fixed point QMF
1100
                 * meaning that P will be scaled by 2^(-10) compared to floating point version
1101
                 */
1102
22.7M
                in_re = ((abs(RE(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1103
22.7M
                in_im = ((abs(IM(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1104
                P[n][bk] += in_re*in_re + in_im*in_im;
1105
#else
1106
28.1M
                P[n][bk] += MUL_R(RE(inputLeft),RE(inputLeft)) + MUL_R(IM(inputLeft),IM(inputLeft));
1107
#endif
1108
50.8M
            }
1109
1.63M
        }
1110
680k
    }
1111
1112
#if 0
1113
    for (n = 0; n < 32; n++)
1114
    {
1115
        for (bk = 0; bk < 34; bk++)
1116
        {
1117
#ifdef FIXED_POINT
1118
            printf("%d %d: %d\n", n, bk, P[n][bk] /*/(float)REAL_PRECISION*/);
1119
#else
1120
            printf("%d %d: %f\n", n, bk, P[n][bk]/1024.0);
1121
#endif
1122
        }
1123
    }
1124
#endif
1125
1126
    /* calculate transient reduction ratio for each parameter band b(k) */
1127
547k
    for (bk = 0; bk < ps->nr_par_bands; bk++)
1128
526k
    {
1129
16.9M
        for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1130
16.3M
        {
1131
16.3M
            const real_t gamma = COEF_CONST(1.5);
1132
1133
16.3M
            ps->P_PeakDecayNrg[bk] = MUL_F(ps->P_PeakDecayNrg[bk], ps->alpha_decay);
1134
16.3M
            if (ps->P_PeakDecayNrg[bk] < P[n][bk])
1135
157k
                ps->P_PeakDecayNrg[bk] = P[n][bk];
1136
1137
            /* apply smoothing filter to peak decay energy */
1138
16.3M
            P_SmoothPeakDecayDiffNrg = ps->P_SmoothPeakDecayDiffNrg_prev[bk];
1139
16.3M
            P_SmoothPeakDecayDiffNrg += MUL_F((ps->P_PeakDecayNrg[bk] - P[n][bk] - ps->P_SmoothPeakDecayDiffNrg_prev[bk]), ps->alpha_smooth);
1140
16.3M
            ps->P_SmoothPeakDecayDiffNrg_prev[bk] = P_SmoothPeakDecayDiffNrg;
1141
1142
            /* apply smoothing filter to energy */
1143
16.3M
            nrg = ps->P_prev[bk];
1144
16.3M
            nrg += MUL_F((P[n][bk] - ps->P_prev[bk]), ps->alpha_smooth);
1145
16.3M
            ps->P_prev[bk] = nrg;
1146
1147
            /* calculate transient ratio */
1148
16.3M
            if (MUL_C(P_SmoothPeakDecayDiffNrg, gamma) <= nrg)
1149
16.2M
            {
1150
16.2M
                G_TransientRatio[n][bk] = REAL_CONST(1.0);
1151
16.2M
            } else {
1152
119k
                G_TransientRatio[n][bk] = DIV_R(nrg, (MUL_C(P_SmoothPeakDecayDiffNrg, gamma)));
1153
119k
            }
1154
16.3M
        }
1155
526k
    }
1156
1157
#if 0
1158
    for (n = 0; n < 32; n++)
1159
    {
1160
        for (bk = 0; bk < 34; bk++)
1161
        {
1162
#ifdef FIXED_POINT
1163
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]/(float)REAL_PRECISION);
1164
#else
1165
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]);
1166
#endif
1167
        }
1168
    }
1169
#endif
1170
1171
    /* apply stereo decorrelation filter to the signal */
1172
701k
    for (gr = 0; gr < ps->num_groups; gr++)
1173
680k
    {
1174
680k
        if (gr < ps->num_hybrid_groups)
1175
383k
            maxsb = ps->group_border[gr] + 1;
1176
296k
        else
1177
296k
            maxsb = ps->group_border[gr + 1];
1178
1179
        /* QMF channel */
1180
2.31M
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1181
1.63M
        {
1182
1.63M
            real_t g_DecaySlope;
1183
1.63M
            real_t g_DecaySlope_filt[NO_ALLPASS_LINKS];
1184
1185
            /* g_DecaySlope: [0..1] */
1186
1.63M
            if (gr < ps->num_hybrid_groups || sb <= ps->decay_cutoff)
1187
404k
            {
1188
404k
                g_DecaySlope = FRAC_CONST(1.0);
1189
1.22M
            } else {
1190
1.22M
                int8_t decay = ps->decay_cutoff - sb;
1191
1.22M
                if (decay <= -20 /* -1/DECAY_SLOPE */)
1192
832k
                {
1193
832k
                    g_DecaySlope = 0;
1194
832k
                } else {
1195
                    /* decay(int)*decay_slope(frac) = g_DecaySlope(frac) */
1196
393k
                    g_DecaySlope = FRAC_CONST(1.0) + DECAY_SLOPE * decay;
1197
393k
                }
1198
1.22M
            }
1199
1200
            /* calculate g_DecaySlope_filt for every n multiplied by filter_a[n] */
1201
6.52M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1202
4.89M
            {
1203
4.89M
                g_DecaySlope_filt[n] = MUL_F(g_DecaySlope, filter_a[n]);
1204
4.89M
            }
1205
1206
1207
            /* set delay indices */
1208
1.63M
            temp_delay = ps->saved_delay;
1209
6.52M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1210
4.89M
                temp_delay_ser[n] = ps->delay_buf_index_ser[n];
1211
1212
52.4M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1213
50.8M
            {
1214
50.8M
                complex_t tmp, tmp0, R0;
1215
50.8M
                uint8_t m;
1216
1217
50.8M
                if (gr < ps->num_hybrid_groups)
1218
11.9M
                {
1219
                    /* hybrid filterbank input */
1220
11.9M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1221
11.9M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1222
38.9M
                } else {
1223
                    /* QMF filterbank input */
1224
38.9M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1225
38.9M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1226
38.9M
                }
1227
1228
50.8M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1229
26.5M
                {
1230
                    /* delay */
1231
1232
                    /* never hybrid subbands here, always QMF subbands */
1233
26.5M
                    RE(tmp) = RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1234
26.5M
                    IM(tmp) = IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1235
26.5M
                    RE(R0) = RE(tmp);
1236
26.5M
                    IM(R0) = IM(tmp);
1237
26.5M
                    RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = RE(inputLeft);
1238
26.5M
                    IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = IM(inputLeft);
1239
26.5M
                } else {
1240
                    /* allpass filter */
1241
24.3M
                    complex_t Phi_Fract;
1242
1243
                    /* fetch parameters */
1244
24.3M
                    if (gr < ps->num_hybrid_groups)
1245
11.9M
                    {
1246
                        /* select data from the hybrid subbands */
1247
11.9M
                        RE(tmp0) = RE(ps->delay_SubQmf[temp_delay][sb]);
1248
11.9M
                        IM(tmp0) = IM(ps->delay_SubQmf[temp_delay][sb]);
1249
1250
11.9M
                        RE(ps->delay_SubQmf[temp_delay][sb]) = RE(inputLeft);
1251
11.9M
                        IM(ps->delay_SubQmf[temp_delay][sb]) = IM(inputLeft);
1252
1253
11.9M
                        RE(Phi_Fract) = RE(Phi_Fract_SubQmf[sb]);
1254
11.9M
                        IM(Phi_Fract) = IM(Phi_Fract_SubQmf[sb]);
1255
12.4M
                    } else {
1256
                        /* select data from the QMF subbands */
1257
12.4M
                        RE(tmp0) = RE(ps->delay_Qmf[temp_delay][sb]);
1258
12.4M
                        IM(tmp0) = IM(ps->delay_Qmf[temp_delay][sb]);
1259
1260
12.4M
                        RE(ps->delay_Qmf[temp_delay][sb]) = RE(inputLeft);
1261
12.4M
                        IM(ps->delay_Qmf[temp_delay][sb]) = IM(inputLeft);
1262
1263
12.4M
                        RE(Phi_Fract) = RE(Phi_Fract_Qmf[sb]);
1264
12.4M
                        IM(Phi_Fract) = IM(Phi_Fract_Qmf[sb]);
1265
12.4M
                    }
1266
1267
                    /* z^(-2) * Phi_Fract[k] */
1268
24.3M
                    ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Phi_Fract), IM(Phi_Fract));
1269
1270
24.3M
                    RE(R0) = RE(tmp);
1271
24.3M
                    IM(R0) = IM(tmp);
1272
97.3M
                    for (m = 0; m < NO_ALLPASS_LINKS; m++)
1273
73.0M
                    {
1274
73.0M
                        complex_t Q_Fract_allpass, tmp2;
1275
1276
                        /* fetch parameters */
1277
73.0M
                        if (gr < ps->num_hybrid_groups)
1278
35.7M
                        {
1279
                            /* select data from the hybrid subbands */
1280
35.7M
                            RE(tmp0) = RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1281
35.7M
                            IM(tmp0) = IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1282
1283
35.7M
                            if (ps->use34hybrid_bands)
1284
23.7M
                            {
1285
23.7M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf34[sb][m]);
1286
23.7M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf34[sb][m]);
1287
23.7M
                            } else {
1288
11.9M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf20[sb][m]);
1289
11.9M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf20[sb][m]);
1290
11.9M
                            }
1291
37.3M
                        } else {
1292
                            /* select data from the QMF subbands */
1293
37.3M
                            RE(tmp0) = RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1294
37.3M
                            IM(tmp0) = IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1295
1296
37.3M
                            RE(Q_Fract_allpass) = RE(Q_Fract_allpass_Qmf[sb][m]);
1297
37.3M
                            IM(Q_Fract_allpass) = IM(Q_Fract_allpass_Qmf[sb][m]);
1298
37.3M
                        }
1299
1300
                        /* delay by a fraction */
1301
                        /* z^(-d(m)) * Q_Fract_allpass[k,m] */
1302
73.0M
                        ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Q_Fract_allpass), IM(Q_Fract_allpass));
1303
1304
                        /* -a(m) * g_DecaySlope[k] */
1305
73.0M
                        RE(tmp) += -MUL_F(g_DecaySlope_filt[m], RE(R0));
1306
73.0M
                        IM(tmp) += -MUL_F(g_DecaySlope_filt[m], IM(R0));
1307
1308
                        /* -a(m) * g_DecaySlope[k] * Q_Fract_allpass[k,m] * z^(-d(m)) */
1309
73.0M
                        RE(tmp2) = RE(R0) + MUL_F(g_DecaySlope_filt[m], RE(tmp));
1310
73.0M
                        IM(tmp2) = IM(R0) + MUL_F(g_DecaySlope_filt[m], IM(tmp));
1311
1312
                        /* store sample */
1313
73.0M
                        if (gr < ps->num_hybrid_groups)
1314
35.7M
                        {
1315
35.7M
                            RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1316
35.7M
                            IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1317
37.3M
                        } else {
1318
37.3M
                            RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1319
37.3M
                            IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1320
37.3M
                        }
1321
1322
                        /* store for next iteration (or as output value if last iteration) */
1323
73.0M
                        RE(R0) = RE(tmp);
1324
73.0M
                        IM(R0) = IM(tmp);
1325
73.0M
                    }
1326
24.3M
                }
1327
1328
                /* select b(k) for reading the transient ratio */
1329
50.8M
                bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1330
1331
                /* duck if a past transient is found */
1332
50.8M
                RE(R0) = MUL_R(G_TransientRatio[n][bk], RE(R0));
1333
50.8M
                IM(R0) = MUL_R(G_TransientRatio[n][bk], IM(R0));
1334
1335
50.8M
                if (gr < ps->num_hybrid_groups)
1336
11.9M
                {
1337
                    /* hybrid */
1338
11.9M
                    QMF_RE(X_hybrid_right[n][sb]) = RE(R0);
1339
11.9M
                    QMF_IM(X_hybrid_right[n][sb]) = IM(R0);
1340
38.9M
                } else {
1341
                    /* QMF */
1342
38.9M
                    QMF_RE(X_right[n][sb]) = RE(R0);
1343
38.9M
                    QMF_IM(X_right[n][sb]) = IM(R0);
1344
38.9M
                }
1345
1346
                /* Update delay buffer index */
1347
50.8M
                if (++temp_delay >= 2)
1348
25.4M
                {
1349
25.4M
                    temp_delay = 0;
1350
25.4M
                }
1351
1352
                /* update delay indices */
1353
50.8M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1354
26.5M
                {
1355
                    /* delay_D depends on the samplerate, it can hold the values 14 and 1 */
1356
26.5M
                    if (++ps->delay_buf_index_delay[sb] >= ps->delay_D[sb])
1357
19.2M
                    {
1358
19.2M
                        ps->delay_buf_index_delay[sb] = 0;
1359
19.2M
                    }
1360
26.5M
                }
1361
1362
203M
                for (m = 0; m < NO_ALLPASS_LINKS; m++)
1363
152M
                {
1364
152M
                    if (++temp_delay_ser[m] >= ps->num_sample_delay_ser[m])
1365
39.0M
                    {
1366
39.0M
                        temp_delay_ser[m] = 0;
1367
39.0M
                    }
1368
152M
                }
1369
50.8M
            }
1370
1.63M
        }
1371
680k
    }
1372
1373
    /* update delay indices */
1374
20.6k
    ps->saved_delay = temp_delay;
1375
82.7k
    for (n = 0; n < NO_ALLPASS_LINKS; n++)
1376
62.0k
        ps->delay_buf_index_ser[n] = temp_delay_ser[n];
1377
20.6k
}
ps_dec.c:ps_decorrelate
Line
Count
Source
1041
9.19k
{
1042
9.19k
    uint8_t gr, n, bk;
1043
9.19k
    uint8_t temp_delay = 0;
1044
9.19k
    uint8_t sb, maxsb;
1045
9.19k
    const complex_t *Phi_Fract_SubQmf;
1046
9.19k
    uint8_t temp_delay_ser[NO_ALLPASS_LINKS];
1047
9.19k
    real_t P_SmoothPeakDecayDiffNrg, nrg;
1048
9.19k
    real_t P[32][34];
1049
9.19k
    real_t G_TransientRatio[32][34] = {{0}};
1050
9.19k
    complex_t inputLeft;
1051
1052
1053
    /* chose hybrid filterbank: 20 or 34 band case */
1054
9.19k
    if (ps->use34hybrid_bands)
1055
3.78k
    {
1056
3.78k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf34;
1057
5.41k
    } else{
1058
5.41k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf20;
1059
5.41k
    }
1060
1061
    /* clear the energy values */
1062
303k
    for (n = 0; n < 32; n++)
1063
294k
    {
1064
10.3M
        for (bk = 0; bk < 34; bk++)
1065
10.0M
        {
1066
10.0M
            P[n][bk] = 0;
1067
10.0M
        }
1068
294k
    }
1069
1070
    /* calculate the energy in each parameter band b(k) */
1071
317k
    for (gr = 0; gr < ps->num_groups; gr++)
1072
308k
    {
1073
        /* select the parameter index b(k) to which this group belongs */
1074
308k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1075
1076
        /* select the upper subband border for this group */
1077
308k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr]+1 : ps->group_border[gr+1];
1078
1079
1.03M
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1080
728k
        {
1081
23.4M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1082
22.7M
            {
1083
22.7M
#ifdef FIXED_POINT
1084
22.7M
                uint32_t in_re, in_im;
1085
22.7M
#endif
1086
1087
                /* input from hybrid subbands or QMF subbands */
1088
22.7M
                if (gr < ps->num_hybrid_groups)
1089
5.43M
                {
1090
5.43M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1091
5.43M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1092
17.3M
                } else {
1093
17.3M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1094
17.3M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1095
17.3M
                }
1096
1097
                /* accumulate energy */
1098
22.7M
#ifdef FIXED_POINT
1099
                /* NOTE: all input is scaled by 2^(-5) because of fixed point QMF
1100
                 * meaning that P will be scaled by 2^(-10) compared to floating point version
1101
                 */
1102
22.7M
                in_re = ((abs(RE(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1103
22.7M
                in_im = ((abs(IM(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1104
22.7M
                P[n][bk] += in_re*in_re + in_im*in_im;
1105
#else
1106
                P[n][bk] += MUL_R(RE(inputLeft),RE(inputLeft)) + MUL_R(IM(inputLeft),IM(inputLeft));
1107
#endif
1108
22.7M
            }
1109
728k
        }
1110
308k
    }
1111
1112
#if 0
1113
    for (n = 0; n < 32; n++)
1114
    {
1115
        for (bk = 0; bk < 34; bk++)
1116
        {
1117
#ifdef FIXED_POINT
1118
            printf("%d %d: %d\n", n, bk, P[n][bk] /*/(float)REAL_PRECISION*/);
1119
#else
1120
            printf("%d %d: %f\n", n, bk, P[n][bk]/1024.0);
1121
#endif
1122
        }
1123
    }
1124
#endif
1125
1126
    /* calculate transient reduction ratio for each parameter band b(k) */
1127
246k
    for (bk = 0; bk < ps->nr_par_bands; bk++)
1128
236k
    {
1129
7.61M
        for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1130
