Coverage Report

Created: 2025-08-26 06:13

/proc/self/cwd/libfaad/sbr_hfadj.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: sbr_hfadj.c,v 1.23 2008/09/19 22:50:20 menno Exp $
29
**/
30
31
/* High Frequency adjustment */
32
#include <float.h>
33
34
#include "common.h"
35
#include "structs.h"
36
37
#ifdef SBR_DEC
38
39
#include "sbr_syntax.h"
40
#include "sbr_hfadj.h"
41
42
#include "sbr_noise.h"
43
44
45
/* static function declarations */
46
static uint8_t estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj,
47
                                         qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch);
48
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch);
49
#ifdef SBR_LOW_POWER
50
static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch);
51
static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch);
52
#endif
53
static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj, qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch);
54
55
56
uint8_t hf_adjustment(sbr_info *sbr, qmf_t Xsbr[MAX_NTSRHFG][64]
57
#ifdef SBR_LOW_POWER
58
                      ,real_t *deg /* aliasing degree */
59
#endif
60
                      ,uint8_t ch)
61
27.9k
{
62
27.9k
    ALIGN sbr_hfadj_info adj = {{{0}}};
63
27.9k
    uint8_t ret = 0;
64
65
27.9k
    if (sbr->bs_frame_class[ch] == FIXFIX)
66
7.79k
    {
67
7.79k
        sbr->l_A[ch] = -1;
68
20.1k
    } else if (sbr->bs_frame_class[ch] == VARFIX) {
69
9.60k
        if (sbr->bs_pointer[ch] > 1)
70
2.56k
            sbr->l_A[ch] = sbr->bs_pointer[ch] - 1;
71
7.04k
        else
72
7.04k
            sbr->l_A[ch] = -1;
73
10.5k
    } else {
74
10.5k
        if (sbr->bs_pointer[ch] == 0)
75
3.77k
            sbr->l_A[ch] = -1;
76
6.82k
        else
77
6.82k
            sbr->l_A[ch] = sbr->L_E[ch] + 1 - sbr->bs_pointer[ch];
78
10.5k
    }
79
80
27.9k
    ret = estimate_current_envelope(sbr, &adj, Xsbr, ch);
81
27.9k
    if (ret > 0)
82
813
        return 1;
83
84
27.1k
    calculate_gain(sbr, &adj, ch);
85
86
#ifdef SBR_LOW_POWER
87
    calc_gain_groups(sbr, &adj, deg, ch);
88
    aliasing_reduction(sbr, &adj, deg, ch);
89
#endif
90
91
27.1k
    hf_assembly(sbr, &adj, Xsbr, ch);
92
93
27.1k
    return 0;
94
27.9k
}
95
96
static uint8_t get_S_mapped(sbr_info *sbr, uint8_t ch, uint8_t l, uint8_t current_band)
97
219k
{
98
219k
    if (sbr->f[ch][l] == HI_RES)
99
91.9k
    {
100
        /* in case of using f_table_high we just have 1 to 1 mapping
101
         * from bs_add_harmonic[l][k]
102
         */
103
91.9k
        if ((l >= sbr->l_A[ch]) ||
104
91.9k
            (sbr->bs_add_harmonic_prev[ch][current_band] && sbr->bs_add_harmonic_flag_prev[ch]))
105
64.7k
        {
106
64.7k
            return sbr->bs_add_harmonic[ch][current_band];
107
64.7k
        }
108
127k
    } else {
109
127k
        uint8_t b, lb, ub;
110
111
        /* in case of f_table_low we check if any of the HI_RES bands
112
         * within this LO_RES band has bs_add_harmonic[l][k] turned on
113
         * (note that borders in the LO_RES table are also present in
114
         * the HI_RES table)
115
         */
116
117
        /* find first HI_RES band in current LO_RES band */
118
127k
        lb = 2*current_band - ((sbr->N_high & 1) ? 1 : 0);
119
        /* find first HI_RES band in next LO_RES band */
120
127k
        ub = 2*(current_band+1) - ((sbr->N_high & 1) ? 1 : 0);
121
122
        /* check all HI_RES bands in current LO_RES band for sinusoid */
123
329k
        for (b = lb; b < ub; b++)
124
213k
        {
125
213k
            if ((l >= sbr->l_A[ch]) ||
126
213k
                (sbr->bs_add_harmonic_prev[ch][b] && sbr->bs_add_harmonic_flag_prev[ch]))
127
149k
            {
128
149k
                if (sbr->bs_add_harmonic[ch][b] == 1)
129
11.6k
                    return 1;
130
149k
            }
131
213k
        }
132
127k
    }
133
134
143k
    return 0;
135
219k
}
136
137
static uint8_t estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj,
138
                                         qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch)
139
27.9k
{
140
27.9k
    uint8_t m, l, j, k, k_l, k_h, p;
141
27.9k
    real_t nrg, div;
142
27.9k
    (void)adj;  /* TODO: remove parameter? */
143
#ifdef FIXED_POINT
144
13.2k
    const real_t half = REAL_CONST(0.5);
145
    real_t limit;
146
    real_t mul;
147
#else
148
    const real_t half = 0;  /* Compiler is smart enough to eliminate +0 op. */
149
    const real_t limit = FLT_MAX;
150
#endif
151
152
27.9k
    if (sbr->bs_interpol_freq == 1)
153
18.7k
    {
154
50.5k
        for (l = 0; l < sbr->L_E[ch]; l++)
155
32.1k
        {
156
32.1k
            uint8_t i, l_i, u_i;
157
158
32.1k
            l_i = sbr->t_E[ch][l];
159
32.1k
            u_i = sbr->t_E[ch][l+1];
160
161
32.1k
            div = (real_t)(u_i - l_i);
162
163
32.1k
            if (div <= 0)
164
1.22k
                div = 1;
165
#ifdef FIXED_POINT
166
13.8k
            limit = div << (30 - (COEF_BITS - REAL_BITS));
167
13.8k
            mul = (1 << (COEF_BITS - REAL_BITS)) / div;
168
#endif
169
170
411k
            for (m = 0; m < sbr->M; m++)
171
379k
            {
172
379k
                nrg = 0;
173
174
7.09M
                for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
175
6.71M
                {
176
6.71M
                    real_t re = QMF_RE(Xsbr[i][m + sbr->kx]) + half;
177
6.71M
                    real_t im = QMF_IM(Xsbr[i][m + sbr->kx]) + half;
178
6.71M
                    (void)im;
179
                    /* Actually, that should be MUL_R. On floating-point build
180
                       that is the same. On fixed point-build we use it to
181
                       pre-scale result (to aviod overflow). That, of course
182
                       causes some precision loss. */
183
6.71M
                    nrg += MUL_C(re, re)
184
6.71M
#ifndef SBR_LOW_POWER
185
6.71M
                        + MUL_C(im, im)
186
6.71M
#endif
187
6.71M
                        ;
188
6.71M
                }
189
190
379k
                if (nrg < -limit || nrg > limit)
191
226
                    return 1;
192
#ifdef FIXED_POINT
193
172k
                sbr->E_curr[ch][m][l] = nrg * mul;
194
#else
195
207k
                sbr->E_curr[ch][m][l] = nrg / div;
196
207k
#endif
197
#ifdef SBR_LOW_POWER
198
#ifdef FIXED_POINT
199
                sbr->E_curr[ch][m][l] <<= 1;
200
#else
201
                sbr->E_curr[ch][m][l] *= 2;
202
#endif
203
#endif
204
207k
            }
205
32.1k
        }
206
18.7k
    } else {
207
23.4k
        for (l = 0; l < sbr->L_E[ch]; l++)
208
14.7k
        {
209
104k
            for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
210
90.0k
            {
211
90.0k
                k_l = sbr->f_table_res[sbr->f[ch][l]][p];
212
90.0k
                k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
213
214
323k
                for (k = k_l; k < k_h; k++)
215
234k
                {
216
234k
                    uint8_t i, l_i, u_i;
217
234k
                    nrg = 0;
218
219
234k
                    l_i = sbr->t_E[ch][l];
220
234k
                    u_i = sbr->t_E[ch][l+1];
221
222
234k
                    div = (real_t)((u_i - l_i)*(k_h - k_l));
223
224
234k
                    if (div <= 0)
225
5.14k
                        div = 1;
226
#ifdef FIXED_POINT
227
137k
                    limit = div << (30 - (COEF_BITS - REAL_BITS));
228
137k
                    mul = (1 << (COEF_BITS - REAL_BITS)) / div;
229
#endif
230
231
5.12M
                    for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
232
4.88M
                    {
233
22.9M
                        for (j = k_l; j < k_h; j++)
234
18.0M
                        {
235
18.0M
                            real_t re = QMF_RE(Xsbr[i][j]) + half;
236
18.0M
                            real_t im = QMF_IM(Xsbr[i][j]) + half;
237
18.0M
                            (void)im;
238
                            /* Actually, that should be MUL_R. On floating-point build
239
                               that is the same. On fixed point-build we use it to
240
                               pre-scale result (to aviod overflow). That, of course
241
                               causes some precision loss. */
242
18.0M
                            nrg += MUL_C(re, re)
243
18.0M
#ifndef SBR_LOW_POWER
244
18.0M
                                + MUL_C(im, im)
245
18.0M
#endif
246
18.0M
                                ;
247
18.0M
                        }
248
4.88M
                    }
249
250
234k
                    if (nrg < -limit || nrg > limit)
251
587
                        return 1;
252
#ifdef FIXED_POINT
253
136k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg * mul;
254
#else
255
96.8k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
256
96.8k
#endif
257
#ifdef SBR_LOW_POWER
258
#ifdef FIXED_POINT
259
                    sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
260
#else
261
                    sbr->E_curr[ch][k - sbr->kx][l] *= 2;
262
#endif
263
#endif
264
96.8k
                }
265
90.0k
            }
266
14.7k
        }
267
9.28k
    }
268
269
27.1k
    return 0;
270
27.9k
}
sbr_hfadj.c:estimate_current_envelope
Line
Count
Source
139
13.2k
{
140
13.2k
    uint8_t m, l, j, k, k_l, k_h, p;
141
13.2k
    real_t nrg, div;
142
13.2k
    (void)adj;  /* TODO: remove parameter? */
143
13.2k
#ifdef FIXED_POINT
144
13.2k
    const real_t half = REAL_CONST(0.5);
145
13.2k
    real_t limit;
146
13.2k
    real_t mul;
147
#else
148
    const real_t half = 0;  /* Compiler is smart enough to eliminate +0 op. */
149
    const real_t limit = FLT_MAX;
150
#endif
151
152
13.2k
    if (sbr->bs_interpol_freq == 1)
153
7.63k
    {
154
21.2k
        for (l = 0; l < sbr->L_E[ch]; l++)
155
13.8k
        {
156
13.8k
            uint8_t i, l_i, u_i;
157
158
13.8k
            l_i = sbr->t_E[ch][l];
159
13.8k
            u_i = sbr->t_E[ch][l+1];
160
161
13.8k
            div = (real_t)(u_i - l_i);
162
163
13.8k
            if (div <= 0)
164
626
                div = 1;
165
13.8k
#ifdef FIXED_POINT
166
13.8k
            limit = div << (30 - (COEF_BITS - REAL_BITS));
167
13.8k
            mul = (1 << (COEF_BITS - REAL_BITS)) / div;
168
13.8k
#endif
169
170
186k
            for (m = 0; m < sbr->M; m++)
171
172k
            {
172
172k
                nrg = 0;
173
174
2.95M
                for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
175
2.78M
                {
176
2.78M
                    real_t re = QMF_RE(Xsbr[i][m + sbr->kx]) + half;
177
2.78M
                    real_t im = QMF_IM(Xsbr[i][m + sbr->kx]) + half;
178
2.78M
                    (void)im;
179
                    /* Actually, that should be MUL_R. On floating-point build
180
                       that is the same. On fixed point-build we use it to
181
                       pre-scale result (to aviod overflow). That, of course
182
                       causes some precision loss. */
183
2.78M
                    nrg += MUL_C(re, re)
184
2.78M
#ifndef SBR_LOW_POWER
185
2.78M
                        + MUL_C(im, im)
186
2.78M
#endif
187
2.78M
                        ;
188
2.78M
                }
189
190
172k
                if (nrg < -limit || nrg > limit)
191
219
                    return 1;
192
172k
#ifdef FIXED_POINT
193
172k
                sbr->E_curr[ch][m][l] = nrg * mul;
194
#else
195
                sbr->E_curr[ch][m][l] = nrg / div;
196
#endif
197
#ifdef SBR_LOW_POWER
198
#ifdef FIXED_POINT
199
                sbr->E_curr[ch][m][l] <<= 1;
200
#else
201
                sbr->E_curr[ch][m][l] *= 2;
202
#endif
203
#endif
204
172k
            }
205
13.8k
        }
206
7.63k
    } else {
207
13.8k
        for (l = 0; l < sbr->L_E[ch]; l++)
208
8.74k
        {
209
60.2k
            for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
210
52.0k
            {
211
52.0k
                k_l = sbr->f_table_res[sbr->f[ch][l]][p];
212
52.0k
                k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
213
214
188k
                for (k = k_l; k < k_h; k++)
215
137k
                {
216
137k
                    uint8_t i, l_i, u_i;
217
137k
                    nrg = 0;
218
219
137k
                    l_i = sbr->t_E[ch][l];
220
137k
                    u_i = sbr->t_E[ch][l+1];
221
222
137k
                    div = (real_t)((u_i - l_i)*(k_h - k_l));
223
224
137k
                    if (div <= 0)
225
1.59k
                        div = 1;
226
137k
#ifdef FIXED_POINT
227
137k
                    limit = div << (30 - (COEF_BITS - REAL_BITS));
228
137k
                    mul = (1 << (COEF_BITS - REAL_BITS)) / div;
229
137k
#endif
230
231
3.09M
                    for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
232
2.95M
                    {
233
14.8M
                        for (j = k_l; j < k_h; j++)
234
11.8M
                        {
235
11.8M
                            real_t re = QMF_RE(Xsbr[i][j]) + half;
236
11.8M
                            real_t im = QMF_IM(Xsbr[i][j]) + half;
237
11.8M
                            (void)im;
238
                            /* Actually, that should be MUL_R. On floating-point build
239
                               that is the same. On fixed point-build we use it to
240
                               pre-scale result (to aviod overflow). That, of course
241
                               causes some precision loss. */
242
11.8M
                            nrg += MUL_C(re, re)
243
11.8M
#ifndef SBR_LOW_POWER
244
11.8M
                                + MUL_C(im, im)
245
11.8M
#endif
246
11.8M
                                ;
247
11.8M
                        }
248
2.95M
                    }
249
250
137k
                    if (nrg < -limit || nrg > limit)
251
581
                        return 1;
252
136k
#ifdef FIXED_POINT
253
136k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg * mul;
254
#else
255
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
