Coverage Report

Created: 2025-08-29 06:11

/proc/self/cwd/libfaad/sbr_fbt.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: sbr_fbt.c,v 1.21 2007/11/01 12:33:35 menno Exp $
29
**/
30
31
/* Calculate frequency band tables */
32
33
#include "common.h"
34
#include "structs.h"
35
36
#ifdef SBR_DEC
37
38
#include <stdlib.h>
39
40
#include "sbr_syntax.h"
41
#include "sbr_fbt.h"
42
43
/* static function declarations */
44
static int32_t find_bands(uint8_t warp, uint8_t bands, uint8_t a0, uint8_t a1);
45
46
47
/* calculate the start QMF channel for the master frequency band table */
48
/* parameter is also called k0 */
49
uint8_t qmf_start_channel(uint8_t bs_start_freq, uint8_t bs_samplerate_mode,
50
                           uint32_t sample_rate)
51
131k
{
52
131k
    static const uint8_t startMinTable[12] = { 7, 7, 10, 11, 12, 16, 16,
53
131k
        17, 24, 32, 35, 48 };
54
131k
    static const uint8_t offsetIndexTable[12] = { 5, 5, 4, 4, 4, 3, 2, 1, 0,
55
131k
        6, 6, 6 };
56
131k
    static const int8_t offset[7][16] = {
57
131k
        { -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7 },
58
131k
        { -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13 },
59
131k
        { -5, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16 },
60
131k
        { -6, -4, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16 },
61
131k
        { -4, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20 },
62
131k
        { -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24 },
63
131k
        { 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24, 28, 33 }
64
131k
    };
65
131k
    uint8_t startMin = startMinTable[get_sr_index(sample_rate)];
66
131k
    uint8_t offsetIndex = offsetIndexTable[get_sr_index(sample_rate)];
67
68
#if 0 /* replaced with table (startMinTable) */
69
    if (sample_rate >= 64000)
70
    {
71
        startMin = (uint8_t)((5000.*128.)/(float)sample_rate + 0.5);
72
    } else if (sample_rate < 32000) {
73
        startMin = (uint8_t)((3000.*128.)/(float)sample_rate + 0.5);
74
    } else {
75
        startMin = (uint8_t)((4000.*128.)/(float)sample_rate + 0.5);
76
    }
77
#endif
78
79
131k
    if (bs_samplerate_mode)
80
131k
    {
81
131k
        return startMin + offset[offsetIndex][bs_start_freq];
82
83
#if 0 /* replaced by offsetIndexTable */
84
        switch (sample_rate)
85
        {
86
        case 16000:
87
            return startMin + offset[0][bs_start_freq];
88
        case 22050:
89
            return startMin + offset[1][bs_start_freq];
90
        case 24000:
91
            return startMin + offset[2][bs_start_freq];
92
        case 32000:
93
            return startMin + offset[3][bs_start_freq];
94
        default:
95
            if (sample_rate > 64000)
96
            {
97
                return startMin + offset[5][bs_start_freq];
98
            } else { /* 44100 <= sample_rate <= 64000 */
99
                return startMin + offset[4][bs_start_freq];
100
            }
101
        }
102
#endif
103
131k
    } else {
104
0
        return startMin + offset[6][bs_start_freq];
105
0
    }
106
131k
}
107
108
static int int32cmp(const void *a, const void *b)
109
1.44M
{
110
1.44M
    return ((int)(*(int32_t*)a - *(int32_t*)b));
111
1.44M
}
112
113
static int uint8cmp(const void *a, const void *b)
114
3.91M
{
115
3.91M
    return ((int)(*(uint8_t*)a - *(uint8_t*)b));
116
3.91M
}
117
118
/* calculate the stop QMF channel for the master frequency band table */
119
/* parameter is also called k2 */
120
uint8_t qmf_stop_channel(uint8_t bs_stop_freq, uint32_t sample_rate,
121
                          uint8_t k0)
122
131k
{
123
131k
    if (bs_stop_freq == 15)
124
11.4k
    {
125
11.4k
        return min(64, k0 * 3);
126
119k
    } else if (bs_stop_freq == 14) {
127
4.47k
        return min(64, k0 * 2);
128
115k
    } else {
129
115k
        static const uint8_t stopMinTable[12] = { 13, 15, 20, 21, 23,
130
115k
            32, 32, 35, 48, 64, 70, 96 };
131
115k
        static const int8_t offset[12][14] = {
132
115k
            { 0, 2, 4, 6, 8, 11, 14, 18, 22, 26, 31, 37, 44, 51 },
133
115k
            { 0, 2, 4, 6, 8, 11, 14, 18, 22, 26, 31, 36, 42, 49 },
134
115k
            { 0, 2, 4, 6, 8, 11, 14, 17, 21, 25, 29, 34, 39, 44 },
135
115k
            { 0, 2, 4, 6, 8, 11, 14, 17, 20, 24, 28, 33, 38, 43 },
136
115k
            { 0, 2, 4, 6, 8, 11, 14, 17, 20, 24, 28, 32, 36, 41 },
137
115k
            { 0, 2, 4, 6, 8, 10, 12, 14, 17, 20, 23, 26, 29, 32 },
138
115k
            { 0, 2, 4, 6, 8, 10, 12, 14, 17, 20, 23, 26, 29, 32 },
139
115k
            { 0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 20, 23, 26, 29 },
140
115k
            { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16 },
141
115k
            { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
142
115k
            { 0, -1, -2, -3, -4, -5, -6, -6, -6, -6, -6, -6, -6, -6 },
143
115k
            { 0, -3, -6, -9, -12, -15, -18, -20, -22, -24, -26, -28, -30, -32 }
144
115k
        };
145
#if 0
146
        uint8_t i;
147
        int32_t stopDk[13], stopDk_t[14], k2;
148
#endif
149
115k
        uint8_t stopMin = stopMinTable[get_sr_index(sample_rate)];
150
151
#if 0 /* replaced by table lookup */
152
        if (sample_rate >= 64000)
153
        {
154
            stopMin = (uint8_t)((10000.*128.)/(float)sample_rate + 0.5);