7.38M
        {
1131
7.38M
            const real_t gamma = COEF_CONST(1.5);
1132
1133
7.38M
            ps->P_PeakDecayNrg[bk] = MUL_F(ps->P_PeakDecayNrg[bk], ps->alpha_decay);
1134
7.38M
            if (ps->P_PeakDecayNrg[bk] < P[n][bk])
1135
26.7k
                ps->P_PeakDecayNrg[bk] = P[n][bk];
1136
1137
            /* apply smoothing filter to peak decay energy */
1138
7.38M
            P_SmoothPeakDecayDiffNrg = ps->P_SmoothPeakDecayDiffNrg_prev[bk];
1139
7.38M
            P_SmoothPeakDecayDiffNrg += MUL_F((ps->P_PeakDecayNrg[bk] - P[n][bk] - ps->P_SmoothPeakDecayDiffNrg_prev[bk]), ps->alpha_smooth);
1140
7.38M
            ps->P_SmoothPeakDecayDiffNrg_prev[bk] = P_SmoothPeakDecayDiffNrg;
1141
1142
            /* apply smoothing filter to energy */
1143
7.38M
            nrg = ps->P_prev[bk];
1144
7.38M
            nrg += MUL_F((P[n][bk] - ps->P_prev[bk]), ps->alpha_smooth);
1145
7.38M
            ps->P_prev[bk] = nrg;
1146
1147
            /* calculate transient ratio */
1148
7.38M
            if (MUL_C(P_SmoothPeakDecayDiffNrg, gamma) <= nrg)
1149
7.36M
            {
1150
7.36M
                G_TransientRatio[n][bk] = REAL_CONST(1.0);
1151
7.36M
            } else {
1152
14.1k
                G_TransientRatio[n][bk] = DIV_R(nrg, (MUL_C(P_SmoothPeakDecayDiffNrg, gamma)));
1153
14.1k
            }
1154
7.38M
        }
1155
236k
    }
1156
1157
#if 0
1158
    for (n = 0; n < 32; n++)
1159
    {
1160
        for (bk = 0; bk < 34; bk++)
1161
        {
1162
#ifdef FIXED_POINT
1163
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]/(float)REAL_PRECISION);
1164
#else
1165
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]);
1166
#endif
1167
        }
1168
    }
1169
#endif
1170
1171
    /* apply stereo decorrelation filter to the signal */
1172
317k
    for (gr = 0; gr < ps->num_groups; gr++)
1173
308k
    {
1174
308k
        if (gr < ps->num_hybrid_groups)
1175
175k
            maxsb = ps->group_border[gr] + 1;
1176
133k
        else
1177
133k
            maxsb = ps->group_border[gr + 1];
1178
1179
        /* QMF channel */
1180
1.03M
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1181
728k
        {
1182
728k
            real_t g_DecaySlope;
1183
728k
            real_t g_DecaySlope_filt[NO_ALLPASS_LINKS];
1184
1185
            /* g_DecaySlope: [0..1] */
1186
728k
            if (gr < ps->num_hybrid_groups || sb <= ps->decay_cutoff)
1187
184k
            {
1188
184k
                g_DecaySlope = FRAC_CONST(1.0);
1189
544k
            } else {
1190
544k
                int8_t decay = ps->decay_cutoff - sb;
1191
544k
                if (decay <= -20 /* -1/DECAY_SLOPE */)
1192
369k
                {
1193
369k
                    g_DecaySlope = 0;
1194
369k
                } else {
1195
                    /* decay(int)*decay_slope(frac) = g_DecaySlope(frac) */
1196
174k
                    g_DecaySlope = FRAC_CONST(1.0) + DECAY_SLOPE * decay;
1197
174k
                }
1198
544k
            }
1199
1200
            /* calculate g_DecaySlope_filt for every n multiplied by filter_a[n] */
1201
2.91M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1202
2.18M
            {
1203
2.18M
                g_DecaySlope_filt[n] = MUL_F(g_DecaySlope, filter_a[n]);
1204
2.18M
            }
1205
1206
1207
            /* set delay indices */
1208
728k
            temp_delay = ps->saved_delay;
1209
2.91M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1210
2.18M
                temp_delay_ser[n] = ps->delay_buf_index_ser[n];
1211
1212
23.4M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1213
22.7M
            {
1214
22.7M
                complex_t tmp, tmp0, R0;
1215
22.7M
                uint8_t m;
1216
1217
22.7M
                if (gr < ps->num_hybrid_groups)
1218
5.43M
                {
1219
                    /* hybrid filterbank input */
1220
5.43M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1221
5.43M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1222
17.3M
                } else {
1223
                    /* QMF filterbank input */
1224
17.3M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1225
17.3M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1226
17.3M
                }
1227
1228
22.7M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1229
11.7M
                {
1230
                    /* delay */
1231
1232
                    /* never hybrid subbands here, always QMF subbands */
1233
11.7M
                    RE(tmp) = RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1234
11.7M
                    IM(tmp) = IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1235
11.7M
                    RE(R0) = RE(tmp);
1236
11.7M
                    IM(R0) = IM(tmp);
1237
11.7M
                    RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = RE(inputLeft);
1238
11.7M
                    IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = IM(inputLeft);
1239
11.7M
                } else {
1240
                    /* allpass filter */
1241
10.9M
                    complex_t Phi_Fract;
1242
1243
                    /* fetch parameters */
1244
10.9M
                    if (gr < ps->num_hybrid_groups)
1245
5.43M
                    {
1246
                        /* select data from the hybrid subbands */
1247
5.43M
                        RE(tmp0) = RE(ps->delay_SubQmf[temp_delay][sb]);
1248
5.43M
                        IM(tmp0) = IM(ps->delay_SubQmf[temp_delay][sb]);
1249
1250
5.43M
                        RE(ps->delay_SubQmf[temp_delay][sb]) = RE(inputLeft);
1251
5.43M
                        IM(ps->delay_SubQmf[temp_delay][sb]) = IM(inputLeft);
1252
1253
5.43M
                        RE(Phi_Fract) = RE(Phi_Fract_SubQmf[sb]);
1254
5.43M
                        IM(Phi_Fract) = IM(Phi_Fract_SubQmf[sb]);
1255
5.52M
                    } else {
1256
                        /* select data from the QMF subbands */
1257
5.52M
                        RE(tmp0) = RE(ps->delay_Qmf[temp_delay][sb]);
1258
5.52M
                        IM(tmp0) = IM(ps->delay_Qmf[temp_delay][sb]);
1259
1260
5.52M
                        RE(ps->delay_Qmf[temp_delay][sb]) = RE(inputLeft);
1261
5.52M
                        IM(ps->delay_Qmf[temp_delay][sb]) = IM(inputLeft);
1262
1263
5.52M
                        RE(Phi_Fract) = RE(Phi_Fract_Qmf[sb]);
1264
5.52M
                        IM(Phi_Fract) = IM(Phi_Fract_Qmf[sb]);
1265
5.52M
                    }
1266
1267
                    /* z^(-2) * Phi_Fract[k] */
1268
10.9M
                    ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Phi_Fract), IM(Phi_Fract));
1269
1270
10.9M
                    RE(R0) = RE(tmp);
1271
10.9M
                    IM(R0) = IM(tmp);
1272
43.8M
                    for (m = 0; m < NO_ALLPASS_LINKS; m++)
1273
32.8M
                    {
1274
32.8M
                        complex_t Q_Fract_allpass, tmp2;
1275
1276
                        /* fetch parameters */
1277
32.8M
                        if (gr < ps->num_hybrid_groups)
1278
16.3M
                        {
1279
                            /* select data from the hybrid subbands */
1280
16.3M
                            RE(tmp0) = RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1281
16.3M
                            IM(tmp0) = IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1282
1283
16.3M
                            if (ps->use34hybrid_bands)
1284
11.1M
                            {
1285
11.1M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf34[sb][m]);
1286
11.1M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf34[sb][m]);
1287
11.1M
                            } else {
1288
5.14M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf20[sb][m]);
1289
5.14M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf20[sb][m]);
1290
5.14M
                            }
1291
16.5M
                        } else {
1292
                            /* select data from the QMF subbands */
1293
16.5M
                            RE(tmp0) = RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1294
16.5M
                            IM(tmp0) = IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1295
1296
16.5M
                            RE(Q_Fract_allpass) = RE(Q_Fract_allpass_Qmf[sb][m]);
1297
16.5M
                            IM(Q_Fract_allpass) = IM(Q_Fract_allpass_Qmf[sb][m]);
1298
16.5M
                        }
1299
1300
                        /* delay by a fraction */
1301
                        /* z^(-d(m)) * Q_Fract_allpass[k,m] */
1302
32.8M
                        ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Q_Fract_allpass), IM(Q_Fract_allpass));
1303
1304
                        /* -a(m) * g_DecaySlope[k] */
1305
32.8M
                        RE(tmp) += -MUL_F(g_DecaySlope_filt[m], RE(R0));
1306
32.8M
                        IM(tmp) += -MUL_F(g_DecaySlope_filt[m], IM(R0));
1307
1308
                        /* -a(m) * g_DecaySlope[k] * Q_Fract_allpass[k,m] * z^(-d(m)) */
1309
32.8M
                        RE(tmp2) = RE(R0) + MUL_F(g_DecaySlope_filt[m], RE(tmp));
1310
32.8M
                        IM(tmp2) = IM(R0) + MUL_F(g_DecaySlope_filt[m], IM(tmp));
1311
1312
                        /* store sample */
1313
32.8M
                        if (gr < ps->num_hybrid_groups)
1314
16.3M
                        {
1315
16.3M
                            RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1316
16.3M
                            IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1317
16.5M
                        } else {
1318
16.5M
                            RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1319
16.5M
                            IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1320
16.5M
                        }
1321
1322
                        /* store for next iteration (or as output value if last iteration) */
1323
32.8M
                        RE(R0) = RE(tmp);
1324
32.8M
                        IM(R0) = IM(tmp);
1325
32.8M
                    }
1326
10.9M
                }
1327
1328
                /* select b(k) for reading the transient ratio */
1329
22.7M
                bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1330
1331
                /* duck if a past transient is found */
1332
22.7M
                RE(R0) = MUL_R(G_TransientRatio[n][bk], RE(R0));
1333
22.7M
                IM(R0) = MUL_R(G_TransientRatio[n][bk], IM(R0));
1334
1335
22.7M
                if (gr < ps->num_hybrid_groups)
1336
5.43M
                {
1337
                    /* hybrid */
1338
5.43M
                    QMF_RE(X_hybrid_right[n][sb]) = RE(R0);
1339
5.43M
                    QMF_IM(X_hybrid_right[n][sb]) = IM(R0);
1340
17.3M
                } else {
1341
                    /* QMF */
1342
17.3M
                    QMF_RE(X_right[n][sb]) = RE(R0);
1343
17.3M
                    QMF_IM(X_right[n][sb]) = IM(R0);
1344
17.3M
                }
1345
1346
                /* Update delay buffer index */
1347
22.7M
                if (++temp_delay >= 2)
1348
11.3M
                {
1349
11.3M
                    temp_delay = 0;
1350
11.3M
                }
1351
1352
                /* update delay indices */
1353
22.7M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1354
11.7M
                {
1355
                    /* delay_D depends on the samplerate, it can hold the values 14 and 1 */
1356
11.7M
                    if (++ps->delay_buf_index_delay[sb] >= ps->delay_D[sb])
1357
8.56M
                    {
1358
8.56M
                        ps->delay_buf_index_delay[sb] = 0;
1359
8.56M
                    }
1360
11.7M
                }
1361
1362
91.0M
                for (m = 0; m < NO_ALLPASS_LINKS; m++)
1363
68.2M
                {
1364
68.2M
                    if (++temp_delay_ser[m] >= ps->num_sample_delay_ser[m])
1365
17.4M
                    {
1366
17.4M
                        temp_delay_ser[m] = 0;
1367
17.4M
                    }
1368
68.2M
                }
1369
22.7M
            }
1370
728k
        }
1371
308k
    }
1372
1373
    /* update delay indices */
1374
9.19k
    ps->saved_delay = temp_delay;
1375
36.7k
    for (n = 0; n < NO_ALLPASS_LINKS; n++)
1376
27.5k
        ps->delay_buf_index_ser[n] = temp_delay_ser[n];
1377
9.19k
}
ps_dec.c:ps_decorrelate
Line
Count
Source
1041
11.4k
{
1042
11.4k
    uint8_t gr, n, bk;
1043
11.4k
    uint8_t temp_delay = 0;
1044
11.4k
    uint8_t sb, maxsb;
1045
11.4k
    const complex_t *Phi_Fract_SubQmf;
1046
11.4k
    uint8_t temp_delay_ser[NO_ALLPASS_LINKS];
1047
11.4k
    real_t P_SmoothPeakDecayDiffNrg, nrg;
1048
11.4k
    real_t P[32][34];
1049
11.4k
    real_t G_TransientRatio[32][34] = {{0}};
1050
11.4k
    complex_t inputLeft;
1051
1052
1053
    /* chose hybrid filterbank: 20 or 34 band case */
1054
11.4k
    if (ps->use34hybrid_bands)
1055
4.26k
    {
1056
4.26k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf34;
1057
7.23k
    } else{
1058
7.23k
        Phi_Fract_SubQmf = Phi_Fract_SubQmf20;
1059
7.23k
    }
1060
1061
    /* clear the energy values */
1062
379k
    for (n = 0; n < 32; n++)
1063
367k
    {
1064
12.8M
        for (bk = 0; bk < 34; bk++)
1065
12.5M
        {
1066
12.5M
            P[n][bk] = 0;
1067
12.5M
        }
1068
367k
    }
1069
1070
    /* calculate the energy in each parameter band b(k) */
1071
383k
    for (gr = 0; gr < ps->num_groups; gr++)
1072
372k
    {
1073
        /* select the parameter index b(k) to which this group belongs */
1074
372k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1075
1076
        /* select the upper subband border for this group */
1077
372k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr]+1 : ps->group_border[gr+1];
1078
1079
1.27M
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1080
901k
        {
1081
29.0M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1082
28.1M
            {
1083
#ifdef FIXED_POINT
1084
                uint32_t in_re, in_im;
1085
#endif
1086
1087
                /* input from hybrid subbands or QMF subbands */
1088
28.1M
                if (gr < ps->num_hybrid_groups)
1089
6.47M
                {
1090
6.47M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1091
6.47M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1092
21.6M
                } else {
1093
21.6M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1094
21.6M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1095
21.6M
                }
1096
1097
                /* accumulate energy */
1098
#ifdef FIXED_POINT
1099
                /* NOTE: all input is scaled by 2^(-5) because of fixed point QMF
1100
                 * meaning that P will be scaled by 2^(-10) compared to floating point version
1101
                 */
1102
                in_re = ((abs(RE(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1103
                in_im = ((abs(IM(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
1104
                P[n][bk] += in_re*in_re + in_im*in_im;
1105
#else
1106
28.1M
                P[n][bk] += MUL_R(RE(inputLeft),RE(inputLeft)) + MUL_R(IM(inputLeft),IM(inputLeft));
1107
28.1M
#endif
1108
28.1M
            }
1109
901k
        }
1110
372k
    }
1111
1112
#if 0
1113
    for (n = 0; n < 32; n++)
1114
    {
1115
        for (bk = 0; bk < 34; bk++)
1116
        {
1117
#ifdef FIXED_POINT
1118
            printf("%d %d: %d\n", n, bk, P[n][bk] /*/(float)REAL_PRECISION*/);
1119
#else
1120
            printf("%d %d: %f\n", n, bk, P[n][bk]/1024.0);
1121
#endif
1122
        }
1123
    }
1124
#endif
1125
1126
    /* calculate transient reduction ratio for each parameter band b(k) */
1127
301k
    for (bk = 0; bk < ps->nr_par_bands; bk++)
1128
289k
    {
1129
9.30M
        for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1130
9.01M
        {
1131
9.01M
            const real_t gamma = COEF_CONST(1.5);
1132
1133
9.01M
            ps->P_PeakDecayNrg[bk] = MUL_F(ps->P_PeakDecayNrg[bk], ps->alpha_decay);
1134
9.01M
            if (ps->P_PeakDecayNrg[bk] < P[n][bk])
1135
130k
                ps->P_PeakDecayNrg[bk] = P[n][bk];
1136
1137
            /* apply smoothing filter to peak decay energy */
1138
9.01M
            P_SmoothPeakDecayDiffNrg = ps->P_SmoothPeakDecayDiffNrg_prev[bk];
1139
9.01M
            P_SmoothPeakDecayDiffNrg += MUL_F((ps->P_PeakDecayNrg[bk] - P[n][bk] - ps->P_SmoothPeakDecayDiffNrg_prev[bk]), ps->alpha_smooth);
1140
9.01M
            ps->P_SmoothPeakDecayDiffNrg_prev[bk] = P_SmoothPeakDecayDiffNrg;
1141
1142
            /* apply smoothing filter to energy */
1143
9.01M
            nrg = ps->P_prev[bk];
1144
9.01M
            nrg += MUL_F((P[n][bk] - ps->P_prev[bk]), ps->alpha_smooth);
1145
9.01M
            ps->P_prev[bk] = nrg;
1146
1147
            /* calculate transient ratio */
1148
9.01M
            if (MUL_C(P_SmoothPeakDecayDiffNrg, gamma) <= nrg)
1149
8.90M
            {
1150
8.90M
                G_TransientRatio[n][bk] = REAL_CONST(1.0);
1151
8.90M
            } else {
