Coverage Report

Created: 2025-08-03 06:05

/proc/self/cwd/libfaad/sbr_hfadj.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: sbr_hfadj.c,v 1.23 2008/09/19 22:50:20 menno Exp $
29
**/
30
31
/* High Frequency adjustment */
32
#include <float.h>
33
34
#include "common.h"
35
#include "structs.h"
36
37
#ifdef SBR_DEC
38
39
#include "sbr_syntax.h"
40
#include "sbr_hfadj.h"
41
42
#include "sbr_noise.h"
43
44
45
/* static function declarations */
46
static uint8_t estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj,
47
                                         qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch);
48
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch);
49
#ifdef SBR_LOW_POWER
50
static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch);
51
static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch);
52
#endif
53
static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj, qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch);
54
55
56
uint8_t hf_adjustment(sbr_info *sbr, qmf_t Xsbr[MAX_NTSRHFG][64]
57
#ifdef SBR_LOW_POWER
58
                      ,real_t *deg /* aliasing degree */
59
#endif
60
                      ,uint8_t ch)
61
28.1k
{
62
28.1k
    ALIGN sbr_hfadj_info adj = {{{0}}};
63
28.1k
    uint8_t ret = 0;
64
65
28.1k
    if (sbr->bs_frame_class[ch] == FIXFIX)
66
8.54k
    {
67
8.54k
        sbr->l_A[ch] = -1;
68
19.6k
    } else if (sbr->bs_frame_class[ch] == VARFIX) {
69
9.00k
        if (sbr->bs_pointer[ch] > 1)
70
2.60k
            sbr->l_A[ch] = sbr->bs_pointer[ch] - 1;
71
6.39k
        else
72
6.39k
            sbr->l_A[ch] = -1;
73
10.6k
    } else {
74
10.6k
        if (sbr->bs_pointer[ch] == 0)
75
3.68k
            sbr->l_A[ch] = -1;
76
6.94k
        else
77
6.94k
            sbr->l_A[ch] = sbr->L_E[ch] + 1 - sbr->bs_pointer[ch];
78
10.6k
    }
79
80
28.1k
    ret = estimate_current_envelope(sbr, &adj, Xsbr, ch);
81
28.1k
    if (ret > 0)
82
777
        return 1;
83
84
27.3k
    calculate_gain(sbr, &adj, ch);
85
86
#ifdef SBR_LOW_POWER
87
    calc_gain_groups(sbr, &adj, deg, ch);
88
    aliasing_reduction(sbr, &adj, deg, ch);
89
#endif
90
91
27.3k
    hf_assembly(sbr, &adj, Xsbr, ch);
92
93
27.3k
    return 0;
94
28.1k
}
95
96
static uint8_t get_S_mapped(sbr_info *sbr, uint8_t ch, uint8_t l, uint8_t current_band)
97
208k
{
98
208k
    if (sbr->f[ch][l] == HI_RES)
99
85.5k
    {
100
        /* in case of using f_table_high we just have 1 to 1 mapping
101
         * from bs_add_harmonic[l][k]
102
         */
103
85.5k
        if ((l >= sbr->l_A[ch]) ||
104
85.5k
            (sbr->bs_add_harmonic_prev[ch][current_band] && sbr->bs_add_harmonic_flag_prev[ch]))
105
57.4k
        {
106
57.4k
            return sbr->bs_add_harmonic[ch][current_band];
107
57.4k
        }
108
122k
    } else {
109
122k
        uint8_t b, lb, ub;
110
111
        /* in case of f_table_low we check if any of the HI_RES bands
112
         * within this LO_RES band has bs_add_harmonic[l][k] turned on
113
         * (note that borders in the LO_RES table are also present in
114
         * the HI_RES table)
115
         */
116
117
        /* find first HI_RES band in current LO_RES band */
118
122k
        lb = 2*current_band - ((sbr->N_high & 1) ? 1 : 0);
119
        /* find first HI_RES band in next LO_RES band */
120
122k
        ub = 2*(current_band+1) - ((sbr->N_high & 1) ? 1 : 0);
121
122
        /* check all HI_RES bands in current LO_RES band for sinusoid */
123
315k
        for (b = lb; b < ub; b++)
124
204k
        {
125
204k
            if ((l >= sbr->l_A[ch]) ||
126
204k
                (sbr->bs_add_harmonic_prev[ch][b] && sbr->bs_add_harmonic_flag_prev[ch]))
127
144k
            {
128
144k
                if (sbr->bs_add_harmonic[ch][b] == 1)
129
11.2k
                    return 1;
130
144k
            }
131
204k
        }
132
122k
    }
133
134
139k
    return 0;
135
208k
}
136
137
static uint8_t estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj,
138
                                         qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch)
139
28.1k
{
140
28.1k
    uint8_t m, l, j, k, k_l, k_h, p;
141
28.1k
    real_t nrg, div;
142
28.1k
    (void)adj;  /* TODO: remove parameter? */
143
#ifdef FIXED_POINT
144
13.4k
    const real_t half = REAL_CONST(0.5);
145
    real_t limit;
146
    real_t mul;
147
#else
148
    const real_t half = 0;  /* Compiler is smart enough to eliminate +0 op. */
149
    const real_t limit = FLT_MAX;
150
#endif
151
152
28.1k
    if (sbr->bs_interpol_freq == 1)
153
19.8k
    {
154
53.1k
        for (l = 0; l < sbr->L_E[ch]; l++)
155
33.5k
        {
156
33.5k
            uint8_t i, l_i, u_i;
157
158
33.5k
            l_i = sbr->t_E[ch][l];
159
33.5k
            u_i = sbr->t_E[ch][l+1];
160
161
33.5k
            div = (real_t)(u_i - l_i);
162
163
33.5k
            if (div <= 0)
164
1.05k
                div = 1;
165
#ifdef FIXED_POINT
166
14.3k
            limit = div << (30 - (COEF_BITS - REAL_BITS));
167
14.3k
            mul = (1 << (COEF_BITS - REAL_BITS)) / div;
168
#endif
169
170
401k
            for (m = 0; m < sbr->M; m++)
171
368k
            {
172
368k
                nrg = 0;
173
174
7.10M
                for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
175
6.73M
                {
176
6.73M
                    real_t re = QMF_RE(Xsbr[i][m + sbr->kx]) + half;
177
6.73M
                    real_t im = QMF_IM(Xsbr[i][m + sbr->kx]) + half;
178
6.73M
                    (void)im;
179
                    /* Actually, that should be MUL_R. On floating-point build
180
                       that is the same. On fixed point-build we use it to
181
                       pre-scale result (to aviod overflow). That, of course
182
                       causes some precision loss. */
183
6.73M
                    nrg += MUL_C(re, re)
184
6.73M
#ifndef SBR_LOW_POWER
185
6.73M
                        + MUL_C(im, im)
186
6.73M
#endif
187
6.73M
                        ;
188
6.73M
                }
189
190
368k
                if (nrg < -limit || nrg > limit)
191
294
                    return 1;
192
#ifdef FIXED_POINT
193
169k
                sbr->E_curr[ch][m][l] = nrg * mul;
194
#else
195
199k
                sbr->E_curr[ch][m][l] = nrg / div;
196
199k
#endif
197
#ifdef SBR_LOW_POWER
198
#ifdef FIXED_POINT
199
                sbr->E_curr[ch][m][l] <<= 1;
200
#else
201
                sbr->E_curr[ch][m][l] *= 2;
202
#endif
203
#endif
204
199k
            }
205
33.5k
        }
206
19.8k
    } else {
207
21.0k
        for (l = 0; l < sbr->L_E[ch]; l++)
208
13.2k
        {
209
94.9k
            for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
210
82.1k
            {
211
82.1k
                k_l = sbr->f_table_res[sbr->f[ch][l]][p];
212
82.1k
                k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
213
214
294k
                for (k = k_l; k < k_h; k++)
215
212k
                {
216
212k
                    uint8_t i, l_i, u_i;
217
212k
                    nrg = 0;
218
219
212k
                    l_i = sbr->t_E[ch][l];
220
212k
                    u_i = sbr->t_E[ch][l+1];
221
222
212k
                    div = (real_t)((u_i - l_i)*(k_h - k_l));
223
224
212k
                    if (div <= 0)
225
5.93k
                        div = 1;
226
#ifdef FIXED_POINT
227
126k
                    limit = div << (30 - (COEF_BITS - REAL_BITS));
228
126k
                    mul = (1 << (COEF_BITS - REAL_BITS)) / div;
229
#endif
230
231
4.67M
                    for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
232
4.46M
                    {
233
21.0M
                        for (j = k_l; j < k_h; j++)
234
16.6M
                        {
235
16.6M
                            real_t re = QMF_RE(Xsbr[i][j]) + half;
236
16.6M
                            real_t im = QMF_IM(Xsbr[i][j]) + half;
237
16.6M
                            (void)im;
238
                            /* Actually, that should be MUL_R. On floating-point build
239
                               that is the same. On fixed point-build we use it to
240
                               pre-scale result (to aviod overflow). That, of course
241
                               causes some precision loss. */
242
16.6M
                            nrg += MUL_C(re, re)
243
16.6M
#ifndef SBR_LOW_POWER
244
16.6M
                                + MUL_C(im, im)
245
16.6M
#endif
246
16.6M
                                ;
247
16.6M
                        }
248
4.46M
                    }
249
250
212k
                    if (nrg < -limit || nrg > limit)
251
483
                        return 1;
252
#ifdef FIXED_POINT
253
125k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg * mul;
254
#else
255
86.5k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
256
86.5k
#endif
257
#ifdef SBR_LOW_POWER
258
#ifdef FIXED_POINT
259
                    sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
260
#else
261
                    sbr->E_curr[ch][k - sbr->kx][l] *= 2;
262
#endif
263
#endif
264
86.5k
                }
265
82.1k
            }
266
13.2k
        }
267
8.32k
    }
268
269
27.3k
    return 0;
270
28.1k
}
sbr_hfadj.c:estimate_current_envelope
Line
Count
Source
139
13.4k
{
140
13.4k
    uint8_t m, l, j, k, k_l, k_h, p;
141
13.4k
    real_t nrg, div;
142
13.4k
    (void)adj;  /* TODO: remove parameter? */
143
13.4k
#ifdef FIXED_POINT
144
13.4k
    const real_t half = REAL_CONST(0.5);
145
13.4k
    real_t limit;
146
13.4k
    real_t mul;
147
#else
148
    const real_t half = 0;  /* Compiler is smart enough to eliminate +0 op. */
149
    const real_t limit = FLT_MAX;
150
#endif
151
152
13.4k
    if (sbr->bs_interpol_freq == 1)
153
8.37k
    {
154
22.3k
        for (l = 0; l < sbr->L_E[ch]; l++)
155
14.3k
        {
156
14.3k
            uint8_t i, l_i, u_i;
157
158
14.3k
            l_i = sbr->t_E[ch][l];
159
14.3k
            u_i = sbr->t_E[ch][l+1];
160
161
14.3k
            div = (real_t)(u_i - l_i);
162
163
14.3k
            if (div <= 0)
164
483
                div = 1;
165
14.3k
#ifdef FIXED_POINT
166
14.3k
            limit = div << (30 - (COEF_BITS - REAL_BITS));
167
14.3k
            mul = (1 << (COEF_BITS - REAL_BITS)) / div;
168
14.3k
#endif
169
170
183k
            for (m = 0; m < sbr->M; m++)
171
169k
            {
172
169k
                nrg = 0;
173
174
3.06M
                for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
175
2.89M
                {
176
2.89M
                    real_t re = QMF_RE(Xsbr[i][m + sbr->kx]) + half;
177
2.89M
                    real_t im = QMF_IM(Xsbr[i][m + sbr->kx]) + half;
178
2.89M
                    (void)im;
179
                    /* Actually, that should be MUL_R. On floating-point build
180
                       that is the same. On fixed point-build we use it to
181
                       pre-scale result (to aviod overflow). That, of course
182
                       causes some precision loss. */
183
2.89M
                    nrg += MUL_C(re, re)
184
2.89M
#ifndef SBR_LOW_POWER
185
2.89M
                        + MUL_C(im, im)
186
2.89M
#endif
187
2.89M
                        ;
188
2.89M
                }
189
190
169k
                if (nrg < -limit || nrg > limit)
191
287
                    return 1;
192
169k
#ifdef FIXED_POINT
193
169k
                sbr->E_curr[ch][m][l] = nrg * mul;
194
#else
195
                sbr->E_curr[ch][m][l] = nrg / div;
196
#endif
197
#ifdef SBR_LOW_POWER
198
#ifdef FIXED_POINT
199
                sbr->E_curr[ch][m][l] <<= 1;
200
#else
201
                sbr->E_curr[ch][m][l] *= 2;
202
#endif
203
#endif
204
169k
            }
205
14.3k
        }
206
8.37k
    } else {
207
12.4k
        for (l = 0; l < sbr->L_E[ch]; l++)
208
7.81k
        {
209
55.4k
            for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
210
48.1k
            {
211
48.1k
                k_l = sbr->f_table_res[sbr->f[ch][l]][p];
212
48.1k
                k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
213
214
173k
                for (k = k_l; k < k_h; k++)
215
126k
                {
216
126k
                    uint8_t i, l_i, u_i;
217
126k
                    nrg = 0;
218
219
126k
                    l_i = sbr->t_E[ch][l];
220
126k
                    u_i = sbr->t_E[ch][l+1];
221
222
126k
                    div = (real_t)((u_i - l_i)*(k_h - k_l));
223
224
126k
                    if (div <= 0)
225
1.73k
                        div = 1;
226
126k
#ifdef FIXED_POINT
227
126k
                    limit = div << (30 - (COEF_BITS - REAL_BITS));
228
126k
                    mul = (1 << (COEF_BITS - REAL_BITS)) / div;
229
126k
#endif
230
231
2.86M
                    for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
232
2.73M
                    {
233
13.6M
                        for (j = k_l; j < k_h; j++)
234
10.8M
                        {
235
10.8M
                            real_t re = QMF_RE(Xsbr[i][j]) + half;
236
10.8M
                            real_t im = QMF_IM(Xsbr[i][j]) + half;
237
10.8M
                            (void)im;
238
                            /* Actually, that should be MUL_R. On floating-point build
239
                               that is the same. On fixed point-build we use it to
240
                               pre-scale result (to aviod overflow). That, of course
241
                               causes some precision loss. */
242
10.8M
                            nrg += MUL_C(re, re)
243
10.8M
#ifndef SBR_LOW_POWER
244
10.8M
                                + MUL_C(im, im)
245
10.8M
#endif
246
10.8M
                                ;
247
10.8M
                        }
248
2.73M
                    }
249
250
126k
                    if (nrg < -limit || nrg > limit)
251
477
                        return 1;
252
125k
#ifdef FIXED_POINT
253
125k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg * mul;
254
#else
255
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