256
#endif
257
#ifdef SBR_LOW_POWER
258
#ifdef FIXED_POINT
259
                    sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
260
#else
261
                    sbr->E_curr[ch][k - sbr->kx][l] *= 2;
262
#endif
263
#endif
264
136k
                }
265
52.0k
            }
266
8.74k
        }
267
5.63k
    }
268
269
12.4k
    return 0;
270
13.2k
}
sbr_hfadj.c:estimate_current_envelope
Line
Count
Source
139
14.7k
{
140
14.7k
    uint8_t m, l, j, k, k_l, k_h, p;
141
14.7k
    real_t nrg, div;
142
14.7k
    (void)adj;  /* TODO: remove parameter? */
143
#ifdef FIXED_POINT
144
    const real_t half = REAL_CONST(0.5);
145
    real_t limit;
146
    real_t mul;
147
#else
148
14.7k
    const real_t half = 0;  /* Compiler is smart enough to eliminate +0 op. */
149
14.7k
    const real_t limit = FLT_MAX;
150
14.7k
#endif
151
152
14.7k
    if (sbr->bs_interpol_freq == 1)
153
11.0k
    {
154
29.3k
        for (l = 0; l < sbr->L_E[ch]; l++)
155
18.2k
        {
156
18.2k
            uint8_t i, l_i, u_i;
157
158
18.2k
            l_i = sbr->t_E[ch][l];
159
18.2k
            u_i = sbr->t_E[ch][l+1];
160
161
18.2k
            div = (real_t)(u_i - l_i);
162
163
18.2k
            if (div <= 0)
164
602
                div = 1;
165
#ifdef FIXED_POINT
166
            limit = div << (30 - (COEF_BITS - REAL_BITS));
167
            mul = (1 << (COEF_BITS - REAL_BITS)) / div;
168
#endif
169
170
225k
            for (m = 0; m < sbr->M; m++)
171
207k
            {
172
207k
                nrg = 0;
173
174
4.14M
                for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
175
3.93M
                {
176
3.93M
                    real_t re = QMF_RE(Xsbr[i][m + sbr->kx]) + half;
177
3.93M
                    real_t im = QMF_IM(Xsbr[i][m + sbr->kx]) + half;
178
3.93M
                    (void)im;
179
                    /* Actually, that should be MUL_R. On floating-point build
180
                       that is the same. On fixed point-build we use it to
181
                       pre-scale result (to aviod overflow). That, of course
182
                       causes some precision loss. */
183
3.93M
                    nrg += MUL_C(re, re)
184
3.93M
#ifndef SBR_LOW_POWER
185
3.93M
                        + MUL_C(im, im)
186
3.93M
#endif
187
3.93M
                        ;
188
3.93M
                }
189
190
207k
                if (nrg < -limit || nrg > limit)
191
7
                    return 1;
192
#ifdef FIXED_POINT
193
                sbr->E_curr[ch][m][l] = nrg * mul;
194
#else
195
207k
                sbr->E_curr[ch][m][l] = nrg / div;
196
207k
#endif
197
#ifdef SBR_LOW_POWER
198
#ifdef FIXED_POINT
199
                sbr->E_curr[ch][m][l] <<= 1;
200
#else
201
                sbr->E_curr[ch][m][l] *= 2;
202
#endif
203
#endif
204
207k
            }
205
18.2k
        }
206
11.0k
    } else {
207
9.67k
        for (l = 0; l < sbr->L_E[ch]; l++)
208
6.03k
        {
209
43.9k
            for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
210
37.9k
            {
211
37.9k
                k_l = sbr->f_table_res[sbr->f[ch][l]][p];
212
37.9k
                k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
213
214
134k
                for (k = k_l; k < k_h; k++)
215
96.8k
                {
216
96.8k
                    uint8_t i, l_i, u_i;
217
96.8k
                    nrg = 0;
218
219
96.8k
                    l_i = sbr->t_E[ch][l];
220
96.8k
                    u_i = sbr->t_E[ch][l+1];
221
222
96.8k
                    div = (real_t)((u_i - l_i)*(k_h - k_l));
223
224
96.8k
                    if (div <= 0)
225
3.54k
                        div = 1;
226
#ifdef FIXED_POINT
227
                    limit = div << (30 - (COEF_BITS - REAL_BITS));
228
                    mul = (1 << (COEF_BITS - REAL_BITS)) / div;
229
#endif
230
231
2.02M
                    for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
232
1.93M
                    {
233
8.14M
                        for (j = k_l; j < k_h; j++)
234
6.21M
                        {
235
6.21M
                            real_t re = QMF_RE(Xsbr[i][j]) + half;
236
6.21M
                            real_t im = QMF_IM(Xsbr[i][j]) + half;
237
6.21M
                            (void)im;
238
                            /* Actually, that should be MUL_R. On floating-point build
239
                               that is the same. On fixed point-build we use it to
240
                               pre-scale result (to aviod overflow). That, of course
241
                               causes some precision loss. */
242
6.21M
                            nrg += MUL_C(re, re)
243
6.21M
#ifndef SBR_LOW_POWER
244
6.21M
                                + MUL_C(im, im)
245
6.21M
#endif
246
6.21M
                                ;
247
6.21M
                        }
248
1.93M
                    }
249
250
96.8k
                    if (nrg < -limit || nrg > limit)
251
6
                        return 1;
252
#ifdef FIXED_POINT
253
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg * mul;
254
#else
255
96.8k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
256
96.8k
#endif
257
#ifdef SBR_LOW_POWER
258
#ifdef FIXED_POINT
259
                    sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
260
#else
261
                    sbr->E_curr[ch][k - sbr->kx][l] *= 2;
262
#endif
263
#endif
264
96.8k
                }
265
37.9k
            }
266
6.03k
        }
267
3.65k
    }
268
269
14.7k
    return 0;
270
14.7k
}
271
272
#ifdef FIXED_POINT
273
#define EPS (1) /* smallest number available in fixed point */
274
#else
275
194k
#define EPS (1e-12)
276
#endif
277
278
279
280
#ifdef FIXED_POINT
281
282
/* log2 values of [0..63] */
283
static const real_t log2_int_tab[] = {
284
    LOG2_MIN_INF, REAL_CONST(0.000000000000000), REAL_CONST(1.000000000000000), REAL_CONST(1.584962500721156),
285
    REAL_CONST(2.000000000000000), REAL_CONST(2.321928094887362), REAL_CONST(2.584962500721156), REAL_CONST(2.807354922057604),
286
    REAL_CONST(3.000000000000000), REAL_CONST(3.169925001442313), REAL_CONST(3.321928094887363), REAL_CONST(3.459431618637297),
287
    REAL_CONST(3.584962500721156), REAL_CONST(3.700439718141092), REAL_CONST(3.807354922057604), REAL_CONST(3.906890595608519),
288
    REAL_CONST(4.000000000000000), REAL_CONST(4.087462841250339), REAL_CONST(4.169925001442312), REAL_CONST(4.247927513443585),
289
    REAL_CONST(4.321928094887362), REAL_CONST(4.392317422778761), REAL_CONST(4.459431618637297), REAL_CONST(4.523561956057013),
290
    REAL_CONST(4.584962500721156), REAL_CONST(4.643856189774724), REAL_CONST(4.700439718141093), REAL_CONST(4.754887502163468),
291
    REAL_CONST(4.807354922057604), REAL_CONST(4.857980995127572), REAL_CONST(4.906890595608519), REAL_CONST(4.954196310386875),
292
    REAL_CONST(5.000000000000000), REAL_CONST(5.044394119358453), REAL_CONST(5.087462841250340), REAL_CONST(5.129283016944966),
293
    REAL_CONST(5.169925001442312), REAL_CONST(5.209453365628949), REAL_CONST(5.247927513443585), REAL_CONST(5.285402218862248),
294
    REAL_CONST(5.321928094887363), REAL_CONST(5.357552004618084), REAL_CONST(5.392317422778761), REAL_CONST(5.426264754702098),
295
    REAL_CONST(5.459431618637297), REAL_CONST(5.491853096329675), REAL_CONST(5.523561956057013), REAL_CONST(5.554588851677637),
296
    REAL_CONST(5.584962500721156), REAL_CONST(5.614709844115208), REAL_CONST(5.643856189774724), REAL_CONST(5.672425341971495),
297
    REAL_CONST(5.700439718141093), REAL_CONST(5.727920454563200), REAL_CONST(5.754887502163469), REAL_CONST(5.781359713524660),
298
    REAL_CONST(5.807354922057605), REAL_CONST(5.832890014164742), REAL_CONST(5.857980995127572), REAL_CONST(5.882643049361842),
299
    REAL_CONST(5.906890595608518), REAL_CONST(5.930737337562887), REAL_CONST(5.954196310386876), REAL_CONST(5.977279923499916)
300
};
301
302
// pan_log2_tab[X] = log2(2**X + 1) - X
303
static const real_t pan_log2_tab[13] = {
304
    REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362), REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339),
305
    REAL_CONST(0.044394119358453), REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878), REAL_CONST(0.002815015607054),
306
    REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247), REAL_CONST(0.000352177480301)
307
};
308
309
static real_t find_log2_E(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
310
435k
{
311
    /* check for coupled energy/noise data */
312
435k
    if (sbr->bs_coupling == 1)
313
203k
    {
314
203k
        int16_t e = sbr->E[0][k][l];
315
203k
        int16_t E = sbr->E[1][k][l];
316
203k
        uint8_t amp0 = (sbr->amp_res[0]) ? 0 : 1;
317
203k
        uint8_t amp1 = (sbr->amp_res[1]) ? 0 : 1;
318
203k
        real_t tmp, pan;
319
320
        /* E[1] should always be even so shifting is OK */
321
203k
        E >>= amp1;
322
203k
        if (e < 0 || e >= 64 || E < 0 || E > 24)
323
40.9k
            return LOG2_MIN_INF;
324
162k
        E -= 12;
325
326
162k
        if (ch != 0)  // L/R anti-symmetry
327
81.1k
            E = -E;
328
329
162k
        if (E >= 0)
330
82.0k
        {
331
            /* negative */
332
82.0k
            pan = pan_log2_tab[E];
333
82.0k
        } else {
334
            /* positive */
335
80.0k
            pan = pan_log2_tab[-E] + ((-E)<<REAL_BITS);
336
80.0k
        }
337
338
        /* tmp / pan in log2 */
339
162k
        tmp = (7 << REAL_BITS) + (e << (REAL_BITS-amp0));
340
162k
        return tmp - pan;
341
232k
    } else {
342
232k
        int16_t e = sbr->E[ch][k][l];
343
232k
        uint8_t amp = (sbr->amp_res[ch]) ? 0 : 1;
344
232k
        if (e < 0 || (e >> amp) >= 64)
345
28.5k
            return LOG2_MIN_INF;
346
204k
        return 6 * REAL_PRECISION + e * (REAL_PRECISION >> amp);
347
232k
    }
348
435k
}
349
350
static real_t find_log2_Q(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
351
299k
{
352
    /* check for coupled energy/noise data */
353
299k
    if (sbr->bs_coupling == 1)
354
142k
    {
355
142k
        int32_t q = sbr->Q[0][k][l];
356
142k
        int32_t Q = sbr->Q[1][k][l];
357
142k
        real_t tmp, pan;
358
359
142k
        if (q < 0 || q > 30 || Q < 0 || Q > 24)
360
18.8k
            return LOG2_MIN_INF;
361
123k
        Q -= 12;
362
363
123k
        if (ch != 0)  // L/R anti-symmetry
364
61.8k
            Q = -Q;
365
366
123k
        if (Q >= 0)
367
61.9k
        {
368
            /* negative */
369
61.9k
            pan = pan_log2_tab[Q];
370
61.9k
        } else {
371
            /* positive */
372
61.6k
            pan = pan_log2_tab[-Q] + ((-Q)<<REAL_BITS);
373
61.6k
        }
374
375
        /* tmp / pan in log2 */
376
123k
        tmp = (7 - q) * REAL_PRECISION;
377
123k
        return tmp - pan;
378
157k
    } else {
379
157k
        int32_t q = sbr->Q[ch][k][l];
380
157k
        if (q < 0 || q > 30)
381
23.2k
            return LOG2_MIN_INF;
382
133k
        return (6 - q) * REAL_PRECISION;
383
157k
    }
384
299k
}
385
386
static const real_t log_Qplus1_pan[31][13] = {
387
    { REAL_CONST(0.044383447617292), REAL_CONST(0.169768601655960), REAL_CONST(0.583090126514435), REAL_CONST(1.570089221000671), REAL_CONST(3.092446088790894), REAL_CONST(4.733354568481445), REAL_CONST(6.022367954254150), REAL_CONST(6.692092418670654), REAL_CONST(6.924463272094727), REAL_CONST(6.989034175872803), REAL_CONST(7.005646705627441), REAL_CONST(7.009829998016357), REAL_CONST(7.010877609252930) },
388
    { REAL_CONST(0.022362394258380), REAL_CONST(0.087379962205887), REAL_CONST(0.320804953575134), REAL_CONST(0.988859415054321), REAL_CONST(2.252387046813965), REAL_CONST(3.786596298217773), REAL_CONST(5.044394016265869), REAL_CONST(5.705977916717529), REAL_CONST(5.936291694641113), REAL_CONST(6.000346660614014), REAL_CONST(6.016829967498779), REAL_CONST(6.020981311798096), REAL_CONST(6.022020816802979) },
389
    { REAL_CONST(0.011224525049329), REAL_CONST(0.044351425021887), REAL_CONST(0.169301137328148), REAL_CONST(0.577544987201691), REAL_CONST(1.527246952056885), REAL_CONST(2.887525320053101), REAL_CONST(4.087462902069092), REAL_CONST(4.733354568481445), REAL_CONST(4.959661006927490), REAL_CONST(5.022709369659424), REAL_CONST(5.038940429687500), REAL_CONST(5.043028831481934), REAL_CONST(5.044052600860596) },
390
    { REAL_CONST(0.005623178556561), REAL_CONST(0.022346137091517), REAL_CONST(0.087132595479488), REAL_CONST(0.317482173442841), REAL_CONST(0.956931233406067), REAL_CONST(2.070389270782471), REAL_CONST(3.169924974441528), REAL_CONST(3.786596298217773), REAL_CONST(4.005294322967529), REAL_CONST(4.066420555114746), REAL_CONST(4.082170009613037), REAL_CONST(4.086137294769287), REAL_CONST(4.087131500244141) },
391
    { REAL_CONST(0.002814328996465), REAL_CONST(0.011216334067285), REAL_CONST(0.044224001467228), REAL_CONST(0.167456731200218), REAL_CONST(0.556393325328827), REAL_CONST(1.378511548042297), REAL_CONST(2.321928024291992), REAL_CONST(2.887525320053101), REAL_CONST(3.092446088790894), REAL_CONST(3.150059700012207), REAL_CONST(3.164926528930664), REAL_CONST(3.168673276901245), REAL_CONST(3.169611930847168) },
392
    { REAL_CONST(0.001407850766554), REAL_CONST(0.005619067233056), REAL_CONST(0.022281449288130), REAL_CONST(0.086156636476517), REAL_CONST(0.304854571819305), REAL_CONST(0.847996890544891), REAL_CONST(1.584962487220764), REAL_CONST(2.070389270782471), REAL_CONST(2.252387046813965), REAL_CONST(2.304061651229858), REAL_CONST(2.317430257797241), REAL_CONST(2.320801734924316), REAL_CONST(2.321646213531494) },
393
    { REAL_CONST(0.000704097095877), REAL_CONST(0.002812269143760), REAL_CONST(0.011183738708496), REAL_CONST(0.043721374124289), REAL_CONST(0.160464659333229), REAL_CONST(0.485426813364029), REAL_CONST(1.000000000000000), REAL_CONST(1.378511548042297), REAL_CONST(1.527246952056885), REAL_CONST(1.570089221000671), REAL_CONST(1.581215262413025), REAL_CONST(1.584023833274841), REAL_CONST(1.584727644920349) },