1152
105k
                G_TransientRatio[n][bk] = DIV_R(nrg, (MUL_C(P_SmoothPeakDecayDiffNrg, gamma)));
1153
105k
            }
1154
9.01M
        }
1155
289k
    }
1156
1157
#if 0
1158
    for (n = 0; n < 32; n++)
1159
    {
1160
        for (bk = 0; bk < 34; bk++)
1161
        {
1162
#ifdef FIXED_POINT
1163
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]/(float)REAL_PRECISION);
1164
#else
1165
            printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]);
1166
#endif
1167
        }
1168
    }
1169
#endif
1170
1171
    /* apply stereo decorrelation filter to the signal */
1172
383k
    for (gr = 0; gr < ps->num_groups; gr++)
1173
372k
    {
1174
372k
        if (gr < ps->num_hybrid_groups)
1175
208k
            maxsb = ps->group_border[gr] + 1;
1176
163k
        else
1177
163k
            maxsb = ps->group_border[gr + 1];
1178
1179
        /* QMF channel */
1180
1.27M
        for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1181
901k
        {
1182
901k
            real_t g_DecaySlope;
1183
901k
            real_t g_DecaySlope_filt[NO_ALLPASS_LINKS];
1184
1185
            /* g_DecaySlope: [0..1] */
1186
901k
            if (gr < ps->num_hybrid_groups || sb <= ps->decay_cutoff)
1187
220k
            {
1188
220k
                g_DecaySlope = FRAC_CONST(1.0);
1189
681k
            } else {
1190
681k
                int8_t decay = ps->decay_cutoff - sb;
1191
681k
                if (decay <= -20 /* -1/DECAY_SLOPE */)
1192
462k
                {
1193
462k
                    g_DecaySlope = 0;
1194
462k
                } else {
1195
                    /* decay(int)*decay_slope(frac) = g_DecaySlope(frac) */
1196
218k
                    g_DecaySlope = FRAC_CONST(1.0) + DECAY_SLOPE * decay;
1197
218k
                }
1198
681k
            }
1199
1200
            /* calculate g_DecaySlope_filt for every n multiplied by filter_a[n] */
1201
3.60M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1202
2.70M
            {
1203
2.70M
                g_DecaySlope_filt[n] = MUL_F(g_DecaySlope, filter_a[n]);
1204
2.70M
            }
1205
1206
1207
            /* set delay indices */
1208
901k
            temp_delay = ps->saved_delay;
1209
3.60M
            for (n = 0; n < NO_ALLPASS_LINKS; n++)
1210
2.70M
                temp_delay_ser[n] = ps->delay_buf_index_ser[n];
1211
1212
29.0M
            for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
1213
28.1M
            {
1214
28.1M
                complex_t tmp, tmp0, R0;
1215
28.1M
                uint8_t m;
1216
1217
28.1M
                if (gr < ps->num_hybrid_groups)
1218
6.47M
                {
1219
                    /* hybrid filterbank input */
1220
6.47M
                    RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
1221
6.47M
                    IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
1222
21.6M
                } else {
1223
                    /* QMF filterbank input */
1224
21.6M
                    RE(inputLeft) = QMF_RE(X_left[n][sb]);
1225
21.6M
                    IM(inputLeft) = QMF_IM(X_left[n][sb]);
1226
21.6M
                }
1227
1228
28.1M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1229
14.7M
                {
1230
                    /* delay */
1231
1232
                    /* never hybrid subbands here, always QMF subbands */
1233
14.7M
                    RE(tmp) = RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1234
14.7M
                    IM(tmp) = IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
1235
14.7M
                    RE(R0) = RE(tmp);
1236
14.7M
                    IM(R0) = IM(tmp);
1237
14.7M
                    RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = RE(inputLeft);
1238
14.7M
                    IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = IM(inputLeft);
1239
14.7M
                } else {
1240
                    /* allpass filter */
1241
13.3M
                    complex_t Phi_Fract;
1242
1243
                    /* fetch parameters */
1244
13.3M
                    if (gr < ps->num_hybrid_groups)
1245
6.47M
                    {
1246
                        /* select data from the hybrid subbands */
1247
6.47M
                        RE(tmp0) = RE(ps->delay_SubQmf[temp_delay][sb]);
1248
6.47M
                        IM(tmp0) = IM(ps->delay_SubQmf[temp_delay][sb]);
1249
1250
6.47M
                        RE(ps->delay_SubQmf[temp_delay][sb]) = RE(inputLeft);
1251
6.47M
                        IM(ps->delay_SubQmf[temp_delay][sb]) = IM(inputLeft);
1252
1253
6.47M
                        RE(Phi_Fract) = RE(Phi_Fract_SubQmf[sb]);
1254
6.47M
                        IM(Phi_Fract) = IM(Phi_Fract_SubQmf[sb]);
1255
6.92M
                    } else {
1256
                        /* select data from the QMF subbands */
1257
6.92M
                        RE(tmp0) = RE(ps->delay_Qmf[temp_delay][sb]);
1258
6.92M
                        IM(tmp0) = IM(ps->delay_Qmf[temp_delay][sb]);
1259
1260
6.92M
                        RE(ps->delay_Qmf[temp_delay][sb]) = RE(inputLeft);
1261
6.92M
                        IM(ps->delay_Qmf[temp_delay][sb]) = IM(inputLeft);
1262
1263
6.92M
                        RE(Phi_Fract) = RE(Phi_Fract_Qmf[sb]);
1264
6.92M
                        IM(Phi_Fract) = IM(Phi_Fract_Qmf[sb]);
1265
6.92M
                    }
1266
1267
                    /* z^(-2) * Phi_Fract[k] */
1268
13.3M
                    ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Phi_Fract), IM(Phi_Fract));
1269
1270
13.3M
                    RE(R0) = RE(tmp);
1271
13.3M
                    IM(R0) = IM(tmp);
1272
53.5M
                    for (m = 0; m < NO_ALLPASS_LINKS; m++)
1273
40.1M
                    {
1274
40.1M
                        complex_t Q_Fract_allpass, tmp2;
1275
1276
                        /* fetch parameters */
1277
40.1M
                        if (gr < ps->num_hybrid_groups)
1278
19.4M
                        {
1279
                            /* select data from the hybrid subbands */
1280
19.4M
                            RE(tmp0) = RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1281
19.4M
                            IM(tmp0) = IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
1282
1283
19.4M
                            if (ps->use34hybrid_bands)
1284
12.5M
                            {
1285
12.5M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf34[sb][m]);
1286
12.5M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf34[sb][m]);
1287
12.5M
                            } else {
1288
6.84M
                                RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf20[sb][m]);
1289
6.84M
                                IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf20[sb][m]);
1290
6.84M
                            }
1291
20.7M
                        } else {
1292
                            /* select data from the QMF subbands */
1293
20.7M
                            RE(tmp0) = RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1294
20.7M
                            IM(tmp0) = IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
1295
1296
20.7M
                            RE(Q_Fract_allpass) = RE(Q_Fract_allpass_Qmf[sb][m]);
1297
20.7M
                            IM(Q_Fract_allpass) = IM(Q_Fract_allpass_Qmf[sb][m]);
1298
20.7M
                        }
1299
1300
                        /* delay by a fraction */
1301
                        /* z^(-d(m)) * Q_Fract_allpass[k,m] */
1302
40.1M
                        ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Q_Fract_allpass), IM(Q_Fract_allpass));
1303
1304
                        /* -a(m) * g_DecaySlope[k] */
1305
40.1M
                        RE(tmp) += -MUL_F(g_DecaySlope_filt[m], RE(R0));
1306
40.1M
                        IM(tmp) += -MUL_F(g_DecaySlope_filt[m], IM(R0));
1307
1308
                        /* -a(m) * g_DecaySlope[k] * Q_Fract_allpass[k,m] * z^(-d(m)) */
1309
40.1M
                        RE(tmp2) = RE(R0) + MUL_F(g_DecaySlope_filt[m], RE(tmp));
1310
40.1M
                        IM(tmp2) = IM(R0) + MUL_F(g_DecaySlope_filt[m], IM(tmp));
1311
1312
                        /* store sample */
1313
40.1M
                        if (gr < ps->num_hybrid_groups)
1314
19.4M
                        {
1315
19.4M
                            RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1316
19.4M
                            IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1317
20.7M
                        } else {
1318
20.7M
                            RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
1319
20.7M
                            IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
1320
20.7M
                        }
1321
1322
                        /* store for next iteration (or as output value if last iteration) */
1323
40.1M
                        RE(R0) = RE(tmp);
1324
40.1M
                        IM(R0) = IM(tmp);
1325
40.1M
                    }
1326
13.3M
                }
1327
1328
                /* select b(k) for reading the transient ratio */
1329
28.1M
                bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1330
1331
                /* duck if a past transient is found */
1332
28.1M
                RE(R0) = MUL_R(G_TransientRatio[n][bk], RE(R0));
1333
28.1M
                IM(R0) = MUL_R(G_TransientRatio[n][bk], IM(R0));
1334
1335
28.1M
                if (gr < ps->num_hybrid_groups)
1336
6.47M
                {
1337
                    /* hybrid */
1338
6.47M
                    QMF_RE(X_hybrid_right[n][sb]) = RE(R0);
1339
6.47M
                    QMF_IM(X_hybrid_right[n][sb]) = IM(R0);
1340
21.6M
                } else {
1341
                    /* QMF */
1342
21.6M
                    QMF_RE(X_right[n][sb]) = RE(R0);
1343
21.6M
                    QMF_IM(X_right[n][sb]) = IM(R0);
1344
21.6M
                }
1345
1346
                /* Update delay buffer index */
1347
28.1M
                if (++temp_delay >= 2)
1348
14.0M
                {
1349
14.0M
                    temp_delay = 0;
1350
14.0M
                }
1351
1352
                /* update delay indices */
1353
28.1M
                if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
1354
14.7M
                {
1355
                    /* delay_D depends on the samplerate, it can hold the values 14 and 1 */
1356
14.7M
                    if (++ps->delay_buf_index_delay[sb] >= ps->delay_D[sb])
1357
10.6M
                    {
1358
10.6M
                        ps->delay_buf_index_delay[sb] = 0;
1359
10.6M
                    }
1360
14.7M
                }
1361
1362
112M
                for (m = 0; m < NO_ALLPASS_LINKS; m++)
1363
84.3M
                {
1364
84.3M
                    if (++temp_delay_ser[m] >= ps->num_sample_delay_ser[m])
1365
21.6M
                    {
1366
21.6M
                        temp_delay_ser[m] = 0;
1367
21.6M
                    }
1368
84.3M
                }
1369
28.1M
            }
1370
901k
        }
1371
372k
    }
1372
1373
    /* update delay indices */
1374
11.4k
    ps->saved_delay = temp_delay;
1375
45.9k
    for (n = 0; n < NO_ALLPASS_LINKS; n++)
1376
34.4k
        ps->delay_buf_index_ser[n] = temp_delay_ser[n];
1377
11.4k
}
1378
1379
#if 0
1380
#ifdef FIXED_POINT
1381
#define step(shift) \
1382
    if ((0x40000000l >> shift) + root <= value)       \
1383
    {                                                 \
1384
        value -= (0x40000000l >> shift) + root;       \
1385
        root = (root >> 1) | (0x40000000l >> shift);  \
1386
    } else {                                          \
1387
        root = root >> 1;                             \
1388
    }
1389
1390
/* fixed point square root approximation */
1391
static real_t ps_sqrt(real_t value)
1392
{
1393
    real_t root = 0;
1394
1395
    step( 0); step( 2); step( 4); step( 6);
1396
    step( 8); step(10); step(12); step(14);
1397
    step(16); step(18); step(20); step(22);
1398
    step(24); step(26); step(28); step(30);
1399
1400
    if (root < value)
1401
        ++root;
1402
1403
    root <<= (REAL_BITS/2);
1404
1405
    return root;
1406
}
1407
#else
1408
#define ps_sqrt(A) sqrt(A)
1409
#endif
1410
#endif
1411
1412
static const real_t ipdopd_cos_tab[] = {
1413
    FRAC_CONST(1.000000000000000),
1414
    FRAC_CONST(0.707106781186548),
1415
    FRAC_CONST(0.000000000000000),
1416
    FRAC_CONST(-0.707106781186547),
1417
    FRAC_CONST(-1.000000000000000),
1418
    FRAC_CONST(-0.707106781186548),
1419
    FRAC_CONST(-0.000000000000000),
1420
    FRAC_CONST(0.707106781186547),
1421
    FRAC_CONST(1.000000000000000)
1422
};
1423
1424
static const real_t ipdopd_sin_tab[] = {
1425
    FRAC_CONST(0.000000000000000),
1426
    FRAC_CONST(0.707106781186547),
1427
    FRAC_CONST(1.000000000000000),
1428
    FRAC_CONST(0.707106781186548),
1429
    FRAC_CONST(0.000000000000000),
1430
    FRAC_CONST(-0.707106781186547),
1431
    FRAC_CONST(-1.000000000000000),
1432
    FRAC_CONST(-0.707106781186548),
1433
    FRAC_CONST(-0.000000000000000)
1434
};
1435
1436
static real_t magnitude_c(complex_t c)
1437
377k
{
1438
#ifdef FIXED_POINT
1439
386k
#define ps_abs(A) (((A) > 0) ? (A) : (-(A)))
1440
#define ALPHA FRAC_CONST(0.948059448969)
1441
#define BETA  FRAC_CONST(0.392699081699)
1442
1443
193k
    real_t abs_inphase = ps_abs(RE(c));
1444
193k
    real_t abs_quadrature = ps_abs(IM(c));
1445
1446
193k
    if (abs_inphase > abs_quadrature) {
1447
152k
        return MUL_F(abs_inphase, ALPHA) + MUL_F(abs_quadrature, BETA);
1448
152k
    } else {
1449
40.4k
        return MUL_F(abs_quadrature, ALPHA) + MUL_F(abs_inphase, BETA);
1450
40.4k
    }
1451
#else
1452
184k
    return sqrt(RE(c)*RE(c) + IM(c)*IM(c));
1453
#endif
1454
377k
}
ps_dec.c:magnitude_c
Line
Count
Source
1437
193k
{
1438
193k
#ifdef FIXED_POINT
1439
193k
#define ps_abs(A) (((A) > 0) ? (A) : (-(A)))
1440
193k
#define ALPHA FRAC_CONST(0.948059448969)
1441
193k
#define BETA  FRAC_CONST(0.392699081699)
1442
1443
193k
    real_t abs_inphase = ps_abs(RE(c));
1444
193k
    real_t abs_quadrature = ps_abs(IM(c));
1445
1446
193k
    if (abs_inphase > abs_quadrature) {
1447
152k
        return MUL_F(abs_inphase, ALPHA) + MUL_F(abs_quadrature, BETA);
1448
152k
    } else {
1449
40.4k
        return MUL_F(abs_quadrature, ALPHA) + MUL_F(abs_inphase, BETA);
1450
40.4k
    }
1451
#else
1452
    return sqrt(RE(c)*RE(c) + IM(c)*IM(c));
1453
#endif
1454
193k
}
ps_dec.c:magnitude_c
Line
Count
Source
1437
184k
{
1438
#ifdef FIXED_POINT
1439
#define ps_abs(A) (((A) > 0) ? (A) : (-(A)))
1440
#define ALPHA FRAC_CONST(0.948059448969)
1441
#define BETA  FRAC_CONST(0.392699081699)
1442
1443
    real_t abs_inphase = ps_abs(RE(c));
1444
    real_t abs_quadrature = ps_abs(IM(c));
1445
1446
    if (abs_inphase > abs_quadrature) {
1447
        return MUL_F(abs_inphase, ALPHA) + MUL_F(abs_quadrature, BETA);
1448
    } else {
1449
        return MUL_F(abs_quadrature, ALPHA) + MUL_F(abs_inphase, BETA);
1450
    }
1451
#else
1452
184k
    return sqrt(RE(c)*RE(c) + IM(c)*IM(c));
1453
184k
#endif
1454
184k
}
1455
1456
static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
1457
                         qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
1458
20.6k
{
1459
20.6k
    uint8_t n;
1460
20.6k
    uint8_t gr;
1461
20.6k
    uint8_t bk = 0;
1462
20.6k
    uint8_t sb, maxsb;
1463
20.6k
    uint8_t env;
1464
20.6k
    uint8_t nr_ipdopd_par;
1465
20.6k
    complex_t h11, h12, h21, h22;  // COEF
1466
20.6k
    complex_t H11, H12, H21, H22;  // COEF
1467
20.6k
    complex_t deltaH11, deltaH12, deltaH21, deltaH22;  // COEF
1468
20.6k
    complex_t tempLeft, tempRight; // FRAC
1469
20.6k
    complex_t phaseLeft, phaseRight; // FRAC
1470
20.6k
    real_t L;
1471
20.6k
    const real_t *sf_iid;
1472
20.6k
    uint8_t no_iid_steps;
1473
1474
20.6k
    if (ps->iid_mode >= 3)
1475
8.57k
    {
1476
8.57k
        no_iid_steps = 15;
1477
8.57k
        sf_iid = sf_iid_fine;
1478
12.1k
    } else {
1479
12.1k
        no_iid_steps = 7;
1480
12.1k
        sf_iid = sf_iid_normal;
1481
12.1k
    }
1482
1483
20.6k
    if (ps->ipd_mode == 0 || ps->ipd_mode == 3)
1484
11.9k
    {
1485
11.9k
        nr_ipdopd_par = 11; /* resolution */
1486
11.9k
    } else {
1487
8.70k
        nr_ipdopd_par = ps->nr_ipdopd_par;
1488
8.70k
    }
1489
1490
701k
    for (gr = 0; gr < ps->num_groups; gr++)
1491
680k
    {
1492
680k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1493
1494
        /* use one channel per group in the subqmf domain */
1495
680k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr] + 1 : ps->group_border[gr + 1];
1496
1497
2.21M
        for (env = 0; env < ps->num_env; env++)
1498
1.53M
        {
1499
1.53M
            uint8_t abs_iid = (uint8_t)abs(ps->iid_index[env][bk]);
1500
            /* index range is supposed to be -7...7 or -15...15 depending on iid_mode
1501
                (Table 8.24, ISO/IEC 14496-3:2005).