256
#endif
257
#ifdef SBR_LOW_POWER
258
#ifdef FIXED_POINT
259
                    sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
260
#else
261
                    sbr->E_curr[ch][k - sbr->kx][l] *= 2;
262
#endif
263
#endif
264
125k
                }
265
48.1k
            }
266
7.81k
        }
267
5.09k
    }
268
269
12.7k
    return 0;
270
13.4k
}
sbr_hfadj.c:estimate_current_envelope
Line
Count
Source
139
14.6k
{
140
14.6k
    uint8_t m, l, j, k, k_l, k_h, p;
141
14.6k
    real_t nrg, div;
142
14.6k
    (void)adj;  /* TODO: remove parameter? */
143
#ifdef FIXED_POINT
144
    const real_t half = REAL_CONST(0.5);
145
    real_t limit;
146
    real_t mul;
147
#else
148
14.6k
    const real_t half = 0;  /* Compiler is smart enough to eliminate +0 op. */
149
14.6k
    const real_t limit = FLT_MAX;
150
14.6k
#endif
151
152
14.6k
    if (sbr->bs_interpol_freq == 1)
153
11.4k
    {
154
30.7k
        for (l = 0; l < sbr->L_E[ch]; l++)
155
19.2k
        {
156
19.2k
            uint8_t i, l_i, u_i;
157
158
19.2k
            l_i = sbr->t_E[ch][l];
159
19.2k
            u_i = sbr->t_E[ch][l+1];
160
161
19.2k
            div = (real_t)(u_i - l_i);
162
163
19.2k
            if (div <= 0)
164
567
                div = 1;
165
#ifdef FIXED_POINT
166
            limit = div << (30 - (COEF_BITS - REAL_BITS));
167
            mul = (1 << (COEF_BITS - REAL_BITS)) / div;
168
#endif
169
170
218k
            for (m = 0; m < sbr->M; m++)
171
199k
            {
172
199k
                nrg = 0;
173
174
4.04M
                for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
175
3.84M
                {
176
3.84M
                    real_t re = QMF_RE(Xsbr[i][m + sbr->kx]) + half;
177
3.84M
                    real_t im = QMF_IM(Xsbr[i][m + sbr->kx]) + half;
178
3.84M
                    (void)im;
179
                    /* Actually, that should be MUL_R. On floating-point build
180
                       that is the same. On fixed point-build we use it to
181
                       pre-scale result (to aviod overflow). That, of course
182
                       causes some precision loss. */
183
3.84M
                    nrg += MUL_C(re, re)
184
3.84M
#ifndef SBR_LOW_POWER
185
3.84M
                        + MUL_C(im, im)
186
3.84M
#endif
187
3.84M
                        ;
188
3.84M
                }
189
190
199k
                if (nrg < -limit || nrg > limit)
191
7
                    return 1;
192
#ifdef FIXED_POINT
193
                sbr->E_curr[ch][m][l] = nrg * mul;
194
#else
195
199k
                sbr->E_curr[ch][m][l] = nrg / div;
196
199k
#endif
197
#ifdef SBR_LOW_POWER
198
#ifdef FIXED_POINT
199
                sbr->E_curr[ch][m][l] <<= 1;
200
#else
201
                sbr->E_curr[ch][m][l] *= 2;
202
#endif
203
#endif
204
199k
            }
205
19.2k
        }
206
11.4k
    } else {
207
8.65k
        for (l = 0; l < sbr->L_E[ch]; l++)
208
5.43k
        {
209
39.4k
            for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
210
34.0k
            {
211
34.0k
                k_l = sbr->f_table_res[sbr->f[ch][l]][p];
212
34.0k
                k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
213
214
120k
                for (k = k_l; k < k_h; k++)
215
86.5k
                {
216
86.5k
                    uint8_t i, l_i, u_i;
217
86.5k
                    nrg = 0;
218
219
86.5k
                    l_i = sbr->t_E[ch][l];
220
86.5k
                    u_i = sbr->t_E[ch][l+1];
221
222
86.5k
                    div = (real_t)((u_i - l_i)*(k_h - k_l));
223
224
86.5k
                    if (div <= 0)
225
4.19k
                        div = 1;
226
#ifdef FIXED_POINT
227
                    limit = div << (30 - (COEF_BITS - REAL_BITS));
228
                    mul = (1 << (COEF_BITS - REAL_BITS)) / div;
229
#endif
230
231
1.81M
                    for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
232
1.72M
                    {
233
7.48M
                        for (j = k_l; j < k_h; j++)
234
5.76M
                        {
235
5.76M
                            real_t re = QMF_RE(Xsbr[i][j]) + half;
236
5.76M
                            real_t im = QMF_IM(Xsbr[i][j]) + half;
237
5.76M
                            (void)im;
238
                            /* Actually, that should be MUL_R. On floating-point build
239
                               that is the same. On fixed point-build we use it to
240
                               pre-scale result (to aviod overflow). That, of course
241
                               causes some precision loss. */
242
5.76M
                            nrg += MUL_C(re, re)
243
5.76M
#ifndef SBR_LOW_POWER
244
5.76M
                                + MUL_C(im, im)
245
5.76M
#endif
246
5.76M
                                ;
247
5.76M
                        }
248
1.72M
                    }
249
250
86.5k
                    if (nrg < -limit || nrg > limit)
251
6
                        return 1;
252
#ifdef FIXED_POINT
253
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg * mul;
254
#else
255
86.5k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
256
86.5k
#endif
257
#ifdef SBR_LOW_POWER
258
#ifdef FIXED_POINT
259
                    sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
260
#else
261
                    sbr->E_curr[ch][k - sbr->kx][l] *= 2;
262
#endif
263
#endif
264
86.5k
                }
265
34.0k
            }
266
5.43k
        }
267
3.22k
    }
268
269
14.6k
    return 0;
270
14.6k
}
271
272
#ifdef FIXED_POINT
273
#define EPS (1) /* smallest number available in fixed point */
274
#else
275
188k
#define EPS (1e-12)
276
#endif
277
278
279
280
#ifdef FIXED_POINT
281
282
/* log2 values of [0..63] */
283
static const real_t log2_int_tab[] = {
284
    LOG2_MIN_INF, REAL_CONST(0.000000000000000), REAL_CONST(1.000000000000000), REAL_CONST(1.584962500721156),
285
    REAL_CONST(2.000000000000000), REAL_CONST(2.321928094887362), REAL_CONST(2.584962500721156), REAL_CONST(2.807354922057604),
286
    REAL_CONST(3.000000000000000), REAL_CONST(3.169925001442313), REAL_CONST(3.321928094887363), REAL_CONST(3.459431618637297),
287
    REAL_CONST(3.584962500721156), REAL_CONST(3.700439718141092), REAL_CONST(3.807354922057604), REAL_CONST(3.906890595608519),
288
    REAL_CONST(4.000000000000000), REAL_CONST(4.087462841250339), REAL_CONST(4.169925001442312), REAL_CONST(4.247927513443585),
289
    REAL_CONST(4.321928094887362), REAL_CONST(4.392317422778761), REAL_CONST(4.459431618637297), REAL_CONST(4.523561956057013),
290
    REAL_CONST(4.584962500721156), REAL_CONST(4.643856189774724), REAL_CONST(4.700439718141093), REAL_CONST(4.754887502163468),
291
    REAL_CONST(4.807354922057604), REAL_CONST(4.857980995127572), REAL_CONST(4.906890595608519), REAL_CONST(4.954196310386875),
292
    REAL_CONST(5.000000000000000), REAL_CONST(5.044394119358453), REAL_CONST(5.087462841250340), REAL_CONST(5.129283016944966),
293
    REAL_CONST(5.169925001442312), REAL_CONST(5.209453365628949), REAL_CONST(5.247927513443585), REAL_CONST(5.285402218862248),
294
    REAL_CONST(5.321928094887363), REAL_CONST(5.357552004618084), REAL_CONST(5.392317422778761), REAL_CONST(5.426264754702098),
295
    REAL_CONST(5.459431618637297), REAL_CONST(5.491853096329675), REAL_CONST(5.523561956057013), REAL_CONST(5.554588851677637),
296
    REAL_CONST(5.584962500721156), REAL_CONST(5.614709844115208), REAL_CONST(5.643856189774724), REAL_CONST(5.672425341971495),
297
    REAL_CONST(5.700439718141093), REAL_CONST(5.727920454563200), REAL_CONST(5.754887502163469), REAL_CONST(5.781359713524660),
298
    REAL_CONST(5.807354922057605), REAL_CONST(5.832890014164742), REAL_CONST(5.857980995127572), REAL_CONST(5.882643049361842),
299
    REAL_CONST(5.906890595608518), REAL_CONST(5.930737337562887), REAL_CONST(5.954196310386876), REAL_CONST(5.977279923499916)
300
};
301
302
// pan_log2_tab[X] = log2(2**X + 1) - X
303
static const real_t pan_log2_tab[13] = {
304
    REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362), REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339),
305
    REAL_CONST(0.044394119358453), REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878), REAL_CONST(0.002815015607054),
306
    REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247), REAL_CONST(0.000352177480301)
307
};
308
309
static real_t find_log2_E(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
310
415k
{
311
    /* check for coupled energy/noise data */
312
415k
    if (sbr->bs_coupling == 1)
313
187k
    {
314
187k
        int16_t e = sbr->E[0][k][l];
315
187k
        int16_t E = sbr->E[1][k][l];
316
187k
        uint8_t amp0 = (sbr->amp_res[0]) ? 0 : 1;
317
187k
        uint8_t amp1 = (sbr->amp_res[1]) ? 0 : 1;
318
187k
        real_t tmp, pan;
319
320
        /* E[1] should always be even so shifting is OK */
321
187k
        E >>= amp1;
322
187k
        if (e < 0 || e >= 64 || E < 0 || E > 24)
323
43.5k
            return LOG2_MIN_INF;
324
143k
        E -= 12;
325
326
143k
        if (ch != 0)  // L/R anti-symmetry
327
72.3k
            E = -E;
328
329
143k
        if (E >= 0)
330
72.9k
        {
331
            /* negative */
332
72.9k
            pan = pan_log2_tab[E];
333
72.9k
        } else {
334
            /* positive */
335
70.7k
            pan = pan_log2_tab[-E] + ((-E)<<REAL_BITS);
336
70.7k
        }
337
338
        /* tmp / pan in log2 */
339
143k
        tmp = (7 << REAL_BITS) + (e << (REAL_BITS-amp0));
340
143k
        return tmp - pan;
341
227k
    } else {
342
227k
        int16_t e = sbr->E[ch][k][l];
343
227k
        uint8_t amp = (sbr->amp_res[ch]) ? 0 : 1;
344
227k
        if (e < 0 || (e >> amp) >= 64)
345
31.8k
            return LOG2_MIN_INF;
346
196k
        return 6 * REAL_PRECISION + e * (REAL_PRECISION >> amp);
347
227k
    }
348
415k
}
349
350
static real_t find_log2_Q(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
351
284k
{
352
    /* check for coupled energy/noise data */
353
284k
    if (sbr->bs_coupling == 1)
354
129k
    {
355
129k
        int32_t q = sbr->Q[0][k][l];
356
129k
        int32_t Q = sbr->Q[1][k][l];
357
129k
        real_t tmp, pan;
358
359
129k
        if (q < 0 || q > 30 || Q < 0 || Q > 24)
360
23.6k
            return LOG2_MIN_INF;
361
105k
        Q -= 12;
362
363
105k
        if (ch != 0)  // L/R anti-symmetry
364
52.8k
            Q = -Q;
365
366
105k
        if (Q >= 0)
367
53.0k
        {
368
            /* negative */
369
53.0k
            pan = pan_log2_tab[Q];
370
53.0k
        } else {
371
            /* positive */
372
52.4k
            pan = pan_log2_tab[-Q] + ((-Q)<<REAL_BITS);
373
52.4k
        }
374
375
        /* tmp / pan in log2 */
376
105k
        tmp = (7 - q) * REAL_PRECISION;
377
105k
        return tmp - pan;
378
155k
    } else {
379
155k
        int32_t q = sbr->Q[ch][k][l];
380
155k
        if (q < 0 || q > 30)
381
25.1k
            return LOG2_MIN_INF;
382
130k
        return (6 - q) * REAL_PRECISION;
383
155k
    }
384
284k
}
385
386
static const real_t log_Qplus1_pan[31][13] = {
387
    { REAL_CONST(0.044383447617292), REAL_CONST(0.169768601655960), REAL_CONST(0.583090126514435), REAL_CONST(1.570089221000671), REAL_CONST(3.092446088790894), REAL_CONST(4.733354568481445), REAL_CONST(6.022367954254150), REAL_CONST(6.692092418670654), REAL_CONST(6.924463272094727), REAL_CONST(6.989034175872803), REAL_CONST(7.005646705627441), REAL_CONST(7.009829998016357), REAL_CONST(7.010877609252930) },
388
    { REAL_CONST(0.022362394258380), REAL_CONST(0.087379962205887), REAL_CONST(0.320804953575134), REAL_CONST(0.988859415054321), REAL_CONST(2.252387046813965), REAL_CONST(3.786596298217773), REAL_CONST(5.044394016265869), REAL_CONST(5.705977916717529), REAL_CONST(5.936291694641113), REAL_CONST(6.000346660614014), REAL_CONST(6.016829967498779), REAL_CONST(6.020981311798096), REAL_CONST(6.022020816802979) },
389
    { REAL_CONST(0.011224525049329), REAL_CONST(0.044351425021887), REAL_CONST(0.169301137328148), REAL_CONST(0.577544987201691), REAL_CONST(1.527246952056885), REAL_CONST(2.887525320053101), REAL_CONST(4.087462902069092), REAL_CONST(4.733354568481445), REAL_CONST(4.959661006927490), REAL_CONST(5.022709369659424), REAL_CONST(5.038940429687500), REAL_CONST(5.043028831481934), REAL_CONST(5.044052600860596) },
390
    { REAL_CONST(0.005623178556561), REAL_CONST(0.022346137091517), REAL_CONST(0.087132595479488), REAL_CONST(0.317482173442841), REAL_CONST(0.956931233406067), REAL_CONST(2.070389270782471), REAL_CONST(3.169924974441528), REAL_CONST(3.786596298217773), REAL_CONST(4.005294322967529), REAL_CONST(4.066420555114746), REAL_CONST(4.082170009613037), REAL_CONST(4.086137294769287), REAL_CONST(4.087131500244141) },
391
    { REAL_CONST(0.002814328996465), REAL_CONST(0.011216334067285), REAL_CONST(0.044224001467228), REAL_CONST(0.167456731200218), REAL_CONST(0.556393325328827), REAL_CONST(1.378511548042297), REAL_CONST(2.321928024291992), REAL_CONST(2.887525320053101), REAL_CONST(3.092446088790894), REAL_CONST(3.150059700012207), REAL_CONST(3.164926528930664), REAL_CONST(3.168673276901245), REAL_CONST(3.169611930847168) },
392
    { REAL_CONST(0.001407850766554), REAL_CONST(0.005619067233056), REAL_CONST(0.022281449288130), REAL_CONST(0.086156636476517), REAL_CONST(0.304854571819305), REAL_CONST(0.847996890544891), REAL_CONST(1.584962487220764), REAL_CONST(2.070389270782471), REAL_CONST(2.252387046813965), REAL_CONST(2.304061651229858), REAL_CONST(2.317430257797241), REAL_CONST(2.320801734924316), REAL_CONST(2.321646213531494) },
393
    { REAL_CONST(0.000704097095877), REAL_CONST(0.002812269143760), REAL_CONST(0.011183738708496), REAL_CONST(0.043721374124289), REAL_CONST(0.160464659333229), REAL_CONST(0.485426813364029), REAL_CONST(1.000000000000000), REAL_CONST(1.378511548042297), REAL_CONST(1.527246952056885), REAL_CONST(1.570089221000671), REAL_CONST(1.581215262413025), REAL_CONST(1.584023833274841), REAL_CONST(1.584727644920349) },