155
        } else if (sample_rate < 32000) {
156
            stopMin = (uint8_t)((6000.*128.)/(float)sample_rate + 0.5);
157
        } else {
158
            stopMin = (uint8_t)((8000.*128.)/(float)sample_rate + 0.5);
159
        }
160
#endif
161
162
#if 0 /* replaced by table lookup */
163
        /* diverging power series */
164
        for (i = 0; i <= 13; i++)
165
        {
166
            stopDk_t[i] = (int32_t)(stopMin*pow(64.0/stopMin, i/13.0) + 0.5);
167
        }
168
        for (i = 0; i < 13; i++)
169
        {
170
            stopDk[i] = stopDk_t[i+1] - stopDk_t[i];
171
        }
172
173
        /* needed? */
174
        qsort(stopDk, 13, sizeof(stopDk[0]), int32cmp);
175
176
        k2 = stopMin;
177
        for (i = 0; i < bs_stop_freq; i++)
178
        {
179
            k2 += stopDk[i];
180
        }
181
        return min(64, k2);
182
#endif
183
        /* bs_stop_freq <= 13 */
184
115k
        return min(64, stopMin + offset[get_sr_index(sample_rate)][min(bs_stop_freq, 13)]);
185
115k
    }
186
187
    // return 0;
188
131k
}
189
190
/* calculate the master frequency table from k0, k2, bs_freq_scale
191
   and bs_alter_scale
192
193
   version for bs_freq_scale = 0
194
*/
195
uint8_t master_frequency_table_fs0(sbr_info *sbr, uint8_t k0, uint8_t k2,
196
                                   uint8_t bs_alter_scale)
197
22.0k
{
198
22.0k
    int8_t incr;
199
22.0k
    uint8_t k;
200
22.0k
    uint8_t dk;
201
22.0k
    int32_t nrBands, k2Achieved;
202
22.0k
    int32_t k2Diff, vDk[64] = {0};
203
204
    /* mft only defined for k2 > k0 */
205
22.0k
    if (k2 <= k0)
206
682
    {
207
682
        sbr->N_master = 0;
208
682
        return 1;
209
682
    }
210
211
21.3k
    dk = bs_alter_scale ? 2 : 1;
212
213
#if 0 /* replaced by float-less design */
214
    nrBands = 2 * (int32_t)((float)(k2-k0)/(dk*2) + (-1+dk)/2.0f);
215
#else
216
21.3k
    if (bs_alter_scale)
217
4.18k
    {
218
4.18k
        nrBands = (((k2-k0+2)>>2)<<1);
219
17.1k
    } else {
220
17.1k
        nrBands = (((k2-k0)>>1)<<1);
221
17.1k
    }
222
21.3k
#endif
223
21.3k
    nrBands = min(nrBands, 63);
224
21.3k
    if (nrBands <= 0)
225
291
        return 1;
226
227
21.0k
    k2Achieved = k0 + nrBands * dk;
228
21.0k
    k2Diff = k2 - k2Achieved;
229
584k
    for (k = 0; k < nrBands; k++)
230
563k
        vDk[k] = dk;
231
232
21.0k
    if (k2Diff)
233
10.3k
    {
234
10.3k
        incr = (k2Diff > 0) ? -1 : 1;
235
10.3k
        k = (uint8_t) ((k2Diff > 0) ? (nrBands-1) : 0);
236
237
21.6k
        while (k2Diff != 0)
238
11.3k
        {
239
11.3k
            vDk[k] -= incr;
240
11.3k
            k += incr;
241
11.3k
            k2Diff += incr;
242
11.3k
        }
243
10.3k
    }
244
245
21.0k
    sbr->f_master[0] = k0;
246
584k
    for (k = 1; k <= nrBands; k++)
247
563k
        sbr->f_master[k] = (uint8_t)(sbr->f_master[k-1] + vDk[k-1]);
248
249
21.0k
    sbr->N_master = (uint8_t)nrBands;
250
21.0k
    sbr->N_master = (min(sbr->N_master, 64));
251
252
#if 0
253
    printf("f_master[%d]: ", nrBands);
254
    for (k = 0; k <= nrBands; k++)
255
    {
256
        printf("%d ", sbr->f_master[k]);
257
    }
258
    printf("\n");
259
#endif
260
261
21.0k
    return 0;
262
21.3k
}
263
264
/*
265
   This function finds the number of bands using this formula:
266
    bands * log(a1/a0)/log(2.0) + 0.5
267
*/
268
static int32_t find_bands(uint8_t warp, uint8_t bands, uint8_t a0, uint8_t a1)
269
297k
{
270
#ifdef FIXED_POINT
271
    /* table with log2() values */
272
    static const real_t log2Table[65] = {
273
124k
        COEF_CONST(0.0), COEF_CONST(0.0), COEF_CONST(1.0000000000), COEF_CONST(1.5849625007),
274
124k
        COEF_CONST(2.0000000000), COEF_CONST(2.3219280949), COEF_CONST(2.5849625007), COEF_CONST(2.8073549221),
275
124k
        COEF_CONST(3.0000000000), COEF_CONST(3.1699250014), COEF_CONST(3.3219280949), COEF_CONST(3.4594316186),
276
124k
        COEF_CONST(3.5849625007), COEF_CONST(3.7004397181), COEF_CONST(3.8073549221), COEF_CONST(3.9068905956),
277
124k
        COEF_CONST(4.0000000000), COEF_CONST(4.0874628413), COEF_CONST(4.1699250014), COEF_CONST(4.2479275134),
278
124k
        COEF_CONST(4.3219280949), COEF_CONST(4.3923174228), COEF_CONST(4.4594316186), COEF_CONST(4.5235619561),
279
124k
        COEF_CONST(4.5849625007), COEF_CONST(4.6438561898), COEF_CONST(4.7004397181), COEF_CONST(4.7548875022),
280
124k
        COEF_CONST(4.8073549221), COEF_CONST(4.8579809951), COEF_CONST(4.9068905956), COEF_CONST(4.9541963104),
281
124k
        COEF_CONST(5.0000000000), COEF_CONST(5.0443941194), COEF_CONST(5.0874628413), COEF_CONST(5.1292830169),
282
124k
        COEF_CONST(5.1699250014), COEF_CONST(5.2094533656), COEF_CONST(5.2479275134), COEF_CONST(5.2854022189),
283
124k
        COEF_CONST(5.3219280949), COEF_CONST(5.3575520046), COEF_CONST(5.3923174228), COEF_CONST(5.4262647547),
284
124k
        COEF_CONST(5.4594316186), COEF_CONST(5.4918530963), COEF_CONST(5.5235619561), COEF_CONST(5.5545888517),
285
124k
        COEF_CONST(5.5849625007), COEF_CONST(5.6147098441), COEF_CONST(5.6438561898), COEF_CONST(5.6724253420),
286
124k
        COEF_CONST(5.7004397181), COEF_CONST(5.7279204546), COEF_CONST(5.7548875022), COEF_CONST(5.7813597135),
287
124k
        COEF_CONST(5.8073549221), COEF_CONST(5.8328900142), COEF_CONST(5.8579809951), COEF_CONST(5.8826430494),