1502
                if it is outside these boundaries, this is most likely an error. sanitize
1503
                it and try to process further. */
1504
1.53M
            if (ps->iid_index[env][bk] < -no_iid_steps) {
1505
408
                fprintf(stderr, "Warning: invalid iid_index: %d < %d\n", ps->iid_index[env][bk],
1506
408
                    -no_iid_steps);
1507
408
                ps->iid_index[env][bk] = -no_iid_steps;
1508
408
                abs_iid = no_iid_steps;
1509
1.53M
            } else if (ps->iid_index[env][bk] > no_iid_steps) {
1510
242
                fprintf(stderr, "Warning: invalid iid_index: %d > %d\n", ps->iid_index[env][bk],
1511
242
                    no_iid_steps);
1512
242
                ps->iid_index[env][bk] = no_iid_steps;
1513
242
                abs_iid = no_iid_steps;
1514
242
            }
1515
1.53M
            if (ps->icc_index[env][bk] < 0) {
1516
643
                fprintf(stderr, "Warning: invalid icc_index: %d < 0\n", ps->icc_index[env][bk]);
1517
643
                ps->icc_index[env][bk] = 0;
1518
1.53M
            } else if (ps->icc_index[env][bk] > 7) {
1519
0
                fprintf(stderr, "Warning: invalid icc_index: %d > 7\n", ps->icc_index[env][bk]);
1520
0
                ps->icc_index[env][bk] = 7;
1521
0
            }
1522
1523
1.53M
            if (ps->icc_mode < 3)
1524
896k
            {
1525
                /* type 'A' mixing as described in 8.6.4.6.2.1 */
1526
896k
                real_t c_1, c_2;  // COEF
1527
896k
                real_t cosa, sina;  // COEF
1528
896k
                real_t cosb, sinb;  // COEF
1529
896k
                real_t ab1, ab2;  // COEF
1530
896k
                real_t ab3, ab4;  // COEF
1531
1532
                /*
1533
                c_1 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps + iid_index] / 10.0)));
1534
                c_2 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps - iid_index] / 10.0)));
1535
                alpha = 0.5 * acos(quant_rho[icc_index]);
1536
                beta = alpha * ( c_1 - c_2 ) / sqrt(2.0);
1537
                */
1538
1539
                //printf("%d\n", ps->iid_index[env][bk]);
1540
1541
                /* calculate the scalefactors c_1 and c_2 from the intensity differences */
1542
896k
                c_1 = sf_iid[no_iid_steps + ps->iid_index[env][bk]];
1543
896k
                c_2 = sf_iid[no_iid_steps - ps->iid_index[env][bk]];
1544
1545
                /* calculate alpha and beta using the ICC parameters */
1546
896k
                cosa = cos_alphas[ps->icc_index[env][bk]];
1547
896k
                sina = sin_alphas[ps->icc_index[env][bk]];
1548
1549
896k
                if (ps->iid_mode >= 3)
1550
310k
                {
1551
310k
                    cosb = cos_betas_fine[abs_iid][ps->icc_index[env][bk]];
1552
310k
                    sinb = sin_betas_fine[abs_iid][ps->icc_index[env][bk]];
1553
585k
                } else {
1554
585k
                    cosb = cos_betas_normal[abs_iid][ps->icc_index[env][bk]];
1555
585k
                    sinb = sin_betas_normal[abs_iid][ps->icc_index[env][bk]];
1556
585k
                }
1557
1558
896k
                ab1 = MUL_C(cosb, cosa);
1559
896k
                ab2 = MUL_C(sinb, sina);
1560
896k
                ab3 = MUL_C(sinb, cosa);
1561
896k
                ab4 = MUL_C(cosb, sina);
1562
1563
                /* h_xy: COEF */
1564
896k
                RE(h11) = MUL_C(c_2, (ab1 - ab2));
1565
896k
                RE(h12) = MUL_C(c_1, (ab1 + ab2));
1566
896k
                RE(h21) = MUL_C(c_2, (ab3 + ab4));
1567
896k
                RE(h22) = MUL_C(c_1, (ab3 - ab4));
1568
896k
            } else {
1569
                /* type 'B' mixing as described in 8.6.4.6.2.2 */
1570
638k
                real_t sina, cosa;  // COEF
1571
638k
                real_t cosg, sing;  // COEF
1572
1573
                /*
1574
                real_t c, rho, mu, alpha, gamma;
1575
                uint8_t i;
1576
1577
                i = ps->iid_index[env][bk];
1578
                c = (real_t)pow(10.0, ((i)?(((i>0)?1:-1)*quant_iid[((i>0)?i:-i)-1]):0.)/20.0);
1579
                rho = quant_rho[ps->icc_index[env][bk]];
1580
1581
                if (rho == 0.0f && c == 1.)
1582
                {
1583
                    alpha = (real_t)M_PI/4.0f;
1584
                    rho = 0.05f;
1585
                } else {
1586
                    if (rho <= 0.05f)
1587
                    {
1588
                        rho = 0.05f;
1589
                    }
1590
                    alpha = 0.5f*(real_t)atan( (2.0f*c*rho) / (c*c-1.0f) );
1591
1592
                    if (alpha < 0.)
1593
                    {
1594
                        alpha += (real_t)M_PI/2.0f;
1595
                    }
1596
                    if (rho < 0.)
1597
                    {
1598
                        alpha += (real_t)M_PI;
1599
                    }
1600
                }
1601
                mu = c+1.0f/c;
1602
                mu = 1+(4.0f*rho*rho-4.0f)/(mu*mu);
1603
                gamma = (real_t)atan(sqrt((1.0f-sqrt(mu))/(1.0f+sqrt(mu))));
1604
                */
1605
1606
638k
                if (ps->iid_mode >= 3)
1607
402k
                {
1608
402k
                    cosa = sincos_alphas_B_fine[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1609
402k
                    sina = sincos_alphas_B_fine[30 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1610
402k
                    cosg = cos_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1611
402k
                    sing = sin_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1612
402k
                } else {
1613
236k
                    cosa = sincos_alphas_B_normal[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1614
236k
                    sina = sincos_alphas_B_normal[14 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1615
236k
                    cosg = cos_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1616
236k
                    sing = sin_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1617
236k
                }
1618
1619
638k
                RE(h11) = MUL_C(COEF_SQRT2, MUL_C(cosa, cosg));
1620
638k
                RE(h12) = MUL_C(COEF_SQRT2, MUL_C(sina, cosg));
1621
638k
                RE(h21) = MUL_C(COEF_SQRT2, MUL_C(-cosa, sing));
1622
638k
                RE(h22) = MUL_C(COEF_SQRT2, MUL_C(sina, sing));
1623
638k
            }
1624
1.53M
            IM(h11) = IM(h12) = IM(h21) = IM(h22) = 0;
1625
1626
            /* calculate phase rotation parameters H_xy */
1627
            /* note that the imaginary part of these parameters are only calculated when
1628
               IPD and OPD are enabled
1629
             */
1630
1.53M
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1631
188k
            {
1632
188k
                int8_t i;
1633
188k
                real_t xy, pq, xypq;  // FRAC
1634
1635
                /* ringbuffer index */
1636
188k
                i = ps->phase_hist;
1637
1638
                /* previous value */
1639
#ifdef FIXED_POINT
1640
                /* divide by 4*2, shift right 3 bits;
1641
                   extra halving to avoid overflows; it is ok, because result is normalized */
1642
96.6k
                RE(tempLeft)  = RE(ps->ipd_prev[bk][i]) >> 3;
1643
96.6k
                IM(tempLeft)  = IM(ps->ipd_prev[bk][i]) >> 3;
1644
96.6k
                RE(tempRight) = RE(ps->opd_prev[bk][i]) >> 3;
1645
96.6k
                IM(tempRight) = IM(ps->opd_prev[bk][i]) >> 3;
1646
#else
1647
92.2k
                RE(tempLeft)  = MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1648
92.2k
                IM(tempLeft)  = MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1649
92.2k
                RE(tempRight) = MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1650
92.2k
                IM(tempRight) = MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1651
#endif
1652
1653
                /* save current value */
1654
188k
                RE(ps->ipd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->ipd_index[env][bk])];
1655
188k
                IM(ps->ipd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->ipd_index[env][bk])];
1656
188k
                RE(ps->opd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->opd_index[env][bk])];
1657
188k
                IM(ps->opd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->opd_index[env][bk])];
1658
1659
                /* add current value */
1660
#ifdef FIXED_POINT
1661
                /* extra halving to avoid overflows */
1662
96.6k
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]) >> 1;
1663
96.6k
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]) >> 1;
1664
96.6k
                RE(tempRight) += RE(ps->opd_prev[bk][i]) >> 1;
1665
96.6k
                IM(tempRight) += IM(ps->opd_prev[bk][i]) >> 1;
1666
#else
1667
92.2k
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]);
1668
92.2k
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]);
1669
92.2k
                RE(tempRight) += RE(ps->opd_prev[bk][i]);
1670
92.2k
                IM(tempRight) += IM(ps->opd_prev[bk][i]);
1671
#endif
1672
1673
                /* ringbuffer index */
1674
188k
                if (i == 0)
1675
95.4k
                {
1676
95.4k
                    i = 2;
1677
95.4k
                }
1678
188k
                i--;
1679
1680
                /* get value before previous */
1681
#ifdef FIXED_POINT
1682
                /* dividing by 2*2, shift right 2 bits; extra halving to avoid overflows */
1683
96.6k
                RE(tempLeft)  += (RE(ps->ipd_prev[bk][i]) >> 2);
1684
96.6k
                IM(tempLeft)  += (IM(ps->ipd_prev[bk][i]) >> 2);
1685
96.6k
                RE(tempRight) += (RE(ps->opd_prev[bk][i]) >> 2);
1686
96.6k
                IM(tempRight) += (IM(ps->opd_prev[bk][i]) >> 2);
1687
#else
1688
92.2k
                RE(tempLeft)  += MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1689
92.2k
                IM(tempLeft)  += MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1690
92.2k
                RE(tempRight) += MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1691
92.2k
                IM(tempRight) += MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1692
#endif
1693
1694
#if 0 /* original code */
1695
                ipd = (float)atan2(IM(tempLeft), RE(tempLeft));
1696
                opd = (float)atan2(IM(tempRight), RE(tempRight));
1697
1698
                /* phase rotation */
1699
                RE(phaseLeft) = (float)cos(opd);
1700
                IM(phaseLeft) = (float)sin(opd);
1701
                opd -= ipd;
1702
                RE(phaseRight) = (float)cos(opd);
1703
                IM(phaseRight) = (float)sin(opd);
1704
#else
1705
1706
                // x = IM(tempLeft)
1707
                // y = RE(tempLeft)
1708
                // p = IM(tempRight)
1709
                // q = RE(tempRight)
1710
                // cos(atan2(x,y)) = y/sqrt((x*x) + (y*y))
1711
                // sin(atan2(x,y)) = x/sqrt((x*x) + (y*y))
1712
                // cos(atan2(x,y)-atan2(p,q)) = (y*q + x*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1713
                // sin(atan2(x,y)-atan2(p,q)) = (x*q - y*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1714
1715
188k
                xy = magnitude_c(tempRight);
1716
188k
                pq = magnitude_c(tempLeft);
1717
1718
188k
                if (xy != 0)
1719
188k
                {
1720
188k
                    RE(phaseLeft) = DIV_F(RE(tempRight), xy);
1721
188k
                    IM(phaseLeft) = DIV_F(IM(tempRight), xy);
1722
188k
                } else {
1723
0
                    RE(phaseLeft) = 0;
1724
0
                    IM(phaseLeft) = 0;
1725
0
                }
1726
1727
188k
                xypq = MUL_F(xy, pq);
1728
1729
188k
                if (xypq != 0)
1730
188k
                {
1731
188k
                    real_t tmp1 = MUL_F(RE(tempRight), RE(tempLeft)) + MUL_F(IM(tempRight), IM(tempLeft));
1732
188k
                    real_t tmp2 = MUL_F(IM(tempRight), RE(tempLeft)) - MUL_F(RE(tempRight), IM(tempLeft));
1733
1734
188k
                    RE(phaseRight) = DIV_F(tmp1, xypq);
1735
188k
                    IM(phaseRight) = DIV_F(tmp2, xypq);
1736
188k
                } else {
1737
0
                    RE(phaseRight) = 0;
1738
0
                    IM(phaseRight) = 0;
1739
0
                }
1740
1741
188k
#endif
1742
1743
                /* MUL_F(COEF, REAL) = COEF */
1744
188k
                IM(h11) = MUL_F(RE(h11), IM(phaseLeft));
1745
188k
                IM(h12) = MUL_F(RE(h12), IM(phaseRight));
1746
188k
                IM(h21) = MUL_F(RE(h21), IM(phaseLeft));
1747
188k
                IM(h22) = MUL_F(RE(h22), IM(phaseRight));
1748
1749
188k
                RE(h11) = MUL_F(RE(h11), RE(phaseLeft));
1750
188k
                RE(h12) = MUL_F(RE(h12), RE(phaseRight));
1751
188k
                RE(h21) = MUL_F(RE(h21), RE(phaseLeft));
1752
188k
                RE(h22) = MUL_F(RE(h22), RE(phaseRight));
1753
188k
            }
1754
1755
            /* length of the envelope n_e+1 - n_e (in time samples) */
1756
            /* 0 < L <= 32: integer */
1757
1.53M
            L = (real_t)(ps->border_position[env + 1] - ps->border_position[env]);
1758
1759
            /* obtain final H_xy by means of linear interpolation */
1760
1.53M