394
    { REAL_CONST(0.000352177477907), REAL_CONST(0.001406819908880), REAL_CONST(0.005602621007711), REAL_CONST(0.022026389837265), REAL_CONST(0.082462236285210), REAL_CONST(0.263034462928772), REAL_CONST(0.584962487220764), REAL_CONST(0.847996890544891), REAL_CONST(0.956931233406067), REAL_CONST(0.988859415054321), REAL_CONST(0.997190535068512), REAL_CONST(0.999296069145203), REAL_CONST(0.999823868274689) },
395
    { REAL_CONST(0.000176099492819), REAL_CONST(0.000703581434209), REAL_CONST(0.002804030198604), REAL_CONST(0.011055230163038), REAL_CONST(0.041820213198662), REAL_CONST(0.137503549456596), REAL_CONST(0.321928083896637), REAL_CONST(0.485426813364029), REAL_CONST(0.556393325328827), REAL_CONST(0.577544987201691), REAL_CONST(0.583090126514435), REAL_CONST(0.584493279457092), REAL_CONST(0.584845066070557) },
396
    { REAL_CONST(0.000088052431238), REAL_CONST(0.000351833587047), REAL_CONST(0.001402696361765), REAL_CONST(0.005538204684854), REAL_CONST(0.021061634644866), REAL_CONST(0.070389263331890), REAL_CONST(0.169925004243851), REAL_CONST(0.263034462928772), REAL_CONST(0.304854571819305), REAL_CONST(0.317482173442841), REAL_CONST(0.320804953575134), REAL_CONST(0.321646571159363), REAL_CONST(0.321857661008835) },
397
    { REAL_CONST(0.000044026888645), REAL_CONST(0.000175927518285), REAL_CONST(0.000701518612914), REAL_CONST(0.002771759871393), REAL_CONST(0.010569252073765), REAL_CONST(0.035623874515295), REAL_CONST(0.087462842464447), REAL_CONST(0.137503549456596), REAL_CONST(0.160464659333229), REAL_CONST(0.167456731200218), REAL_CONST(0.169301137328148), REAL_CONST(0.169768601655960), REAL_CONST(0.169885858893394) },
398
    { REAL_CONST(0.000022013611670), REAL_CONST(0.000088052431238), REAL_CONST(0.000350801943569), REAL_CONST(0.001386545598507), REAL_CONST(0.005294219125062), REAL_CONST(0.017921976745129), REAL_CONST(0.044394120573997), REAL_CONST(0.070389263331890), REAL_CONST(0.082462236285210), REAL_CONST(0.086156636476517), REAL_CONST(0.087132595479488), REAL_CONST(0.087379962205887), REAL_CONST(0.087442122399807) },
399
    { REAL_CONST(0.000011006847672), REAL_CONST(0.000044026888645), REAL_CONST(0.000175411638338), REAL_CONST(0.000693439331371), REAL_CONST(0.002649537986144), REAL_CONST(0.008988817222416), REAL_CONST(0.022367812693119), REAL_CONST(0.035623874515295), REAL_CONST(0.041820213198662), REAL_CONST(0.043721374124289), REAL_CONST(0.044224001467228), REAL_CONST(0.044351425021887), REAL_CONST(0.044383447617292) },
400
    { REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000087708482170), REAL_CONST(0.000346675369656), REAL_CONST(0.001325377263129), REAL_CONST(0.004501323681325), REAL_CONST(0.011227255687118), REAL_CONST(0.017921976745129), REAL_CONST(0.021061634644866), REAL_CONST(0.022026389837265), REAL_CONST(0.022281449288130), REAL_CONST(0.022346137091517), REAL_CONST(0.022362394258380) },
401
    { REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043854910473), REAL_CONST(0.000173348103999), REAL_CONST(0.000662840844598), REAL_CONST(0.002252417383716), REAL_CONST(0.005624548997730), REAL_CONST(0.008988817222416), REAL_CONST(0.010569252073765), REAL_CONST(0.011055230163038), REAL_CONST(0.011183738708496), REAL_CONST(0.011216334067285), REAL_CONST(0.011224525049329) },
402
    { REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000086676649516), REAL_CONST(0.000331544462824), REAL_CONST(0.001126734190620), REAL_CONST(0.002815015614033), REAL_CONST(0.004501323681325), REAL_CONST(0.005294219125062), REAL_CONST(0.005538204684854), REAL_CONST(0.005602621007711), REAL_CONST(0.005619067233056), REAL_CONST(0.005623178556561) },
403
    { REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043338975956), REAL_CONST(0.000165781748365), REAL_CONST(0.000563477107789), REAL_CONST(0.001408194424585), REAL_CONST(0.002252417383716), REAL_CONST(0.002649537986144), REAL_CONST(0.002771759871393), REAL_CONST(0.002804030198604), REAL_CONST(0.002812269143760), REAL_CONST(0.002814328996465) },
404
    { REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000021669651687), REAL_CONST(0.000082893253420), REAL_CONST(0.000281680084299), REAL_CONST(0.000704268983100), REAL_CONST(0.001126734190620), REAL_CONST(0.001325377263129), REAL_CONST(0.001386545598507), REAL_CONST(0.001402696361765), REAL_CONST(0.001406819908880), REAL_CONST(0.001407850766554) },
405
    { REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010834866771), REAL_CONST(0.000041447223339), REAL_CONST(0.000140846910654), REAL_CONST(0.000352177477907), REAL_CONST(0.000563477107789), REAL_CONST(0.000662840844598), REAL_CONST(0.000693439331371), REAL_CONST(0.000701518612914), REAL_CONST(0.000703581434209), REAL_CONST(0.000704097095877) },
406
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000020637769921), REAL_CONST(0.000070511166996), REAL_CONST(0.000176099492819), REAL_CONST(0.000281680084299), REAL_CONST(0.000331544462824), REAL_CONST(0.000346675369656), REAL_CONST(0.000350801943569), REAL_CONST(0.000351833587047), REAL_CONST(0.000352177477907) },
407
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010318922250), REAL_CONST(0.000035256012779), REAL_CONST(0.000088052431238), REAL_CONST(0.000140846910654), REAL_CONST(0.000165781748365), REAL_CONST(0.000173348103999), REAL_CONST(0.000175411638338), REAL_CONST(0.000175927518285), REAL_CONST(0.000176099492819) },
408
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005159470220), REAL_CONST(0.000017542124624), REAL_CONST(0.000044026888645), REAL_CONST(0.000070511166996), REAL_CONST(0.000082893253420), REAL_CONST(0.000086676649516), REAL_CONST(0.000087708482170), REAL_CONST(0.000088052431238), REAL_CONST(0.000088052431238) },
409
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002579737384), REAL_CONST(0.000008771088687), REAL_CONST(0.000022013611670), REAL_CONST(0.000035256012779), REAL_CONST(0.000041447223339), REAL_CONST(0.000043338975956), REAL_CONST(0.000043854910473), REAL_CONST(0.000044026888645), REAL_CONST(0.000044026888645) },
410
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000004471542070), REAL_CONST(0.000011006847672), REAL_CONST(0.000017542124624), REAL_CONST(0.000020637769921), REAL_CONST(0.000021669651687), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670) },
411
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002235772627), REAL_CONST(0.000005503434295), REAL_CONST(0.000008771088687), REAL_CONST(0.000010318922250), REAL_CONST(0.000010834866771), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672) },
412
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001031895522), REAL_CONST(0.000002751719876), REAL_CONST(0.000004471542070), REAL_CONST(0.000005159470220), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295) },
413
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000515947875), REAL_CONST(0.000001375860506), REAL_CONST(0.000002235772627), REAL_CONST(0.000002579737384), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876) },
414
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000000687930424), REAL_CONST(0.000001031895522), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506) },
415
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000515947875), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424) },
416
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269) },
417
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634) }
418
};
419
420
static const real_t log_Qplus1[31] = {
421
    REAL_CONST(6.022367813028454), REAL_CONST(5.044394119358453), REAL_CONST(4.087462841250339),
422
    REAL_CONST(3.169925001442313), REAL_CONST(2.321928094887362), REAL_CONST(1.584962500721156),
423
    REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362),
424
    REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339), REAL_CONST(0.044394119358453),
425
    REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878),
426
    REAL_CONST(0.002815015607054), REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247),
427
    REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122),
428
    REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667),
429
    REAL_CONST(0.000005503434331), REAL_CONST(0.000002751719790), REAL_CONST(0.000001375860551),
430
    REAL_CONST(0.000000687930439), REAL_CONST(0.000000343965261), REAL_CONST(0.000000171982641),
431
    REAL_CONST(0.000000000000000)
432
};
433
434
static real_t find_log2_Qplus1(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
435
284k
{
436
    /* check for coupled energy/noise data */
437
284k
    if (sbr->bs_coupling == 1)
438
129k
    {
439
129k
        if ((sbr->Q[0][k][l] >= 0) && (sbr->Q[0][k][l] <= 30) &&
440
129k
            (sbr->Q[1][k][l] >= 0) && (sbr->Q[1][k][l] <= 24))
441
105k
        {
442
105k
            if (ch == 0)
443
52.6k
            {
444
52.6k
                return log_Qplus1_pan[sbr->Q[0][k][l]][sbr->Q[1][k][l] >> 1];
445
52.8k
            } else {
446
52.8k
                return log_Qplus1_pan[sbr->Q[0][k][l]][12 - (sbr->Q[1][k][l] >> 1)];
447
52.8k
            }
448
105k
        } else {
449
23.6k
            return 0;
450
23.6k
        }
451
155k
    } else {
452
155k
        if (sbr->Q[ch][k][l] >= 0 && sbr->Q[ch][k][l] <= 30)
453
130k
        {
454
130k
            return log_Qplus1[sbr->Q[ch][k][l]];
455
130k
        } else {
456
25.1k
            return 0;
457
25.1k
        }
458
155k
    }
459
284k
}
460
461
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
462
12.7k
{
463
    /* log2 values of limiter gains */
464
    /* Last one less than log2(1e10) due to FIXED POINT float limitations */
465
12.7k
    static real_t limGain[] = {
466
12.7k
        REAL_CONST(-1.0), REAL_CONST(0.0), REAL_CONST(1.0), REAL_CONST(21.0)
467
12.7k
    };
468
12.7k
    uint8_t m, l, k;
469
470
12.7k
    uint8_t current_t_noise_band = 0;
471
12.7k
    uint8_t S_mapped;
472
473
12.7k
    ALIGN real_t Q_M_lim[MAX_M];
474
12.7k
    ALIGN real_t G_lim[MAX_M];
475
12.7k
    ALIGN real_t G_boost;
476
12.7k
    ALIGN real_t S_M[MAX_M];
477
478
12.7k
    real_t exp = REAL_CONST(-10);
479
480
34.0k
    for (l = 0; l < sbr->L_E[ch]; l++)
481
21.3k
    {
482
21.3k
        uint8_t current_f_noise_band = 0;
483
21.3k
        uint8_t current_res_band = 0;
484
21.3k
        uint8_t current_res_band2 = 0;
485
21.3k
        uint8_t current_hi_res_band = 0;
486
487
21.3k
        real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
488
489
21.3k
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
490
491
21.3k
        if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
492
3.28k
        {
493
3.28k
            current_t_noise_band++;
494
3.28k
        }
495
496
66.8k
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
497
45.5k
        {
498
45.5k
            real_t Q_M = 0;
499
45.5k
            real_t G_max;
500
45.5k
            uint64_t den = 0, acc1 = 0, acc2 = 0;
501
45.5k
            uint8_t current_res_band_size = 0;
502
45.5k
            uint8_t Q_M_size = 0;
503
45.5k
            real_t log_e, log_den, log_acc1, log_acc2;
504
505
45.5k
            uint8_t ml1, ml2;
506
507
            /* bounds of current limiter bands */
508
45.5k
            ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
509
45.5k
            ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
510
511
45.5k
            if (ml1 > MAX_M)
512
0
                ml1 = MAX_M;
513
514
45.5k
            if (ml2 > MAX_M)
515
0
                ml2 = MAX_M;
516
517
518
            /* calculate the accumulated E_orig and E_curr over the limiter band */
519
330k
            for (m = ml1; m < ml2; m++)
520
284k
            {
521
284k
                if ((m + sbr->kx) < sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
522
199k
                {
523
199k
                    current_res_band_size++;
524
199k
                } else {
525
84.9k
                    log_e = find_log2_E(sbr, current_res_band, l, ch);
526
84.9k
                    acc1 += pow2_int(exp + log2_int_tab[current_res_band_size] + log_e);
527
528
84.9k
                    current_res_band++;
529
84.9k
                    current_res_band_size = 1;
530
84.9k
                }
531
532
284k
                acc2 += sbr->E_curr[ch][m][l];
533
284k
            }
534
45.5k
            if (current_res_band_size) {
535
45.5k
                log_e = find_log2_E(sbr, current_res_band, l, ch);
536
45.5k
                acc1 += pow2_int(exp + log2_int_tab[current_res_band_size] + log_e);
537
45.5k
            }
538
539
540
45.5k
            if (acc1 == 0)
541
27.9k
                log_acc1 = LOG2_MIN_INF;
542
17.5k
            else
543
17.5k
                log_acc1 = log2_int(acc1);
544
545
45.5k
            if (acc2 == 0)
546
44.7k
                log_acc2 = LOG2_MIN_INF;
547
797
            else
548
797
                log_acc2 = log2_int(acc2);
549
550
            /* calculate the maximum gain */
551
            /* ratio of the energy of the original signal and the energy
552
             * of the HF generated signal
553
             */
554
45.5k
            G_max = log_acc1 - log_acc2 + limGain[sbr->bs_limiter_gains];
555
45.5k
            G_max = min(G_max, limGain[3]);
556
557
558
330k
            for (m = ml1; m < ml2; m++)
559
284k
            {
560
284k
                real_t G;
561
284k
                real_t E_curr, E_orig;
562
284k
                real_t Q_orig, Q_orig_plus1;
563
284k
                uint8_t S_index_mapped;
564
565
566
                /* check if m is on a noise band border */
567
284k
                if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
568
18.1k
                {
569
                    /* step to next noise band */
570
18.1k
                    current_f_noise_band++;
571
18.1k
                }
572
573
574
                /* check if m is on a resolution band border */
575
284k
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
576