288
124k
        COEF_CONST(5.9068905956), COEF_CONST(5.9307373376), COEF_CONST(5.9541963104), COEF_CONST(5.9772799235),
289
124k
        COEF_CONST(6.0)
290
    };
291
    real_t r0 = log2Table[a0]; /* coef */
292
    real_t r1 = log2Table[a1]; /* coef */
293
    real_t r2 = (r1 - r0); /* coef */
294
295
124k
    if (warp)
296
17.4k
        r2 = MUL_C(r2, COEF_CONST(1.0/1.3));
297
298
    /* convert r2 to real and then multiply and round */
299
124k
    r2 = (r2 >> (COEF_BITS-REAL_BITS)) * bands + (1<<(REAL_BITS-1));
300
301
124k
    return (r2 >> REAL_BITS);
302
#else
303
    real_t div = (real_t)log(2.0);
304
173k
    if (warp) div *= (real_t)1.3;
305
306
    return (int32_t)(bands * log((float)a1/(float)a0)/div + 0.5);
307
#endif
308
297k
}
sbr_fbt.c:find_bands
Line
Count
Source
269
124k
{
270
124k
#ifdef FIXED_POINT
271
    /* table with log2() values */
272
124k
    static const real_t log2Table[65] = {
273
124k
        COEF_CONST(0.0), COEF_CONST(0.0), COEF_CONST(1.0000000000), COEF_CONST(1.5849625007),
274
124k
        COEF_CONST(2.0000000000), COEF_CONST(2.3219280949), COEF_CONST(2.5849625007), COEF_CONST(2.8073549221),
275
124k
        COEF_CONST(3.0000000000), COEF_CONST(3.1699250014), COEF_CONST(3.3219280949), COEF_CONST(3.4594316186),
276
124k
        COEF_CONST(3.5849625007), COEF_CONST(3.7004397181), COEF_CONST(3.8073549221), COEF_CONST(3.9068905956),
277
124k
        COEF_CONST(4.0000000000), COEF_CONST(4.0874628413), COEF_CONST(4.1699250014), COEF_CONST(4.2479275134),
278
124k
        COEF_CONST(4.3219280949), COEF_CONST(4.3923174228), COEF_CONST(4.4594316186), COEF_CONST(4.5235619561),
279
124k
        COEF_CONST(4.5849625007), COEF_CONST(4.6438561898), COEF_CONST(4.7004397181), COEF_CONST(4.7548875022),
280
124k
        COEF_CONST(4.8073549221), COEF_CONST(4.8579809951), COEF_CONST(4.9068905956), COEF_CONST(4.9541963104),
281
124k
        COEF_CONST(5.0000000000), COEF_CONST(5.0443941194), COEF_CONST(5.0874628413), COEF_CONST(5.1292830169),
282
124k
        COEF_CONST(5.1699250014), COEF_CONST(5.2094533656), COEF_CONST(5.2479275134), COEF_CONST(5.2854022189),
283
124k
        COEF_CONST(5.3219280949), COEF_CONST(5.3575520046), COEF_CONST(5.3923174228), COEF_CONST(5.4262647547),
284
124k
        COEF_CONST(5.4594316186), COEF_CONST(5.4918530963), COEF_CONST(5.5235619561), COEF_CONST(5.5545888517),
285
124k
        COEF_CONST(5.5849625007), COEF_CONST(5.6147098441), COEF_CONST(5.6438561898), COEF_CONST(5.6724253420),
286
124k
        COEF_CONST(5.7004397181), COEF_CONST(5.7279204546), COEF_CONST(5.7548875022), COEF_CONST(5.7813597135),
287
124k
        COEF_CONST(5.8073549221), COEF_CONST(5.8328900142), COEF_CONST(5.8579809951), COEF_CONST(5.8826430494),
288
124k
        COEF_CONST(5.9068905956), COEF_CONST(5.9307373376), COEF_CONST(5.9541963104), COEF_CONST(5.9772799235),
289
124k
        COEF_CONST(6.0)
290
124k
    };
291
124k
    real_t r0 = log2Table[a0]; /* coef */
292
124k
    real_t r1 = log2Table[a1]; /* coef */
293
124k
    real_t r2 = (r1 - r0); /* coef */
294
295
124k
    if (warp)
296
17.4k
        r2 = MUL_C(r2, COEF_CONST(1.0/1.3));
297
298
    /* convert r2 to real and then multiply and round */
299
124k
    r2 = (r2 >> (COEF_BITS-REAL_BITS)) * bands + (1<<(REAL_BITS-1));
300
301
124k
    return (r2 >> REAL_BITS);
302
#else
303
    real_t div = (real_t)log(2.0);
304
    if (warp) div *= (real_t)1.3;
305
306
    return (int32_t)(bands * log((float)a1/(float)a0)/div + 0.5);
307
#endif
308
124k
}
sbr_fbt.c:find_bands
Line
Count
Source
269
173k
{
270
#ifdef FIXED_POINT
271
    /* table with log2() values */
272
    static const real_t log2Table[65] = {
273
        COEF_CONST(0.0), COEF_CONST(0.0), COEF_CONST(1.0000000000), COEF_CONST(1.5849625007),
274
        COEF_CONST(2.0000000000), COEF_CONST(2.3219280949), COEF_CONST(2.5849625007), COEF_CONST(2.8073549221),
275
        COEF_CONST(3.0000000000), COEF_CONST(3.1699250014), COEF_CONST(3.3219280949), COEF_CONST(3.4594316186),
276
        COEF_CONST(3.5849625007), COEF_CONST(3.7004397181), COEF_CONST(3.8073549221), COEF_CONST(3.9068905956),
277
        COEF_CONST(4.0000000000), COEF_CONST(4.0874628413), COEF_CONST(4.1699250014), COEF_CONST(4.2479275134),
278
        COEF_CONST(4.3219280949), COEF_CONST(4.3923174228), COEF_CONST(4.4594316186), COEF_CONST(4.5235619561),
279
        COEF_CONST(4.5849625007), COEF_CONST(4.6438561898), COEF_CONST(4.7004397181), COEF_CONST(4.7548875022),
280
        COEF_CONST(4.8073549221), COEF_CONST(4.8579809951), COEF_CONST(4.9068905956), COEF_CONST(4.9541963104),
281
        COEF_CONST(5.0000000000), COEF_CONST(5.0443941194), COEF_CONST(5.0874628413), COEF_CONST(5.1292830169),
282
        COEF_CONST(5.1699250014), COEF_CONST(5.2094533656), COEF_CONST(5.2479275134), COEF_CONST(5.2854022189),
283
        COEF_CONST(5.3219280949), COEF_CONST(5.3575520046), COEF_CONST(5.3923174228), COEF_CONST(5.4262647547),
284
        COEF_CONST(5.4594316186), COEF_CONST(5.4918530963), COEF_CONST(5.5235619561), COEF_CONST(5.5545888517),
285
        COEF_CONST(5.5849625007), COEF_CONST(5.6147098441), COEF_CONST(5.6438561898), COEF_CONST(5.6724253420),
286
        COEF_CONST(5.7004397181), COEF_CONST(5.7279204546), COEF_CONST(5.7548875022), COEF_CONST(5.7813597135),
287