            RE(deltaH11) = (RE(h11) - RE(ps->h11_prev[gr])) / L;
1761
1.53M
            RE(deltaH12) = (RE(h12) - RE(ps->h12_prev[gr])) / L;
1762
1.53M
            RE(deltaH21) = (RE(h21) - RE(ps->h21_prev[gr])) / L;
1763
1.53M
            RE(deltaH22) = (RE(h22) - RE(ps->h22_prev[gr])) / L;
1764
1765
1.53M
            RE(H11) = RE(ps->h11_prev[gr]);
1766
1.53M
            RE(H12) = RE(ps->h12_prev[gr]);
1767
1.53M
            RE(H21) = RE(ps->h21_prev[gr]);
1768
1.53M
            RE(H22) = RE(ps->h22_prev[gr]);
1769
1.53M
            IM(H11) = IM(H12) = IM(H21) = IM(H22) = 0;
1770
1771
1.53M
            RE(ps->h11_prev[gr]) = RE(h11);
1772
1.53M
            RE(ps->h12_prev[gr]) = RE(h12);
1773
1.53M
            RE(ps->h21_prev[gr]) = RE(h21);
1774
1.53M
            RE(ps->h22_prev[gr]) = RE(h22);
1775
1776
            /* only calculate imaginary part when needed */
1777
1.53M
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1778
188k
            {
1779
                /* obtain final H_xy by means of linear interpolation */
1780
188k
                IM(deltaH11) = (IM(h11) - IM(ps->h11_prev[gr])) / L;
1781
188k
                IM(deltaH12) = (IM(h12) - IM(ps->h12_prev[gr])) / L;
1782
188k
                IM(deltaH21) = (IM(h21) - IM(ps->h21_prev[gr])) / L;
1783
188k
                IM(deltaH22) = (IM(h22) - IM(ps->h22_prev[gr])) / L;
1784
1785
188k
                IM(H11) = IM(ps->h11_prev[gr]);
1786
188k
                IM(H12) = IM(ps->h12_prev[gr]);
1787
188k
                IM(H21) = IM(ps->h21_prev[gr]);
1788
188k
                IM(H22) = IM(ps->h22_prev[gr]);
1789
1790
188k
                if ((NEGATE_IPD_MASK & ps->map_group2bk[gr]) != 0)
1791
27.2k
                {
1792
27.2k
                    IM(deltaH11) = -IM(deltaH11);
1793
27.2k
                    IM(deltaH12) = -IM(deltaH12);
1794
27.2k
                    IM(deltaH21) = -IM(deltaH21);
1795
27.2k
                    IM(deltaH22) = -IM(deltaH22);
1796
1797
27.2k
                    IM(H11) = -IM(H11);
1798
27.2k
                    IM(H12) = -IM(H12);
1799
27.2k
                    IM(H21) = -IM(H21);
1800
27.2k
                    IM(H22) = -IM(H22);
1801
27.2k
                }
1802
1803
188k
                IM(ps->h11_prev[gr]) = IM(h11);
1804
188k
                IM(ps->h12_prev[gr]) = IM(h12);
1805
188k
                IM(ps->h21_prev[gr]) = IM(h21);
1806
188k
                IM(ps->h22_prev[gr]) = IM(h22);
1807
188k
            }
1808
1809
            /* apply H_xy to the current envelope band of the decorrelated subband */
1810
22.6M
            for (n = ps->border_position[env]; n < ps->border_position[env + 1]; n++)
1811
21.1M
            {
1812
                /* addition finalises the interpolation over every n */
1813
21.1M
                RE(H11) += RE(deltaH11);
1814
21.1M
                RE(H12) += RE(deltaH12);
1815
21.1M
                RE(H21) += RE(deltaH21);
1816
21.1M
                RE(H22) += RE(deltaH22);
1817
21.1M
                if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1818
1.87M
                {
1819
1.87M
                    IM(H11) += IM(deltaH11);
1820
1.87M
                    IM(H12) += IM(deltaH12);
1821
1.87M
                    IM(H21) += IM(deltaH21);
1822
1.87M
                    IM(H22) += IM(deltaH22);
1823
1.87M
                }
1824
1825
                /* channel is an alias to the subband */
1826
72.0M
                for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1827
50.8M
                {
1828
50.8M
                    complex_t inLeft, inRight;  // precision_of in(Left|Right) == precision_of X_(left|right)
1829
1830
                    /* load decorrelated samples */
1831
50.8M
                    if (gr < ps->num_hybrid_groups)
1832
11.9M
                    {
1833
11.9M
                        RE(inLeft) =  RE(X_hybrid_left[n][sb]);
1834
11.9M
                        IM(inLeft) =  IM(X_hybrid_left[n][sb]);
1835
11.9M
                        RE(inRight) = RE(X_hybrid_right[n][sb]);
1836
11.9M
                        IM(inRight) = IM(X_hybrid_right[n][sb]);
1837
38.9M
                    } else {
1838
38.9M
                        RE(inLeft) =  RE(X_left[n][sb]);
1839
38.9M
                        IM(inLeft) =  IM(X_left[n][sb]);
1840
38.9M
                        RE(inRight) = RE(X_right[n][sb]);
1841
38.9M
                        IM(inRight) = IM(X_right[n][sb]);
1842
38.9M
                    }
1843
1844
                    /* precision_of temp(Left|Right) == precision_of X_(left|right) */
1845
1846
                    /* apply mixing */
1847
50.8M
                    RE(tempLeft) =  MUL_C(RE(H11), RE(inLeft)) + MUL_C(RE(H21), RE(inRight));
1848
50.8M
                    IM(tempLeft) =  MUL_C(RE(H11), IM(inLeft)) + MUL_C(RE(H21), IM(inRight));
1849
50.8M
                    RE(tempRight) = MUL_C(RE(H12), RE(inLeft)) + MUL_C(RE(H22), RE(inRight));
1850
50.8M
                    IM(tempRight) = MUL_C(RE(H12), IM(inLeft)) + MUL_C(RE(H22), IM(inRight));
1851
1852
                    /* only perform imaginary operations when needed */
1853
50.8M
                    if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1854
1.87M
                    {
1855
                        /* apply rotation */
1856
1.87M
                        RE(tempLeft)  -= MUL_C(IM(H11), IM(inLeft)) + MUL_C(IM(H21), IM(inRight));
1857
1.87M
                        IM(tempLeft)  += MUL_C(IM(H11), RE(inLeft)) + MUL_C(IM(H21), RE(inRight));
1858
1.87M
                        RE(tempRight) -= MUL_C(IM(H12), IM(inLeft)) + MUL_C(IM(H22), IM(inRight));
1859
1.87M
                        IM(tempRight) += MUL_C(IM(H12), RE(inLeft)) + MUL_C(IM(H22), RE(inRight));
1860
1.87M
                    }
1861
1862
                    /* store final samples */
1863
50.8M
                    if (gr < ps->num_hybrid_groups)
1864
11.9M
                    {
1865
11.9M
                        RE(X_hybrid_left[n][sb])  = RE(tempLeft);
1866
11.9M
                        IM(X_hybrid_left[n][sb])  = IM(tempLeft);
1867
11.9M
                        RE(X_hybrid_right[n][sb]) = RE(tempRight);
1868
11.9M
                        IM(X_hybrid_right[n][sb]) = IM(tempRight);
1869
38.9M
                    } else {
1870
38.9M
                        RE(X_left[n][sb])  = RE(tempLeft);
1871
38.9M
                        IM(X_left[n][sb])  = IM(tempLeft);
1872
38.9M
                        RE(X_right[n][sb]) = RE(tempRight);
1873
38.9M
                        IM(X_right[n][sb]) = IM(tempRight);
1874
38.9M
                    }
1875
50.8M
                }
1876
21.1M
            }
1877
1878
            /* shift phase smoother's circular buffer index */
1879
1.53M
            ps->phase_hist++;
1880
1.53M
            if (ps->phase_hist == 2)
1881
767k
            {
1882
767k
                ps->phase_hist = 0;
1883
767k
            }
1884
1.53M
        }
1885
680k
    }
1886
20.6k
}
ps_dec.c:ps_mix_phase
Line
Count
Source
1458
9.19k
{
1459
9.19k
    uint8_t n;
1460
9.19k
    uint8_t gr;
1461
9.19k
    uint8_t bk = 0;
1462
9.19k
    uint8_t sb, maxsb;
1463
9.19k
    uint8_t env;
1464
9.19k
    uint8_t nr_ipdopd_par;
1465
9.19k
    complex_t h11, h12, h21, h22;  // COEF
1466
9.19k
    complex_t H11, H12, H21, H22;  // COEF
1467
9.19k
    complex_t deltaH11, deltaH12, deltaH21, deltaH22;  // COEF
1468
9.19k
    complex_t tempLeft, tempRight; // FRAC
1469
9.19k
    complex_t phaseLeft, phaseRight; // FRAC
1470
9.19k
    real_t L;
1471
9.19k
    const real_t *sf_iid;
1472
9.19k
    uint8_t no_iid_steps;
1473
1474
9.19k
    if (ps->iid_mode >= 3)
1475
3.57k
    {
1476
3.57k
        no_iid_steps = 15;
1477
3.57k
        sf_iid = sf_iid_fine;
1478
5.62k
    } else {
1479
5.62k
        no_iid_steps = 7;
1480
5.62k
        sf_iid = sf_iid_normal;
1481
5.62k
    }
1482
1483
9.19k
    if (ps->ipd_mode == 0 || ps->ipd_mode == 3)
1484
5.02k
    {
1485
5.02k
        nr_ipdopd_par = 11; /* resolution */
1486
5.02k
    } else {
1487
4.17k
        nr_ipdopd_par = ps->nr_ipdopd_par;
1488
4.17k
    }
1489
1490
317k
    for (gr = 0; gr < ps->num_groups; gr++)
1491
308k
    {
1492
308k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1493
1494
        /* use one channel per group in the subqmf domain */
1495
308k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr] + 1 : ps->group_border[gr + 1];
1496
1497
1.00M
        for (env = 0; env < ps->num_env; env++)
1498
700k
        {
1499
700k
            uint8_t abs_iid = (uint8_t)abs(ps->iid_index[env][bk]);
1500
            /* index range is supposed to be -7...7 or -15...15 depending on iid_mode
1501
                (Table 8.24, ISO/IEC 14496-3:2005).
1502
                if it is outside these boundaries, this is most likely an error. sanitize
1503
                it and try to process further. */
1504
700k
            if (ps->iid_index[env][bk] < -no_iid_steps) {
1505
106
                fprintf(stderr, "Warning: invalid iid_index: %d < %d\n", ps->iid_index[env][bk],
1506
106
                    -no_iid_steps);
1507
106
                ps->iid_index[env][bk] = -no_iid_steps;
1508
106
                abs_iid = no_iid_steps;
1509
700k
            } else if (ps->iid_index[env][bk] > no_iid_steps) {
1510
86
                fprintf(stderr, "Warning: invalid iid_index: %d > %d\n", ps->iid_index[env][bk],
1511
86
                    no_iid_steps);
1512
86
                ps->iid_index[env][bk] = no_iid_steps;
1513
86
                abs_iid = no_iid_steps;
1514
86
            }
1515
700k
            if (ps->icc_index[env][bk] < 0) {
1516
250
                fprintf(stderr, "Warning: invalid icc_index: %d < 0\n", ps->icc_index[env][bk]);
1517
250
                ps->icc_index[env][bk] = 0;
1518
700k
            } else if (ps->icc_index[env][bk] > 7) {
1519
0
                fprintf(stderr, "Warning: invalid icc_index: %d > 7\n", ps->icc_index[env][bk]);
1520
0
                ps->icc_index[env][bk] = 7;
1521
0
            }
1522
1523
700k
            if (ps->icc_mode < 3)
1524
343k
            {
1525
                /* type 'A' mixing as described in 8.6.4.6.2.1 */
1526
343k
                real_t c_1, c_2;  // COEF
1527
343k
                real_t cosa, sina;  // COEF
1528
343k
                real_t cosb, sinb;  // COEF
1529
343k
                real_t ab1, ab2;  // COEF
1530
343k
                real_t ab3, ab4;  // COEF
1531
1532
                /*
1533
                c_1 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps + iid_index] / 10.0)));
1534
                c_2 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps - iid_index] / 10.0)));
1535
                alpha = 0.5 * acos(quant_rho[icc_index]);
1536
                beta = alpha * ( c_1 - c_2 ) / sqrt(2.0);
1537
                */
1538
1539
                //printf("%d\n", ps->iid_index[env][bk]);
1540
1541
                /* calculate the scalefactors c_1 and c_2 from the intensity differences */
1542
343k
                c_1 = sf_iid[no_iid_steps + ps->iid_index[env][bk]];
1543
343k
                c_2 = sf_iid[no_iid_steps - ps->iid_index[env][bk]];
1544
1545
                /* calculate alpha and beta using the ICC parameters */
1546
343k
                cosa = cos_alphas[ps->icc_index[env][bk]];
1547
343k
                sina = sin_alphas[ps->icc_index[env][bk]];
1548
1549
343k
                if (ps->iid_mode >= 3)
1550
70.3k
                {
1551
70.3k
                    cosb = cos_betas_fine[abs_iid][ps->icc_index[env][bk]];
1552
70.3k
                    sinb = sin_betas_fine[abs_iid][ps->icc_index[env][bk]];
1553
273k
                } else {
1554
273k
                    cosb = cos_betas_normal[abs_iid][ps->icc_index[env][bk]];
1555
273k
                    sinb = sin_betas_normal[abs_iid][ps->icc_index[env][bk]];
1556
273k
                }
1557
1558
343k
                ab1 = MUL_C(cosb, cosa);
1559
343k
                ab2 = MUL_C(sinb, sina);
1560
343k
                ab3 = MUL_C(sinb, cosa);
1561
343k
                ab4 = MUL_C(cosb, sina);
1562
1563
                /* h_xy: COEF */
1564
343k
                RE(h11) = MUL_C(c_2, (ab1 - ab2));
1565
343k
                RE(h12) = MUL_C(c_1, (ab1 + ab2));
1566
343k
                RE(h21) = MUL_C(c_2, (ab3 + ab4));
1567
343k
                RE(h22) = MUL_C(c_1, (ab3 - ab4));
1568
357k
            } else {
1569
                /* type 'B' mixing as described in 8.6.4.6.2.2 */
1570
357k
                real_t sina, cosa;  // COEF
1571
357k
                real_t cosg, sing;  // COEF
1572
1573
                /*
1574
                real_t c, rho, mu, alpha, gamma;
1575
                uint8_t i;
1576
1577
                i = ps->iid_index[env][bk];
1578
                c = (real_t)pow(10.0, ((i)?(((i>0)?1:-1)*quant_iid[((i>0)?i:-i)-1]):0.)/20.0);
1579
                rho = quant_rho[ps->icc_index[env][bk]];
1580
1581
                if (rho == 0.0f && c == 1.)
1582
                {
1583
                    alpha = (real_t)M_PI/4.0f;
1584
                    rho = 0.05f;
1585
                } else {
1586
                    if (rho <= 0.05f)
1587
                    {
1588
                        rho = 0.05f;
1589
                    }
1590
                    alpha = 0.5f*(real_t)atan( (2.0f*c*rho) / (c*c-1.0f) );
1591
1592
                    if (alpha < 0.)
1593
                    {
1594
                        alpha += (real_t)M_PI/2.0f;
1595
                    }
1596
                    if (rho < 0.)