394
    { REAL_CONST(0.000352177477907), REAL_CONST(0.001406819908880), REAL_CONST(0.005602621007711), REAL_CONST(0.022026389837265), REAL_CONST(0.082462236285210), REAL_CONST(0.263034462928772), REAL_CONST(0.584962487220764), REAL_CONST(0.847996890544891), REAL_CONST(0.956931233406067), REAL_CONST(0.988859415054321), REAL_CONST(0.997190535068512), REAL_CONST(0.999296069145203), REAL_CONST(0.999823868274689) },
395
    { REAL_CONST(0.000176099492819), REAL_CONST(0.000703581434209), REAL_CONST(0.002804030198604), REAL_CONST(0.011055230163038), REAL_CONST(0.041820213198662), REAL_CONST(0.137503549456596), REAL_CONST(0.321928083896637), REAL_CONST(0.485426813364029), REAL_CONST(0.556393325328827), REAL_CONST(0.577544987201691), REAL_CONST(0.583090126514435), REAL_CONST(0.584493279457092), REAL_CONST(0.584845066070557) },
396
    { REAL_CONST(0.000088052431238), REAL_CONST(0.000351833587047), REAL_CONST(0.001402696361765), REAL_CONST(0.005538204684854), REAL_CONST(0.021061634644866), REAL_CONST(0.070389263331890), REAL_CONST(0.169925004243851), REAL_CONST(0.263034462928772), REAL_CONST(0.304854571819305), REAL_CONST(0.317482173442841), REAL_CONST(0.320804953575134), REAL_CONST(0.321646571159363), REAL_CONST(0.321857661008835) },
397
    { REAL_CONST(0.000044026888645), REAL_CONST(0.000175927518285), REAL_CONST(0.000701518612914), REAL_CONST(0.002771759871393), REAL_CONST(0.010569252073765), REAL_CONST(0.035623874515295), REAL_CONST(0.087462842464447), REAL_CONST(0.137503549456596), REAL_CONST(0.160464659333229), REAL_CONST(0.167456731200218), REAL_CONST(0.169301137328148), REAL_CONST(0.169768601655960), REAL_CONST(0.169885858893394) },
398
    { REAL_CONST(0.000022013611670), REAL_CONST(0.000088052431238), REAL_CONST(0.000350801943569), REAL_CONST(0.001386545598507), REAL_CONST(0.005294219125062), REAL_CONST(0.017921976745129), REAL_CONST(0.044394120573997), REAL_CONST(0.070389263331890), REAL_CONST(0.082462236285210), REAL_CONST(0.086156636476517), REAL_CONST(0.087132595479488), REAL_CONST(0.087379962205887), REAL_CONST(0.087442122399807) },
399
    { REAL_CONST(0.000011006847672), REAL_CONST(0.000044026888645), REAL_CONST(0.000175411638338), REAL_CONST(0.000693439331371), REAL_CONST(0.002649537986144), REAL_CONST(0.008988817222416), REAL_CONST(0.022367812693119), REAL_CONST(0.035623874515295), REAL_CONST(0.041820213198662), REAL_CONST(0.043721374124289), REAL_CONST(0.044224001467228), REAL_CONST(0.044351425021887), REAL_CONST(0.044383447617292) },
400
    { REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000087708482170), REAL_CONST(0.000346675369656), REAL_CONST(0.001325377263129), REAL_CONST(0.004501323681325), REAL_CONST(0.011227255687118), REAL_CONST(0.017921976745129), REAL_CONST(0.021061634644866), REAL_CONST(0.022026389837265), REAL_CONST(0.022281449288130), REAL_CONST(0.022346137091517), REAL_CONST(0.022362394258380) },
401
    { REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043854910473), REAL_CONST(0.000173348103999), REAL_CONST(0.000662840844598), REAL_CONST(0.002252417383716), REAL_CONST(0.005624548997730), REAL_CONST(0.008988817222416), REAL_CONST(0.010569252073765), REAL_CONST(0.011055230163038), REAL_CONST(0.011183738708496), REAL_CONST(0.011216334067285), REAL_CONST(0.011224525049329) },
402
    { REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000086676649516), REAL_CONST(0.000331544462824), REAL_CONST(0.001126734190620), REAL_CONST(0.002815015614033), REAL_CONST(0.004501323681325), REAL_CONST(0.005294219125062), REAL_CONST(0.005538204684854), REAL_CONST(0.005602621007711), REAL_CONST(0.005619067233056), REAL_CONST(0.005623178556561) },
403
    { REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043338975956), REAL_CONST(0.000165781748365), REAL_CONST(0.000563477107789), REAL_CONST(0.001408194424585), REAL_CONST(0.002252417383716), REAL_CONST(0.002649537986144), REAL_CONST(0.002771759871393), REAL_CONST(0.002804030198604), REAL_CONST(0.002812269143760), REAL_CONST(0.002814328996465) },
404
    { REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000021669651687), REAL_CONST(0.000082893253420), REAL_CONST(0.000281680084299), REAL_CONST(0.000704268983100), REAL_CONST(0.001126734190620), REAL_CONST(0.001325377263129), REAL_CONST(0.001386545598507), REAL_CONST(0.001402696361765), REAL_CONST(0.001406819908880), REAL_CONST(0.001407850766554) },
405
    { REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010834866771), REAL_CONST(0.000041447223339), REAL_CONST(0.000140846910654), REAL_CONST(0.000352177477907), REAL_CONST(0.000563477107789), REAL_CONST(0.000662840844598), REAL_CONST(0.000693439331371), REAL_CONST(0.000701518612914), REAL_CONST(0.000703581434209), REAL_CONST(0.000704097095877) },
406
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000020637769921), REAL_CONST(0.000070511166996), REAL_CONST(0.000176099492819), REAL_CONST(0.000281680084299), REAL_CONST(0.000331544462824), REAL_CONST(0.000346675369656), REAL_CONST(0.000350801943569), REAL_CONST(0.000351833587047), REAL_CONST(0.000352177477907) },
407
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010318922250), REAL_CONST(0.000035256012779), REAL_CONST(0.000088052431238), REAL_CONST(0.000140846910654), REAL_CONST(0.000165781748365), REAL_CONST(0.000173348103999), REAL_CONST(0.000175411638338), REAL_CONST(0.000175927518285), REAL_CONST(0.000176099492819) },
408
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005159470220), REAL_CONST(0.000017542124624), REAL_CONST(0.000044026888645), REAL_CONST(0.000070511166996), REAL_CONST(0.000082893253420), REAL_CONST(0.000086676649516), REAL_CONST(0.000087708482170), REAL_CONST(0.000088052431238), REAL_CONST(0.000088052431238) },
409
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002579737384), REAL_CONST(0.000008771088687), REAL_CONST(0.000022013611670), REAL_CONST(0.000035256012779), REAL_CONST(0.000041447223339), REAL_CONST(0.000043338975956), REAL_CONST(0.000043854910473), REAL_CONST(0.000044026888645), REAL_CONST(0.000044026888645) },
410
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000004471542070), REAL_CONST(0.000011006847672), REAL_CONST(0.000017542124624), REAL_CONST(0.000020637769921), REAL_CONST(0.000021669651687), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670) },
411
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002235772627), REAL_CONST(0.000005503434295), REAL_CONST(0.000008771088687), REAL_CONST(0.000010318922250), REAL_CONST(0.000010834866771), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672) },
412
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001031895522), REAL_CONST(0.000002751719876), REAL_CONST(0.000004471542070), REAL_CONST(0.000005159470220), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295) },
413
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000515947875), REAL_CONST(0.000001375860506), REAL_CONST(0.000002235772627), REAL_CONST(0.000002579737384), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876) },
414
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000000687930424), REAL_CONST(0.000001031895522), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506) },
415
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000515947875), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424) },
416
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269) },
417
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634) }
418
};
419
420
static const real_t log_Qplus1[31] = {
421
    REAL_CONST(6.022367813028454), REAL_CONST(5.044394119358453), REAL_CONST(4.087462841250339),
422
    REAL_CONST(3.169925001442313), REAL_CONST(2.321928094887362), REAL_CONST(1.584962500721156),
423
    REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362),
424
    REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339), REAL_CONST(0.044394119358453),
425
    REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878),
426
    REAL_CONST(0.002815015607054), REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247),
427
    REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122),
428
    REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667),
429
    REAL_CONST(0.000005503434331), REAL_CONST(0.000002751719790), REAL_CONST(0.000001375860551),
430
    REAL_CONST(0.000000687930439), REAL_CONST(0.000000343965261), REAL_CONST(0.000000171982641),
431
    REAL_CONST(0.000000000000000)
432
};
433
434
static real_t find_log2_Qplus1(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
435
299k
{
436
    /* check for coupled energy/noise data */
437
299k
    if (sbr->bs_coupling == 1)
438
142k
    {
439
142k
        if ((sbr->Q[0][k][l] >= 0) && (sbr->Q[0][k][l] <= 30) &&
440
142k
            (sbr->Q[1][k][l] >= 0) && (sbr->Q[1][k][l] <= 24))
441
123k
        {
442
123k
            if (ch == 0)
443
61.8k
            {
444
61.8k
                return log_Qplus1_pan[sbr->Q[0][k][l]][sbr->Q[1][k][l] >> 1];
445
61.8k
            } else {
446
61.8k
                return log_Qplus1_pan[sbr->Q[0][k][l]][12 - (sbr->Q[1][k][l] >> 1)];
447
61.8k
            }
448
123k
        } else {
449
18.8k
            return 0;
450
18.8k
        }
451
157k
    } else {
452
157k
        if (sbr->Q[ch][k][l] >= 0 && sbr->Q[ch][k][l] <= 30)
453
133k
        {
454
133k
            return log_Qplus1[sbr->Q[ch][k][l]];
455
133k
        } else {
456
23.2k
            return 0;
457
23.2k
        }
458
157k
    }
459
299k
}
460
461
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
462
12.4k
{
463
    /* log2 values of limiter gains */
464
    /* Last one less than log2(1e10) due to FIXED POINT float limitations */
465
12.4k
    static real_t limGain[] = {
466
12.4k
        REAL_CONST(-1.0), REAL_CONST(0.0), REAL_CONST(1.0), REAL_CONST(21.0)
467
12.4k
    };
468
12.4k
    uint8_t m, l, k;
469
470
12.4k
    uint8_t current_t_noise_band = 0;
471
12.4k
    uint8_t S_mapped;
472
473
12.4k
    ALIGN real_t Q_M_lim[MAX_M];
474
12.4k
    ALIGN real_t G_lim[MAX_M];
475
12.4k
    ALIGN real_t G_boost;
476
12.4k
    ALIGN real_t S_M[MAX_M];
477
478
12.4k
    real_t exp = REAL_CONST(-10);
479
480
34.1k
    for (l = 0; l < sbr->L_E[ch]; l++)
481
21.7k
    {
482
21.7k
        uint8_t current_f_noise_band = 0;
483
21.7k
        uint8_t current_res_band = 0;
484
21.7k
        uint8_t current_res_band2 = 0;
485
21.7k
        uint8_t current_hi_res_band = 0;
486
487
21.7k
        real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
488
489
21.7k
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
490
491
21.7k
        if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
492
3.57k
        {
493
3.57k
            current_t_noise_band++;
494
3.57k
        }
495
496
69.1k
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
497
47.4k
        {
498
47.4k
            real_t Q_M = 0;
499
47.4k
            real_t G_max;
500
47.4k
            uint64_t den = 0, acc1 = 0, acc2 = 0;
501
47.4k
            uint8_t current_res_band_size = 0;
502
47.4k
            uint8_t Q_M_size = 0;
503
47.4k
            real_t log_e, log_den, log_acc1, log_acc2;
504
505
47.4k
            uint8_t ml1, ml2;
506
507
            /* bounds of current limiter bands */
508
47.4k
            ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
509
47.4k
            ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
510
511
47.4k
            if (ml1 > MAX_M)
512
0
                ml1 = MAX_M;
513
514
47.4k
            if (ml2 > MAX_M)
515
0
                ml2 = MAX_M;
516
517
518
            /* calculate the accumulated E_orig and E_curr over the limiter band */
519
347k
            for (m = ml1; m < ml2; m++)
520
299k
            {
521
299k
                if ((m + sbr->kx) < sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
522
211k
                {
523
211k
                    current_res_band_size++;
524
211k
                } else {
525
88.6k
                    log_e = find_log2_E(sbr, current_res_band, l, ch);
526
88.6k
                    acc1 += pow2_int(exp + log2_int_tab[current_res_band_size] + log_e);
527
528
88.6k
                    current_res_band++;
529
88.6k
                    current_res_band_size = 1;
530
88.6k
                }
531
532
299k
                acc2 += sbr->E_curr[ch][m][l];
533
299k
            }
534
47.4k
            if (current_res_band_size) {
535
47.4k
                log_e = find_log2_E(sbr, current_res_band, l, ch);
536
47.4k
                acc1 += pow2_int(exp + log2_int_tab[current_res_band_size] + log_e);
537
47.4k
            }
538
539
540
47.4k
            if (acc1 == 0)
541
28.7k
                log_acc1 = LOG2_MIN_INF;
542
18.7k
            else
543
18.7k
                log_acc1 = log2_int(acc1);
544
545
47.4k
            if (acc2 == 0)
546
46.5k
                log_acc2 = LOG2_MIN_INF;
547
935
            else
548
935
                log_acc2 = log2_int(acc2);
549
550
            /* calculate the maximum gain */
551
            /* ratio of the energy of the original signal and the energy
552
             * of the HF generated signal
553
             */
554
47.4k
            G_max = log_acc1 - log_acc2 + limGain[sbr->bs_limiter_gains];
555
47.4k
            G_max = min(G_max, limGain[3]);
556
557
558
347k
            for (m = ml1; m < ml2; m++)
559
299k
            {
560
299k
                real_t G;
561
299k
                real_t E_curr, E_orig;
562
299k
                real_t Q_orig, Q_orig_plus1;
563
299k
                uint8_t S_index_mapped;
564
565
566
                /* check if m is on a noise band border */
567
299k
                if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
568
19.7k
                {
569
                    /* step to next noise band */
570
19.7k
                    current_f_noise_band++;
571
19.7k
                }
572
573
574
                /* check if m is on a resolution band border */
575
299k
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
576