        COEF_CONST(5.8073549221), COEF_CONST(5.8328900142), COEF_CONST(5.8579809951), COEF_CONST(5.8826430494),
288
        COEF_CONST(5.9068905956), COEF_CONST(5.9307373376), COEF_CONST(5.9541963104), COEF_CONST(5.9772799235),
289
        COEF_CONST(6.0)
290
    };
291
    real_t r0 = log2Table[a0]; /* coef */
292
    real_t r1 = log2Table[a1]; /* coef */
293
    real_t r2 = (r1 - r0); /* coef */
294
295
    if (warp)
296
        r2 = MUL_C(r2, COEF_CONST(1.0/1.3));
297
298
    /* convert r2 to real and then multiply and round */
299
    r2 = (r2 >> (COEF_BITS-REAL_BITS)) * bands + (1<<(REAL_BITS-1));
300
301
    return (r2 >> REAL_BITS);
302
#else
303
173k
    real_t div = (real_t)log(2.0);
304
173k
    if (warp) div *= (real_t)1.3;
305
306
173k
    return (int32_t)(bands * log((float)a1/(float)a0)/div + 0.5);
307
173k
#endif
308
173k
}
309
310
static real_t find_initial_power(uint8_t bands, uint8_t a0, uint8_t a1)
311
144k
{
312
#ifdef FIXED_POINT
313
    /* table with log() values */
314
    static const real_t logTable[65] = {
315
61.8k
        COEF_CONST(0.0), COEF_CONST(0.0), COEF_CONST(0.6931471806), COEF_CONST(1.0986122887),
316
61.8k
        COEF_CONST(1.3862943611), COEF_CONST(1.6094379124), COEF_CONST(1.7917594692), COEF_CONST(1.9459101491),
317
61.8k
        COEF_CONST(2.0794415417), COEF_CONST(2.1972245773), COEF_CONST(2.3025850930), COEF_CONST(2.3978952728),
318
61.8k
        COEF_CONST(2.4849066498), COEF_CONST(2.5649493575), COEF_CONST(2.6390573296), COEF_CONST(2.7080502011),
319
61.8k
        COEF_CONST(2.7725887222), COEF_CONST(2.8332133441), COEF_CONST(2.8903717579), COEF_CONST(2.9444389792),
320
61.8k
        COEF_CONST(2.9957322736), COEF_CONST(3.0445224377), COEF_CONST(3.0910424534), COEF_CONST(3.1354942159),
321
61.8k
        COEF_CONST(3.1780538303), COEF_CONST(3.2188758249), COEF_CONST(3.2580965380), COEF_CONST(3.2958368660),
322
61.8k
        COEF_CONST(3.3322045102), COEF_CONST(3.3672958300), COEF_CONST(3.4011973817), COEF_CONST(3.4339872045),
323
61.8k
        COEF_CONST(3.4657359028), COEF_CONST(3.4965075615), COEF_CONST(3.5263605246), COEF_CONST(3.5553480615),
324
61.8k
        COEF_CONST(3.5835189385), COEF_CONST(3.6109179126), COEF_CONST(3.6375861597), COEF_CONST(3.6635616461),
325
61.8k
        COEF_CONST(3.6888794541), COEF_CONST(3.7135720667), COEF_CONST(3.7376696183), COEF_CONST(3.7612001157),
326
61.8k
        COEF_CONST(3.7841896339), COEF_CONST(3.8066624898), COEF_CONST(3.8286413965), COEF_CONST(3.8501476017),
327
61.8k
        COEF_CONST(3.8712010109), COEF_CONST(3.8918202981), COEF_CONST(3.9120230054), COEF_CONST(3.9318256327),
328
61.8k
        COEF_CONST(3.9512437186), COEF_CONST(3.9702919136), COEF_CONST(3.9889840466), COEF_CONST(4.0073331852),
329
61.8k
        COEF_CONST(4.0253516907), COEF_CONST(4.0430512678), COEF_CONST(4.0604430105), COEF_CONST(4.0775374439),
330
61.8k
        COEF_CONST(4.0943445622), COEF_CONST(4.1108738642), COEF_CONST(4.1271343850), COEF_CONST(4.1431347264),
331
61.8k
        COEF_CONST(4.158883083)
332
    };
333
    /* standard Taylor polynomial coefficients for exp(x) around 0 */
334
    /* a polynomial around x=1 is more precise, as most values are around 1.07,
335
       but this is just fine already */
336
61.8k
    static const real_t c1 = COEF_CONST(1.0);
337
61.8k
    static const real_t c2 = COEF_CONST(1.0/2.0);
338
61.8k
    static const real_t c3 = COEF_CONST(1.0/6.0);
339
61.8k
    static const real_t c4 = COEF_CONST(1.0/24.0);
340
341
    real_t r0 = logTable[a0]; /* coef */
342
    real_t r1 = logTable[a1]; /* coef */
343
    real_t r2 = (r1 - r0) / bands; /* coef */
344
61.8k
    real_t rexp = c1 + MUL_C((c1 + MUL_C((c2 + MUL_C((c3 + MUL_C(c4,r2)), r2)), r2)), r2);
345
346
61.8k
    return (rexp >> (COEF_BITS-REAL_BITS)); /* real */
347
#else
348
    return (real_t)pow((real_t)a1/(real_t)a0, 1.0/(real_t)bands);
349
#endif
350
144k
}
sbr_fbt.c:find_initial_power
Line
Count
Source
311
61.8k
{
312
61.8k
#ifdef FIXED_POINT
313
    /* table with log() values */
314
61.8k
    static const real_t logTable[65] = {
315
61.8k
        COEF_CONST(0.0), COEF_CONST(0.0), COEF_CONST(0.6931471806), COEF_CONST(1.0986122887),
316
61.8k
        COEF_CONST(1.3862943611), COEF_CONST(1.6094379124), COEF_CONST(1.7917594692), COEF_CONST(1.9459101491),
317
61.8k
        COEF_CONST(2.0794415417), COEF_CONST(2.1972245773), COEF_CONST(2.3025850930), COEF_CONST(2.3978952728),
318
61.8k
        COEF_CONST(2.4849066498), COEF_CONST(2.5649493575), COEF_CONST(2.6390573296), COEF_CONST(2.7080502011),
319
61.8k
        COEF_CONST(2.7725887222), COEF_CONST(2.8332133441), COEF_CONST(2.8903717579), COEF_CONST(2.9444389792),
320
61.8k
        COEF_CONST(2.9957322736), COEF_CONST(3.0445224377), COEF_CONST(3.0910424534), COEF_CONST(3.1354942159),
321
61.8k
        COEF_CONST(3.1780538303), COEF_CONST(3.2188758249), COEF_CONST(3.2580965380), COEF_CONST(3.2958368660),
322
61.8k
        COEF_CONST(3.3322045102), COEF_CONST(3.3672958300), COEF_CONST(3.4011973817), COEF_CONST(3.4339872045),
323
61.8k
        COEF_CONST(3.4657359028), COEF_CONST(3.4965075615), COEF_CONST(3.5263605246), COEF_CONST(3.5553480615),
324
61.8k
        COEF_CONST(3.5835189385), COEF_CONST(3.6109179126), COEF_CONST(3.6375861597), COEF_CONST(3.6635616461),
325
61.8k