84.7k
                {
577
                    /* accumulate a whole range of equal Q_Ms */
578
84.7k
                    if (Q_M_size > 0)
579
37.0k
                        den += pow2_int(log2_int_tab[Q_M_size] + Q_M);
580
84.7k
                    Q_M_size = 0;
581
582
                    /* step to next resolution band */
583
84.7k
                    current_res_band2++;
584
585
                    /* if we move to a new resolution band, we should check if we are
586
                     * going to add a sinusoid in this band
587
                     */
588
84.7k
                    S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
589
84.7k
                }
590
591
592
                /* check if m is on a HI_RES band border */
593
284k
                if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
594
135k
                {
595
                    /* step to next HI_RES band */
596
135k
                    current_hi_res_band++;
597
135k
                }
598
599
600
                /* find S_index_mapped
601
                 * S_index_mapped can only be 1 for the m in the middle of the
602
                 * current HI_RES band
603
                 */
604
284k
                S_index_mapped = 0;
605
284k
                if ((l >= sbr->l_A[ch]) ||
606
284k
                    (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
607
216k
                {
608
                    /* find the middle subband of the HI_RES frequency band */
609
216k
                    if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
610
112k
                        S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
611
216k
                }
612
613
614
                /* find bitstream parameters */
615
284k
                if (sbr->E_curr[ch][m][l] == 0)
616
278k
                    E_curr = LOG2_MIN_INF;
617
6.44k
                else
618
6.44k
                    E_curr = log2_int(sbr->E_curr[ch][m][l]);
619
284k
                E_orig = exp + find_log2_E(sbr, current_res_band2, l, ch);
620
621
622
284k
                Q_orig = find_log2_Q(sbr, current_f_noise_band, current_t_noise_band, ch);
623
284k
                Q_orig_plus1 = find_log2_Qplus1(sbr, current_f_noise_band, current_t_noise_band, ch);
624
625
626
                /* Q_M only depends on E_orig and Q_div2:
627
                 * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
628
                 * a change of current res band (HI or LO)
629
                 */
630
284k
                Q_M = E_orig + Q_orig - Q_orig_plus1;
631
632
633
                /* S_M only depends on E_orig, Q_div and S_index_mapped:
634
                 * S_index_mapped can only be non-zero once per HI_RES band
635
                 */
636
284k
                if (S_index_mapped == 0)
637
266k
                {
638
266k
                    S_M[m] = LOG2_MIN_INF; /* -inf */
639
266k
                } else {
640
17.7k
                    S_M[m] = E_orig - Q_orig_plus1;
641
17.7k
                    S_M[m] = min(S_M[m], limGain[3]);
642
643
                    /* accumulate sinusoid part of the total energy */
644
17.7k
                    den += pow2_int(S_M[m]);
645
17.7k
                }
646
647
648
                /* calculate gain */
649
                /* ratio of the energy of the original signal and the energy
650
                 * of the HF generated signal
651
                 */
652
                /* E_curr here is officially E_curr+1 so the log2() of that can never be < 0 */
653
                /* scaled by exp */
654
284k
                G = E_orig - max(exp, E_curr);
655
284k
                if ((S_mapped == 0) && (delta == 1))
656
222k
                {
657
                    /* G = G * 1/(1+Q) */
658
222k
                    G -= Q_orig_plus1;
659
222k
                } else if (S_mapped == 1) {
660
                    /* G = G * Q/(1+Q) */
661
41.3k
                    G += Q_orig - Q_orig_plus1;
662
41.3k
                }
663
664
665
                /* limit the additional noise energy level */
666
                /* and apply the limiter */
667
284k
                if (G_max > G)
668
183k
                {
669
183k
                    Q_M_lim[m] = Q_M;
670
183k
                    G_lim[m] = G;
671
672
183k
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
673
162k
                    {
674
162k
                        Q_M_size++;
675
162k
                    }
676
183k
                } else {
677
                    /* G >= G_max */
678
101k
                    Q_M_lim[m] = Q_M + G_max - G;
679
101k
                    G_lim[m] = G_max;
680
681
                    /* accumulate limited Q_M */
682
101k
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
683
89.9k
                    {
684
89.9k
                        den += pow2_int(Q_M_lim[m]);
685
89.9k
                    }
686
101k
                }
687
688
689
                /* accumulate the total energy */
690
                /* E_curr changes for every m so we do need to accumulate every m */
691
284k
                den += pow2_int(E_curr + G_lim[m]);
692
284k
            }
693
694
            /* accumulate last range of equal Q_Ms */
695
45.5k
            if (Q_M_size > 0)
696
27.3k
            {
697
27.3k
                den += pow2_int(log2_int_tab[Q_M_size] + Q_M);
698
27.3k
            }
699
700
45.5k
            if (den == 0)
701
34.4k
                log_den = LOG2_MIN_INF;
702
11.0k
            else
703
11.0k
                log_den = log2_int(den /*+ EPS*/);
704
705
            /* calculate the final gain */
706
            /* G_boost: [0..2.51188643] */
707
45.5k
            G_boost = log_acc1 - log_den;
708
45.5k
            G_boost = min(G_boost, REAL_CONST(1.328771237) /* log2(1.584893192 ^ 2) */);
709
710
711
330k
            for (m = ml1; m < ml2; m++)
712
284k
            {
713
                /* apply compensation to gain, noise floor sf's and sinusoid levels */
714
284k
#ifndef SBR_LOW_POWER
715
284k
                adj->G_lim_boost[l][m] = pow2_fix((G_lim[m] + G_boost) >> 1);
716
#else
717
                /* sqrt() will be done after the aliasing reduction to save a
718
                 * few multiplies
719
                 */
720
                adj->G_lim_boost[l][m] = pow2_fix(G_lim[m] + G_boost);
721
#endif
722
284k
                adj->Q_M_lim_boost[l][m] = pow2_fix((Q_M_lim[m] + G_boost) >> 1);
723
724
284k
                adj->S_M_boost[l][m] = pow2_fix((S_M[m] + G_boost) >> 1);
725
284k
            }
726
45.5k
        }
727
21.3k
    }
728
12.7k
}
729
730
#else
731
732
//#define LOG2_TEST
733
734
#ifdef LOG2_TEST
735
736
#define LOG2_MIN_INF -100000
737
738
__inline float pow2(float val)
739
{
740
    return pow(2.0, val);
741
}
742
__inline float log2(float val)
743
{
744
    return log(val)/log(2.0);
745
}
746
747
#define RB 14
748
749
float QUANTISE2REAL(float val)
750
{
751
    __int32 ival = (__int32)(val * (1<<RB));
752
    return (float)ival / (float)((1<<RB));
753
}
754
755
float QUANTISE2INT(float val)
756
{
757
    return floor(val);
758
}
759
760
/* log2 values of [0..63] */
761
static const real_t log2_int_tab[] = {
762
    LOG2_MIN_INF,      0.000000000000000, 1.000000000000000, 1.584962500721156,
763
    2.000000000000000, 2.321928094887362, 2.584962500721156, 2.807354922057604,
764
    3.000000000000000, 3.169925001442313, 3.321928094887363, 3.459431618637297,
765
    3.584962500721156, 3.700439718141092, 3.807354922057604, 3.906890595608519,
766
    4.000000000000000, 4.087462841250339, 4.169925001442312, 4.247927513443585,
767
    4.321928094887362, 4.392317422778761, 4.459431618637297, 4.523561956057013,
768
    4.584962500721156, 4.643856189774724, 4.700439718141093, 4.754887502163468,
769
    4.807354922057604, 4.857980995127572, 4.906890595608519, 4.954196310386875,
770
    5.000000000000000, 5.044394119358453, 5.087462841250340, 5.129283016944966,
771
    5.169925001442312, 5.209453365628949, 5.247927513443585, 5.285402218862248,
772
    5.321928094887363, 5.357552004618084, 5.392317422778761, 5.426264754702098,
773
    5.459431618637297, 5.491853096329675, 5.523561956057013, 5.554588851677637,
774
    5.584962500721156, 5.614709844115208, 5.643856189774724, 5.672425341971495,
775
    5.700439718141093, 5.727920454563200, 5.754887502163469, 5.781359713524660,
776
    5.807354922057605, 5.832890014164742, 5.857980995127572, 5.882643049361842,
777
    5.906890595608518, 5.930737337562887, 5.954196310386876, 5.977279923499916
778
};
779
780
static const real_t pan_log2_tab[] = {
781
    1.000000000000000, 0.584962500721156, 0.321928094887362, 0.169925001442312, 0.087462841250339,
782
    0.044394119358453, 0.022367813028455, 0.011227255423254, 0.005624549193878, 0.002815015607054,
783
    0.001408194392808, 0.000704269011247, 0.000352177480301, 0.000176099486443, 0.000088052430122,
784
    0.000044026886827, 0.000022013611360, 0.000011006847667
785
};
786
787
static real_t find_log2_E(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
788
{
789
    /* check for coupled energy/noise data */
790
    if (sbr->bs_coupling == 1)
791
    {
792
        real_t amp0 = (sbr->amp_res[0]) ? 1.0 : 0.5;
793
        real_t amp1 = (sbr->amp_res[1]) ? 1.0 : 0.5;
794
        float tmp = QUANTISE2REAL(7.0 + (real_t)sbr->E[0][k][l] * amp0);
795
        float pan;
796
797
        int E = (int)(sbr->E[1][k][l] * amp1);
798
799
        if (ch == 0)
800
        {
801
            if (E > 12)
802
            {
803
                /* negative */
804
                pan = QUANTISE2REAL(pan_log2_tab[-12 + E]);
805
            } else {
806
                /* positive */
807
                pan = QUANTISE2REAL(pan_log2_tab[12 - E] + (12 - E));
808
            }
809
        } else {
810
            if (E < 12)
811
            {
812
                /* negative */
813
                pan = QUANTISE2REAL(pan_log2_tab[-E + 12]);
814
            } else {
815
                /* positive */
816
                pan = QUANTISE2REAL(pan_log2_tab[E - 12] + (E - 12));
817
            }
818
        }
819
820
        /* tmp / pan in log2 */
821
        return QUANTISE2REAL(tmp - pan);
822
    } else {
823
        real_t amp = (sbr->amp_res[ch]) ? 1.0 : 0.5;
824
825
        return QUANTISE2REAL(6.0 + (real_t)sbr->E[ch][k][l] * amp);
826
    }
827
}
828
829
static real_t find_log2_Q(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
830
{
831
    /* check for coupled energy/noise data */
832
    if (sbr->bs_coupling == 1)
833
    {
834
        float tmp = QUANTISE2REAL(7.0 - (real_t)sbr->Q[0][k][l]);
835
        float pan;
836
837
        int Q = (int)(sbr->Q[1][k][l]);
838
839
        if (ch == 0)
840
        {
841
            if (Q > 12)
842
            {
843
                /* negative */
844
                pan = QUANTISE2REAL(pan_log2_tab[-12 + Q]);
845
            } else {
846
                /* positive */
847
                pan = QUANTISE2REAL(pan_log2_tab[12 - Q] + (12 - Q));
848
            }
849
        } else {
850
            if (Q < 12)
851
            {
852
                /* negative */
853
                pan = QUANTISE2REAL(pan_log2_tab[-Q + 12]);
854
            } else {
855
                /* positive */
856
                pan = QUANTISE2REAL(pan_log2_tab[Q - 12] + (Q - 12));
857
            }
858
        }
859
860
        /* tmp / pan in log2 */
861
        return QUANTISE2REAL(tmp - pan);
862
    } else {
863
        return QUANTISE2REAL(6.0 - (real_t)sbr->Q[ch][k][l]);
864
    }
865
}
866
867
static const real_t log_Qplus1_pan[31][13] = {
868
    { REAL_CONST(0.044383447617292), REAL_CONST(0.169768601655960), REAL_CONST(0.583090126514435), REAL_CONST(1.570089221000671), REAL_CONST(3.092446088790894), REAL_CONST(4.733354568481445), REAL_CONST(6.022367954254150), REAL_CONST(6.692092418670654), REAL_CONST(6.924463272094727), REAL_CONST(6.989034175872803), REAL_CONST(7.005646705627441), REAL_CONST(7.009829998016357), REAL_CONST(7.010877609252930) },
869
    { REAL_CONST(0.022362394258380), REAL_CONST(0.087379962205887), REAL_CONST(0.320804953575134), REAL_CONST(0.988859415054321), REAL_CONST(2.252387046813965), REAL_CONST(3.786596298217773), REAL_CONST(5.044394016265869), REAL_CONST(5.705977916717529), REAL_CONST(5.936291694641113), REAL_CONST(6.000346660614014), REAL_CONST(6.016829967498779), REAL_CONST(6.020981311798096), REAL_CONST(6.022020816802979) },
870
    { REAL_CONST(0.011224525049329), REAL_CONST(0.044351425021887), REAL_CONST(0.169301137328148), REAL_CONST(0.577544987201691), REAL_CONST(1.527246952056885), REAL_CONST(2.887525320053101), REAL_CONST(4.087462902069092), REAL_CONST(4.733354568481445), REAL_CONST(4.959661006927490), REAL_CONST(5.022709369659424), REAL_CONST(5.038940429687500), REAL_CONST(5.043028831481934), REAL_CONST(5.044052600860596) },
871
    { REAL_CONST(0.005623178556561), REAL_CONST(0.022346137091517), REAL_CONST(0.087132595479488), REAL_CONST(0.317482173442841), REAL_CONST(0.956931233406067), REAL_CONST(2.070389270782471), REAL_CONST(3.169924974441528), REAL_CONST(3.786596298217773), REAL_CONST(4.005294322967529), REAL_CONST(4.066420555114746), REAL_CONST(4.082170009613037), REAL_CONST(4.086137294769287), REAL_CONST(4.087131500244141) },
872
    { REAL_CONST(0.002814328996465), REAL_CONST(0.011216334067285), REAL_CONST(0.044224001467228), REAL_CONST(0.167456731200218), REAL_CONST(0.556393325328827), REAL_CONST(1.378511548042297), REAL_CONST(2.321928024291992), REAL_CONST(2.887525320053101), REAL_CONST(3.092446088790894), REAL_CONST(3.150059700012207), REAL_CONST(3.164926528930664), REAL_CONST(3.168673276901245), REAL_CONST(3.169611930847168) },
873
    { REAL_CONST(0.001407850766554), REAL_CONST(0.005619067233056), REAL_CONST(0.022281449288130), REAL_CONST(0.086156636476517), REAL_CONST(0.304854571819305), REAL_CONST(0.847996890544891), REAL_CONST(1.584962487220764), REAL_CONST(2.070389270782471), REAL_CONST(2.252387046813965), REAL_CONST(2.304061651229858), REAL_CONST(2.317430257797241), REAL_CONST(2.320801734924316), REAL_CONST(2.321646213531494) },