88.5k
                {
577
                    /* accumulate a whole range of equal Q_Ms */
578
88.5k
                    if (Q_M_size > 0)
579
37.7k
                        den += pow2_int(log2_int_tab[Q_M_size] + Q_M);
580
88.5k
                    Q_M_size = 0;
581
582
                    /* step to next resolution band */
583
88.5k
                    current_res_band2++;
584
585
                    /* if we move to a new resolution band, we should check if we are
586
                     * going to add a sinusoid in this band
587
                     */
588
88.5k
                    S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
589
88.5k
                }
590
591
592
                /* check if m is on a HI_RES band border */
593
299k
                if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
594
141k
                {
595
                    /* step to next HI_RES band */
596
141k
                    current_hi_res_band++;
597
141k
                }
598
599
600
                /* find S_index_mapped
601
                 * S_index_mapped can only be 1 for the m in the middle of the
602
                 * current HI_RES band
603
                 */
604
299k
                S_index_mapped = 0;
605
299k
                if ((l >= sbr->l_A[ch]) ||
606
299k
                    (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
607
235k
                {
608
                    /* find the middle subband of the HI_RES frequency band */
609
235k
                    if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
610
121k
                        S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
611
235k
                }
612
613
614
                /* find bitstream parameters */
615
299k
                if (sbr->E_curr[ch][m][l] == 0)
616
293k
                    E_curr = LOG2_MIN_INF;
617
6.46k
                else
618
6.46k
                    E_curr = log2_int(sbr->E_curr[ch][m][l]);
619
299k
                E_orig = exp + find_log2_E(sbr, current_res_band2, l, ch);
620
621
622
299k
                Q_orig = find_log2_Q(sbr, current_f_noise_band, current_t_noise_band, ch);
623
299k
                Q_orig_plus1 = find_log2_Qplus1(sbr, current_f_noise_band, current_t_noise_band, ch);
624
625
626
                /* Q_M only depends on E_orig and Q_div2:
627
                 * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
628
                 * a change of current res band (HI or LO)
629
                 */
630
299k
                Q_M = E_orig + Q_orig - Q_orig_plus1;
631
632
633
                /* S_M only depends on E_orig, Q_div and S_index_mapped:
634
                 * S_index_mapped can only be non-zero once per HI_RES band
635
                 */
636
299k
                if (S_index_mapped == 0)
637
281k
                {
638
281k
                    S_M[m] = LOG2_MIN_INF; /* -inf */
639
281k
                } else {
640
18.2k
                    S_M[m] = E_orig - Q_orig_plus1;
641
18.2k
                    S_M[m] = min(S_M[m], limGain[3]);
642
643
                    /* accumulate sinusoid part of the total energy */
644
18.2k
                    den += pow2_int(S_M[m]);
645
18.2k
                }
646
647
648
                /* calculate gain */
649
                /* ratio of the energy of the original signal and the energy
650
                 * of the HF generated signal
651
                 */
652
                /* E_curr here is officially E_curr+1 so the log2() of that can never be < 0 */
653
                /* scaled by exp */
654
299k
                G = E_orig - max(exp, E_curr);
655
299k
                if ((S_mapped == 0) && (delta == 1))
656
234k
                {
657
                    /* G = G * 1/(1+Q) */
658
234k
                    G -= Q_orig_plus1;
659
234k
                } else if (S_mapped == 1) {
660
                    /* G = G * Q/(1+Q) */
661
42.7k
                    G += Q_orig - Q_orig_plus1;
662
42.7k
                }
663
664
665
                /* limit the additional noise energy level */
666
                /* and apply the limiter */
667
299k
                if (G_max > G)
668
189k
                {
669
189k
                    Q_M_lim[m] = Q_M;
670
189k
                    G_lim[m] = G;
671
672
189k
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
673
168k
                    {
674
168k
                        Q_M_size++;
675
168k
                    }
676
189k
                } else {
677
                    /* G >= G_max */
678
110k
                    Q_M_lim[m] = Q_M + G_max - G;
679
110k
                    G_lim[m] = G_max;
680
681
                    /* accumulate limited Q_M */
682
110k
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
683
96.7k
                    {
684
96.7k
                        den += pow2_int(Q_M_lim[m]);
685
96.7k
                    }
686
110k
                }
687
688
689
                /* accumulate the total energy */
690
                /* E_curr changes for every m so we do need to accumulate every m */
691
299k
                den += pow2_int(E_curr + G_lim[m]);
692
299k
            }
693
694
            /* accumulate last range of equal Q_Ms */
695
47.4k
            if (Q_M_size > 0)
696
28.3k
            {
697
28.3k
                den += pow2_int(log2_int_tab[Q_M_size] + Q_M);
698
28.3k
            }
699
700
47.4k
            if (den == 0)
701
35.5k
                log_den = LOG2_MIN_INF;
702
11.8k
            else
703
11.8k
                log_den = log2_int(den /*+ EPS*/);
704
705
            /* calculate the final gain */
706
            /* G_boost: [0..2.51188643] */
707
47.4k
            G_boost = log_acc1 - log_den;
708
47.4k
            G_boost = min(G_boost, REAL_CONST(1.328771237) /* log2(1.584893192 ^ 2) */);
709
710
711
347k
            for (m = ml1; m < ml2; m++)
712
299k
            {
713
                /* apply compensation to gain, noise floor sf's and sinusoid levels */
714
299k
#ifndef SBR_LOW_POWER
715
299k
                adj->G_lim_boost[l][m] = pow2_fix((G_lim[m] + G_boost) >> 1);
716
#else
717
                /* sqrt() will be done after the aliasing reduction to save a
718
                 * few multiplies
719
                 */
720
                adj->G_lim_boost[l][m] = pow2_fix(G_lim[m] + G_boost);
721
#endif
722
299k
                adj->Q_M_lim_boost[l][m] = pow2_fix((Q_M_lim[m] + G_boost) >> 1);
723
724
299k
                adj->S_M_boost[l][m] = pow2_fix((S_M[m] + G_boost) >> 1);
725
299k
            }
726
47.4k
        }
727
21.7k
    }
728
12.4k
}
729
730
#else
731
732
//#define LOG2_TEST
733
734
#ifdef LOG2_TEST
735
736
#define LOG2_MIN_INF -100000
737
738
__inline float pow2(float val)
739
{
740
    return pow(2.0, val);
741
}
742
__inline float log2(float val)
743
{
744
    return log(val)/log(2.0);
745
}
746
747
#define RB 14
748
749
float QUANTISE2REAL(float val)
750
{
751
    __int32 ival = (__int32)(val * (1<<RB));
752
    return (float)ival / (float)((1<<RB));
753
}
754
755
float QUANTISE2INT(float val)
756
{
757
    return floor(val);
758
}
759
760
/* log2 values of [0..63] */
761
static const real_t log2_int_tab[] = {
762
    LOG2_MIN_INF,      0.000000000000000, 1.000000000000000, 1.584962500721156,
763
    2.000000000000000, 2.321928094887362, 2.584962500721156, 2.807354922057604,
764
    3.000000000000000, 3.169925001442313, 3.321928094887363, 3.459431618637297,
765
    3.584962500721156, 3.700439718141092, 3.807354922057604, 3.906890595608519,
766
    4.000000000000000, 4.087462841250339, 4.169925001442312, 4.247927513443585,
767
    4.321928094887362, 4.392317422778761, 4.459431618637297, 4.523561956057013,
768
    4.584962500721156, 4.643856189774724, 4.700439718141093, 4.754887502163468,
769
    4.807354922057604, 4.857980995127572, 4.906890595608519, 4.954196310386875,
770
    5.000000000000000, 5.044394119358453, 5.087462841250340, 5.129283016944966,
771
    5.169925001442312, 5.209453365628949, 5.247927513443585, 5.285402218862248,
772
    5.321928094887363, 5.357552004618084, 5.392317422778761, 5.426264754702098,
773
    5.459431618637297, 5.491853096329675, 5.523561956057013, 5.554588851677637,
774
    5.584962500721156, 5.614709844115208, 5.643856189774724, 5.672425341971495,
775
    5.700439718141093, 5.727920454563200, 5.754887502163469, 5.781359713524660,
776
    5.807354922057605, 5.832890014164742, 5.857980995127572, 5.882643049361842,
777
    5.906890595608518, 5.930737337562887, 5.954196310386876, 5.977279923499916
778
};
779
780
static const real_t pan_log2_tab[] = {
781
    1.000000000000000, 0.584962500721156, 0.321928094887362, 0.169925001442312, 0.087462841250339,
782
    0.044394119358453, 0.022367813028455, 0.011227255423254, 0.005624549193878, 0.002815015607054,
783
    0.001408194392808, 0.000704269011247, 0.000352177480301, 0.000176099486443, 0.000088052430122,
784
    0.000044026886827, 0.000022013611360, 0.000011006847667
785
};
786
787
static real_t find_log2_E(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
788
{
789
    /* check for coupled energy/noise data */
790
    if (sbr->bs_coupling == 1)
791
    {
792
        real_t amp0 = (sbr->amp_res[0]) ? 1.0 : 0.5;
793
        real_t amp1 = (sbr->amp_res[1]) ? 1.0 : 0.5;
794
        float tmp = QUANTISE2REAL(7.0 + (real_t)sbr->E[0][k][l] * amp0);
795
        float pan;
796
797
        int E = (int)(sbr->E[1][k][l] * amp1);
798
799
        if (ch == 0)
800
        {
801
            if (E > 12)
802
            {
803
                /* negative */
804
                pan = QUANTISE2REAL(pan_log2_tab[-12 + E]);
805
            } else {
806
                /* positive */
807
                pan = QUANTISE2REAL(pan_log2_tab[12 - E] + (12 - E));
808
            }
809
        } else {
810
            if (E < 12)
811
            {
812
                /* negative */
813
                pan = QUANTISE2REAL(pan_log2_tab[-E + 12]);
814
            } else {
815
                /* positive */
816
                pan = QUANTISE2REAL(pan_log2_tab[E - 12] + (E - 12));
817
            }
818
        }
819
820
        /* tmp / pan in log2 */
821
        return QUANTISE2REAL(tmp - pan);
822
    } else {
823
        real_t amp = (sbr->amp_res[ch]) ? 1.0 : 0.5;
824
825
        return QUANTISE2REAL(6.0 + (real_t)sbr->E[ch][k][l] * amp);
826
    }
827
}
828
829
static real_t find_log2_Q(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
830
{
831
    /* check for coupled energy/noise data */
832
    if (sbr->bs_coupling == 1)
833
    {
834
        float tmp = QUANTISE2REAL(7.0 - (real_t)sbr->Q[0][k][l]);
835
        float pan;
836
837
        int Q = (int)(sbr->Q[1][k][l]);
838
839
        if (ch == 0)
840
        {
841
            if (Q > 12)
842
            {
843
                /* negative */
844
                pan = QUANTISE2REAL(pan_log2_tab[-12 + Q]);
845
            } else {
846
                /* positive */
847
                pan = QUANTISE2REAL(pan_log2_tab[12 - Q] + (12 - Q));
848
            }
849
        } else {
850
            if (Q < 12)
851
            {
852
                /* negative */
853
                pan = QUANTISE2REAL(pan_log2_tab[-Q + 12]);
854
            } else {
855
                /* positive */
856
                pan = QUANTISE2REAL(pan_log2_tab[Q - 12] + (Q - 12));
857
            }
858
        }
859
860
        /* tmp / pan in log2 */
861
        return QUANTISE2REAL(tmp - pan);
862
    } else {
863
        return QUANTISE2REAL(6.0 - (real_t)sbr->Q[ch][k][l]);
864
    }
865
}
866
867
static const real_t log_Qplus1_pan[31][13] = {
868
    { REAL_CONST(0.044383447617292), REAL_CONST(0.169768601655960), REAL_CONST(0.583090126514435), REAL_CONST(1.570089221000671), REAL_CONST(3.092446088790894), REAL_CONST(4.733354568481445), REAL_CONST(6.022367954254150), REAL_CONST(6.692092418670654), REAL_CONST(6.924463272094727), REAL_CONST(6.989034175872803), REAL_CONST(7.005646705627441), REAL_CONST(7.009829998016357), REAL_CONST(7.010877609252930) },
869
    { REAL_CONST(0.022362394258380), REAL_CONST(0.087379962205887), REAL_CONST(0.320804953575134), REAL_CONST(0.988859415054321), REAL_CONST(2.252387046813965), REAL_CONST(3.786596298217773), REAL_CONST(5.044394016265869), REAL_CONST(5.705977916717529), REAL_CONST(5.936291694641113), REAL_CONST(6.000346660614014), REAL_CONST(6.016829967498779), REAL_CONST(6.020981311798096), REAL_CONST(6.022020816802979) },
870
    { REAL_CONST(0.011224525049329), REAL_CONST(0.044351425021887), REAL_CONST(0.169301137328148), REAL_CONST(0.577544987201691), REAL_CONST(1.527246952056885), REAL_CONST(2.887525320053101), REAL_CONST(4.087462902069092), REAL_CONST(4.733354568481445), REAL_CONST(4.959661006927490), REAL_CONST(5.022709369659424), REAL_CONST(5.038940429687500), REAL_CONST(5.043028831481934), REAL_CONST(5.044052600860596) },
871
    { REAL_CONST(0.005623178556561), REAL_CONST(0.022346137091517), REAL_CONST(0.087132595479488), REAL_CONST(0.317482173442841), REAL_CONST(0.956931233406067), REAL_CONST(2.070389270782471), REAL_CONST(3.169924974441528), REAL_CONST(3.786596298217773), REAL_CONST(4.005294322967529), REAL_CONST(4.066420555114746), REAL_CONST(4.082170009613037), REAL_CONST(4.086137294769287), REAL_CONST(4.087131500244141) },
872
    { REAL_CONST(0.002814328996465), REAL_CONST(0.011216334067285), REAL_CONST(0.044224001467228), REAL_CONST(0.167456731200218), REAL_CONST(0.556393325328827), REAL_CONST(1.378511548042297), REAL_CONST(2.321928024291992), REAL_CONST(2.887525320053101), REAL_CONST(3.092446088790894), REAL_CONST(3.150059700012207), REAL_CONST(3.164926528930664), REAL_CONST(3.168673276901245), REAL_CONST(3.169611930847168) },
873
    { REAL_CONST(0.001407850766554), REAL_CONST(0.005619067233056), REAL_CONST(0.022281449288130), REAL_CONST(0.086156636476517), REAL_CONST(0.304854571819305), REAL_CONST(0.847996890544891), REAL_CONST(1.584962487220764), REAL_CONST(2.070389270782471), REAL_CONST(2.252387046813965), REAL_CONST(2.304061651229858), REAL_CONST(2.317430257797241), REAL_CONST(2.320801734924316), REAL_CONST(2.321646213531494) },