        COEF_CONST(3.6888794541), COEF_CONST(3.7135720667), COEF_CONST(3.7376696183), COEF_CONST(3.7612001157),
326
61.8k
        COEF_CONST(3.7841896339), COEF_CONST(3.8066624898), COEF_CONST(3.8286413965), COEF_CONST(3.8501476017),
327
61.8k
        COEF_CONST(3.8712010109), COEF_CONST(3.8918202981), COEF_CONST(3.9120230054), COEF_CONST(3.9318256327),
328
61.8k
        COEF_CONST(3.9512437186), COEF_CONST(3.9702919136), COEF_CONST(3.9889840466), COEF_CONST(4.0073331852),
329
61.8k
        COEF_CONST(4.0253516907), COEF_CONST(4.0430512678), COEF_CONST(4.0604430105), COEF_CONST(4.0775374439),
330
61.8k
        COEF_CONST(4.0943445622), COEF_CONST(4.1108738642), COEF_CONST(4.1271343850), COEF_CONST(4.1431347264),
331
61.8k
        COEF_CONST(4.158883083)
332
61.8k
    };
333
    /* standard Taylor polynomial coefficients for exp(x) around 0 */
334
    /* a polynomial around x=1 is more precise, as most values are around 1.07,
335
       but this is just fine already */
336
61.8k
    static const real_t c1 = COEF_CONST(1.0);
337
61.8k
    static const real_t c2 = COEF_CONST(1.0/2.0);
338
61.8k
    static const real_t c3 = COEF_CONST(1.0/6.0);
339
61.8k
    static const real_t c4 = COEF_CONST(1.0/24.0);
340
341
61.8k
    real_t r0 = logTable[a0]; /* coef */
342
61.8k
    real_t r1 = logTable[a1]; /* coef */
343
61.8k
    real_t r2 = (r1 - r0) / bands; /* coef */
344
61.8k
    real_t rexp = c1 + MUL_C((c1 + MUL_C((c2 + MUL_C((c3 + MUL_C(c4,r2)), r2)), r2)), r2);
345
346
61.8k
    return (rexp >> (COEF_BITS-REAL_BITS)); /* real */
347
#else
348
    return (real_t)pow((real_t)a1/(real_t)a0, 1.0/(real_t)bands);
349
#endif
350
61.8k
}
sbr_fbt.c:find_initial_power
Line
Count
Source
311
82.8k
{
312
#ifdef FIXED_POINT
313
    /* table with log() values */
314
    static const real_t logTable[65] = {
315
        COEF_CONST(0.0), COEF_CONST(0.0), COEF_CONST(0.6931471806), COEF_CONST(1.0986122887),
316
        COEF_CONST(1.3862943611), COEF_CONST(1.6094379124), COEF_CONST(1.7917594692), COEF_CONST(1.9459101491),
317
        COEF_CONST(2.0794415417), COEF_CONST(2.1972245773), COEF_CONST(2.3025850930), COEF_CONST(2.3978952728),
318
        COEF_CONST(2.4849066498), COEF_CONST(2.5649493575), COEF_CONST(2.6390573296), COEF_CONST(2.7080502011),
319
        COEF_CONST(2.7725887222), COEF_CONST(2.8332133441), COEF_CONST(2.8903717579), COEF_CONST(2.9444389792),
320
        COEF_CONST(2.9957322736), COEF_CONST(3.0445224377), COEF_CONST(3.0910424534), COEF_CONST(3.1354942159),
321
        COEF_CONST(3.1780538303), COEF_CONST(3.2188758249), COEF_CONST(3.2580965380), COEF_CONST(3.2958368660),
322
        COEF_CONST(3.3322045102), COEF_CONST(3.3672958300), COEF_CONST(3.4011973817), COEF_CONST(3.4339872045),
323
        COEF_CONST(3.4657359028), COEF_CONST(3.4965075615), COEF_CONST(3.5263605246), COEF_CONST(3.5553480615),
324
        COEF_CONST(3.5835189385), COEF_CONST(3.6109179126), COEF_CONST(3.6375861597), COEF_CONST(3.6635616461),
325
        COEF_CONST(3.6888794541), COEF_CONST(3.7135720667), COEF_CONST(3.7376696183), COEF_CONST(3.7612001157),
326
        COEF_CONST(3.7841896339), COEF_CONST(3.8066624898), COEF_CONST(3.8286413965), COEF_CONST(3.8501476017),
327
        COEF_CONST(3.8712010109), COEF_CONST(3.8918202981), COEF_CONST(3.9120230054), COEF_CONST(3.9318256327),
328
        COEF_CONST(3.9512437186), COEF_CONST(3.9702919136), COEF_CONST(3.9889840466), COEF_CONST(4.0073331852),
329
        COEF_CONST(4.0253516907), COEF_CONST(4.0430512678), COEF_CONST(4.0604430105), COEF_CONST(4.0775374439),
330
        COEF_CONST(4.0943445622), COEF_CONST(4.1108738642), COEF_CONST(4.1271343850), COEF_CONST(4.1431347264),
331
        COEF_CONST(4.158883083)
332
    };
333
    /* standard Taylor polynomial coefficients for exp(x) around 0 */
334
    /* a polynomial around x=1 is more precise, as most values are around 1.07,
335
       but this is just fine already */
336
    static const real_t c1 = COEF_CONST(1.0);
337
    static const real_t c2 = COEF_CONST(1.0/2.0);
338
    static const real_t c3 = COEF_CONST(1.0/6.0);
339
    static const real_t c4 = COEF_CONST(1.0/24.0);
340
341
    real_t r0 = logTable[a0]; /* coef */
342
    real_t r1 = logTable[a1]; /* coef */
343
    real_t r2 = (r1 - r0) / bands; /* coef */
344
    real_t rexp = c1 + MUL_C((c1 + MUL_C((c2 + MUL_C((c3 + MUL_C(c4,r2)), r2)), r2)), r2);
345
346
    return (rexp >> (COEF_BITS-REAL_BITS)); /* real */
347
#else
348
82.8k
    return (real_t)pow((real_t)a1/(real_t)a0, 1.0/(real_t)bands);
349
82.8k
#endif
350
82.8k
}
351
352
/*
353
   version for bs_freq_scale > 0
354
*/
355
uint8_t master_frequency_table(sbr_info *sbr, uint8_t k0, uint8_t k2,
356
                               uint8_t bs_freq_scale, uint8_t bs_alter_scale)
357
109k
{
358
109k
    uint8_t k, bands, twoRegions;
359
109k
    uint8_t k1;
360
109k
    uint8_t nrBand0, nrBand1;
361
109k
    int32_t vDk0[64] = {0}, vDk1[64] = {0};
362
109k
    int32_t vk0[64] = {0}, vk1[64] = {0};
363
109k
    uint8_t temp1[] = { 6, 5, 4 };
364
109k
    real_t q, qk;
365
109k
    int32_t A_1;
366
#ifdef FIXED_POINT
367
    real_t rk2, rk0;
368
#endif
369
109k
    (void)bs_alter_scale;  /* TODO: remove parameter? */
370
371
    /* mft only defined for k2 > k0 */
372
109k
    if (k2 <= k0)
373
1.81k
    {
374
1.81k
        sbr->N_master = 0;
375
1.81k
        return 1;
376
1.81k
    }