1597
                    {
1598
                        alpha += (real_t)M_PI;
1599
                    }
1600
                }
1601
                mu = c+1.0f/c;
1602
                mu = 1+(4.0f*rho*rho-4.0f)/(mu*mu);
1603
                gamma = (real_t)atan(sqrt((1.0f-sqrt(mu))/(1.0f+sqrt(mu))));
1604
                */
1605
1606
357k
                if (ps->iid_mode >= 3)
1607
237k
                {
1608
237k
                    cosa = sincos_alphas_B_fine[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1609
237k
                    sina = sincos_alphas_B_fine[30 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1610
237k
                    cosg = cos_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1611
237k
                    sing = sin_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1612
237k
                } else {
1613
119k
                    cosa = sincos_alphas_B_normal[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1614
119k
                    sina = sincos_alphas_B_normal[14 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1615
119k
                    cosg = cos_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1616
119k
                    sing = sin_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1617
119k
                }
1618
1619
357k
                RE(h11) = MUL_C(COEF_SQRT2, MUL_C(cosa, cosg));
1620
357k
                RE(h12) = MUL_C(COEF_SQRT2, MUL_C(sina, cosg));
1621
357k
                RE(h21) = MUL_C(COEF_SQRT2, MUL_C(-cosa, sing));
1622
357k
                RE(h22) = MUL_C(COEF_SQRT2, MUL_C(sina, sing));
1623
357k
            }
1624
700k
            IM(h11) = IM(h12) = IM(h21) = IM(h22) = 0;
1625
1626
            /* calculate phase rotation parameters H_xy */
1627
            /* note that the imaginary part of these parameters are only calculated when
1628
               IPD and OPD are enabled
1629
             */
1630
700k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1631
96.6k
            {
1632
96.6k
                int8_t i;
1633
96.6k
                real_t xy, pq, xypq;  // FRAC
1634
1635
                /* ringbuffer index */
1636
96.6k
                i = ps->phase_hist;
1637
1638
                /* previous value */
1639
96.6k
#ifdef FIXED_POINT
1640
                /* divide by 4*2, shift right 3 bits;
1641
                   extra halving to avoid overflows; it is ok, because result is normalized */
1642
96.6k
                RE(tempLeft)  = RE(ps->ipd_prev[bk][i]) >> 3;
1643
96.6k
                IM(tempLeft)  = IM(ps->ipd_prev[bk][i]) >> 3;
1644
96.6k
                RE(tempRight) = RE(ps->opd_prev[bk][i]) >> 3;
1645
96.6k
                IM(tempRight) = IM(ps->opd_prev[bk][i]) >> 3;
1646
#else
1647
                RE(tempLeft)  = MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1648
                IM(tempLeft)  = MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1649
                RE(tempRight) = MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1650
                IM(tempRight) = MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1651
#endif
1652
1653
                /* save current value */
1654
96.6k
                RE(ps->ipd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->ipd_index[env][bk])];
1655
96.6k
                IM(ps->ipd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->ipd_index[env][bk])];
1656
96.6k
                RE(ps->opd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->opd_index[env][bk])];
1657
96.6k
                IM(ps->opd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->opd_index[env][bk])];
1658
1659
                /* add current value */
1660
96.6k
#ifdef FIXED_POINT
1661
                /* extra halving to avoid overflows */
1662
96.6k
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]) >> 1;
1663
96.6k
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]) >> 1;
1664
96.6k
                RE(tempRight) += RE(ps->opd_prev[bk][i]) >> 1;
1665
96.6k
                IM(tempRight) += IM(ps->opd_prev[bk][i]) >> 1;
1666
#else
1667
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]);
1668
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]);
1669
                RE(tempRight) += RE(ps->opd_prev[bk][i]);
1670
                IM(tempRight) += IM(ps->opd_prev[bk][i]);
1671
#endif
1672
1673
                /* ringbuffer index */
1674
96.6k
                if (i == 0)
1675
48.8k
                {
1676
48.8k
                    i = 2;
1677
48.8k
                }
1678
96.6k
                i--;
1679
1680
                /* get value before previous */
1681
96.6k
#ifdef FIXED_POINT
1682
                /* dividing by 2*2, shift right 2 bits; extra halving to avoid overflows */
1683
96.6k
                RE(tempLeft)  += (RE(ps->ipd_prev[bk][i]) >> 2);
1684
96.6k
                IM(tempLeft)  += (IM(ps->ipd_prev[bk][i]) >> 2);
1685
96.6k
                RE(tempRight) += (RE(ps->opd_prev[bk][i]) >> 2);
1686
96.6k
                IM(tempRight) += (IM(ps->opd_prev[bk][i]) >> 2);
1687
#else
1688
                RE(tempLeft)  += MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1689
                IM(tempLeft)  += MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1690
                RE(tempRight) += MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1691
                IM(tempRight) += MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1692
#endif
1693
1694
#if 0 /* original code */
1695
                ipd = (float)atan2(IM(tempLeft), RE(tempLeft));
1696
                opd = (float)atan2(IM(tempRight), RE(tempRight));
1697
1698
                /* phase rotation */
1699
                RE(phaseLeft) = (float)cos(opd);
1700
                IM(phaseLeft) = (float)sin(opd);
1701
                opd -= ipd;
1702
                RE(phaseRight) = (float)cos(opd);
1703
                IM(phaseRight) = (float)sin(opd);
1704
#else
1705
1706
                // x = IM(tempLeft)
1707
                // y = RE(tempLeft)
1708
                // p = IM(tempRight)
1709
                // q = RE(tempRight)
1710
                // cos(atan2(x,y)) = y/sqrt((x*x) + (y*y))
1711
                // sin(atan2(x,y)) = x/sqrt((x*x) + (y*y))
1712
                // cos(atan2(x,y)-atan2(p,q)) = (y*q + x*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1713
                // sin(atan2(x,y)-atan2(p,q)) = (x*q - y*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1714
1715
96.6k
                xy = magnitude_c(tempRight);
1716
96.6k
                pq = magnitude_c(tempLeft);
1717
1718
96.6k
                if (xy != 0)
1719
96.6k
                {
1720
96.6k
                    RE(phaseLeft) = DIV_F(RE(tempRight), xy);
1721
96.6k
                    IM(phaseLeft) = DIV_F(IM(tempRight), xy);
1722
96.6k
                } else {
1723
0
                    RE(phaseLeft) = 0;
1724
0
                    IM(phaseLeft) = 0;
1725
0
                }
1726
1727
96.6k
                xypq = MUL_F(xy, pq);
1728
1729
96.6k
                if (xypq != 0)
1730
96.6k
                {
1731
96.6k
                    real_t tmp1 = MUL_F(RE(tempRight), RE(tempLeft)) + MUL_F(IM(tempRight), IM(tempLeft));
1732
96.6k
                    real_t tmp2 = MUL_F(IM(tempRight), RE(tempLeft)) - MUL_F(RE(tempRight), IM(tempLeft));
1733
1734
96.6k
                    RE(phaseRight) = DIV_F(tmp1, xypq);
1735
96.6k
                    IM(phaseRight) = DIV_F(tmp2, xypq);
1736
96.6k
                } else {
1737
0
                    RE(phaseRight) = 0;
1738
0
                    IM(phaseRight) = 0;
1739
0
                }
1740
1741
96.6k
#endif
1742
1743
                /* MUL_F(COEF, REAL) = COEF */
1744
96.6k
                IM(h11) = MUL_F(RE(h11), IM(phaseLeft));
1745
96.6k
                IM(h12) = MUL_F(RE(h12), IM(phaseRight));
1746
96.6k
                IM(h21) = MUL_F(RE(h21), IM(phaseLeft));
1747
96.6k
                IM(h22) = MUL_F(RE(h22), IM(phaseRight));
1748
1749
96.6k
                RE(h11) = MUL_F(RE(h11), RE(phaseLeft));
1750
96.6k
                RE(h12) = MUL_F(RE(h12), RE(phaseRight));
1751
96.6k
                RE(h21) = MUL_F(RE(h21), RE(phaseLeft));
1752
96.6k
                RE(h22) = MUL_F(RE(h22), RE(phaseRight));
1753
96.6k
            }
1754
1755
            /* length of the envelope n_e+1 - n_e (in time samples) */
1756
            /* 0 < L <= 32: integer */
1757
700k
            L = (real_t)(ps->border_position[env + 1] - ps->border_position[env]);
1758
1759
            /* obtain final H_xy by means of linear interpolation */
1760
700k
            RE(deltaH11) = (RE(h11) - RE(ps->h11_prev[gr])) / L;
1761
700k
            RE(deltaH12) = (RE(h12) - RE(ps->h12_prev[gr])) / L;
1762
700k
            RE(deltaH21) = (RE(h21) - RE(ps->h21_prev[gr])) / L;
1763
700k
            RE(deltaH22) = (RE(h22) - RE(ps->h22_prev[gr])) / L;
1764
1765
700k
            RE(H11) = RE(ps->h11_prev[gr]);
1766
700k
            RE(H12) = RE(ps->h12_prev[gr]);
1767
700k
            RE(H21) = RE(ps->h21_prev[gr]);
1768
700k
            RE(H22) = RE(ps->h22_prev[gr]);
1769
700k
            IM(H11) = IM(H12) = IM(H21) = IM(H22) = 0;
1770
1771
700k
            RE(ps->h11_prev[gr]) = RE(h11);
1772
700k
            RE(ps->h12_prev[gr]) = RE(h12);
1773
700k
            RE(ps->h21_prev[gr]) = RE(h21);
1774
700k
            RE(ps->h22_prev[gr]) = RE(h22);
1775
1776
            /* only calculate imaginary part when needed */
1777
700k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1778
96.6k
            {
1779
                /* obtain final H_xy by means of linear interpolation */
1780
96.6k
                IM(deltaH11) = (IM(h11) - IM(ps->h11_prev[gr])) / L;
1781
96.6k
                IM(deltaH12) = (IM(h12) - IM(ps->h12_prev[gr])) / L;
1782
96.6k
                IM(deltaH21) = (IM(h21) - IM(ps->h21_prev[gr])) / L;
1783
96.6k
                IM(deltaH22) = (IM(h22) - IM(ps->h22_prev[gr])) / L;
1784
1785
96.6k
                IM(H11) = IM(ps->h11_prev[gr]);
1786
96.6k
                IM(H12) = IM(ps->h12_prev[gr]);
1787
96.6k
                IM(H21) = IM(ps->h21_prev[gr]);
1788
96.6k
                IM(H22) = IM(ps->h22_prev[gr]);
1789
1790
96.6k
                if ((NEGATE_IPD_MASK & ps->map_group2bk[gr]) != 0)
1791
13.9k
                {
1792
13.9k
                    IM(deltaH11) = -IM(deltaH11);
1793
13.9k
                    IM(deltaH12) = -IM(deltaH12);
1794
13.9k
                    IM(deltaH21) = -IM(deltaH21);
1795
13.9k
                    IM(deltaH22) = -IM(deltaH22);
1796
1797
13.9k
                    IM(H11) = -IM(H11);
1798
13.9k
                    IM(H12) = -IM(H12);
1799
13.9k
                    IM(H21) = -IM(H21);
1800
13.9k
                    IM(H22) = -IM(H22);
1801
13.9k
                }
1802
1803
96.6k
                IM(ps->h11_prev[gr]) = IM(h11);
1804
96.6k
                IM(ps->h12_prev[gr]) = IM(h12);
1805
96.6k
                IM(ps->h21_prev[gr]) = IM(h21);
1806
96.6k
                IM(ps->h22_prev[gr]) = IM(h22);
1807
96.6k
            }
1808
1809
            /* apply H_xy to the current envelope band of the decorrelated subband */
1810
10.2M
            for (n = ps->border_position[env]; n < ps->border_position[env + 1]; n++)
1811
9.58M
            {
1812
                /* addition finalises the interpolation over every n */
1813
9.58M
                RE(H11) += RE(deltaH11);
1814
9.58M
                RE(H12) += RE(deltaH12);
1815
9.58M
                RE(H21) += RE(deltaH21);
1816
9.58M
                RE(H22) += RE(deltaH22);
1817
9.58M
                if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1818
944k
                {
1819
944k
                    IM(H11) += IM(deltaH11);
1820
944k
                    IM(H12) += IM(deltaH12);
1821
944k
                    IM(H21) += IM(deltaH21);
1822
944k
                    IM(H22) += IM(deltaH22);
1823
944k
                }
1824
1825
                /* channel is an alias to the subband */
1826
32.3M
                for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1827
22.7M
                {
1828
22.7M
                    complex_t inLeft, inRight;  // precision_of in(Left|Right) == precision_of X_(left|right)
1829
1830
                    /* load decorrelated samples */
1831
22.7M
                    if (gr < ps->num_hybrid_groups)
1832
5.43M
                    {
1833
5.43M
                        RE(inLeft) =  RE(X_hybrid_left[n][sb]);
1834
5.43M
                        IM(inLeft) =  IM(X_hybrid_left[n][sb]);
1835
5.43M
                        RE(inRight) = RE(X_hybrid_right[n][sb]);
1836
5.43M
                        IM(inRight) = IM(X_hybrid_right[n][sb]);
1837
17.3M
                    } else {
1838
17.3M
                        RE(inLeft) =  RE(X_left[n][sb]);
1839
17.3M
                        IM(inLeft) =  IM(X_left[n][sb]);
1840
17.3M
                        RE(inRight) = RE(X_right[n][sb]);
1841
17.3M
                        IM(inRight) = IM(X_right[n][sb]);
1842
17.3M
                    }
1843
1844
                    /* precision_of temp(Left|Right) == precision_of X_(left|right) */
1845
1846
                    /* apply mixing */
1847
22.7M
                    RE(tempLeft) =  MUL_C(RE(H11), RE(inLeft)) + MUL_C(RE(H21), RE(inRight));
1848
22.7M
                    IM(tempLeft) =  MUL_C(RE(H11), IM(inLeft)) + MUL_C(RE(H21), IM(inRight));
1849
22.7M
                    RE(tempRight) = MUL_C(RE(H12), RE(inLeft)) + MUL_C(RE(H22), RE(inRight));
1850
22.7M
                    IM(tempRight) = MUL_C(RE(H12), IM(inLeft)) + MUL_C(RE(H22), IM(inRight));
1851
1852
                    /* only perform imaginary operations when needed */
1853
22.7M
                    if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1854
946k
                    {
1855
                        /* apply rotation */
1856
946k
                        RE(tempLeft)  -= MUL_C(IM(H11), IM(inLeft)) + MUL_C(IM(H21), IM(inRight));
1857
946k
                        IM(tempLeft)  += MUL_C(IM(H11), RE(inLeft)) + MUL_C(IM(H21), RE(inRight));
1858
946k
                        RE(tempRight) -= MUL_C(IM(H12), IM(inLeft)) + MUL_C(IM(H22), IM(inRight));
1859
946k
                        IM(tempRight) += MUL_C(IM(H12), RE(inLeft)) + MUL_C(IM(H22), RE(inRight));
1860
946k
                    }
1861
1862
                    /* store final samples */
1863
22.7M
                    if (gr < ps->num_hybrid_groups)
1864
5.43M
                    {
1865
5.43M
                        RE(X_hybrid_left[n][sb])  = RE(tempLeft);
1866
5.43M
                        IM(X_hybrid_left[n][sb])  = IM(tempLeft);
1867
5.43M
                        RE(X_hybrid_right[n][sb]) = RE(tempRight);
1868
5.43M
                        IM(X_hybrid_right[n][sb]) = IM(tempRight);
1869
17.3M
                    } else {
1870
17.3M
                        RE(X_left[n][sb])  = RE(tempLeft);
1871
17.3M
                        IM(X_left[n][sb])  = IM(tempLeft);
1872
17.3M
                        RE(X_right[n][sb]) = RE(tempRight);
1873
17.3M
                        IM(X_right[n][sb]) = IM(tempRight);
1874
17.3M
                    }
1875
22.7M
                }
1876
9.58M
            }
1877
1878
            /* shift phase smoother's circular buffer index */
1879
700k
            ps->phase_hist++;
1880
700k
            if (ps->phase_hist == 2)
1881
350k
            {
1882
350k
                ps->phase_hist = 0;
1883
350k
            }
1884
700k
        }
1885
308k
    }
1886
9.19k
}
ps_dec.c:ps_mix_phase
Line
Count
Source
1458
11.4k
{
1459
11.4k
    uint8_t n;
1460
11.4k
    uint8_t gr;
1461
11.4k
    uint8_t bk = 0;
1462
11.4k
    uint8_t sb, maxsb;
1463
11.4k
    uint8_t env;
1464
11.4k
    uint8_t nr_ipdopd_par;
1465
11.4k
    complex_t h11, h12, h21, h22;  // COEF
1466
11.4k
    complex_t H11, H12, H21, H22;  // COEF
1467
11.4k
    complex_t deltaH11, deltaH12, deltaH21, deltaH22;  // COEF
1468
11.4k
    complex_t tempLeft, tempRight; // FRAC
1469
11.4k
    complex_t phaseLeft, phaseRight; // FRAC
1470
11.4k
    real_t L;
1471
11.4k
    const real_t *sf_iid;
1472
11.4k
    uint8_t no_iid_steps;
1473
1474
11.4k
    if (ps->iid_mode >= 3)
1475
4.99k
    {
1476
4.99k
        no_iid_steps = 15;
1477
4.99k
        sf_iid = sf_iid_fine;
1478
6.49k
    } else {
1479
6.49k
        no_iid_steps = 7;
1480
6.49k
        sf_iid = sf_iid_normal;
1481
6.49k
    }
1482
1483
11.4k
    if (ps->ipd_mode == 0 || ps->ipd_mode == 3)
1484
6.96k
    {
1485
6.96k
        nr_ipdopd_par = 11; /* resolution */
1486
6.96k
    } else {
1487
4.53k
        nr_ipdopd_par = ps->nr_ipdopd_par;
1488
4.53k
    }
1489
1490
383k
    for (gr = 0; gr < ps->num_groups; gr++)
1491
372k
    {
1492
372k
        bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
1493
1494
        /* use one channel per group in the subqmf domain */
1495
372k
        maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr] + 1 : ps->group_border[gr + 1];
1496
1497
1.20M
        for (env = 0; env < ps->num_env; env++)
1498
834k
        {
1499
834k
            uint8_t abs_iid = (uint8_t)abs(ps->iid_index[env][bk]);
1500
            /* index range is supposed to be -7...7 or -15...15 depending on iid_mode
1501
                (Table 8.24, ISO/IEC 14496-3:2005).
1502
                if it is outside these boundaries, this is most likely an error. sanitize
1503
                it and try to process further. */
1504
834k
            if (ps->iid_index[env][bk] < -no_iid_steps) {
1505
302
                fprintf(stderr, "Warning: invalid iid_index: %d < %d\n", ps->iid_index[env][bk],
1506
302
                    -no_iid_steps);
1507
302
                ps->iid_index[env][bk] = -no_iid_steps;
1508
302
                abs_iid = no_iid_steps;
1509
834k
            } else if (ps->iid_index[env][bk] > no_iid_steps) {
1510
156
                fprintf(stderr, "Warning: invalid iid_index: %d > %d\n", ps->iid_index[env][bk],
1511
156
                    no_iid_steps);
1512
156
                ps->iid_index[env][bk] = no_iid_steps;
1513
156
                abs_iid = no_iid_steps;
1514
156
            }
1515
834k
            if (ps->icc_index[env][bk] < 0) {
1516
393
                fprintf(stderr, "Warning: invalid icc_index: %d < 0\n", ps->icc_index[env][bk]);
1517
393
                ps->icc_index[env][bk] = 0;
1518
834k
            } else if (ps->icc_index[env][bk] > 7) {
1519
0
                fprintf(stderr, "Warning: invalid icc_index: %d > 7\n", ps->icc_index[env][bk]);
1520
0
                ps->icc_index[env][bk] = 7;
1521
0
            }
1522
1523
834k
            if (ps->icc_mode < 3)
1524
553k
            {
1525
                /* type 'A' mixing as described in 8.6.4.6.2.1 */
1526
553k
                real_t c_1, c_2;  // COEF
1527
553k
                real_t cosa, sina;  // COEF
1528
553k
                real_t cosb, sinb;  // COEF
1529
553k
                real_t ab1, ab2;  // COEF
1530
553k
                real_t ab3, ab4;  // COEF
1531
1532
                /*
1533
                c_1 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps + iid_index] / 10.0)));
1534
                c_2 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps - iid_index] / 10.0)));
1535
                alpha = 0.5 * acos(quant_rho[icc_index]);
1536
                beta = alpha * ( c_1 - c_2 ) / sqrt(2.0);
1537
                */
1538
1539
                //printf("%d\n", ps->iid_index[env][bk]);
1540
1541
                /* calculate the scalefactors c_1 and c_2 from the intensity differences */
1542
553k
                c_1 = sf_iid[no_iid_steps + ps->iid_index[env][bk]];
1543
553k
                c_2 = sf_iid[no_iid_steps - ps->iid_index[env][bk]];
1544
1545
                /* calculate alpha and beta using the ICC parameters */
1546
553k
                cosa = cos_alphas[ps->icc_index[env][bk]];
1547
553k
                sina = sin_alphas[ps->icc_index[env][bk]];
1548
1549
553k
                if (ps->iid_mode >= 3)
1550
240k
                {
1551
240k
                    cosb = cos_betas_fine[abs_iid][ps->icc_index[env][bk]];
1552
240k
                    sinb = sin_betas_fine[abs_iid][ps->icc_index[env][bk]];
1553
312k
                } else {
1554
312k
                    cosb = cos_betas_normal[abs_iid][ps->icc_index[env][bk]];
1555
312k
                    sinb = sin_betas_normal[abs_iid][ps->icc_index[env][bk]];
1556
312k
                }
1557
1558
553k
                ab1 = MUL_C(cosb, cosa);
1559
553k
                ab2 = MUL_C(sinb, sina);
1560
553k
                ab3 = MUL_C(sinb, cosa);
1561
553k
                ab4 = MUL_C(cosb, sina);
1562
1563
                /* h_xy: COEF */
1564
553k
                RE(h11) = MUL_C(c_2, (ab1 - ab2));
1565
553k
                RE(h12) = MUL_C(c_1, (ab1 + ab2));
1566
553k
                RE(h21) = MUL_C(c_2, (ab3 + ab4));
1567
553k
                RE(h22) = MUL_C(c_1, (ab3 - ab4));
1568
553k
            } else {
1569
                /* type 'B' mixing as described in 8.6.4.6.2.2 */
1570
281k
                real_t sina, cosa;  // COEF
1571
281k
                real_t cosg, sing;  // COEF
1572
1573
                /*
1574
                real_t c, rho, mu, alpha, gamma;
1575
                uint8_t i;
1576
1577
                i = ps->iid_index[env][bk];
1578
                c = (real_t)pow(10.0, ((i)?(((i>0)?1:-1)*quant_iid[((i>0)?i:-i)-1]):0.)/20.0);
1579
                rho = quant_rho[ps->icc_index[env][bk]];
1580
1581
                if (rho == 0.0f && c == 1.)