874
    { REAL_CONST(0.000704097095877), REAL_CONST(0.002812269143760), REAL_CONST(0.011183738708496), REAL_CONST(0.043721374124289), REAL_CONST(0.160464659333229), REAL_CONST(0.485426813364029), REAL_CONST(1.000000000000000), REAL_CONST(1.378511548042297), REAL_CONST(1.527246952056885), REAL_CONST(1.570089221000671), REAL_CONST(1.581215262413025), REAL_CONST(1.584023833274841), REAL_CONST(1.584727644920349) },
875
    { REAL_CONST(0.000352177477907), REAL_CONST(0.001406819908880), REAL_CONST(0.005602621007711), REAL_CONST(0.022026389837265), REAL_CONST(0.082462236285210), REAL_CONST(0.263034462928772), REAL_CONST(0.584962487220764), REAL_CONST(0.847996890544891), REAL_CONST(0.956931233406067), REAL_CONST(0.988859415054321), REAL_CONST(0.997190535068512), REAL_CONST(0.999296069145203), REAL_CONST(0.999823868274689) },
876
    { REAL_CONST(0.000176099492819), REAL_CONST(0.000703581434209), REAL_CONST(0.002804030198604), REAL_CONST(0.011055230163038), REAL_CONST(0.041820213198662), REAL_CONST(0.137503549456596), REAL_CONST(0.321928083896637), REAL_CONST(0.485426813364029), REAL_CONST(0.556393325328827), REAL_CONST(0.577544987201691), REAL_CONST(0.583090126514435), REAL_CONST(0.584493279457092), REAL_CONST(0.584845066070557) },
877
    { REAL_CONST(0.000088052431238), REAL_CONST(0.000351833587047), REAL_CONST(0.001402696361765), REAL_CONST(0.005538204684854), REAL_CONST(0.021061634644866), REAL_CONST(0.070389263331890), REAL_CONST(0.169925004243851), REAL_CONST(0.263034462928772), REAL_CONST(0.304854571819305), REAL_CONST(0.317482173442841), REAL_CONST(0.320804953575134), REAL_CONST(0.321646571159363), REAL_CONST(0.321857661008835) },
878
    { REAL_CONST(0.000044026888645), REAL_CONST(0.000175927518285), REAL_CONST(0.000701518612914), REAL_CONST(0.002771759871393), REAL_CONST(0.010569252073765), REAL_CONST(0.035623874515295), REAL_CONST(0.087462842464447), REAL_CONST(0.137503549456596), REAL_CONST(0.160464659333229), REAL_CONST(0.167456731200218), REAL_CONST(0.169301137328148), REAL_CONST(0.169768601655960), REAL_CONST(0.169885858893394) },
879
    { REAL_CONST(0.000022013611670), REAL_CONST(0.000088052431238), REAL_CONST(0.000350801943569), REAL_CONST(0.001386545598507), REAL_CONST(0.005294219125062), REAL_CONST(0.017921976745129), REAL_CONST(0.044394120573997), REAL_CONST(0.070389263331890), REAL_CONST(0.082462236285210), REAL_CONST(0.086156636476517), REAL_CONST(0.087132595479488), REAL_CONST(0.087379962205887), REAL_CONST(0.087442122399807) },
880
    { REAL_CONST(0.000011006847672), REAL_CONST(0.000044026888645), REAL_CONST(0.000175411638338), REAL_CONST(0.000693439331371), REAL_CONST(0.002649537986144), REAL_CONST(0.008988817222416), REAL_CONST(0.022367812693119), REAL_CONST(0.035623874515295), REAL_CONST(0.041820213198662), REAL_CONST(0.043721374124289), REAL_CONST(0.044224001467228), REAL_CONST(0.044351425021887), REAL_CONST(0.044383447617292) },
881
    { REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000087708482170), REAL_CONST(0.000346675369656), REAL_CONST(0.001325377263129), REAL_CONST(0.004501323681325), REAL_CONST(0.011227255687118), REAL_CONST(0.017921976745129), REAL_CONST(0.021061634644866), REAL_CONST(0.022026389837265), REAL_CONST(0.022281449288130), REAL_CONST(0.022346137091517), REAL_CONST(0.022362394258380) },
882
    { REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043854910473), REAL_CONST(0.000173348103999), REAL_CONST(0.000662840844598), REAL_CONST(0.002252417383716), REAL_CONST(0.005624548997730), REAL_CONST(0.008988817222416), REAL_CONST(0.010569252073765), REAL_CONST(0.011055230163038), REAL_CONST(0.011183738708496), REAL_CONST(0.011216334067285), REAL_CONST(0.011224525049329) },
883
    { REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000086676649516), REAL_CONST(0.000331544462824), REAL_CONST(0.001126734190620), REAL_CONST(0.002815015614033), REAL_CONST(0.004501323681325), REAL_CONST(0.005294219125062), REAL_CONST(0.005538204684854), REAL_CONST(0.005602621007711), REAL_CONST(0.005619067233056), REAL_CONST(0.005623178556561) },
884
    { REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043338975956), REAL_CONST(0.000165781748365), REAL_CONST(0.000563477107789), REAL_CONST(0.001408194424585), REAL_CONST(0.002252417383716), REAL_CONST(0.002649537986144), REAL_CONST(0.002771759871393), REAL_CONST(0.002804030198604), REAL_CONST(0.002812269143760), REAL_CONST(0.002814328996465) },
885
    { REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000021669651687), REAL_CONST(0.000082893253420), REAL_CONST(0.000281680084299), REAL_CONST(0.000704268983100), REAL_CONST(0.001126734190620), REAL_CONST(0.001325377263129), REAL_CONST(0.001386545598507), REAL_CONST(0.001402696361765), REAL_CONST(0.001406819908880), REAL_CONST(0.001407850766554) },
886
    { REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010834866771), REAL_CONST(0.000041447223339), REAL_CONST(0.000140846910654), REAL_CONST(0.000352177477907), REAL_CONST(0.000563477107789), REAL_CONST(0.000662840844598), REAL_CONST(0.000693439331371), REAL_CONST(0.000701518612914), REAL_CONST(0.000703581434209), REAL_CONST(0.000704097095877) },
887
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000020637769921), REAL_CONST(0.000070511166996), REAL_CONST(0.000176099492819), REAL_CONST(0.000281680084299), REAL_CONST(0.000331544462824), REAL_CONST(0.000346675369656), REAL_CONST(0.000350801943569), REAL_CONST(0.000351833587047), REAL_CONST(0.000352177477907) },
888
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010318922250), REAL_CONST(0.000035256012779), REAL_CONST(0.000088052431238), REAL_CONST(0.000140846910654), REAL_CONST(0.000165781748365), REAL_CONST(0.000173348103999), REAL_CONST(0.000175411638338), REAL_CONST(0.000175927518285), REAL_CONST(0.000176099492819) },
889
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005159470220), REAL_CONST(0.000017542124624), REAL_CONST(0.000044026888645), REAL_CONST(0.000070511166996), REAL_CONST(0.000082893253420), REAL_CONST(0.000086676649516), REAL_CONST(0.000087708482170), REAL_CONST(0.000088052431238), REAL_CONST(0.000088052431238) },
890
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002579737384), REAL_CONST(0.000008771088687), REAL_CONST(0.000022013611670), REAL_CONST(0.000035256012779), REAL_CONST(0.000041447223339), REAL_CONST(0.000043338975956), REAL_CONST(0.000043854910473), REAL_CONST(0.000044026888645), REAL_CONST(0.000044026888645) },
891
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000004471542070), REAL_CONST(0.000011006847672), REAL_CONST(0.000017542124624), REAL_CONST(0.000020637769921), REAL_CONST(0.000021669651687), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670) },
892
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002235772627), REAL_CONST(0.000005503434295), REAL_CONST(0.000008771088687), REAL_CONST(0.000010318922250), REAL_CONST(0.000010834866771), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672) },
893
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001031895522), REAL_CONST(0.000002751719876), REAL_CONST(0.000004471542070), REAL_CONST(0.000005159470220), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295) },
894
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000515947875), REAL_CONST(0.000001375860506), REAL_CONST(0.000002235772627), REAL_CONST(0.000002579737384), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876) },
895
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000000687930424), REAL_CONST(0.000001031895522), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506) },
896
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000515947875), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424) },
897
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269) },
898
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634) }
899
};
900
901
static const real_t log_Qplus1[31] = {
902
    REAL_CONST(6.022367813028454), REAL_CONST(5.044394119358453), REAL_CONST(4.087462841250339),
903
    REAL_CONST(3.169925001442313), REAL_CONST(2.321928094887362), REAL_CONST(1.584962500721156),
904
    REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362),
905
    REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339), REAL_CONST(0.044394119358453),
906
    REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878),
907
    REAL_CONST(0.002815015607054), REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247),
908
    REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122),
909
    REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667),
910
    REAL_CONST(0.000005503434331), REAL_CONST(0.000002751719790), REAL_CONST(0.000001375860551),
911
    REAL_CONST(0.000000687930439), REAL_CONST(0.000000343965261), REAL_CONST(0.000000171982641),
912
    REAL_CONST(0.000000000000000)
913
};
914
915
static real_t find_log2_Qplus1(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
916
{
917
    /* check for coupled energy/noise data */
918
    if (sbr->bs_coupling == 1)
919
    {
920
        if ((sbr->Q[0][k][l] >= 0) && (sbr->Q[0][k][l] <= 30) &&
921
            (sbr->Q[1][k][l] >= 0) && (sbr->Q[1][k][l] <= 24))
922
        {
923
            if (ch == 0)
924
            {
925
                return QUANTISE2REAL(log_Qplus1_pan[sbr->Q[0][k][l]][sbr->Q[1][k][l] >> 1]);
926
            } else {
927
                return QUANTISE2REAL(log_Qplus1_pan[sbr->Q[0][k][l]][12 - (sbr->Q[1][k][l] >> 1)]);
928
            }
929
        } else {
930
            return 0;
931
        }
932
    } else {
933
        if (sbr->Q[ch][k][l] >= 0 && sbr->Q[ch][k][l] <= 30)
934
        {
935
            return QUANTISE2REAL(log_Qplus1[sbr->Q[ch][k][l]]);
936
        } else {
937
            return 0;
938
        }
939
    }
940
}
941
942
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
943
{
944
    /* log2 values of limiter gains */
945
    static real_t limGain[] = { -1.0, 0.0, 1.0, 33.219 };
946
    uint8_t m, l, k;
947
948
    uint8_t current_t_noise_band = 0;
949
    uint8_t S_mapped;
950
951
    ALIGN real_t Q_M_lim[MAX_M];
952
    ALIGN real_t G_lim[MAX_M];
953
    ALIGN real_t G_boost;
954
    ALIGN real_t S_M[MAX_M];
955
956
957
    for (l = 0; l < sbr->L_E[ch]; l++)
958
    {
959
        uint8_t current_f_noise_band = 0;
960
        uint8_t current_res_band = 0;
961
        uint8_t current_res_band2 = 0;
962
        uint8_t current_hi_res_band = 0;
963
964
        real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
965
966
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
967
968
        if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
969
        {
970
            current_t_noise_band++;
971
        }
972
973
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
974
        {
975
            real_t Q_M = 0;
976
            real_t G_max;
977
            real_t den = 0;
978
            real_t acc1 = 0;
979
            real_t acc2 = 0;
980
            uint8_t current_res_band_size = 0;
981
            uint8_t Q_M_size = 0;
982
983
            uint8_t ml1, ml2;
984
985
            /* bounds of current limiter bands */
986
            ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
987
            ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
988
989
            if (ml1 > MAX_M)
990
                ml1 = MAX_M;
991
992
            if (ml2 > MAX_M)
993
                ml2 = MAX_M;
994
995
996
            /* calculate the accumulated E_orig and E_curr over the limiter band */
997
            for (m = ml1; m < ml2; m++)
998
            {
999
                if ((m + sbr->kx) < sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
1000
                {
1001
                    current_res_band_size++;
1002
                } else {
1003
                    acc1 += QUANTISE2INT(pow2(-10 + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch)));
1004
1005
                    current_res_band++;
1006
                    current_res_band_size = 1;
1007
                }
1008
1009
                acc2 += QUANTISE2INT(sbr->E_curr[ch][m][l]/1024.0);
1010
            }
1011
            acc1 += QUANTISE2INT(pow2(-10 + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch)));
1012
1013
            acc1 = QUANTISE2REAL( log2(EPS + acc1) );
1014
1015
1016
            /* calculate the maximum gain */
1017
            /* ratio of the energy of the original signal and the energy
1018
             * of the HF generated signal
1019
             */
1020
            G_max = acc1 - QUANTISE2REAL(log2(EPS + acc2)) + QUANTISE2REAL(limGain[sbr->bs_limiter_gains]);
1021
            G_max = min(G_max, QUANTISE2REAL(limGain[3]));
1022
1023
1024
            for (m = ml1; m < ml2; m++)
1025
            {
1026
                real_t G;
1027
                real_t E_curr, E_orig;
1028
                real_t Q_orig, Q_orig_plus1;
1029
                uint8_t S_index_mapped;
1030
1031
1032
                /* check if m is on a noise band border */
1033
                if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
1034
                {
1035
                    /* step to next noise band */
1036
                    current_f_noise_band++;
1037
                }
1038
1039
1040
                /* check if m is on a resolution band border */
1041
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
1042
                {
1043
                    /* accumulate a whole range of equal Q_Ms */
1044
                    if (Q_M_size > 0)
1045
                        den += QUANTISE2INT(pow2(log2_int_tab[Q_M_size] + Q_M));
1046
                    Q_M_size = 0;
1047
1048
                    /* step to next resolution band */
1049
                    current_res_band2++;
1050
1051
                    /* if we move to a new resolution band, we should check if we are
1052