377
378
107k
    bands = temp1[bs_freq_scale-1];
379
380
#ifdef FIXED_POINT
381
44.6k
    rk0 = (real_t)k0 << REAL_BITS;
382
44.6k
    rk2 = (real_t)k2 << REAL_BITS;
383
44.6k
    if (rk2 > MUL_C(rk0, COEF_CONST(2.2449)))
384
#else
385
62.7k
    if ((float)k2/(float)k0 > 2.2449)
386
22.3k
#endif
387
40.9k
    {
388
40.9k
        twoRegions = 1;
389
40.9k
        k1 = k0 << 1;
390
66.4k
    } else {
391
66.4k
        twoRegions = 0;
392
66.4k
        k1 = k2;
393
66.4k
    }
394
395
107k
    nrBand0 = (uint8_t)(2 * find_bands(0, bands, k0, k1));
396
107k
    nrBand0 = min(nrBand0, 63);
397
107k
    if (nrBand0 <= 0)
398
714
        return 1;
399
400
106k
    q = find_initial_power(nrBand0, k0, k1);
401
#ifdef FIXED_POINT
402
44.4k
    qk = (real_t)k0 << REAL_BITS;
403
    //A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
404
    A_1 = k0;
405
#else
406
62.2k
    qk = REAL_CONST(k0);
407
    A_1 = (int32_t)(qk + .5);
408
#endif
409
1.05M
    for (k = 0; k <= nrBand0; k++)
410
945k
    {
411
945k
        int32_t A_0 = A_1;
412
#ifdef FIXED_POINT
413
380k
        qk = MUL_R(qk,q);
414
380k
        A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
415
#else
416
        qk *= q;
417
        A_1 = (int32_t)(qk + 0.5);
418
#endif
419
945k
        vDk0[k] = A_1 - A_0;
420
945k
    }
421
422
    /* needed? */
423
106k
    qsort(vDk0, nrBand0, sizeof(vDk0[0]), int32cmp);
424
425
106k
    vk0[0] = k0;
426
857k
    for (k = 1; k <= nrBand0; k++)
427
766k
    {
428
766k
        vk0[k] = vk0[k-1] + vDk0[k-1];
429
766k
        if (vDk0[k-1] == 0)
430
15.6k
            return 1;
431
766k
    }
432
433
91.0k
    if (!twoRegions)
434
52.9k
    {
435
480k
        for (k = 0; k <= nrBand0; k++)
436
427k
            sbr->f_master[k] = (uint8_t) vk0[k];
437
438
52.9k
        sbr->N_master = nrBand0;
439
52.9k
        sbr->N_master = min(sbr->N_master, 64);
440
52.9k
        return 0;
441
52.9k
    }
442
443
38.1k
    nrBand1 = (uint8_t)(2 * find_bands(1 /* warped */, bands, k1, k2));
444
38.1k
    nrBand1 = min(nrBand1, 63);
445
446
38.1k
    q = find_initial_power(nrBand1, k1, k2);
447
#ifdef FIXED_POINT
448
17.4k
    qk = (real_t)k1 << REAL_BITS;
449
    //A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
450
    A_1 = k1;
451
#else
452
20.6k
    qk = REAL_CONST(k1);
453
    A_1 = (int32_t)(qk + .5);
454
#endif
455
167k
    for (k = 0; k <= nrBand1 - 1; k++)
456
129k
    {
457
129k
        int32_t A_0 = A_1;
458
#ifdef FIXED_POINT
459
56.0k
        qk = MUL_R(qk,q);
460
56.0k
        A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
461
#else
462
        qk *= q;
463
        A_1 = (int32_t)(qk + 0.5);
464
#endif
465
129k
        vDk1[k] = A_1 - A_0;
466
129k
    }
467
468
38.1k
    if (vDk1[0] < vDk0[nrBand0 - 1])
469
1.23k
    {
470
1.23k
        int32_t change;
471
472
        /* needed? */
473
1.23k
        qsort(vDk1, nrBand1 + 1, sizeof(vDk1[0]), int32cmp);
474
1.23k
        change = vDk0[nrBand0 - 1] - vDk1[0];
475
1.23k
        vDk1[0] = vDk0[nrBand0 - 1];
476
1.23k
        vDk1[nrBand1 - 1] = vDk1[nrBand1 - 1] - change;
477
1.23k
    }
478
479
    /* needed? */
480
38.1k
    qsort(vDk1, nrBand1, sizeof(vDk1[0]), int32cmp);
481
38.1k
    vk1[0] = k1;
482
167k
    for (k = 1; k <= nrBand1; k++)
483
129k
    {
484
129k
        vk1[k] = vk1[k-1] + vDk1[k-1];
485
129k
        if (vDk1[k-1] == 0)
486
0
            return 1;
487
129k
    }
488
489
38.1k
    sbr->N_master = nrBand0 + nrBand1;
490
38.1k
    sbr->N_master = min(sbr->N_master, 64);
491
452k
    for (k = 0; k <= nrBand0; k++)
492
414k
    {
493
414k
        sbr->f_master[k] =  (uint8_t) vk0[k];
494
414k
    }
495
167k
    for (k = nrBand0 + 1; k <= sbr->N_master; k++)
496
129k
    {
497
129k
        sbr->f_master[k] = (uint8_t) vk1[k - nrBand0];
498
129k
    }
499
500
#if 0
501
    printf("f_master[%d]: ", sbr->N_master);
502
    for (k = 0; k <= sbr->N_master; k++)
503
    {
504
        printf("%d ", sbr->f_master[k]);
505
    }
506
    printf("\n");
507
#endif
508
509
38.1k
    return 0;
510
38.1k
}
master_frequency_table
Line
Count
Source
357
44.9k
{
358
44.9k
    uint8_t k, bands, twoRegions;
359
44.9k
    uint8_t k1;
360
44.9k
    uint8_t nrBand0, nrBand1;
361
44.9k
    int32_t vDk0[64] = {0}, vDk1[64] = {0};
362
44.9k
    int32_t vk0[64] = {0}, vk1[64] = {0};
363
44.9k
    uint8_t temp1[] = { 6, 5, 4 };
364
44.9k
    real_t q, qk;
365
44.9k
    int32_t A_1;
366
44.9k
#ifdef FIXED_POINT
367
44.9k
    real_t rk2, rk0;
368
44.9k
#endif
369
44.9k
    (void)bs_alter_scale;  /* TODO: remove parameter? */
370
371
    /* mft only defined for k2 > k0 */
372
44.9k
    if (k2 <= k0)
373
318
    {
374
318
        sbr->N_master = 0;
375
318
        return 1;
376
318
    }
377
378
44.6k
    bands = temp1[bs_freq_scale-1];
379
380
44.6k
#ifdef FIXED_POINT
381
44.6k
    rk0 = (real_t)k0 << REAL_BITS;
382
44.6k
    rk2 = (real_t)k2 << REAL_BITS;
383
44.6k
    if (rk2 > MUL_C(rk0, COEF_CONST(2.2449)))
384
#else
385
    if ((float)k2/(float)k0 > 2.2449)
386
#endif
387
18.5k
    {
388
18.5k
        twoRegions = 1;
389
18.5k
        k1 = k0 << 1;
390
26.0k
    } else {
391
26.0k
        twoRegions = 0;
392
26.0k
        k1 = k2;
393
26.0k
    }
394
395
44.6k
    nrBand0 = (uint8_t)(2 * find_bands(0, bands, k0, k1));
396
44.6k
    nrBand0 = min(nrBand0, 63);
397
44.6k