1582
                {
1583
                    alpha = (real_t)M_PI/4.0f;
1584
                    rho = 0.05f;
1585
                } else {
1586
                    if (rho <= 0.05f)
1587
                    {
1588
                        rho = 0.05f;
1589
                    }
1590
                    alpha = 0.5f*(real_t)atan( (2.0f*c*rho) / (c*c-1.0f) );
1591
1592
                    if (alpha < 0.)
1593
                    {
1594
                        alpha += (real_t)M_PI/2.0f;
1595
                    }
1596
                    if (rho < 0.)
1597
                    {
1598
                        alpha += (real_t)M_PI;
1599
                    }
1600
                }
1601
                mu = c+1.0f/c;
1602
                mu = 1+(4.0f*rho*rho-4.0f)/(mu*mu);
1603
                gamma = (real_t)atan(sqrt((1.0f-sqrt(mu))/(1.0f+sqrt(mu))));
1604
                */
1605
1606
281k
                if (ps->iid_mode >= 3)
1607
165k
                {
1608
165k
                    cosa = sincos_alphas_B_fine[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1609
165k
                    sina = sincos_alphas_B_fine[30 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1610
165k
                    cosg = cos_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1611
165k
                    sing = sin_gammas_fine[abs_iid][ps->icc_index[env][bk]];
1612
165k
                } else {
1613
116k
                    cosa = sincos_alphas_B_normal[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
1614
116k
                    sina = sincos_alphas_B_normal[14 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
1615
116k
                    cosg = cos_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1616
116k
                    sing = sin_gammas_normal[abs_iid][ps->icc_index[env][bk]];
1617
116k
                }
1618
1619
281k
                RE(h11) = MUL_C(COEF_SQRT2, MUL_C(cosa, cosg));
1620
281k
                RE(h12) = MUL_C(COEF_SQRT2, MUL_C(sina, cosg));
1621
281k
                RE(h21) = MUL_C(COEF_SQRT2, MUL_C(-cosa, sing));
1622
281k
                RE(h22) = MUL_C(COEF_SQRT2, MUL_C(sina, sing));
1623
281k
            }
1624
834k
            IM(h11) = IM(h12) = IM(h21) = IM(h22) = 0;
1625
1626
            /* calculate phase rotation parameters H_xy */
1627
            /* note that the imaginary part of these parameters are only calculated when
1628
               IPD and OPD are enabled
1629
             */
1630
834k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1631
92.2k
            {
1632
92.2k
                int8_t i;
1633
92.2k
                real_t xy, pq, xypq;  // FRAC
1634
1635
                /* ringbuffer index */
1636
92.2k
                i = ps->phase_hist;
1637
1638
                /* previous value */
1639
#ifdef FIXED_POINT
1640
                /* divide by 4*2, shift right 3 bits;
1641
                   extra halving to avoid overflows; it is ok, because result is normalized */
1642
                RE(tempLeft)  = RE(ps->ipd_prev[bk][i]) >> 3;
1643
                IM(tempLeft)  = IM(ps->ipd_prev[bk][i]) >> 3;
1644
                RE(tempRight) = RE(ps->opd_prev[bk][i]) >> 3;
1645
                IM(tempRight) = IM(ps->opd_prev[bk][i]) >> 3;
1646
#else
1647
92.2k
                RE(tempLeft)  = MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1648
92.2k
                IM(tempLeft)  = MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
1649
92.2k
                RE(tempRight) = MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1650
92.2k
                IM(tempRight) = MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
1651
92.2k
#endif
1652
1653
                /* save current value */
1654
92.2k
                RE(ps->ipd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->ipd_index[env][bk])];
1655
92.2k
                IM(ps->ipd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->ipd_index[env][bk])];
1656
92.2k
                RE(ps->opd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->opd_index[env][bk])];
1657
92.2k
                IM(ps->opd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->opd_index[env][bk])];
1658
1659
                /* add current value */
1660
#ifdef FIXED_POINT
1661
                /* extra halving to avoid overflows */
1662
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]) >> 1;
1663
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]) >> 1;
1664
                RE(tempRight) += RE(ps->opd_prev[bk][i]) >> 1;
1665
                IM(tempRight) += IM(ps->opd_prev[bk][i]) >> 1;
1666
#else
1667
92.2k
                RE(tempLeft)  += RE(ps->ipd_prev[bk][i]);
1668
92.2k
                IM(tempLeft)  += IM(ps->ipd_prev[bk][i]);
1669
92.2k
                RE(tempRight) += RE(ps->opd_prev[bk][i]);
1670
92.2k
                IM(tempRight) += IM(ps->opd_prev[bk][i]);
1671
92.2k
#endif
1672
1673
                /* ringbuffer index */
1674
92.2k
                if (i == 0)
1675
46.6k
                {
1676
46.6k
                    i = 2;
1677
46.6k
                }
1678
92.2k
                i--;
1679
1680
                /* get value before previous */
1681
#ifdef FIXED_POINT
1682
                /* dividing by 2*2, shift right 2 bits; extra halving to avoid overflows */
1683
                RE(tempLeft)  += (RE(ps->ipd_prev[bk][i]) >> 2);
1684
                IM(tempLeft)  += (IM(ps->ipd_prev[bk][i]) >> 2);
1685
                RE(tempRight) += (RE(ps->opd_prev[bk][i]) >> 2);
1686
                IM(tempRight) += (IM(ps->opd_prev[bk][i]) >> 2);
1687
#else
1688
92.2k
                RE(tempLeft)  += MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1689
92.2k
                IM(tempLeft)  += MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
1690
92.2k
                RE(tempRight) += MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1691
92.2k
                IM(tempRight) += MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
1692
92.2k
#endif
1693
1694
#if 0 /* original code */
1695
                ipd = (float)atan2(IM(tempLeft), RE(tempLeft));
1696
                opd = (float)atan2(IM(tempRight), RE(tempRight));
1697
1698
                /* phase rotation */
1699
                RE(phaseLeft) = (float)cos(opd);
1700
                IM(phaseLeft) = (float)sin(opd);
1701
                opd -= ipd;
1702
                RE(phaseRight) = (float)cos(opd);
1703
                IM(phaseRight) = (float)sin(opd);
1704
#else
1705
1706
                // x = IM(tempLeft)
1707
                // y = RE(tempLeft)
1708
                // p = IM(tempRight)
1709
                // q = RE(tempRight)
1710
                // cos(atan2(x,y)) = y/sqrt((x*x) + (y*y))
1711
                // sin(atan2(x,y)) = x/sqrt((x*x) + (y*y))
1712
                // cos(atan2(x,y)-atan2(p,q)) = (y*q + x*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1713
                // sin(atan2(x,y)-atan2(p,q)) = (x*q - y*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
1714
1715
92.2k
                xy = magnitude_c(tempRight);
1716
92.2k
                pq = magnitude_c(tempLeft);
1717
1718
92.2k
                if (xy != 0)
1719
92.2k
                {
1720
92.2k
                    RE(phaseLeft) = DIV_F(RE(tempRight), xy);
1721
92.2k
                    IM(phaseLeft) = DIV_F(IM(tempRight), xy);
1722
92.2k
                } else {
1723
0
                    RE(phaseLeft) = 0;
1724
0
                    IM(phaseLeft) = 0;
1725
0
                }
1726
1727
92.2k
                xypq = MUL_F(xy, pq);
1728
1729
92.2k
                if (xypq != 0)
1730
92.2k
                {
1731
92.2k
                    real_t tmp1 = MUL_F(RE(tempRight), RE(tempLeft)) + MUL_F(IM(tempRight), IM(tempLeft));
1732
92.2k
                    real_t tmp2 = MUL_F(IM(tempRight), RE(tempLeft)) - MUL_F(RE(tempRight), IM(tempLeft));
1733
1734
92.2k
                    RE(phaseRight) = DIV_F(tmp1, xypq);
1735
92.2k
                    IM(phaseRight) = DIV_F(tmp2, xypq);
1736
92.2k
                } else {
1737
0
                    RE(phaseRight) = 0;
1738
0
                    IM(phaseRight) = 0;
1739
0
                }
1740
1741
92.2k
#endif
1742
1743
                /* MUL_F(COEF, REAL) = COEF */
1744
92.2k
                IM(h11) = MUL_F(RE(h11), IM(phaseLeft));
1745
92.2k
                IM(h12) = MUL_F(RE(h12), IM(phaseRight));
1746
92.2k
                IM(h21) = MUL_F(RE(h21), IM(phaseLeft));
1747
92.2k
                IM(h22) = MUL_F(RE(h22), IM(phaseRight));
1748
1749
92.2k
                RE(h11) = MUL_F(RE(h11), RE(phaseLeft));
1750
92.2k
                RE(h12) = MUL_F(RE(h12), RE(phaseRight));
1751
92.2k
                RE(h21) = MUL_F(RE(h21), RE(phaseLeft));
1752
92.2k
                RE(h22) = MUL_F(RE(h22), RE(phaseRight));
1753
92.2k
            }
1754
1755
            /* length of the envelope n_e+1 - n_e (in time samples) */
1756
            /* 0 < L <= 32: integer */
1757
834k
            L = (real_t)(ps->border_position[env + 1] - ps->border_position[env]);
1758
1759
            /* obtain final H_xy by means of linear interpolation */
1760
834k
            RE(deltaH11) = (RE(h11) - RE(ps->h11_prev[gr])) / L;
1761
834k
            RE(deltaH12) = (RE(h12) - RE(ps->h12_prev[gr])) / L;
1762
834k
            RE(deltaH21) = (RE(h21) - RE(ps->h21_prev[gr])) / L;
1763
834k
            RE(deltaH22) = (RE(h22) - RE(ps->h22_prev[gr])) / L;
1764
1765
834k
            RE(H11) = RE(ps->h11_prev[gr]);
1766
834k
            RE(H12) = RE(ps->h12_prev[gr]);
1767
834k
            RE(H21) = RE(ps->h21_prev[gr]);
1768
834k
            RE(H22) = RE(ps->h22_prev[gr]);
1769
834k
            IM(H11) = IM(H12) = IM(H21) = IM(H22) = 0;
1770
1771
834k
            RE(ps->h11_prev[gr]) = RE(h11);
1772
834k
            RE(ps->h12_prev[gr]) = RE(h12);
1773
834k
            RE(ps->h21_prev[gr]) = RE(h21);
1774
834k
            RE(ps->h22_prev[gr]) = RE(h22);
1775
1776
            /* only calculate imaginary part when needed */
1777
834k
            if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1778
92.2k
            {
1779
                /* obtain final H_xy by means of linear interpolation */
1780
92.2k
                IM(deltaH11) = (IM(h11) - IM(ps->h11_prev[gr])) / L;
1781
92.2k
                IM(deltaH12) = (IM(h12) - IM(ps->h12_prev[gr])) / L;
1782
92.2k
                IM(deltaH21) = (IM(h21) - IM(ps->h21_prev[gr])) / L;
1783
92.2k
                IM(deltaH22) = (IM(h22) - IM(ps->h22_prev[gr])) / L;
1784
1785
92.2k
                IM(H11) = IM(ps->h11_prev[gr]);
1786
92.2k
                IM(H12) = IM(ps->h12_prev[gr]);
1787
92.2k
                IM(H21) = IM(ps->h21_prev[gr]);
1788
92.2k
                IM(H22) = IM(ps->h22_prev[gr]);
1789
1790
92.2k
                if ((NEGATE_IPD_MASK & ps->map_group2bk[gr]) != 0)
1791
13.3k
                {
1792
13.3k
                    IM(deltaH11) = -IM(deltaH11);
1793
13.3k
                    IM(deltaH12) = -IM(deltaH12);
1794
13.3k
                    IM(deltaH21) = -IM(deltaH21);
1795
13.3k
                    IM(deltaH22) = -IM(deltaH22);
1796
1797
13.3k
                    IM(H11) = -IM(H11);
1798
13.3k
                    IM(H12) = -IM(H12);
1799
13.3k
                    IM(H21) = -IM(H21);
1800
13.3k
                    IM(H22) = -IM(H22);
1801
13.3k
                }
1802
1803
92.2k
                IM(ps->h11_prev[gr]) = IM(h11);
1804
92.2k
                IM(ps->h12_prev[gr]) = IM(h12);
1805
92.2k
                IM(ps->h21_prev[gr]) = IM(h21);
1806
92.2k
                IM(ps->h22_prev[gr]) = IM(h22);
1807
92.2k
            }
1808
1809
            /* apply H_xy to the current envelope band of the decorrelated subband */
1810
12.4M
            for (n = ps->border_position[env]; n < ps->border_position[env + 1]; n++)
1811
11.5M
            {
1812
                /* addition finalises the interpolation over every n */
1813
11.5M
                RE(H11) += RE(deltaH11);
1814
11.5M
                RE(H12) += RE(deltaH12);
1815
11.5M
                RE(H21) += RE(deltaH21);
1816
11.5M
                RE(H22) += RE(deltaH22);
1817
11.5M
                if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1818
931k
                {
1819
931k
                    IM(H11) += IM(deltaH11);
1820
931k
                    IM(H12) += IM(deltaH12);
1821
931k
                    IM(H21) += IM(deltaH21);
1822
931k
                    IM(H22) += IM(deltaH22);
1823
931k
                }
1824
1825
                /* channel is an alias to the subband */
1826
39.6M
                for (sb = ps->group_border[gr]; sb < maxsb; sb++)
1827
28.1M
                {
1828
28.1M
                    complex_t inLeft, inRight;  // precision_of in(Left|Right) == precision_of X_(left|right)
1829
1830
                    /* load decorrelated samples */
1831
28.1M
                    if (gr < ps->num_hybrid_groups)
1832
6.47M
                    {
1833
6.47M
                        RE(inLeft) =  RE(X_hybrid_left[n][sb]);
1834
6.47M
                        IM(inLeft) =  IM(X_hybrid_left[n][sb]);
1835
6.47M
                        RE(inRight) = RE(X_hybrid_right[n][sb]);
1836
6.47M
                        IM(inRight) = IM(X_hybrid_right[n][sb]);
1837
21.6M
                    } else {
1838
21.6M
                        RE(inLeft) =  RE(X_left[n][sb]);
1839
21.6M
                        IM(inLeft) =  IM(X_left[n][sb]);
1840
21.6M
                        RE(inRight) = RE(X_right[n][sb]);
1841
21.6M
                        IM(inRight) = IM(X_right[n][sb]);
1842
21.6M
                    }
1843
1844
                    /* precision_of temp(Left|Right) == precision_of X_(left|right) */
1845
1846
                    /* apply mixing */
1847
28.1M