874
    { REAL_CONST(0.000704097095877), REAL_CONST(0.002812269143760), REAL_CONST(0.011183738708496), REAL_CONST(0.043721374124289), REAL_CONST(0.160464659333229), REAL_CONST(0.485426813364029), REAL_CONST(1.000000000000000), REAL_CONST(1.378511548042297), REAL_CONST(1.527246952056885), REAL_CONST(1.570089221000671), REAL_CONST(1.581215262413025), REAL_CONST(1.584023833274841), REAL_CONST(1.584727644920349) },
875
    { REAL_CONST(0.000352177477907), REAL_CONST(0.001406819908880), REAL_CONST(0.005602621007711), REAL_CONST(0.022026389837265), REAL_CONST(0.082462236285210), REAL_CONST(0.263034462928772), REAL_CONST(0.584962487220764), REAL_CONST(0.847996890544891), REAL_CONST(0.956931233406067), REAL_CONST(0.988859415054321), REAL_CONST(0.997190535068512), REAL_CONST(0.999296069145203), REAL_CONST(0.999823868274689) },
876
    { REAL_CONST(0.000176099492819), REAL_CONST(0.000703581434209), REAL_CONST(0.002804030198604), REAL_CONST(0.011055230163038), REAL_CONST(0.041820213198662), REAL_CONST(0.137503549456596), REAL_CONST(0.321928083896637), REAL_CONST(0.485426813364029), REAL_CONST(0.556393325328827), REAL_CONST(0.577544987201691), REAL_CONST(0.583090126514435), REAL_CONST(0.584493279457092), REAL_CONST(0.584845066070557) },
877
    { REAL_CONST(0.000088052431238), REAL_CONST(0.000351833587047), REAL_CONST(0.001402696361765), REAL_CONST(0.005538204684854), REAL_CONST(0.021061634644866), REAL_CONST(0.070389263331890), REAL_CONST(0.169925004243851), REAL_CONST(0.263034462928772), REAL_CONST(0.304854571819305), REAL_CONST(0.317482173442841), REAL_CONST(0.320804953575134), REAL_CONST(0.321646571159363), REAL_CONST(0.321857661008835) },
878
    { REAL_CONST(0.000044026888645), REAL_CONST(0.000175927518285), REAL_CONST(0.000701518612914), REAL_CONST(0.002771759871393), REAL_CONST(0.010569252073765), REAL_CONST(0.035623874515295), REAL_CONST(0.087462842464447), REAL_CONST(0.137503549456596), REAL_CONST(0.160464659333229), REAL_CONST(0.167456731200218), REAL_CONST(0.169301137328148), REAL_CONST(0.169768601655960), REAL_CONST(0.169885858893394) },
879
    { REAL_CONST(0.000022013611670), REAL_CONST(0.000088052431238), REAL_CONST(0.000350801943569), REAL_CONST(0.001386545598507), REAL_CONST(0.005294219125062), REAL_CONST(0.017921976745129), REAL_CONST(0.044394120573997), REAL_CONST(0.070389263331890), REAL_CONST(0.082462236285210), REAL_CONST(0.086156636476517), REAL_CONST(0.087132595479488), REAL_CONST(0.087379962205887), REAL_CONST(0.087442122399807) },
880
    { REAL_CONST(0.000011006847672), REAL_CONST(0.000044026888645), REAL_CONST(0.000175411638338), REAL_CONST(0.000693439331371), REAL_CONST(0.002649537986144), REAL_CONST(0.008988817222416), REAL_CONST(0.022367812693119), REAL_CONST(0.035623874515295), REAL_CONST(0.041820213198662), REAL_CONST(0.043721374124289), REAL_CONST(0.044224001467228), REAL_CONST(0.044351425021887), REAL_CONST(0.044383447617292) },
881
    { REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000087708482170), REAL_CONST(0.000346675369656), REAL_CONST(0.001325377263129), REAL_CONST(0.004501323681325), REAL_CONST(0.011227255687118), REAL_CONST(0.017921976745129), REAL_CONST(0.021061634644866), REAL_CONST(0.022026389837265), REAL_CONST(0.022281449288130), REAL_CONST(0.022346137091517), REAL_CONST(0.022362394258380) },
882
    { REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043854910473), REAL_CONST(0.000173348103999), REAL_CONST(0.000662840844598), REAL_CONST(0.002252417383716), REAL_CONST(0.005624548997730), REAL_CONST(0.008988817222416), REAL_CONST(0.010569252073765), REAL_CONST(0.011055230163038), REAL_CONST(0.011183738708496), REAL_CONST(0.011216334067285), REAL_CONST(0.011224525049329) },
883
    { REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000086676649516), REAL_CONST(0.000331544462824), REAL_CONST(0.001126734190620), REAL_CONST(0.002815015614033), REAL_CONST(0.004501323681325), REAL_CONST(0.005294219125062), REAL_CONST(0.005538204684854), REAL_CONST(0.005602621007711), REAL_CONST(0.005619067233056), REAL_CONST(0.005623178556561) },
884
    { REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043338975956), REAL_CONST(0.000165781748365), REAL_CONST(0.000563477107789), REAL_CONST(0.001408194424585), REAL_CONST(0.002252417383716), REAL_CONST(0.002649537986144), REAL_CONST(0.002771759871393), REAL_CONST(0.002804030198604), REAL_CONST(0.002812269143760), REAL_CONST(0.002814328996465) },
885
    { REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000021669651687), REAL_CONST(0.000082893253420), REAL_CONST(0.000281680084299), REAL_CONST(0.000704268983100), REAL_CONST(0.001126734190620), REAL_CONST(0.001325377263129), REAL_CONST(0.001386545598507), REAL_CONST(0.001402696361765), REAL_CONST(0.001406819908880), REAL_CONST(0.001407850766554) },
886
    { REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010834866771), REAL_CONST(0.000041447223339), REAL_CONST(0.000140846910654), REAL_CONST(0.000352177477907), REAL_CONST(0.000563477107789), REAL_CONST(0.000662840844598), REAL_CONST(0.000693439331371), REAL_CONST(0.000701518612914), REAL_CONST(0.000703581434209), REAL_CONST(0.000704097095877) },
887
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000020637769921), REAL_CONST(0.000070511166996), REAL_CONST(0.000176099492819), REAL_CONST(0.000281680084299), REAL_CONST(0.000331544462824), REAL_CONST(0.000346675369656), REAL_CONST(0.000350801943569), REAL_CONST(0.000351833587047), REAL_CONST(0.000352177477907) },
888
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010318922250), REAL_CONST(0.000035256012779), REAL_CONST(0.000088052431238), REAL_CONST(0.000140846910654), REAL_CONST(0.000165781748365), REAL_CONST(0.000173348103999), REAL_CONST(0.000175411638338), REAL_CONST(0.000175927518285), REAL_CONST(0.000176099492819) },
889
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005159470220), REAL_CONST(0.000017542124624), REAL_CONST(0.000044026888645), REAL_CONST(0.000070511166996), REAL_CONST(0.000082893253420), REAL_CONST(0.000086676649516), REAL_CONST(0.000087708482170), REAL_CONST(0.000088052431238), REAL_CONST(0.000088052431238) },
890
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002579737384), REAL_CONST(0.000008771088687), REAL_CONST(0.000022013611670), REAL_CONST(0.000035256012779), REAL_CONST(0.000041447223339), REAL_CONST(0.000043338975956), REAL_CONST(0.000043854910473), REAL_CONST(0.000044026888645), REAL_CONST(0.000044026888645) },
891
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000004471542070), REAL_CONST(0.000011006847672), REAL_CONST(0.000017542124624), REAL_CONST(0.000020637769921), REAL_CONST(0.000021669651687), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670) },
892
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002235772627), REAL_CONST(0.000005503434295), REAL_CONST(0.000008771088687), REAL_CONST(0.000010318922250), REAL_CONST(0.000010834866771), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672) },
893
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001031895522), REAL_CONST(0.000002751719876), REAL_CONST(0.000004471542070), REAL_CONST(0.000005159470220), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295) },
894
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000515947875), REAL_CONST(0.000001375860506), REAL_CONST(0.000002235772627), REAL_CONST(0.000002579737384), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876) },
895
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000000687930424), REAL_CONST(0.000001031895522), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506) },
896
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000515947875), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424) },
897
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269) },
898
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634) }
899
};
900
901
static const real_t log_Qplus1[31] = {
902
    REAL_CONST(6.022367813028454), REAL_CONST(5.044394119358453), REAL_CONST(4.087462841250339),
903
    REAL_CONST(3.169925001442313), REAL_CONST(2.321928094887362), REAL_CONST(1.584962500721156),
904
    REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362),
905
    REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339), REAL_CONST(0.044394119358453),
906
    REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878),
907
    REAL_CONST(0.002815015607054), REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247),
908
    REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122),
909
    REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667),
910
    REAL_CONST(0.000005503434331), REAL_CONST(0.000002751719790), REAL_CONST(0.000001375860551),
911
    REAL_CONST(0.000000687930439), REAL_CONST(0.000000343965261), REAL_CONST(0.000000171982641),
912
    REAL_CONST(0.000000000000000)
913
};
914
915
static real_t find_log2_Qplus1(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
916
{
917
    /* check for coupled energy/noise data */
918
    if (sbr->bs_coupling == 1)
919
    {
920
        if ((sbr->Q[0][k][l] >= 0) && (sbr->Q[0][k][l] <= 30) &&
921
            (sbr->Q[1][k][l] >= 0) && (sbr->Q[1][k][l] <= 24))
922
        {
923
            if (ch == 0)
924
            {
925
                return QUANTISE2REAL(log_Qplus1_pan[sbr->Q[0][k][l]][sbr->Q[1][k][l] >> 1]);
926
            } else {
927
                return QUANTISE2REAL(log_Qplus1_pan[sbr->Q[0][k][l]][12 - (sbr->Q[1][k][l] >> 1)]);
928
            }
929
        } else {
930
            return 0;
931
        }
932
    } else {
933
        if (sbr->Q[ch][k][l] >= 0 && sbr->Q[ch][k][l] <= 30)
934
        {
935
            return QUANTISE2REAL(log_Qplus1[sbr->Q[ch][k][l]]);
936
        } else {
937
            return 0;
938
        }
939
    }
940
}
941
942
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
943
{
944
    /* log2 values of limiter gains */
945
    static real_t limGain[] = { -1.0, 0.0, 1.0, 33.219 };
946
    uint8_t m, l, k;
947
948
    uint8_t current_t_noise_band = 0;
949
    uint8_t S_mapped;
950
951
    ALIGN real_t Q_M_lim[MAX_M];
952
    ALIGN real_t G_lim[MAX_M];
953
    ALIGN real_t G_boost;
954
    ALIGN real_t S_M[MAX_M];
955
956
957
    for (l = 0; l < sbr->L_E[ch]; l++)
958
    {
959
        uint8_t current_f_noise_band = 0;
960
        uint8_t current_res_band = 0;
961
        uint8_t current_res_band2 = 0;
962
        uint8_t current_hi_res_band = 0;
963
964
        real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
965
966
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
967
968
        if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
969
        {
970
            current_t_noise_band++;
971
        }
972
973
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
974
        {
975
            real_t Q_M = 0;
976
            real_t G_max;
977
            real_t den = 0;
978
            real_t acc1 = 0;
979
            real_t acc2 = 0;
980
            uint8_t current_res_band_size = 0;
981
            uint8_t Q_M_size = 0;
982
983
            uint8_t ml1, ml2;
984
985
            /* bounds of current limiter bands */
986
            ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
987
            ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
988
989
            if (ml1 > MAX_M)
990
                ml1 = MAX_M;
991
992
            if (ml2 > MAX_M)
993
                ml2 = MAX_M;
994
995
996
            /* calculate the accumulated E_orig and E_curr over the limiter band */
997
            for (m = ml1; m < ml2; m++)
998
            {
999
                if ((m + sbr->kx) < sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
1000
                {
1001
                    current_res_band_size++;
1002
                } else {
1003
                    acc1 += QUANTISE2INT(pow2(-10 + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch)));
1004
1005
                    current_res_band++;
1006
                    current_res_band_size = 1;
1007
                }
1008
1009
                acc2 += QUANTISE2INT(sbr->E_curr[ch][m][l]/1024.0);
1010
            }
1011
            acc1 += QUANTISE2INT(pow2(-10 + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch)));
1012
1013
            acc1 = QUANTISE2REAL( log2(EPS + acc1) );
1014
1015
1016
            /* calculate the maximum gain */
1017
            /* ratio of the energy of the original signal and the energy
1018
             * of the HF generated signal
1019
             */
1020
            G_max = acc1 - QUANTISE2REAL(log2(EPS + acc2)) + QUANTISE2REAL(limGain[sbr->bs_limiter_gains]);
1021
            G_max = min(G_max, QUANTISE2REAL(limGain[3]));
1022
1023
1024
            for (m = ml1; m < ml2; m++)
1025
            {
1026
                real_t G;
1027
                real_t E_curr, E_orig;
1028
                real_t Q_orig, Q_orig_plus1;
1029
                uint8_t S_index_mapped;
1030
1031
1032
                /* check if m is on a noise band border */
1033
                if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
1034
                {
1035
                    /* step to next noise band */
1036
                    current_f_noise_band++;
1037
                }
1038
1039
1040
                /* check if m is on a resolution band border */
1041
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
1042
                {
1043
                    /* accumulate a whole range of equal Q_Ms */
1044
                    if (Q_M_size > 0)
1045
                        den += QUANTISE2INT(pow2(log2_int_tab[Q_M_size] + Q_M));
1046
                    Q_M_size = 0;
1047
1048
                    /* step to next resolution band */
1049
                    current_res_band2++;
1050
1051
                    /* if we move to a new resolution band, we should check if we are
1052