    if (nrBand0 <= 0)
398
238
        return 1;
399
400
44.4k
    q = find_initial_power(nrBand0, k0, k1);
401
44.4k
#ifdef FIXED_POINT
402
44.4k
    qk = (real_t)k0 << REAL_BITS;
403
    //A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
404
44.4k
    A_1 = k0;
405
#else
406
    qk = REAL_CONST(k0);
407
    A_1 = (int32_t)(qk + .5);
408
#endif
409
424k
    for (k = 0; k <= nrBand0; k++)
410
380k
    {
411
380k
        int32_t A_0 = A_1;
412
380k
#ifdef FIXED_POINT
413
380k
        qk = MUL_R(qk,q);
414
380k
        A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
415
#else
416
        qk *= q;
417
        A_1 = (int32_t)(qk + 0.5);
418
#endif
419
380k
        vDk0[k] = A_1 - A_0;
420
380k
    }
421
422
    /* needed? */
423
44.4k
    qsort(vDk0, nrBand0, sizeof(vDk0[0]), int32cmp);
424
425
44.4k
    vk0[0] = k0;
426
348k
    for (k = 1; k <= nrBand0; k++)
427
310k
    {
428
310k
        vk0[k] = vk0[k-1] + vDk0[k-1];
429
310k
        if (vDk0[k-1] == 0)
430
6.15k
            return 1;
431
310k
    }
432
433
38.2k
    if (!twoRegions)
434
20.7k
    {
435
173k
        for (k = 0; k <= nrBand0; k++)
436
152k
            sbr->f_master[k] = (uint8_t) vk0[k];
437
438
20.7k
        sbr->N_master = nrBand0;
439
20.7k
        sbr->N_master = min(sbr->N_master, 64);
440
20.7k
        return 0;
441
20.7k
    }
442
443
17.4k
    nrBand1 = (uint8_t)(2 * find_bands(1 /* warped */, bands, k1, k2));
444
17.4k
    nrBand1 = min(nrBand1, 63);
445
446
17.4k
    q = find_initial_power(nrBand1, k1, k2);
447
17.4k
#ifdef FIXED_POINT
448
17.4k
    qk = (real_t)k1 << REAL_BITS;
449
    //A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
450
17.4k
    A_1 = k1;
451
#else
452
    qk = REAL_CONST(k1);
453
    A_1 = (int32_t)(qk + .5);
454
#endif
455
73.5k
    for (k = 0; k <= nrBand1 - 1; k++)
456
56.0k
    {
457
56.0k
        int32_t A_0 = A_1;
458
56.0k
#ifdef FIXED_POINT
459
56.0k
        qk = MUL_R(qk,q);
460
56.0k
        A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
461
#else
462
        qk *= q;
463
        A_1 = (int32_t)(qk + 0.5);
464
#endif
465
56.0k
        vDk1[k] = A_1 - A_0;
466
56.0k
    }
467
468
17.4k
    if (vDk1[0] < vDk0[nrBand0 - 1])
469
457
    {
470
457
        int32_t change;
471
472
        /* needed? */
473
457
        qsort(vDk1, nrBand1 + 1, sizeof(vDk1[0]), int32cmp);
474
457
        change = vDk0[nrBand0 - 1] - vDk1[0];
475
457
        vDk1[0] = vDk0[nrBand0 - 1];
476
457
        vDk1[nrBand1 - 1] = vDk1[nrBand1 - 1] - change;
477
457
    }
478
479
    /* needed? */
480
17.4k
    qsort(vDk1, nrBand1, sizeof(vDk1[0]), int32cmp);
481
17.4k
    vk1[0] = k1;
482
73.5k
    for (k = 1; k <= nrBand1; k++)
483
56.0k
    {
484
56.0k
        vk1[k] = vk1[k-1] + vDk1[k-1];
485
56.0k
        if (vDk1[k-1] == 0)
486
0
            return 1;
487
56.0k
    }
488
489
17.4k
    sbr->N_master = nrBand0 + nrBand1;
490
17.4k
    sbr->N_master = min(sbr->N_master, 64);
491
206k
    for (k = 0; k <= nrBand0; k++)
492
189k
    {
493
189k
        sbr->f_master[k] =  (uint8_t) vk0[k];
494
189k
    }
495
73.5k
    for (k = nrBand0 + 1; k <= sbr->N_master; k++)
496
56.0k
    {
497
56.0k
        sbr->f_master[k] = (uint8_t) vk1[k - nrBand0];
498
56.0k
    }
499
500
#if 0
501
    printf("f_master[%d]: ", sbr->N_master);
502
    for (k = 0; k <= sbr->N_master; k++)
503
    {
504
        printf("%d ", sbr->f_master[k]);
505
    }
506
    printf("\n");
507
#endif
508
509
17.4k
    return 0;
510
17.4k
}
master_frequency_table
Line
Count
Source
357
64.2k
{
358
64.2k
    uint8_t k, bands, twoRegions;
359
64.2k
    uint8_t k1;
360
64.2k
    uint8_t nrBand0, nrBand1;
361
64.2k
    int32_t vDk0[64] = {0}, vDk1[64] = {0};
362
64.2k
    int32_t vk0[64] = {0}, vk1[64] = {0};
363
64.2k
    uint8_t temp1[] = { 6, 5, 4 };
364
64.2k
    real_t q, qk;
365
64.2k
    int32_t A_1;
366
#ifdef FIXED_POINT
367
    real_t rk2, rk0;
368
#endif
369
64.2k
    (void)bs_alter_scale;  /* TODO: remove parameter? */
370
371
    /* mft only defined for k2 > k0 */
372
64.2k
    if (k2 <= k0)
373
1.49k
    {
374
1.49k
        sbr->N_master = 0;
375
1.49k
        return 1;
376
1.49k
    }
377
378
62.7k
    bands = temp1[bs_freq_scale-1];
379
380
#ifdef FIXED_POINT
381
    rk0 = (real_t)k0 << REAL_BITS;
382
    rk2 = (real_t)k2 << REAL_BITS;
383
    if (rk2 > MUL_C(rk0, COEF_CONST(2.2449)))
384
#else
385
62.7k
    if ((float)k2/(float)k0 > 2.2449)
386
22.3k
#endif
387
22.3k
    {
388
22.3k
        twoRegions = 1;
389
22.3k
        k1 = k0 << 1;
390
40.3k
    } else {
391
40.3k
        twoRegions = 0;
392
40.3k
        k1 = k2;
393
40.3k
    }
394
395
62.7k
    nrBand0 = (uint8_t)(2 * find_bands(0, bands, k0, k1));
396
62.7k
    nrBand0 = min(nrBand0, 63);
397
62.7k
    if (nrBand0 <= 0)
398
476
        return 1;
399
400
62.2k
    q = find_initial_power(nrBand0, k0, k1);
401
#ifdef FIXED_POINT
402
    qk = (real_t)k0 << REAL_BITS;
403
    //A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
404
    A_1 = k0;
405
#else
406
62.2k
    qk = REAL_CONST(k0);
407
62.2k
    A_1 = (int32_t)(qk + .5);
408
62.2k
#endif
409
627k
    for (k = 0; k <= nrBand0; k++)
410
565k
    {
411
565k
        int32_t A_0 = A_1;
412
#ifdef FIXED_POINT
413
        qk = MUL_R(qk,q);
414
        A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
415
#else
416
565k
        qk *= q;