                    RE(tempLeft) =  MUL_C(RE(H11), RE(inLeft)) + MUL_C(RE(H21), RE(inRight));
1848
28.1M
                    IM(tempLeft) =  MUL_C(RE(H11), IM(inLeft)) + MUL_C(RE(H21), IM(inRight));
1849
28.1M
                    RE(tempRight) = MUL_C(RE(H12), RE(inLeft)) + MUL_C(RE(H22), RE(inRight));
1850
28.1M
                    IM(tempRight) = MUL_C(RE(H12), IM(inLeft)) + MUL_C(RE(H22), IM(inRight));
1851
1852
                    /* only perform imaginary operations when needed */
1853
28.1M
                    if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
1854
933k
                    {
1855
                        /* apply rotation */
1856
933k
                        RE(tempLeft)  -= MUL_C(IM(H11), IM(inLeft)) + MUL_C(IM(H21), IM(inRight));
1857
933k
                        IM(tempLeft)  += MUL_C(IM(H11), RE(inLeft)) + MUL_C(IM(H21), RE(inRight));
1858
933k
                        RE(tempRight) -= MUL_C(IM(H12), IM(inLeft)) + MUL_C(IM(H22), IM(inRight));
1859
933k
                        IM(tempRight) += MUL_C(IM(H12), RE(inLeft)) + MUL_C(IM(H22), RE(inRight));
1860
933k
                    }
1861
1862
                    /* store final samples */
1863
28.1M
                    if (gr < ps->num_hybrid_groups)
1864
6.47M
                    {
1865
6.47M
                        RE(X_hybrid_left[n][sb])  = RE(tempLeft);
1866
6.47M
                        IM(X_hybrid_left[n][sb])  = IM(tempLeft);
1867
6.47M
                        RE(X_hybrid_right[n][sb]) = RE(tempRight);
1868
6.47M
                        IM(X_hybrid_right[n][sb]) = IM(tempRight);
1869
21.6M
                    } else {
1870
21.6M
                        RE(X_left[n][sb])  = RE(tempLeft);
1871
21.6M
                        IM(X_left[n][sb])  = IM(tempLeft);
1872
21.6M
                        RE(X_right[n][sb]) = RE(tempRight);
1873
21.6M
                        IM(X_right[n][sb]) = IM(tempRight);
1874
21.6M
                    }
1875
28.1M
                }
1876
11.5M
            }
1877
1878
            /* shift phase smoother's circular buffer index */
1879
834k
            ps->phase_hist++;
1880
834k
            if (ps->phase_hist == 2)
1881
417k
            {
1882
417k
                ps->phase_hist = 0;
1883
417k
            }
1884
834k
        }
1885
372k
    }
1886
11.4k
}
1887
1888
void ps_free(ps_info *ps)
1889
32.0k
{
1890
    /* free hybrid filterbank structures */
1891
32.0k
    hybrid_free(ps->hyb);
1892
1893
32.0k
    faad_free(ps);
1894
32.0k
}
1895
1896
ps_info *ps_init(uint8_t sr_index, uint8_t numTimeSlotsRate)
1897
32.0k
{
1898
32.0k
    uint8_t i;
1899
32.0k
    uint8_t short_delay_band;
1900
1901
32.0k
    ps_info *ps = (ps_info*)faad_malloc(sizeof(ps_info));
1902
32.0k
    memset(ps, 0, sizeof(ps_info));
1903
1904
32.0k
    ps->hyb = hybrid_init(numTimeSlotsRate);
1905
32.0k
    ps->numTimeSlotsRate = numTimeSlotsRate;
1906
1907
32.0k
    ps->ps_data_available = 0;
1908
1909
    /* delay stuff*/
1910
32.0k
    ps->saved_delay = 0;
1911
1912
2.08M
    for (i = 0; i < 64; i++)
1913
2.04M
    {
1914
2.04M
        ps->delay_buf_index_delay[i] = 0;
1915
2.04M
    }
1916
1917
128k
    for (i = 0; i < NO_ALLPASS_LINKS; i++)
1918
96.0k
    {
1919
96.0k
        ps->delay_buf_index_ser[i] = 0;
1920
#ifdef PARAM_32KHZ
1921
        if (sr_index <= 5) /* >= 32 kHz*/
1922
        {
1923
            ps->num_sample_delay_ser[i] = delay_length_d[1][i];
1924
        } else {
1925
            ps->num_sample_delay_ser[i] = delay_length_d[0][i];
1926
        }
1927
#else
1928
96.0k
        (void)sr_index;
1929
        /* THESE ARE CONSTANTS NOW */
1930
96.0k
        ps->num_sample_delay_ser[i] = delay_length_d[i];
1931
96.0k
#endif
1932
96.0k
    }
1933
1934
#ifdef PARAM_32KHZ
1935
    if (sr_index <= 5) /* >= 32 kHz*/
1936
    {
1937
        short_delay_band = 35;
1938
        ps->nr_allpass_bands = 22;
1939
        ps->alpha_decay = FRAC_CONST(0.76592833836465);
1940
        ps->alpha_smooth = FRAC_CONST(0.25);
1941
    } else {
1942
        short_delay_band = 64;
1943
        ps->nr_allpass_bands = 45;
1944
        ps->alpha_decay = FRAC_CONST(0.58664621951003);
1945
        ps->alpha_smooth = FRAC_CONST(0.6);
1946
    }
1947
#else
1948
    /* THESE ARE CONSTANTS NOW */
1949
32.0k
    short_delay_band = 35;
1950
32.0k
    ps->nr_allpass_bands = 22;
1951
32.0k
    ps->alpha_decay = FRAC_CONST(0.76592833836465);
1952
32.0k
    ps->alpha_smooth = FRAC_CONST(0.25);
1953
32.0k
#endif
1954
1955
    /* THESE ARE CONSTANT NOW IF PS IS INDEPENDANT OF SAMPLERATE */
1956
1.15M
    for (i = 0; i < short_delay_band; i++)
1957
1.12M
    {
1958
1.12M
        ps->delay_D[i] = 14;
1959
1.12M
    }
1960
960k
    for (i = short_delay_band; i < 64; i++)
1961
928k
    {
1962
928k
        ps->delay_D[i] = 1;
1963
928k
    }
1964
1965
    /* mixing and phase */
1966
1.63M
    for (i = 0; i < 50; i++)
1967
1.60M
    {
1968
1.60M
        RE(ps->h11_prev[i]) = 1;
1969
1.60M
        IM(ps->h11_prev[i]) = 1;
1970
1.60M
        RE(ps->h12_prev[i]) = 1;
1971
1.60M
        IM(ps->h12_prev[i]) = 1;
1972
1.60M
    }
1973
1974
32.0k
    ps->phase_hist = 0;
1975
1976
672k
    for (i = 0; i < 20; i++)
1977
640k
    {
1978
640k
        RE(ps->ipd_prev[i][0]) = 0;
1979
640k
        IM(ps->ipd_prev[i][0]) = 0;
1980
640k
        RE(ps->ipd_prev[i][1]) = 0;
1981
640k
        IM(ps->ipd_prev[i][1]) = 0;
1982
640k
        RE(ps->opd_prev[i][0]) = 0;
1983
640k
        IM(ps->opd_prev[i][0]) = 0;
1984
640k
        RE(ps->opd_prev[i][1]) = 0;
1985
640k
        IM(ps->opd_prev[i][1]) = 0;
1986
640k
    }
1987
1988
32.0k
    return ps;
1989
32.0k
}
ps_init
Line
Count
Source
1897
15.0k
{
1898
15.0k
    uint8_t i;
1899
15.0k
    uint8_t short_delay_band;
1900
1901
15.0k
    ps_info *ps = (ps_info*)faad_malloc(sizeof(ps_info));
1902
15.0k
    memset(ps, 0, sizeof(ps_info));
1903
1904
15.0k
    ps->hyb = hybrid_init(numTimeSlotsRate);
1905
15.0k
    ps->numTimeSlotsRate = numTimeSlotsRate;
1906
1907
15.0k
    ps->ps_data_available = 0;
1908
1909
    /* delay stuff*/
1910
15.0k
    ps->saved_delay = 0;
1911
1912
977k
    for (i = 0; i < 64; i++)
1913
962k
    {
1914
962k
        ps->delay_buf_index_delay[i] = 0;
1915
962k
    }
1916
1917
60.1k
    for (i = 0; i < NO_ALLPASS_LINKS; i++)
1918
45.1k
    {
1919
45.1k
        ps->delay_buf_index_ser[i] = 0;
1920
#ifdef PARAM_32KHZ
1921
        if (sr_index <= 5) /* >= 32 kHz*/
1922
        {
1923
            ps->num_sample_delay_ser[i] = delay_length_d[1][i];
1924
        } else {
1925
            ps->num_sample_delay_ser[i] = delay_length_d[0][i];
1926
        }
1927
#else
1928
45.1k
        (void)sr_index;
1929
        /* THESE ARE CONSTANTS NOW */
1930
45.1k
        ps->num_sample_delay_ser[i] = delay_length_d[i];
1931
45.1k
#endif
1932
45.1k
    }
1933
1934
#ifdef PARAM_32KHZ
1935
    if (sr_index <= 5) /* >= 32 kHz*/
1936
    {
1937
        short_delay_band = 35;
1938
        ps->nr_allpass_bands = 22;
1939
        ps->alpha_decay = FRAC_CONST(0.76592833836465);
1940
        ps->alpha_smooth = FRAC_CONST(0.25);
1941
    } else {
1942
        short_delay_band = 64;
1943
        ps->nr_allpass_bands = 45;
1944
        ps->alpha_decay = FRAC_CONST(0.58664621951003);
1945
        ps->alpha_smooth = FRAC_CONST(0.6);
1946
    }
1947
#else
1948
    /* THESE ARE CONSTANTS NOW */
1949
15.0k
    short_delay_band = 35;
1950
15.0k
    ps->nr_allpass_bands = 22;
1951
15.0k
    ps->alpha_decay = FRAC_CONST(0.76592833836465);
1952
15.0k
    ps->alpha_smooth = FRAC_CONST(0.25);
1953
15.0k
#endif
1954
1955
    /* THESE ARE CONSTANT NOW IF PS IS INDEPENDANT OF SAMPLERATE */
1956
541k
    for (i = 0; i < short_delay_band; i++)
1957
526k
    {
1958
526k
        ps->delay_D[i] = 14;
1959
526k
    }
1960
451k
    for (i = short_delay_band; i < 64; i++)
1961
436k
    {
1962
436k
        ps->delay_D[i] = 1;
1963
436k
    }
1964
1965
    /* mixing and phase */
1966
767k
    for (i = 0; i < 50; i++)
1967
752k
    {
1968
752k
        RE(ps->h11_prev[i]) = 1;
1969
752k
        IM(ps->h11_prev[i]) = 1;
1970
752k
        RE(ps->h12_prev[i]) = 1;
1971
752k
        IM(ps->h12_prev[i]) = 1;
1972
752k
    }
1973
1974
15.0k
    ps->phase_hist = 0;
1975
1976
315k
    for (i = 0; i < 20; i++)
1977
300k
    {
1978
300k
        RE(ps->ipd_prev[i][0]) = 0;
1979
300k
        IM(ps->ipd_prev[i][0]) = 0;
1980
300k
        RE(ps->ipd_prev[i][1]) = 0;
1981
300k
        IM(ps->ipd_prev[i][1]) = 0;
1982
300k
        RE(ps->opd_prev[i][0]) = 0;
1983
300k
        IM(ps->opd_prev[i][0]) = 0;
1984
300k
        RE(ps->opd_prev[i][1]) = 0;
1985
300k
        IM(ps->opd_prev[i][1]) = 0;
1986
300k
    }
1987
1988
15.0k
    return ps;
1989
15.0k
}
ps_init
Line
Count
Source
1897
16.9k
{
1898
16.9k
    uint8_t i;
1899
16.9k
    uint8_t short_delay_band;
1900
1901
16.9k
    ps_info *ps = (ps_info*)faad_malloc(sizeof(ps_info));
1902
16.9k
    memset(ps, 0, sizeof(ps_info));
1903
1904
16.9k
    ps->hyb = hybrid_init(numTimeSlotsRate);
1905
16.9k
    ps->numTimeSlotsRate = numTimeSlotsRate;
1906
1907
16.9k
    ps->ps_data_available = 0;
1908
1909
    /* delay stuff*/
1910
16.9k
    ps->saved_delay = 0;
1911
1912
1.10M
    for (i = 0; i < 64; i++)
1913
1.08M
    {
1914
1.08M
        ps->delay_buf_index_delay[i] = 0;
1915
1.08M
    }
1916
1917
67.9k
    for (i = 0; i < NO_ALLPASS_LINKS; i++)
1918
50.9k
    {
1919
50.9k
        ps->delay_buf_index_ser[i] = 0;
1920
#ifdef PARAM_32KHZ
1921
        if (sr_index <= 5) /* >= 32 kHz*/
1922
        {
1923
            ps->num_sample_delay_ser[i] = delay_length_d[1][i];
1924
        } else {
1925
            ps->num_sample_delay_ser[i] = delay_length_d[0][i];
1926
        }
1927
#else
1928
50.9k
        (void)sr_index;
1929
        /* THESE ARE CONSTANTS NOW */
1930
50.9k
        ps->num_sample_delay_ser[i] = delay_length_d[i];
1931
50.9k
#endif
1932
50.9k
    }
1933
1934
#ifdef PARAM_32KHZ
1935
    if (sr_index <= 5) /* >= 32 kHz*/
1936
    {
1937
        short_delay_band = 35;
1938
        ps->nr_allpass_bands = 22;
1939
        ps->alpha_decay = FRAC_CONST(0.76592833836465);
1940
        ps->alpha_smooth = FRAC_CONST(0.25);
1941
    } else {
1942
        short_delay_band = 64;
1943
        ps->nr_allpass_bands = 45;
1944
        ps->alpha_decay = FRAC_CONST(0.58664621951003);
1945
        ps->alpha_smooth = FRAC_CONST(0.6);
1946
    }
1947
#else
1948
    /* THESE ARE CONSTANTS NOW */
1949
16.9k
    short_delay_band = 35;
1950
16.9k
    ps->nr_allpass_bands = 22;
1951
16.9k
    ps->alpha_decay = FRAC_CONST(0.76592833836465);
1952
16.9k
    ps->alpha_smooth = FRAC_CONST(0.25);
1953
16.9k
#endif
1954
1955
    /* THESE ARE CONSTANT NOW IF PS IS INDEPENDANT OF SAMPLERATE */
1956
611k
    for (i = 0; i < short_delay_band; i++)
1957
594k
    {
1958
594k
        ps->delay_D[i] = 14;
1959
594k
    }
1960
509k
    for (i = short_delay_band; i < 64; i++)
1961
492k
    {
1962
492k
        ps->delay_D[i] = 1;
1963
492k
    }
1964
1965
    /* mixing and phase */
1966
865k
    for (i = 0; i < 50; i++)
1967
848k
    {
1968
848k
        RE(ps->h11_prev[i]) = 1;
1969
848k
        IM(ps->h11_prev[i]) = 1;
1970
848k
        RE(ps->h12_prev[i]) = 1;
1971
848k
        IM(ps->h12_prev[i]) = 1;
1972
848k
    }
1973
1974
16.9k
    ps->phase_hist = 0;
1975
1976
356k
    for (i = 0; i < 20; i++)
1977
339k
    {
1978
339k
        RE(ps->ipd_prev[i][0]) = 0;
1979
339k
        IM(ps->ipd_prev[i][0]) = 0;
1980
339k
        RE(ps->ipd_prev[i][1]) = 0;
1981
339k
        IM(ps->ipd_prev[i][1]) = 0;
1982
339k
        RE(ps->opd_prev[i][0]) = 0;
1983
339k
        IM(ps->opd_prev[i][0]) = 0;
1984
339k
        RE(ps->opd_prev[i][1]) = 0;
1985
339k
        IM(ps->opd_prev[i][1]) = 0;
1986
339k
    }
1987
1988
16.9k
    return ps;
1989
16.9k
}
1990
1991
/* main Parametric Stereo decoding function */
1992
uint8_t ps_decode(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64])
1993
20.6k
{
1994
20.6k
    qmf_t X_hybrid_left[32][32] = {{{0}}};
1995
20.6k
    qmf_t X_hybrid_right[32][32] = {{{0}}};
1996
1997
    /* delta decoding of the bitstream data */
1998
20.6k
    ps_data_decode(ps);
1999
2000
    /* set up some parameters depending on filterbank type */
2001
20.6k
    if (ps->use34hybrid_bands)
2002
8.04k
    {
2003
8.04k
        ps->group_border = (uint8_t*)group_border34;
2004
8.04k
        ps->map_group2bk = (uint16_t*)map_group2bk34;
2005
8.04k
        ps->num_groups = 32+18;
2006
8.04k
        ps->num_hybrid_groups = 32;
2007
8.04k
        ps->nr_par_bands = 34;
2008
8.04k
        ps->decay_cutoff = 5;
2009
12.6k
    } else {
2010
12.6k
        ps->group_border = (uint8_t*)group_border20;
2011
12.6k
        ps->map_group2bk = (uint16_t*)map_group2bk20;
2012
12.6k
        ps->num_groups = 10+12;
2013
12.6k
        ps->num_hybrid_groups = 10;
2014
12.6k
        ps->nr_par_bands = 20;
2015
12.6k
        ps->decay_cutoff = 3;
2016
12.6k
    }
2017
2018
    /* Perform further analysis on the lowest subbands to get a higher
2019
     * frequency resolution
2020
     */
2021
20.6k
    hybrid_analysis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
2022
20.6k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2023
2024
    /* decorrelate mono signal */
2025
20.6k
    ps_decorrelate(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
2026
2027
    /* apply mixing and phase parameters */
2028
20.6k
    ps_mix_phase(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
2029
2030
    /* hybrid synthesis, to rebuild the SBR QMF matrices */
2031
20.6k
    hybrid_synthesis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
2032
20.6k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2033
2034
20.6k
    hybrid_synthesis((hyb_info*)ps->hyb, X_right, X_hybrid_right,
2035
20.6k
        ps->use34hybrid_bands, ps->numTimeSlotsRate);
2036
2037
20.6k
    return 0;
2038
20.6k
}
2039
2040
#endif