                     * going to add a sinusoid in this band
1053
                     */
1054
                    S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
1055
                }
1056
1057
1058
                /* check if m is on a HI_RES band border */
1059
                if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
1060
                {
1061
                    /* step to next HI_RES band */
1062
                    current_hi_res_band++;
1063
                }
1064
1065
1066
                /* find S_index_mapped
1067
                 * S_index_mapped can only be 1 for the m in the middle of the
1068
                 * current HI_RES band
1069
                 */
1070
                S_index_mapped = 0;
1071
                if ((l >= sbr->l_A[ch]) ||
1072
                    (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
1073
                {
1074
                    /* find the middle subband of the HI_RES frequency band */
1075
                    if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
1076
                        S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
1077
                }
1078
1079
1080
                /* find bitstream parameters */
1081
                if (sbr->E_curr[ch][m][l] == 0)
1082
                    E_curr = LOG2_MIN_INF;
1083
                else
1084
                    E_curr = -10 + log2(sbr->E_curr[ch][m][l]);
1085
                E_orig = -10 + find_log2_E(sbr, current_res_band2, l, ch);
1086
1087
                Q_orig = find_log2_Q(sbr, current_f_noise_band, current_t_noise_band, ch);
1088
                Q_orig_plus1 = find_log2_Qplus1(sbr, current_f_noise_band, current_t_noise_band, ch);
1089
1090
1091
                /* Q_M only depends on E_orig and Q_div2:
1092
                 * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
1093
                 * a change of current res band (HI or LO)
1094
                 */
1095
                Q_M = E_orig + Q_orig - Q_orig_plus1;
1096
1097
1098
                /* S_M only depends on E_orig, Q_div and S_index_mapped:
1099
                 * S_index_mapped can only be non-zero once per HI_RES band
1100
                 */
1101
                if (S_index_mapped == 0)
1102
                {
1103
                    S_M[m] = LOG2_MIN_INF; /* -inf */
1104
                } else {
1105
                    S_M[m] = E_orig - Q_orig_plus1;
1106
1107
                    /* accumulate sinusoid part of the total energy */
1108
                    den += pow2(S_M[m]);
1109
                }
1110
1111
1112
                /* calculate gain */
1113
                /* ratio of the energy of the original signal and the energy
1114
                 * of the HF generated signal
1115
                 */
1116
                /* E_curr here is officially E_curr+1 so the log2() of that can never be < 0 */
1117
                /* scaled by -10 */
1118
                G = E_orig - max(-10, E_curr);
1119
                if ((S_mapped == 0) && (delta == 1))
1120
                {
1121
                    /* G = G * 1/(1+Q) */
1122
                    G -= Q_orig_plus1;
1123
                } else if (S_mapped == 1) {
1124
                    /* G = G * Q/(1+Q) */
1125
                    G += Q_orig - Q_orig_plus1;
1126
                }
1127
1128
1129
                /* limit the additional noise energy level */
1130
                /* and apply the limiter */
1131
                if (G_max > G)
1132
                {
1133
                    Q_M_lim[m] = QUANTISE2REAL(Q_M);
1134
                    G_lim[m] = QUANTISE2REAL(G);
1135
1136
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
1137
                    {
1138
                        Q_M_size++;
1139
                    }
1140
                } else {
1141
                    /* G > G_max */
1142
                    Q_M_lim[m] = QUANTISE2REAL(Q_M) + G_max - QUANTISE2REAL(G);
1143
                    G_lim[m] = G_max;
1144
1145
                    /* accumulate limited Q_M */
1146
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
1147
                    {
1148
                        den += QUANTISE2INT(pow2(Q_M_lim[m]));
1149
                    }
1150
                }
1151
1152
1153
                /* accumulate the total energy */
1154
                /* E_curr changes for every m so we do need to accumulate every m */
1155
                den += QUANTISE2INT(pow2(E_curr + G_lim[m]));
1156
            }
1157
1158
            /* accumulate last range of equal Q_Ms */
1159
            if (Q_M_size > 0)
1160
            {
1161
                den += QUANTISE2INT(pow2(log2_int_tab[Q_M_size] + Q_M));
1162
            }
1163
1164
1165
            /* calculate the final gain */
1166
            /* G_boost: [0..2.51188643] */
1167
            G_boost = acc1 - QUANTISE2REAL(log2(den + EPS));
1168
            G_boost = min(G_boost, QUANTISE2REAL(1.328771237) /* log2(1.584893192 ^ 2) */);
1169
1170
1171
            for (m = ml1; m < ml2; m++)
1172
            {
1173
                /* apply compensation to gain, noise floor sf's and sinusoid levels */
1174
#ifndef SBR_LOW_POWER
1175
                adj->G_lim_boost[l][m] = QUANTISE2REAL(pow2((G_lim[m] + G_boost) / 2.0));
1176
#else
1177
                /* sqrt() will be done after the aliasing reduction to save a
1178
                 * few multiplies
1179
                 */
1180
                adj->G_lim_boost[l][m] = QUANTISE2REAL(pow2(G_lim[m] + G_boost));
1181
#endif
1182
                adj->Q_M_lim_boost[l][m] = QUANTISE2REAL(pow2((Q_M_lim[m] + 10 + G_boost) / 2.0));
1183
1184
                if (S_M[m] != LOG2_MIN_INF)
1185
                {
1186
                    adj->S_M_boost[l][m] = QUANTISE2REAL(pow2((S_M[m] + 10 + G_boost) / 2.0));
1187
                } else {
1188
                    adj->S_M_boost[l][m] = 0;
1189
                }
1190
            }
1191
        }
1192
    }
1193
}
1194
1195
#else
1196
1197
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
1198
14.7k
{
1199
14.7k
    static real_t limGain[] = { 0.5, 1.0, 2.0, 1e10 };
1200
14.7k
    uint8_t m, l, k;
1201
1202
14.7k
    uint8_t current_t_noise_band = 0;
1203
14.7k
    uint8_t S_mapped;
1204
1205
14.7k
    ALIGN real_t Q_M_lim[MAX_M];
1206
14.7k
    ALIGN real_t G_lim[MAX_M];
1207
14.7k
    ALIGN real_t G_boost;
1208
14.7k
    ALIGN real_t S_M[MAX_M];
1209
1210
39.0k
    for (l = 0; l < sbr->L_E[ch]; l++)
1211
24.3k
    {
1212
24.3k
        uint8_t current_f_noise_band = 0;
1213
24.3k
        uint8_t current_res_band = 0;
1214
24.3k
        uint8_t current_res_band2 = 0;
1215
24.3k
        uint8_t current_hi_res_band = 0;
1216
1217
24.3k
        real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
1218
1219
24.3k
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
1220
1221
24.3k
        if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
1222
4.72k
        {
1223
4.72k
            current_t_noise_band++;
1224
4.72k
        }
1225
1226
72.9k
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
1227
48.6k
        {
1228
48.6k
            real_t G_max;
1229
48.6k
            real_t den = 0;
1230
48.6k
            real_t acc1 = 0;
1231
48.6k
            real_t acc2 = 0;
1232
1233
48.6k
            uint8_t ml1, ml2;
1234
1235
48.6k
            ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
1236
48.6k
            ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
1237
1238
48.6k
            if (ml1 > MAX_M)
1239
0
                ml1 = MAX_M;
1240
1241
48.6k
            if (ml2 > MAX_M)
1242
0
                ml2 = MAX_M;
1243
1244
1245
            /* calculate the accumulated E_orig and E_curr over the limiter band */
1246
342k
            for (m = ml1; m < ml2; m++)
1247
293k
            {
1248
293k
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
1249
84.9k
                {
1250
84.9k
                    current_res_band++;
1251
84.9k
                }
1252
293k
                acc1 += sbr->E_orig[ch][current_res_band][l];
1253
293k
                acc2 += sbr->E_curr[ch][m][l];
1254
293k
            }
1255
1256
1257
            /* calculate the maximum gain */
1258
            /* ratio of the energy of the original signal and the energy
1259
             * of the HF generated signal
1260
             */
1261
48.6k
            G_max = ((EPS + acc1) / (EPS + acc2)) * limGain[sbr->bs_limiter_gains];
1262
48.6k
            G_max = min(G_max, 1e10);
1263
1264
1265
342k
            for (m = ml1; m < ml2; m++)
1266
293k
            {
1267
293k
                real_t Q_M, G;
1268
293k
                real_t Q_div, Q_div2;
1269
293k
                uint8_t S_index_mapped;
1270
1271
1272
                /* check if m is on a noise band border */
1273
293k
                if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
1274
18.6k
                {
1275
                    /* step to next noise band */
1276
18.6k
                    current_f_noise_band++;
1277
18.6k
                }
1278
1279
1280
                /* check if m is on a resolution band border */
1281
293k
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
1282
84.9k
                {
1283
                    /* step to next resolution band */
1284
84.9k
                    current_res_band2++;
1285
1286
                    /* if we move to a new resolution band, we should check if we are
1287
                     * going to add a sinusoid in this band
1288
                     */
1289
84.9k
                    S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
1290
84.9k
                }
1291
1292
1293
                /* check if m is on a HI_RES band border */
1294
293k
                if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
1295
142k
                {
1296
                    /* step to next HI_RES band */
1297
142k
                    current_hi_res_band++;
1298
142k
                }
1299
1300
1301
                /* find S_index_mapped
1302
                 * S_index_mapped can only be 1 for the m in the middle of the
1303
                 * current HI_RES band
1304
                 */
1305
293k
                S_index_mapped = 0;
1306
293k
                if ((l >= sbr->l_A[ch]) ||
1307
293k
                    (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
1308
211k
                {
1309
                    /* find the middle subband of the HI_RES frequency band */
1310
211k
                    if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
1311
112k
                        S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
1312
211k
                }
1313
1314
1315
                /* Q_div: [0..1] (1/(1+Q_mapped)) */
1316
293k
                Q_div = sbr->Q_div[ch][current_f_noise_band][current_t_noise_band];
1317
1318
1319
                /* Q_div2: [0..1] (Q_mapped/(1+Q_mapped)) */
1320
293k
                Q_div2 = sbr->Q_div2[ch][current_f_noise_band][current_t_noise_band];
1321
1322
1323
                /* Q_M only depends on E_orig and Q_div2:
1324
                 * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
1325
                 * a change of current noise band
1326
                 */
1327
293k
                Q_M = sbr->E_orig[ch][current_res_band2][l] * Q_div2;
1328
1329
1330
                /* S_M only depends on E_orig, Q_div and S_index_mapped:
1331
                 * S_index_mapped can only be non-zero once per HI_RES band
1332
                 */
1333
293k
                if (S_index_mapped == 0)
1334
280k
                {
1335
280k
                    S_M[m] = 0;
1336
280k
                } else {
1337
13.1k
                    S_M[m] = sbr->E_orig[ch][current_res_band2][l] * Q_div;
1338
1339
                    /* accumulate sinusoid part of the total energy */
1340
13.1k
                    den += S_M[m];
1341
13.1k
                }
1342
1343
1344
                /* calculate gain */
1345
                /* ratio of the energy of the original signal and the energy
1346
                 * of the HF generated signal
1347
                 */
1348
293k
                G = sbr->E_orig[ch][current_res_band2][l] / (1.0 + sbr->E_curr[ch][m][l]);
1349
293k
                if ((S_mapped == 0) && (delta == 1))
1350
243k
                    G *= Q_div;
1351
49.6k
                else if (S_mapped == 1)
1352
28.1k
                    G *= Q_div2;
1353
1354
1355
                /* limit the additional noise energy level */
1356
                /* and apply the limiter */
1357
293k
                if (G <= G_max)
1358
257k
                {
1359
257k
                    Q_M_lim[m] = Q_M;
1360
257k
                    G_lim[m] = G;
1361
257k
                } else {
1362
35.9k
                    Q_M_lim[m] = Q_M * G_max / G;
1363
35.9k
                    G_lim[m] = G_max;
1364
35.9k
                }
1365
1366
1367
                /* accumulate the total energy */
1368
293k
                den += sbr->E_curr[ch][m][l] * G_lim[m];
1369
293k
                if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
1370
265k
                    den += Q_M_lim[m];
1371
293k
            }
1372
1373
            /* G_boost: [0..2.51188643] */
1374
48.6k
            G_boost = (acc1 + EPS) / (den + EPS);
1375
48.6k
            G_boost = min(G_boost, 2.51188643 /* 1.584893192 ^ 2 */);
1376
1377
342k
            for (m = ml1; m < ml2; m++)
1378
293k
            {
1379
                /* apply compensation to gain, noise floor sf's and sinusoid levels */
1380
293k
#ifndef SBR_LOW_POWER
1381
293k
                adj->G_lim_boost[l][m] = sqrt(G_lim[m] * G_boost);
1382
#else
1383
                /* sqrt() will be done after the aliasing reduction to save a
1384
                 * few multiplies
1385
                 */
1386
                adj->G_lim_boost[l][m] = G_lim[m] * G_boost;
1387
#endif
1388
293k
                adj->Q_M_lim_boost[l][m] = sqrt(Q_M_lim[m] * G_boost);
1389
1390