                     * going to add a sinusoid in this band
1053
                     */
1054
                    S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
1055
                }
1056
1057
1058
                /* check if m is on a HI_RES band border */
1059
                if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
1060
                {
1061
                    /* step to next HI_RES band */
1062
                    current_hi_res_band++;
1063
                }
1064
1065
1066
                /* find S_index_mapped
1067
                 * S_index_mapped can only be 1 for the m in the middle of the
1068
                 * current HI_RES band
1069
                 */
1070
                S_index_mapped = 0;
1071
                if ((l >= sbr->l_A[ch]) ||
1072
                    (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
1073
                {
1074
                    /* find the middle subband of the HI_RES frequency band */
1075
                    if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
1076
                        S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
1077
                }
1078
1079
1080
                /* find bitstream parameters */
1081
                if (sbr->E_curr[ch][m][l] == 0)
1082
                    E_curr = LOG2_MIN_INF;
1083
                else
1084
                    E_curr = -10 + log2(sbr->E_curr[ch][m][l]);
1085
                E_orig = -10 + find_log2_E(sbr, current_res_band2, l, ch);
1086
1087
                Q_orig = find_log2_Q(sbr, current_f_noise_band, current_t_noise_band, ch);
1088
                Q_orig_plus1 = find_log2_Qplus1(sbr, current_f_noise_band, current_t_noise_band, ch);
1089
1090
1091
                /* Q_M only depends on E_orig and Q_div2:
1092
                 * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
1093
                 * a change of current res band (HI or LO)
1094
                 */
1095
                Q_M = E_orig + Q_orig - Q_orig_plus1;
1096
1097
1098
                /* S_M only depends on E_orig, Q_div and S_index_mapped:
1099
                 * S_index_mapped can only be non-zero once per HI_RES band
1100
                 */
1101
                if (S_index_mapped == 0)
1102
                {
1103
                    S_M[m] = LOG2_MIN_INF; /* -inf */
1104
                } else {
1105
                    S_M[m] = E_orig - Q_orig_plus1;
1106
1107
                    /* accumulate sinusoid part of the total energy */
1108
                    den += pow2(S_M[m]);
1109
                }
1110
1111
1112
                /* calculate gain */
1113
                /* ratio of the energy of the original signal and the energy
1114
                 * of the HF generated signal
1115
                 */
1116
                /* E_curr here is officially E_curr+1 so the log2() of that can never be < 0 */
1117
                /* scaled by -10 */
1118
                G = E_orig - max(-10, E_curr);
1119
                if ((S_mapped == 0) && (delta == 1))
1120
                {
1121
                    /* G = G * 1/(1+Q) */
1122
                    G -= Q_orig_plus1;
1123
                } else if (S_mapped == 1) {
1124
                    /* G = G * Q/(1+Q) */
1125
                    G += Q_orig - Q_orig_plus1;
1126
                }
1127
1128
1129
                /* limit the additional noise energy level */
1130
                /* and apply the limiter */
1131
                if (G_max > G)
1132
                {
1133
                    Q_M_lim[m] = QUANTISE2REAL(Q_M);
1134
                    G_lim[m] = QUANTISE2REAL(G);
1135
1136
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
1137
                    {
1138
                        Q_M_size++;
1139
                    }
1140
                } else {
1141
                    /* G > G_max */
1142
                    Q_M_lim[m] = QUANTISE2REAL(Q_M) + G_max - QUANTISE2REAL(G);
1143
                    G_lim[m] = G_max;
1144
1145
                    /* accumulate limited Q_M */
1146
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
1147
                    {
1148
                        den += QUANTISE2INT(pow2(Q_M_lim[m]));
1149
                    }
1150
                }
1151
1152
1153
                /* accumulate the total energy */
1154
                /* E_curr changes for every m so we do need to accumulate every m */
1155
                den += QUANTISE2INT(pow2(E_curr + G_lim[m]));
1156
            }
1157
1158
            /* accumulate last range of equal Q_Ms */
1159
            if (Q_M_size > 0)
1160
            {
1161
                den += QUANTISE2INT(pow2(log2_int_tab[Q_M_size] + Q_M));
1162
            }
1163
1164
1165
            /* calculate the final gain */
1166
            /* G_boost: [0..2.51188643] */
1167
            G_boost = acc1 - QUANTISE2REAL(log2(den + EPS));
1168
            G_boost = min(G_boost, QUANTISE2REAL(1.328771237) /* log2(1.584893192 ^ 2) */);
1169
1170
1171
            for (m = ml1; m < ml2; m++)
1172
            {
1173
                /* apply compensation to gain, noise floor sf's and sinusoid levels */
1174
#ifndef SBR_LOW_POWER
1175
                adj->G_lim_boost[l][m] = QUANTISE2REAL(pow2((G_lim[m] + G_boost) / 2.0));
1176
#else
1177
                /* sqrt() will be done after the aliasing reduction to save a
1178
                 * few multiplies
1179
                 */
1180
                adj->G_lim_boost[l][m] = QUANTISE2REAL(pow2(G_lim[m] + G_boost));
1181
#endif
1182
                adj->Q_M_lim_boost[l][m] = QUANTISE2REAL(pow2((Q_M_lim[m] + 10 + G_boost) / 2.0));
1183
1184
                if (S_M[m] != LOG2_MIN_INF)
1185
                {
1186
                    adj->S_M_boost[l][m] = QUANTISE2REAL(pow2((S_M[m] + 10 + G_boost) / 2.0));
1187
                } else {
1188
                    adj->S_M_boost[l][m] = 0;
1189
                }
1190
            }
1191
        }
1192
    }
1193
}
1194
1195
#else
1196
1197
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
1198
14.6k
{
1199
14.6k
    static real_t limGain[] = { 0.5, 1.0, 2.0, 1e10 };
1200
14.6k
    uint8_t m, l, k;
1201
1202
14.6k
    uint8_t current_t_noise_band = 0;
1203
14.6k
    uint8_t S_mapped;
1204
1205
14.6k
    ALIGN real_t Q_M_lim[MAX_M];
1206
14.6k
    ALIGN real_t G_lim[MAX_M];
1207
14.6k
    ALIGN real_t G_boost;
1208
14.6k
    ALIGN real_t S_M[MAX_M];
1209
1210
39.3k
    for (l = 0; l < sbr->L_E[ch]; l++)
1211
24.6k
    {
1212
24.6k
        uint8_t current_f_noise_band = 0;
1213
24.6k
        uint8_t current_res_band = 0;
1214
24.6k
        uint8_t current_res_band2 = 0;
1215
24.6k
        uint8_t current_hi_res_band = 0;
1216
1217
24.6k
        real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
1218
1219
24.6k
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
1220
1221
24.6k
        if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
1222
4.83k
        {
1223
4.83k
            current_t_noise_band++;
1224
4.83k
        }
1225
1226
71.8k
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
1227
47.1k
        {
1228
47.1k
            real_t G_max;
1229
47.1k
            real_t den = 0;
1230
47.1k
            real_t acc1 = 0;
1231
47.1k
            real_t acc2 = 0;
1232
1233
47.1k
            uint8_t ml1, ml2;
1234
1235
47.1k
            ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
1236
47.1k
            ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
1237
1238
47.1k
            if (ml1 > MAX_M)
1239
0
                ml1 = MAX_M;
1240
1241
47.1k
            if (ml2 > MAX_M)
1242
0
                ml2 = MAX_M;
1243
1244
1245
            /* calculate the accumulated E_orig and E_curr over the limiter band */
1246
321k
            for (m = ml1; m < ml2; m++)
1247
274k
            {
1248
274k
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
1249
77.4k
                {
1250
77.4k
                    current_res_band++;
1251
77.4k
                }
1252
274k
                acc1 += sbr->E_orig[ch][current_res_band][l];
1253
274k
                acc2 += sbr->E_curr[ch][m][l];
1254
274k
            }
1255
1256
1257
            /* calculate the maximum gain */
1258
            /* ratio of the energy of the original signal and the energy
1259
             * of the HF generated signal
1260
             */
1261
47.1k
            G_max = ((EPS + acc1) / (EPS + acc2)) * limGain[sbr->bs_limiter_gains];
1262
47.1k
            G_max = min(G_max, 1e10);
1263
1264
1265
321k
            for (m = ml1; m < ml2; m++)
1266
274k
            {
1267
274k
                real_t Q_M, G;
1268
274k
                real_t Q_div, Q_div2;
1269
274k
                uint8_t S_index_mapped;
1270
1271
1272
                /* check if m is on a noise band border */
1273
274k
                if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
1274
15.7k
                {
1275
                    /* step to next noise band */
1276
15.7k
                    current_f_noise_band++;
1277
15.7k
                }
1278
1279
1280
                /* check if m is on a resolution band border */
1281
274k
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
1282
77.4k
                {
1283
                    /* step to next resolution band */
1284
77.4k
                    current_res_band2++;
1285
1286
                    /* if we move to a new resolution band, we should check if we are
1287
                     * going to add a sinusoid in this band
1288
                     */
1289
77.4k
                    S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
1290
77.4k
                }
1291
1292
1293
                /* check if m is on a HI_RES band border */
1294
274k
                if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
1295
131k
                {
1296
                    /* step to next HI_RES band */
1297
131k
                    current_hi_res_band++;
1298
131k
                }
1299
1300
1301
                /* find S_index_mapped
1302
                 * S_index_mapped can only be 1 for the m in the middle of the
1303
                 * current HI_RES band
1304
                 */
1305
274k
                S_index_mapped = 0;
1306
274k
                if ((l >= sbr->l_A[ch]) ||
1307
274k
                    (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
1308
200k
                {
1309
                    /* find the middle subband of the HI_RES frequency band */
1310
200k
                    if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
1311
107k
                        S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
1312
200k
                }
1313
1314
1315
                /* Q_div: [0..1] (1/(1+Q_mapped)) */
1316
274k
                Q_div = sbr->Q_div[ch][current_f_noise_band][current_t_noise_band];
1317
1318
1319
                /* Q_div2: [0..1] (Q_mapped/(1+Q_mapped)) */
1320
274k
                Q_div2 = sbr->Q_div2[ch][current_f_noise_band][current_t_noise_band];
1321
1322
1323
                /* Q_M only depends on E_orig and Q_div2:
1324
                 * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
1325
                 * a change of current noise band
1326
                 */
1327
274k
                Q_M = sbr->E_orig[ch][current_res_band2][l] * Q_div2;
1328
1329
1330
                /* S_M only depends on E_orig, Q_div and S_index_mapped:
1331
                 * S_index_mapped can only be non-zero once per HI_RES band
1332
                 */
1333
274k
                if (S_index_mapped == 0)
1334
261k
                {
1335
261k
                    S_M[m] = 0;
1336
261k
                } else {
1337
12.6k
                    S_M[m] = sbr->E_orig[ch][current_res_band2][l] * Q_div;
1338
1339
                    /* accumulate sinusoid part of the total energy */
1340
12.6k
                    den += S_M[m];
1341
12.6k
                }
1342
1343
1344
                /* calculate gain */
1345
                /* ratio of the energy of the original signal and the energy
1346
                 * of the HF generated signal
1347
                 */
1348
274k
                G = sbr->E_orig[ch][current_res_band2][l] / (1.0 + sbr->E_curr[ch][m][l]);
1349
274k
                if ((S_mapped == 0) && (delta == 1))
1350
232k
                    G *= Q_div;
1351
42.3k
                else if (S_mapped == 1)
1352
25.6k
                    G *= Q_div2;
1353
1354
1355
                /* limit the additional noise energy level */
1356
                /* and apply the limiter */
1357
274k
                if (G <= G_max)
1358
243k
                {
1359
243k
                    Q_M_lim[m] = Q_M;
1360
243k
                    G_lim[m] = G;
1361
243k
                } else {
1362
30.8k
                    Q_M_lim[m] = Q_M * G_max / G;
1363
30.8k
                    G_lim[m] = G_max;
1364
30.8k
                }
1365
1366
1367
                /* accumulate the total energy */
1368
274k
                den += sbr->E_curr[ch][m][l] * G_lim[m];
1369
274k
                if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
1370
250k
                    den += Q_M_lim[m];
1371
274k
            }
1372
1373
            /* G_boost: [0..2.51188643] */
1374
47.1k
            G_boost = (acc1 + EPS) / (den + EPS);
1375
47.1k
            G_boost = min(G_boost, 2.51188643 /* 1.584893192 ^ 2 */);
1376
1377
321k
            for (m = ml1; m < ml2; m++)
1378
274k
            {
1379
                /* apply compensation to gain, noise floor sf's and sinusoid levels */
1380
274k
#ifndef SBR_LOW_POWER
1381
274k
                adj->G_lim_boost[l][m] = sqrt(G_lim[m] * G_boost);
1382
#else
1383
                /* sqrt() will be done after the aliasing reduction to save a
1384
                 * few multiplies
1385
                 */
1386
                adj->G_lim_boost[l][m] = G_lim[m] * G_boost;
1387
#endif
1388
274k
                adj->Q_M_lim_boost[l][m] = sqrt(Q_M_lim[m] * G_boost);
1389
1390
274k
                if (S_M[m] != 0)
1391
8.33k
                {
1392
8.33k
                    adj->S_M_boost[l][m] = sqrt(S_M[m] * G_boost);
1393
266k
                } else {
1394
266k
                    adj->S_M_boost[l][m] = 0;
1395
266k
                }
1396
274k
            }
1397
47.1k
        }
1398
24.6k
    }
1399
14.6k
}
1400
#endif // log2_test
1401
1402
#endif
1403
1404
#ifdef SBR_LOW_POWER
1405
static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
1406
{
1407
    uint8_t l, k, i;
1408
    uint8_t grouping;
1409
    uint8_t S_mapped;
1410
1411
    for (l = 0; l < sbr->L_E[ch]; l++)
1412
    {
1413
        uint8_t current_res_band = 0;
1414
        i = 0;
1415
        grouping = 0;
1416
1417
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band);
1418
1419
        for (k = sbr->kx; k < sbr->kx + sbr->M - 1; k++)
1420
        {
1421
            if (k == sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
1422
            {
1423
                /* step to next resolution band */
1424
                current_res_band++;
1425
1426
                S_mapped = get_S_mapped(sbr, ch, l, current_res_band);
1427
            }
1428
1429
            if (deg[k + 1] && S_mapped == 0)
1430
            {
1431
                if (grouping == 0)
1432
                {
1433
                    sbr->f_group[l][i] = k;
1434
                    grouping = 1;
1435
                    i++;
1436
                }
1437
            } else {
1438
                if (grouping)
1439
                {
1440
                    if (S_mapped)
1441
                    {
1442
                        sbr->f_group[l][i] = k;
1443
                    } else {
1444
                        sbr->f_group[l][i] = k + 1;
1445
                    }
1446
                    grouping = 0;
1447
                    i++;
1448
                }
1449
            }
1450
        }
1451
1452
        if (grouping)
1453
        {
1454
            sbr->f_group[l][i] = sbr->kx + sbr->M;
1455
            i++;
1456
        }
1457
1458
        sbr->N_G[l] = (uint8_t)(i >> 1);
1459
    }
1460
}
1461
1462
static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
1463
{
1464
    uint8_t l, k, m;
1465
    real_t E_total, E_total_est, G_target, acc;
1466
1467
    for (l = 0; l < sbr->L_E[ch]; l++)
1468
    {
1469
        for (k = 0; k < sbr->N_G[l]; k++)
1470
        {
1471
            E_total_est = E_total = 0;
1472
1473
            for (m = sbr->f_group[l][k<<1]; m < sbr->f_group[l][(k<<1) + 1]; m++)
1474
            {
1475
                /* E_curr: integer */
1476
                /* G_lim_boost: fixed point */
1477
                /* E_total_est: integer */
1478
                /* E_total: integer */
1479
                E_total_est += sbr->E_curr[ch][m-sbr->kx][l];
1480
#ifdef FIXED_POINT
1481
                E_total += MUL_Q2(sbr->E_curr[ch][m-sbr->kx][l], adj->G_lim_boost[l][m-sbr->kx]);
1482
#else
1483
                E_total += sbr->E_curr[ch][m-sbr->kx][l] * adj->G_lim_boost[l][m-sbr->kx];
1484
#endif
1485
            }
1486
1487
            /* G_target: fixed point */
1488
            if ((E_total_est + EPS) == 0)
1489
            {
1490
                G_target = 0;
1491
            } else {
1492
#ifdef FIXED_POINT
1493
                G_target = (((int64_t)(E_total))<<Q2_BITS)/(E_total_est + EPS);
1494
#else
1495
                G_target = E_total / (E_total_est + EPS);
1496
#endif
1497
            }
1498
            acc = 0;
1499
1500
            for (m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
1501
            {
1502
                real_t alpha;
1503
1504
                /* alpha: (COEF) fixed point */
1505
                if (m < sbr->kx + sbr->M - 1)
1506
                {
1507
                    alpha = max(deg[m], deg[m + 1]);
1508
                } else {
1509
                    alpha = deg[m];
1510
                }
1511
1512
                adj->G_lim_boost[l][m-sbr->kx] = MUL_C(alpha, G_target) +
1513
                    MUL_C((COEF_CONST(1)-alpha), adj->G_lim_boost[l][m-sbr->kx]);
1514
1515
                /* acc: integer */
1516
#ifdef FIXED_POINT
1517
                acc += MUL_Q2(adj->G_lim_boost[l][m-sbr->kx], sbr->E_curr[ch][m-sbr->kx][l]);
1518
#else
1519
                acc += adj->G_lim_boost[l][m-sbr->kx] * sbr->E_curr[ch][m-sbr->kx][l];
1520
#endif
1521
            }
1522
1523
            /* acc: fixed point */
1524
            if (acc + EPS == 0)
1525
            {
1526
                acc = 0;
1527
            } else {
1528
#ifdef FIXED_POINT
1529
                acc = (((int64_t)(E_total))<<Q2_BITS)/(acc + EPS);
1530
#else
1531
                acc = E_total / (acc + EPS);
1532
#endif
1533
            }
1534
            for(m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
1535
            {
1536
#ifdef FIXED_POINT
1537
                adj->G_lim_boost[l][m-sbr->kx] = MUL_Q2(acc, adj->G_lim_boost[l][m-sbr->kx]);
1538
#else
1539
                adj->G_lim_boost[l][m-sbr->kx] = acc * adj->G_lim_boost[l][m-sbr->kx];
1540
#endif
1541
            }
1542
        }
1543
    }
1544
1545
    for (l = 0; l < sbr->L_E[ch]; l++)
1546
    {
1547
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
1548
        {
1549
            for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
1550
                 m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
1551
            {
1552
#ifdef FIXED_POINT
1553
                 adj->G_lim_boost[l][m] = SBR_SQRT_Q2(adj->G_lim_boost[l][m]);
1554
#else
1555
                 adj->G_lim_boost[l][m] = sqrt(adj->G_lim_boost[l][m]);
1556
#endif
1557
            }
1558
        }
1559
    }
1560
}
1561
#endif
1562
1563
static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj,
1564
                        qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch)
1565
27.3k
{
1566
27.3k
    static real_t h_smooth[] = {
1567
27.3k
        FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084),
1568
27.3k
        FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582),
1569
27.3k
        FRAC_CONST(0.33333333333333)
1570
27.3k
    };
1571
27.3k
    static int8_t phi_re[] = { 1, 0, -1, 0 };
1572
27.3k
    static int8_t phi_im[] = { 0, 1, 0, -1 };
1573
1574
27.3k
    uint8_t m, l, i, n;
1575
27.3k
    uint16_t fIndexNoise = 0;
1576
27.3k
    uint8_t fIndexSine = 0;
1577
27.3k
    uint8_t assembly_reset = 0;
1578
1579
27.3k
    real_t G_filt, Q_filt;
1580
1581
27.3k
    uint8_t h_SL;
1582
1583
1584
27.3k
    if (sbr->Reset == 1)
1585
26.6k
    {
1586
26.6k
        assembly_reset = 1;
1587
26.6k
        fIndexNoise = 0;
1588
26.6k
    } else {
1589
760
        fIndexNoise = sbr->index_noise_prev[ch];
1590
760
    }
1591
27.3k
    fIndexSine = sbr->psi_is_prev[ch];
1592
1593
1594
73.3k
    for (l = 0; l < sbr->L_E[ch]; l++)
1595
45.9k
    {
1596
45.9k
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
1597
1598
#ifdef SBR_LOW_POWER
1599
        h_SL = 0;
1600
#else
1601
45.9k
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
1602
45.9k
        h_SL = (no_noise ? 0 : h_SL);
1603
45.9k
#endif
1604
1605
45.9k
        if (assembly_reset)
1606
26.5k
        {
1607
132k
            for (n = 0; n < 4; n++)
1608
106k
            {
1609
106k
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1610
106k
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1611
106k
            }
1612
            /* reset ringbuffer index */
1613
26.5k
            sbr->GQ_ringbuf_index[ch] = 4;
1614
26.5k
            assembly_reset = 0;
1615
26.5k
        }
1616
1617
896k
        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
1618
850k
        {
1619
#ifdef SBR_LOW_POWER
1620
            uint8_t i_min1, i_plus1;
1621
            uint8_t sinusoids = 0;
1622
#endif
1623
1624
            /* load new values into ringbuffer */
1625
850k
            memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1626
850k
            memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1627
1628
11.9M
            for (m = 0; m < sbr->M; m++)
1629
11.0M
            {
1630
11.0M
                qmf_t psi;
1631
1632
11.0M
                G_filt = 0;
1633
11.0M
                Q_filt = 0;
1634
1635
11.0M
#ifndef SBR_LOW_POWER
1636
11.0M
                if (h_SL != 0)
1637
4.01M
                {
1638
4.01M
                    uint8_t ri = sbr->GQ_ringbuf_index[ch];
1639
24.0M
                    for (n = 0; n <= 4; n++)
1640
20.0M
                    {
1641
20.0M
                        real_t curr_h_smooth = h_smooth[n];
1642
20.0M
                        ri++;
1643
20.0M
                        if (ri >= 5)
1644
4.01M
                            ri -= 5;
1645
20.0M
                        G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth);
1646
20.0M
                        Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth);
1647
20.0M
                    }
1648
7.07M
               } else {
1649
7.07M
#endif
1650
7.07M
                    G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1651
7.07M
                    Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1652
7.07M
#ifndef SBR_LOW_POWER
1653
7.07M
                }
1654
11.0M
#endif
1655
11.0M
                if (adj->S_M_boost[l][m] != 0 || no_noise)
1656
1.03M
                    Q_filt = 0;
1657
1658
                /* add noise to the output */
1659
11.0M
                fIndexNoise = (fIndexNoise + 1) & 511;
1660
1661
                /* the smoothed gain values are applied to Xsbr */
1662
                /* V is defined, not calculated */
1663
                //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1664
                //    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1665
11.0M
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1666
11.0M
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1667
11.0M
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
1668
10.5k
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
1669
11.0M
#ifndef SBR_LOW_POWER
1670
                //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1671
                //    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1672
11.0M
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1673
11.0M
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1674
11.0M
#endif
1675
1676
11.0M
                {
1677
11.0M
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
1678
11.0M
                    QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
1679
11.0M
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);
1680
1681
11.0M
#ifndef SBR_LOW_POWER
1682
11.0M
                    QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
1683
11.0M
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
1684
#else
1685
1686
                    i_min1 = (fIndexSine - 1) & 3;
1687
                    i_plus1 = (fIndexSine + 1) & 3;
1688
1689
                    if ((m == 0) && (phi_re[i_plus1] != 0))
1690
                    {
1691
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) +=
1692
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815)));
1693
                        if (sbr->M != 0)
1694
                        {
1695
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1696
                                (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815)));
1697
                        }
1698
                    }
1699
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1700
                    {
1701
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1702
                            (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1703
                    }
1704
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
1705
                    {
1706
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1707
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815)));
1708
                    }
1709
                    if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1710
                    {
1711
                        if (m > 0)
1712
                        {
1713
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1714
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1715
                        }
1716
                        if (m + sbr->kx < 64)
1717
                        {
1718
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) +=
1719
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815)));
1720
                        }
1721
                    }
1722
1723
                    if (adj->S_M_boost[l][m] != 0)
1724
                        sinusoids++;
1725
#endif
1726
11.0M
                }
1727
11.0M
            }
1728
1729
850k
            fIndexSine = (fIndexSine + 1) & 3;
1730
1731
            /* update the ringbuffer index used for filtering G and Q with h_smooth */
1732
850k
            sbr->GQ_ringbuf_index[ch]++;
1733
850k
            if (sbr->GQ_ringbuf_index[ch] >= 5)
1734
183k
                sbr->GQ_ringbuf_index[ch] = 0;
1735
850k
        }
1736
45.9k
    }
1737
1738
27.3k
    sbr->index_noise_prev[ch] = fIndexNoise;
1739
27.3k
    sbr->psi_is_prev[ch] = fIndexSine;
1740
27.3k
}
sbr_hfadj.c:hf_assembly
Line
Count
Source
1565
12.7k
{
1566
12.7k
    static real_t h_smooth[] = {
1567
12.7k
        FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084),
1568
12.7k
        FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582),
1569
12.7k
        FRAC_CONST(0.33333333333333)
1570
12.7k
    };
1571
12.7k
    static int8_t phi_re[] = { 1, 0, -1, 0 };
1572
12.7k
    static int8_t phi_im[] = { 0, 1, 0, -1 };
1573
1574
12.7k
    uint8_t m, l, i, n;
1575
12.7k
    uint16_t fIndexNoise = 0;
1576
12.7k
    uint8_t fIndexSine = 0;
1577
12.7k
    uint8_t assembly_reset = 0;
1578
1579
12.7k
    real_t G_filt, Q_filt;
1580
1581
12.7k
    uint8_t h_SL;
1582
1583
1584
12.7k
    if (sbr->Reset == 1)
1585
12.3k
    {
1586
12.3k
        assembly_reset = 1;
1587
12.3k