293k
                if (S_M[m] != 0)
1391
8.31k
                {
1392
8.31k
                    adj->S_M_boost[l][m] = sqrt(S_M[m] * G_boost);
1393
285k
                } else {
1394
285k
                    adj->S_M_boost[l][m] = 0;
1395
285k
                }
1396
293k
            }
1397
48.6k
        }
1398
24.3k
    }
1399
14.7k
}
1400
#endif // log2_test
1401
1402
#endif
1403
1404
#ifdef SBR_LOW_POWER
1405
static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
1406
{
1407
    uint8_t l, k, i;
1408
    uint8_t grouping;
1409
    uint8_t S_mapped;
1410
1411
    for (l = 0; l < sbr->L_E[ch]; l++)
1412
    {
1413
        uint8_t current_res_band = 0;
1414
        i = 0;
1415
        grouping = 0;
1416
1417
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band);
1418
1419
        for (k = sbr->kx; k < sbr->kx + sbr->M - 1; k++)
1420
        {
1421
            if (k == sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
1422
            {
1423
                /* step to next resolution band */
1424
                current_res_band++;
1425
1426
                S_mapped = get_S_mapped(sbr, ch, l, current_res_band);
1427
            }
1428
1429
            if (deg[k + 1] && S_mapped == 0)
1430
            {
1431
                if (grouping == 0)
1432
                {
1433
                    sbr->f_group[l][i] = k;
1434
                    grouping = 1;
1435
                    i++;
1436
                }
1437
            } else {
1438
                if (grouping)
1439
                {
1440
                    if (S_mapped)
1441
                    {
1442
                        sbr->f_group[l][i] = k;
1443
                    } else {
1444
                        sbr->f_group[l][i] = k + 1;
1445
                    }
1446
                    grouping = 0;
1447
                    i++;
1448
                }
1449
            }
1450
        }
1451
1452
        if (grouping)
1453
        {
1454
            sbr->f_group[l][i] = sbr->kx + sbr->M;
1455
            i++;
1456
        }
1457
1458
        sbr->N_G[l] = (uint8_t)(i >> 1);
1459
    }
1460
}
1461
1462
static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
1463
{
1464
    uint8_t l, k, m;
1465
    real_t E_total, E_total_est, G_target, acc;
1466
1467
    for (l = 0; l < sbr->L_E[ch]; l++)
1468
    {
1469
        for (k = 0; k < sbr->N_G[l]; k++)
1470
        {
1471
            E_total_est = E_total = 0;
1472
1473
            for (m = sbr->f_group[l][k<<1]; m < sbr->f_group[l][(k<<1) + 1]; m++)
1474
            {
1475
                /* E_curr: integer */
1476
                /* G_lim_boost: fixed point */
1477
                /* E_total_est: integer */
1478
                /* E_total: integer */
1479
                E_total_est += sbr->E_curr[ch][m-sbr->kx][l];
1480
#ifdef FIXED_POINT
1481
                E_total += MUL_Q2(sbr->E_curr[ch][m-sbr->kx][l], adj->G_lim_boost[l][m-sbr->kx]);
1482
#else
1483
                E_total += sbr->E_curr[ch][m-sbr->kx][l] * adj->G_lim_boost[l][m-sbr->kx];
1484
#endif
1485
            }
1486
1487
            /* G_target: fixed point */
1488
            if ((E_total_est + EPS) == 0)
1489
            {
1490
                G_target = 0;
1491
            } else {
1492
#ifdef FIXED_POINT
1493
                G_target = (((int64_t)(E_total))<<Q2_BITS)/(E_total_est + EPS);
1494
#else
1495
                G_target = E_total / (E_total_est + EPS);
1496
#endif
1497
            }
1498
            acc = 0;
1499
1500
            for (m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
1501
            {
1502
                real_t alpha;
1503
1504
                /* alpha: (COEF) fixed point */
1505
                if (m < sbr->kx + sbr->M - 1)
1506
                {
1507
                    alpha = max(deg[m], deg[m + 1]);
1508
                } else {
1509
                    alpha = deg[m];
1510
                }
1511
1512
                adj->G_lim_boost[l][m-sbr->kx] = MUL_C(alpha, G_target) +
1513
                    MUL_C((COEF_CONST(1)-alpha), adj->G_lim_boost[l][m-sbr->kx]);
1514
1515
                /* acc: integer */
1516
#ifdef FIXED_POINT
1517
                acc += MUL_Q2(adj->G_lim_boost[l][m-sbr->kx], sbr->E_curr[ch][m-sbr->kx][l]);
1518
#else
1519
                acc += adj->G_lim_boost[l][m-sbr->kx] * sbr->E_curr[ch][m-sbr->kx][l];
1520
#endif
1521
            }
1522
1523
            /* acc: fixed point */
1524
            if (acc + EPS == 0)
1525
            {
1526
                acc = 0;
1527
            } else {
1528
#ifdef FIXED_POINT
1529
                acc = (((int64_t)(E_total))<<Q2_BITS)/(acc + EPS);
1530
#else
1531
                acc = E_total / (acc + EPS);
1532
#endif
1533
            }
1534
            for(m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
1535
            {
1536
#ifdef FIXED_POINT
1537
                adj->G_lim_boost[l][m-sbr->kx] = MUL_Q2(acc, adj->G_lim_boost[l][m-sbr->kx]);
1538
#else
1539
                adj->G_lim_boost[l][m-sbr->kx] = acc * adj->G_lim_boost[l][m-sbr->kx];
1540
#endif
1541
            }
1542
        }
1543
    }
1544
1545
    for (l = 0; l < sbr->L_E[ch]; l++)
1546
    {
1547
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
1548
        {
1549
            for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
1550
                 m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
1551
            {
1552
#ifdef FIXED_POINT
1553
                 adj->G_lim_boost[l][m] = SBR_SQRT_Q2(adj->G_lim_boost[l][m]);
1554
#else
1555
                 adj->G_lim_boost[l][m] = sqrt(adj->G_lim_boost[l][m]);
1556
#endif
1557
            }
1558
        }
1559
    }
1560
}
1561
#endif
1562
1563
static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj,
1564
                        qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch)
1565
27.1k
{
1566
27.1k
    static real_t h_smooth[] = {
1567
27.1k
        FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084),
1568
27.1k
        FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582),
1569
27.1k
        FRAC_CONST(0.33333333333333)
1570
27.1k
    };
1571
27.1k
    static int8_t phi_re[] = { 1, 0, -1, 0 };
1572
27.1k
    static int8_t phi_im[] = { 0, 1, 0, -1 };
1573
1574
27.1k
    uint8_t m, l, i, n;
1575
27.1k
    uint16_t fIndexNoise = 0;
1576
27.1k
    uint8_t fIndexSine = 0;
1577
27.1k
    uint8_t assembly_reset = 0;
1578
1579
27.1k
    real_t G_filt, Q_filt;
1580
1581
27.1k
    uint8_t h_SL;
1582
1583
1584
27.1k
    if (sbr->Reset == 1)
1585
26.3k
    {
1586
26.3k
        assembly_reset = 1;
1587
26.3k
        fIndexNoise = 0;
1588
26.3k
    } else {
1589
860
        fIndexNoise = sbr->index_noise_prev[ch];
1590
860
    }
1591
27.1k
    fIndexSine = sbr->psi_is_prev[ch];
1592
1593
1594
73.1k
    for (l = 0; l < sbr->L_E[ch]; l++)
1595
46.0k
    {
1596
46.0k
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
1597
1598
#ifdef SBR_LOW_POWER
1599
        h_SL = 0;
1600
#else
1601
46.0k
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
1602
46.0k
        h_SL = (no_noise ? 0 : h_SL);
1603
46.0k
#endif
1604
1605
46.0k
        if (assembly_reset)
1606
26.2k
        {
1607
131k
            for (n = 0; n < 4; n++)
1608
104k
            {
1609
104k
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1610
104k
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1611
104k
            }
1612
            /* reset ringbuffer index */
1613
26.2k
            sbr->GQ_ringbuf_index[ch] = 4;
1614
26.2k
            assembly_reset = 0;
1615
26.2k
        }
1616
1617
890k
        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
1618
844k
        {
1619
#ifdef SBR_LOW_POWER
1620
            uint8_t i_min1, i_plus1;
1621
            uint8_t sinusoids = 0;
1622
#endif
1623
1624
            /* load new values into ringbuffer */
1625
844k
            memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1626
844k
            memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1627
1628
12.3M
            for (m = 0; m < sbr->M; m++)
1629
11.5M
            {
1630
11.5M
                qmf_t psi;
1631
1632
11.5M
                G_filt = 0;
1633
11.5M
                Q_filt = 0;
1634
1635
11.5M
#ifndef SBR_LOW_POWER
1636
11.5M
                if (h_SL != 0)
1637
4.28M
                {
1638
4.28M
                    uint8_t ri = sbr->GQ_ringbuf_index[ch];
1639
25.6M
                    for (n = 0; n <= 4; n++)
1640
21.4M
                    {
1641
21.4M
                        real_t curr_h_smooth = h_smooth[n];
1642
21.4M
                        ri++;
1643
21.4M
                        if (ri >= 5)
1644
4.28M
                            ri -= 5;
1645
21.4M
                        G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth);
1646
21.4M
                        Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth);
1647
21.4M
                    }
1648
7.22M
               } else {
1649
7.22M
#endif
1650
7.22M
                    G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1651
7.22M
                    Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1652
7.22M
#ifndef SBR_LOW_POWER
1653
7.22M
                }
1654
11.5M
#endif
1655
11.5M
                if (adj->S_M_boost[l][m] != 0 || no_noise)
1656
1.16M
                    Q_filt = 0;
1657
1658
                /* add noise to the output */
1659
11.5M
                fIndexNoise = (fIndexNoise + 1) & 511;
1660
1661
                /* the smoothed gain values are applied to Xsbr */
1662
                /* V is defined, not calculated */
1663
                //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1664
                //    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1665
11.5M
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1666
11.5M
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1667
11.5M
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
1668
14.1k
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
1669
11.5M
#ifndef SBR_LOW_POWER
1670
                //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1671
                //    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1672
11.5M
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1673
11.5M
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1674
11.5M
#endif
1675
1676
11.5M
                {
1677
11.5M
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
1678
11.5M
                    QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
1679
11.5M
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);
1680
1681
11.5M
#ifndef SBR_LOW_POWER
1682
11.5M
                    QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
1683
11.5M
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
1684
#else
1685
1686
                    i_min1 = (fIndexSine - 1) & 3;
1687
                    i_plus1 = (fIndexSine + 1) & 3;
1688
1689
                    if ((m == 0) && (phi_re[i_plus1] != 0))
1690
                    {
1691
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) +=
1692
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815)));
1693
                        if (sbr->M != 0)
1694
                        {
1695
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1696
                                (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815)));
1697
                        }
1698
                    }
1699
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1700
                    {
1701
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1702
                            (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1703
                    }
1704
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
1705
                    {
1706
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1707
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815)));
1708
                    }
1709
                    if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1710
                    {
1711
                        if (m > 0)
1712
                        {
1713
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1714
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1715
                        }
1716
                        if (m + sbr->kx < 64)
1717
                        {
1718
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) +=
1719
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815)));
1720
                        }
1721
                    }
1722
1723
                    if (adj->S_M_boost[l][m] != 0)
1724
                        sinusoids++;
1725
#endif
1726
11.5M
                }
1727
11.5M
            }
1728
1729
844k
            fIndexSine = (fIndexSine + 1) & 3;
1730
1731
            /* update the ringbuffer index used for filtering G and Q with h_smooth */
1732
844k
            sbr->GQ_ringbuf_index[ch]++;
1733
844k
            if (sbr->GQ_ringbuf_index[ch] >= 5)
1734
181k
                sbr->GQ_ringbuf_index[ch] = 0;
1735
844k
        }
1736
46.0k
    }
1737
1738
27.1k
    sbr->index_noise_prev[ch] = fIndexNoise;
1739
27.1k
    sbr->psi_is_prev[ch] = fIndexSine;
1740
27.1k
}
sbr_hfadj.c:hf_assembly
Line
Count
Source
1565
12.4k
{
1566
12.4k
    static real_t h_smooth[] = {
1567
12.4k
        FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084),
1568
12.4k
        FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582),
1569
12.4k
        FRAC_CONST(0.33333333333333)
1570
12.4k
    };
1571
12.4k
    static int8_t phi_re[] = { 1, 0, -1, 0 };
1572
12.4k
    static int8_t phi_im[] = { 0, 1, 0, -1 };
1573
1574
12.4k
    uint8_t m, l, i, n;
1575
12.4k
    uint16_t fIndexNoise = 0;
1576
12.4k
    uint8_t fIndexSine = 0;
1577
12.4k
    uint8_t assembly_reset = 0;
1578
1579
12.4k
    real_t G_filt, Q_filt;
1580
1581
12.4k
    uint8_t h_SL;
1582
1583
1584
12.4k
    if (sbr->Reset == 1)
1585
12.1k
    {
1586
12.1k
        assembly_reset = 1;
1587
12.1k