        fIndexNoise = 0;
1588
12.3k
    } else {
1589
333
        fIndexNoise = sbr->index_noise_prev[ch];
1590
333
    }
1591
12.7k
    fIndexSine = sbr->psi_is_prev[ch];
1592
1593
1594
34.0k
    for (l = 0; l < sbr->L_E[ch]; l++)
1595
21.3k
    {
1596
21.3k
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
1597
1598
#ifdef SBR_LOW_POWER
1599
        h_SL = 0;
1600
#else
1601
21.3k
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
1602
21.3k
        h_SL = (no_noise ? 0 : h_SL);
1603
21.3k
#endif
1604
1605
21.3k
        if (assembly_reset)
1606
12.3k
        {
1607
61.6k
            for (n = 0; n < 4; n++)
1608
49.3k
            {
1609
49.3k
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1610
49.3k
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1611
49.3k
            }
1612
            /* reset ringbuffer index */
1613
12.3k
            sbr->GQ_ringbuf_index[ch] = 4;
1614
12.3k
            assembly_reset = 0;
1615
12.3k
        }
1616
1617
423k
        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
1618
401k
        {
1619
#ifdef SBR_LOW_POWER
1620
            uint8_t i_min1, i_plus1;
1621
            uint8_t sinusoids = 0;
1622
#endif
1623
1624
            /* load new values into ringbuffer */
1625
401k
            memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1626
401k
            memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1627
1628
5.91M
            for (m = 0; m < sbr->M; m++)
1629
5.51M
            {
1630
5.51M
                qmf_t psi;
1631
1632
5.51M
                G_filt = 0;
1633
5.51M
                Q_filt = 0;
1634
1635
5.51M
#ifndef SBR_LOW_POWER
1636
5.51M
                if (h_SL != 0)
1637
2.50M
                {
1638
2.50M
                    uint8_t ri = sbr->GQ_ringbuf_index[ch];
1639
15.0M
                    for (n = 0; n <= 4; n++)
1640
12.5M
                    {
1641
12.5M
                        real_t curr_h_smooth = h_smooth[n];
1642
12.5M
                        ri++;
1643
12.5M
                        if (ri >= 5)
1644
2.50M
                            ri -= 5;
1645
12.5M
                        G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth);
1646
12.5M
                        Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth);
1647
12.5M
                    }
1648
3.01M
               } else {
1649
3.01M
#endif
1650
3.01M
                    G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1651
3.01M
                    Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1652
3.01M
#ifndef SBR_LOW_POWER
1653
3.01M
                }
1654
5.51M
#endif
1655
5.51M
                if (adj->S_M_boost[l][m] != 0 || no_noise)
1656
593k
                    Q_filt = 0;
1657
1658
                /* add noise to the output */
1659
5.51M
                fIndexNoise = (fIndexNoise + 1) & 511;
1660
1661
                /* the smoothed gain values are applied to Xsbr */
1662
                /* V is defined, not calculated */
1663
                //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1664
                //    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1665
5.51M
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1666
5.51M
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1667
5.51M
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
1668
3.42k
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
1669
5.51M
#ifndef SBR_LOW_POWER
1670
                //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1671
                //    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1672
5.51M
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1673
5.51M
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1674
5.51M
#endif
1675
1676
5.51M
                {
1677
5.51M
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
1678
5.51M
                    QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
1679
5.51M
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);
1680
1681
5.51M
#ifndef SBR_LOW_POWER
1682
5.51M
                    QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
1683
5.51M
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
1684
#else
1685
1686
                    i_min1 = (fIndexSine - 1) & 3;
1687
                    i_plus1 = (fIndexSine + 1) & 3;
1688
1689
                    if ((m == 0) && (phi_re[i_plus1] != 0))
1690
                    {
1691
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) +=
1692
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815)));
1693
                        if (sbr->M != 0)
1694
                        {
1695
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1696
                                (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815)));
1697
                        }
1698
                    }
1699
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1700
                    {
1701
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1702
                            (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1703
                    }
1704
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
1705
                    {
1706
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1707
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815)));
1708
                    }
1709
                    if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1710
                    {
1711
                        if (m > 0)
1712
                        {
1713
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1714
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1715
                        }
1716
                        if (m + sbr->kx < 64)
1717
                        {
1718
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) +=
1719
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815)));
1720
                        }
1721
                    }
1722
1723
                    if (adj->S_M_boost[l][m] != 0)
1724
                        sinusoids++;
1725
#endif
1726
5.51M
                }
1727
5.51M
            }
1728
1729
401k
            fIndexSine = (fIndexSine + 1) & 3;
1730
1731
            /* update the ringbuffer index used for filtering G and Q with h_smooth */
1732
401k
            sbr->GQ_ringbuf_index[ch]++;
1733
401k
            if (sbr->GQ_ringbuf_index[ch] >= 5)
1734
86.5k
                sbr->GQ_ringbuf_index[ch] = 0;
1735
401k
        }
1736
21.3k
    }
1737
1738
12.7k
    sbr->index_noise_prev[ch] = fIndexNoise;
1739
12.7k
    sbr->psi_is_prev[ch] = fIndexSine;
1740
12.7k
}
sbr_hfadj.c:hf_assembly
Line
Count
Source
1565
14.6k
{
1566
14.6k
    static real_t h_smooth[] = {
1567
14.6k
        FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084),
1568
14.6k
        FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582),
1569
14.6k
        FRAC_CONST(0.33333333333333)
1570
14.6k
    };
1571
14.6k
    static int8_t phi_re[] = { 1, 0, -1, 0 };
1572
14.6k
    static int8_t phi_im[] = { 0, 1, 0, -1 };
1573
1574
14.6k
    uint8_t m, l, i, n;
1575
14.6k
    uint16_t fIndexNoise = 0;
1576
14.6k
    uint8_t fIndexSine = 0;
1577
14.6k
    uint8_t assembly_reset = 0;
1578
1579
14.6k
    real_t G_filt, Q_filt;
1580
1581
14.6k
    uint8_t h_SL;
1582
1583
1584
14.6k
    if (sbr->Reset == 1)
1585
14.2k
    {
1586
14.2k
        assembly_reset = 1;
1587
14.2k
        fIndexNoise = 0;
1588
14.2k
    } else {
1589
427
        fIndexNoise = sbr->index_noise_prev[ch];
1590
427
    }
1591
14.6k
    fIndexSine = sbr->psi_is_prev[ch];
1592
1593
1594
39.3k
    for (l = 0; l < sbr->L_E[ch]; l++)
1595
24.6k
    {
1596
24.6k
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
1597
1598
#ifdef SBR_LOW_POWER
1599
        h_SL = 0;
1600
#else
1601
24.6k
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
1602
24.6k
        h_SL = (no_noise ? 0 : h_SL);
1603
24.6k
#endif
1604
1605
24.6k
        if (assembly_reset)
1606
14.2k
        {
1607
71.0k
            for (n = 0; n < 4; n++)
1608
56.8k
            {
1609
56.8k
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1610
56.8k
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1611
56.8k
            }
1612
            /* reset ringbuffer index */
1613
14.2k
            sbr->GQ_ringbuf_index[ch] = 4;
1614
14.2k
            assembly_reset = 0;
1615
14.2k
        }
1616
1617
473k
        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
1618
448k
        {
1619
#ifdef SBR_LOW_POWER
1620
            uint8_t i_min1, i_plus1;
1621
            uint8_t sinusoids = 0;
1622
#endif
1623
1624
            /* load new values into ringbuffer */
1625
448k
            memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1626
448k
            memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1627
1628
6.01M
            for (m = 0; m < sbr->M; m++)
1629
5.56M
            {
1630
5.56M
                qmf_t psi;
1631
1632
5.56M
                G_filt = 0;
1633
5.56M
                Q_filt = 0;
1634
1635
5.56M
#ifndef SBR_LOW_POWER
1636
5.56M
                if (h_SL != 0)
1637
1.50M
                {
1638
1.50M
                    uint8_t ri = sbr->GQ_ringbuf_index[ch];
1639
9.04M
                    for (n = 0; n <= 4; n++)
1640
7.53M
                    {
1641
7.53M
                        real_t curr_h_smooth = h_smooth[n];
1642
7.53M
                        ri++;
1643
7.53M
                        if (ri >= 5)
1644
1.50M
                            ri -= 5;
1645
7.53M
                        G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth);
1646
7.53M
                        Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth);
1647
7.53M
                    }
1648
4.06M
               } else {
1649
4.06M
#endif
1650
4.06M
                    G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1651
4.06M
                    Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1652
4.06M
#ifndef SBR_LOW_POWER
1653
4.06M
                }
1654
5.56M
#endif
1655
5.56M
                if (adj->S_M_boost[l][m] != 0 || no_noise)
1656
437k
                    Q_filt = 0;
1657
1658
                /* add noise to the output */
1659
5.56M
                fIndexNoise = (fIndexNoise + 1) & 511;
1660
1661
                /* the smoothed gain values are applied to Xsbr */
1662
                /* V is defined, not calculated */
1663
                //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1664
                //    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1665
5.56M
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1666
5.56M
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1667
5.56M
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
1668
7.08k
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
1669
5.56M
#ifndef SBR_LOW_POWER
1670
                //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1671
                //    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1672
5.56M
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1673
5.56M
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1674
5.56M
#endif
1675
1676
5.56M
                {
1677
5.56M
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
1678
5.56M
                    QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
1679
5.56M
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);
1680
1681
5.56M
#ifndef SBR_LOW_POWER
1682
5.56M
                    QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
1683
5.56M
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
1684
#else
1685
1686
                    i_min1 = (fIndexSine - 1) & 3;
1687
                    i_plus1 = (fIndexSine + 1) & 3;
1688
1689
                    if ((m == 0) && (phi_re[i_plus1] != 0))
1690
                    {
1691
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) +=
1692
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815)));
1693
                        if (sbr->M != 0)
1694
                        {
1695
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1696
                                (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815)));
1697
                        }
1698
                    }
1699
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1700
                    {
1701
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1702
                            (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1703
                    }
1704
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
1705
                    {
1706
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1707
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815)));
1708
                    }
1709
                    if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1710
                    {
1711
                        if (m > 0)
1712
                        {
1713
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1714
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1715
                        }
1716
                        if (m + sbr->kx < 64)
1717
                        {
1718
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) +=
1719
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815)));
1720
                        }
1721
                    }
1722
1723
                    if (adj->S_M_boost[l][m] != 0)
1724
                        sinusoids++;
1725
#endif
1726
5.56M
                }
1727
5.56M
            }
1728
1729
448k
            fIndexSine = (fIndexSine + 1) & 3;
1730
1731
            /* update the ringbuffer index used for filtering G and Q with h_smooth */
1732
448k
            sbr->GQ_ringbuf_index[ch]++;
1733
448k
            if (sbr->GQ_ringbuf_index[ch] >= 5)
1734
96.7k
                sbr->GQ_ringbuf_index[ch] = 0;
1735
448k
        }
1736
24.6k
    }
1737
1738
14.6k
    sbr->index_noise_prev[ch] = fIndexNoise;
1739
14.6k
    sbr->psi_is_prev[ch] = fIndexSine;
1740
14.6k
}
1741
1742
#endif