        fIndexNoise = 0;
1588
12.1k
    } else {
1589
285
        fIndexNoise = sbr->index_noise_prev[ch];
1590
285
    }
1591
12.4k
    fIndexSine = sbr->psi_is_prev[ch];
1592
1593
1594
34.1k
    for (l = 0; l < sbr->L_E[ch]; l++)
1595
21.7k
    {
1596
21.7k
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
1597
1598
#ifdef SBR_LOW_POWER
1599
        h_SL = 0;
1600
#else
1601
21.7k
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
1602
21.7k
        h_SL = (no_noise ? 0 : h_SL);
1603
21.7k
#endif
1604
1605
21.7k
        if (assembly_reset)
1606
12.1k
        {
1607
60.7k
            for (n = 0; n < 4; n++)
1608
48.5k
            {
1609
48.5k
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1610
48.5k
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1611
48.5k
            }
1612
            /* reset ringbuffer index */
1613
12.1k
            sbr->GQ_ringbuf_index[ch] = 4;
1614
12.1k
            assembly_reset = 0;
1615
12.1k
        }
1616
1617
414k
        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
1618
392k
        {
1619
#ifdef SBR_LOW_POWER
1620
            uint8_t i_min1, i_plus1;
1621
            uint8_t sinusoids = 0;
1622
#endif
1623
1624
            /* load new values into ringbuffer */
1625
392k
            memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1626
392k
            memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1627
1628
6.03M
            for (m = 0; m < sbr->M; m++)
1629
5.64M
            {
1630
5.64M
                qmf_t psi;
1631
1632
5.64M
                G_filt = 0;
1633
5.64M
                Q_filt = 0;
1634
1635
5.64M
#ifndef SBR_LOW_POWER
1636
5.64M
                if (h_SL != 0)
1637
2.63M
                {
1638
2.63M
                    uint8_t ri = sbr->GQ_ringbuf_index[ch];
1639
15.7M
                    for (n = 0; n <= 4; n++)
1640
13.1M
                    {
1641
13.1M
                        real_t curr_h_smooth = h_smooth[n];
1642
13.1M
                        ri++;
1643
13.1M
                        if (ri >= 5)
1644
2.63M
                            ri -= 5;
1645
13.1M
                        G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth);
1646
13.1M
                        Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth);
1647
13.1M
                    }
1648
3.01M
               } else {
1649
3.01M
#endif
1650
3.01M
                    G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1651
3.01M
                    Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1652
3.01M
#ifndef SBR_LOW_POWER
1653
3.01M
                }
1654
5.64M
#endif
1655
5.64M
                if (adj->S_M_boost[l][m] != 0 || no_noise)
1656
640k
                    Q_filt = 0;
1657
1658
                /* add noise to the output */
1659
5.64M
                fIndexNoise = (fIndexNoise + 1) & 511;
1660
1661
                /* the smoothed gain values are applied to Xsbr */
1662
                /* V is defined, not calculated */
1663
                //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1664
                //    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1665
5.64M
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1666
5.64M
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1667
5.64M
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
1668
4.82k
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
1669
5.64M
#ifndef SBR_LOW_POWER
1670
                //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1671
                //    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1672
5.64M
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1673
5.64M
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1674
5.64M
#endif
1675
1676
5.64M
                {
1677
5.64M
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
1678
5.64M
                    QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
1679
5.64M
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);
1680
1681
5.64M
#ifndef SBR_LOW_POWER
1682
5.64M
                    QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
1683
5.64M
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
1684
#else
1685
1686
                    i_min1 = (fIndexSine - 1) & 3;
1687
                    i_plus1 = (fIndexSine + 1) & 3;
1688
1689
                    if ((m == 0) && (phi_re[i_plus1] != 0))
1690
                    {
1691
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) +=
1692
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815)));
1693
                        if (sbr->M != 0)
1694
                        {
1695
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1696
                                (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815)));
1697
                        }
1698
                    }
1699
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1700
                    {
1701
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1702
                            (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1703
                    }
1704
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
1705
                    {
1706
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1707
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815)));
1708
                    }
1709
                    if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1710
                    {
1711
                        if (m > 0)
1712
                        {
1713
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1714
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1715
                        }
1716
                        if (m + sbr->kx < 64)
1717
                        {
1718
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) +=
1719
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815)));
1720
                        }
1721
                    }
1722
1723
                    if (adj->S_M_boost[l][m] != 0)
1724
                        sinusoids++;
1725
#endif
1726
5.64M
                }
1727
5.64M
            }
1728
1729
392k
            fIndexSine = (fIndexSine + 1) & 3;
1730
1731
            /* update the ringbuffer index used for filtering G and Q with h_smooth */
1732
392k
            sbr->GQ_ringbuf_index[ch]++;
1733
392k
            if (sbr->GQ_ringbuf_index[ch] >= 5)
1734
84.6k
                sbr->GQ_ringbuf_index[ch] = 0;
1735
392k
        }
1736
21.7k
    }
1737
1738
12.4k
    sbr->index_noise_prev[ch] = fIndexNoise;
1739
12.4k
    sbr->psi_is_prev[ch] = fIndexSine;
1740
12.4k
}
sbr_hfadj.c:hf_assembly
Line
Count
Source
1565
14.7k
{
1566
14.7k
    static real_t h_smooth[] = {
1567
14.7k
        FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084),
1568
14.7k
        FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582),
1569
14.7k
        FRAC_CONST(0.33333333333333)
1570
14.7k
    };
1571
14.7k
    static int8_t phi_re[] = { 1, 0, -1, 0 };
1572
14.7k
    static int8_t phi_im[] = { 0, 1, 0, -1 };
1573
1574
14.7k
    uint8_t m, l, i, n;
1575
14.7k
    uint16_t fIndexNoise = 0;
1576
14.7k
    uint8_t fIndexSine = 0;
1577
14.7k
    uint8_t assembly_reset = 0;
1578
1579
14.7k
    real_t G_filt, Q_filt;
1580
1581
14.7k
    uint8_t h_SL;
1582
1583
1584
14.7k
    if (sbr->Reset == 1)
1585
14.1k
    {
1586
14.1k
        assembly_reset = 1;
1587
14.1k
        fIndexNoise = 0;
1588
14.1k
    } else {
1589
575
        fIndexNoise = sbr->index_noise_prev[ch];
1590
575
    }
1591
14.7k
    fIndexSine = sbr->psi_is_prev[ch];
1592
1593
1594
39.0k
    for (l = 0; l < sbr->L_E[ch]; l++)
1595
24.3k
    {
1596
24.3k
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
1597
1598
#ifdef SBR_LOW_POWER
1599
        h_SL = 0;
1600
#else
1601
24.3k
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
1602
24.3k
        h_SL = (no_noise ? 0 : h_SL);
1603
24.3k
#endif
1604
1605
24.3k
        if (assembly_reset)
1606
14.0k
        {
1607
70.4k
            for (n = 0; n < 4; n++)
1608
56.3k
            {
1609
56.3k
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1610
56.3k
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1611
56.3k
            }
1612
            /* reset ringbuffer index */
1613
14.0k
            sbr->GQ_ringbuf_index[ch] = 4;
1614
14.0k
            assembly_reset = 0;
1615
14.0k
        }
1616
1617
475k
        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
1618
451k
        {
1619
#ifdef SBR_LOW_POWER
1620
            uint8_t i_min1, i_plus1;
1621
            uint8_t sinusoids = 0;
1622
#endif
1623
1624
            /* load new values into ringbuffer */
1625
451k
            memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1626
451k
            memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1627
1628
6.31M
            for (m = 0; m < sbr->M; m++)
1629
5.86M
            {
1630
5.86M
                qmf_t psi;
1631
1632
5.86M
                G_filt = 0;
1633
5.86M
                Q_filt = 0;
1634
1635
5.86M
#ifndef SBR_LOW_POWER
1636
5.86M
                if (h_SL != 0)
1637
1.65M
                {
1638
1.65M
                    uint8_t ri = sbr->GQ_ringbuf_index[ch];
1639
9.90M
                    for (n = 0; n <= 4; n++)
1640
8.25M
                    {
1641
8.25M
                        real_t curr_h_smooth = h_smooth[n];
1642
8.25M
                        ri++;
1643
8.25M
                        if (ri >= 5)
1644
1.65M
                            ri -= 5;
1645
8.25M
                        G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth);
1646
8.25M
                        Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth);
1647
8.25M
                    }
1648
4.21M
               } else {
1649
4.21M
#endif
1650
4.21M
                    G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1651
4.21M
                    Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1652
4.21M
#ifndef SBR_LOW_POWER
1653
4.21M
                }
1654
5.86M
#endif
1655
5.86M
                if (adj->S_M_boost[l][m] != 0 || no_noise)
1656
527k
                    Q_filt = 0;
1657
1658
                /* add noise to the output */
1659
5.86M
                fIndexNoise = (fIndexNoise + 1) & 511;
1660
1661
                /* the smoothed gain values are applied to Xsbr */
1662
                /* V is defined, not calculated */
1663
                //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1664
                //    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1665
5.86M
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1666
5.86M
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1667
5.86M
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
1668
9.33k
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
1669
5.86M
#ifndef SBR_LOW_POWER
1670
                //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1671
                //    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1672
5.86M
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1673
5.86M
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1674
5.86M
#endif
1675
1676
5.86M
                {
1677
5.86M
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
1678
5.86M
                    QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
1679
5.86M
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);
1680
1681
5.86M
#ifndef SBR_LOW_POWER
1682
5.86M
                    QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
1683
5.86M
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
1684
#else
1685
1686
                    i_min1 = (fIndexSine - 1) & 3;
1687
                    i_plus1 = (fIndexSine + 1) & 3;
1688
1689
                    if ((m == 0) && (phi_re[i_plus1] != 0))
1690
                    {
1691
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) +=
1692
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815)));
1693
                        if (sbr->M != 0)
1694
                        {
1695
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1696
                                (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815)));
1697
                        }
1698
                    }
1699
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1700
                    {
1701
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1702
                            (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1703
                    }
1704
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
1705
                    {
1706
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1707
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815)));
1708
                    }
1709
                    if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1710
                    {
1711
                        if (m > 0)
1712
                        {
1713
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1714
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1715
                        }
1716
                        if (m + sbr->kx < 64)
1717
                        {
1718
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) +=
1719
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815)));
1720
                        }
1721
                    }
1722
1723
                    if (adj->S_M_boost[l][m] != 0)
1724
                        sinusoids++;
1725
#endif
1726
5.86M
                }
1727
5.86M
            }
1728
1729
451k
            fIndexSine = (fIndexSine + 1) & 3;
1730
1731
            /* update the ringbuffer index used for filtering G and Q with h_smooth */
1732
451k
            sbr->GQ_ringbuf_index[ch]++;
1733
451k
            if (sbr->GQ_ringbuf_index[ch] >= 5)
1734
96.9k
                sbr->GQ_ringbuf_index[ch] = 0;
1735
451k
        }
1736
24.3k
    }
1737
1738
14.7k
    sbr->index_noise_prev[ch] = fIndexNoise;
1739
14.7k
    sbr->psi_is_prev[ch] = fIndexSine;
1740
14.7k
}
1741
1742
#endif