417
565k
        A_1 = (int32_t)(qk + 0.5);
418
565k
#endif
419
565k
        vDk0[k] = A_1 - A_0;
420
565k
    }
421
422
    /* needed? */
423
62.2k
    qsort(vDk0, nrBand0, sizeof(vDk0[0]), int32cmp);
424
425
62.2k
    vk0[0] = k0;
426
509k
    for (k = 1; k <= nrBand0; k++)
427
456k
    {
428
456k
        vk0[k] = vk0[k-1] + vDk0[k-1];
429
456k
        if (vDk0[k-1] == 0)
430
9.45k
            return 1;
431
456k
    }
432
433
52.7k
    if (!twoRegions)
434
32.1k
    {
435
306k
        for (k = 0; k <= nrBand0; k++)
436
274k
            sbr->f_master[k] = (uint8_t) vk0[k];
437
438
32.1k
        sbr->N_master = nrBand0;
439
32.1k
        sbr->N_master = min(sbr->N_master, 64);
440
32.1k
        return 0;
441
32.1k
    }
442
443
20.6k
    nrBand1 = (uint8_t)(2 * find_bands(1 /* warped */, bands, k1, k2));
444
20.6k
    nrBand1 = min(nrBand1, 63);
445
446
20.6k
    q = find_initial_power(nrBand1, k1, k2);
447
#ifdef FIXED_POINT
448
    qk = (real_t)k1 << REAL_BITS;
449
    //A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
450
    A_1 = k1;
451
#else
452
20.6k
    qk = REAL_CONST(k1);
453
20.6k
    A_1 = (int32_t)(qk + .5);
454
20.6k
#endif
455
94.1k
    for (k = 0; k <= nrBand1 - 1; k++)
456
73.4k
    {
457
73.4k
        int32_t A_0 = A_1;
458
#ifdef FIXED_POINT
459
        qk = MUL_R(qk,q);
460
        A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS);
461
#else
462
73.4k
        qk *= q;
463
73.4k
        A_1 = (int32_t)(qk + 0.5);
464
73.4k
#endif
465
73.4k
        vDk1[k] = A_1 - A_0;
466
73.4k
    }
467
468
20.6k
    if (vDk1[0] < vDk0[nrBand0 - 1])
469
779
    {
470
779
        int32_t change;
471
472
        /* needed? */
473
779
        qsort(vDk1, nrBand1 + 1, sizeof(vDk1[0]), int32cmp);
474
779
        change = vDk0[nrBand0 - 1] - vDk1[0];
475
779
        vDk1[0] = vDk0[nrBand0 - 1];
476
779
        vDk1[nrBand1 - 1] = vDk1[nrBand1 - 1] - change;
477
779
    }
478
479
    /* needed? */
480
20.6k
    qsort(vDk1, nrBand1, sizeof(vDk1[0]), int32cmp);
481
20.6k
    vk1[0] = k1;
482
94.1k
    for (k = 1; k <= nrBand1; k++)
483
73.4k
    {
484
73.4k
        vk1[k] = vk1[k-1] + vDk1[k-1];
485
73.4k
        if (vDk1[k-1] == 0)
486
0
            return 1;
487
73.4k
    }
488
489
20.6k
    sbr->N_master = nrBand0 + nrBand1;
490
20.6k
    sbr->N_master = min(sbr->N_master, 64);
491
245k
    for (k = 0; k <= nrBand0; k++)
492
224k
    {
493
224k
        sbr->f_master[k] =  (uint8_t) vk0[k];
494
224k
    }
495
94.1k
    for (k = nrBand0 + 1; k <= sbr->N_master; k++)
496
73.4k
    {
497
73.4k
        sbr->f_master[k] = (uint8_t) vk1[k - nrBand0];
498
73.4k
    }
499
500
#if 0
501
    printf("f_master[%d]: ", sbr->N_master);
502
    for (k = 0; k <= sbr->N_master; k++)
503
    {
504
        printf("%d ", sbr->f_master[k]);
505
    }
506
    printf("\n");
507
#endif
508
509
20.6k
    return 0;
510
20.6k
}
511
512
/* calculate the derived frequency border tables from f_master */
513
uint8_t derived_frequency_table(sbr_info *sbr, uint8_t bs_xover_band,
514
                                uint8_t k2)
515
131k
{
516
131k
    uint8_t k, i;
517
131k
    uint32_t minus;
518
519
    /* The following relation shall be satisfied: bs_xover_band < N_Master */
520
131k
    if (sbr->N_master <= bs_xover_band)
521
8.82k
        return 1;
522
523
122k
    sbr->N_high = sbr->N_master - bs_xover_band;
524
122k
    sbr->N_low = (sbr->N_high>>1) + (sbr->N_high - ((sbr->N_high>>1)<<1));
525
526
122k
    sbr->n[0] = sbr->N_low;
527
122k
    sbr->n[1] = sbr->N_high;
528
529
1.55M
    for (k = 0; k <= sbr->N_high; k++)
530
1.42M
    {
531
1.42M
        sbr->f_table_res[HI_RES][k] = sbr->f_master[k + bs_xover_band];
532
1.42M
    }
533
534
122k
    sbr->M = sbr->f_table_res[HI_RES][sbr->N_high] - sbr->f_table_res[HI_RES][0];
535
122k
    if (sbr->M > MAX_M)
536
1.04k
        return 1;
537
121k
    sbr->kx = sbr->f_table_res[HI_RES][0];
538
121k
    if (sbr->kx > 32)
539
12.1k
        return 1;
540
109k
    if (sbr->kx + sbr->M > 64)
541
0
        return 1;
542
543
109k
    minus = (sbr->N_high & 1) ? 1 : 0;
544
545
109k
    i = 0;
546
822k
    for (k = 0; k <= sbr->N_low; k++)
547
713k
    {
548
713k
        if (k != 0)
549
604k
            i = (uint8_t)(2*k - minus);
550
713k
        sbr->f_table_res[LO_RES][k] = sbr->f_table_res[HI_RES][i];
551
713k
    }
552
553
#if 0
554
    printf("bs_freq_scale: %d\n", sbr->bs_freq_scale);
555
    printf("bs_limiter_bands: %d\n", sbr->bs_limiter_bands);
556
    printf("f_table_res[HI_RES][%d]: ", sbr->N_high);
557
    for (k = 0; k <= sbr->N_high; k++)
558
    {
559
        printf("%d ", sbr->f_table_res[HI_RES][k]);
560
    }
561
    printf("\n");
562
#endif
563
#if 0
564
    printf("f_table_res[LO_RES][%d]: ", sbr->N_low);
565
    for (k = 0; k <= sbr->N_low; k++)
566
    {
567
        printf("%d ", sbr->f_table_res[LO_RES][k]);
568
    }
569
    printf("\n");
570
#endif
571
572
109k
    sbr->N_Q = 0;
573
109k
    if (sbr->bs_noise_bands == 0)
574
21.7k
    {
575
21.7k
        sbr->N_Q = 1;
576
87.4k
    } else {
577
#if 0
578
        sbr->N_Q = max(1, (int32_t)(sbr->bs_noise_bands*(log(k2/(float)sbr->kx)/log(2.0)) + 0.5));
579
#else
580
87.4k
        sbr->N_Q = (uint8_t)(max(1, find_bands(0, sbr->bs_noise_bands, sbr->kx, k2)));
581
87.4k
#endif
582
87.4k
        sbr->N_Q = min(5, sbr->N_Q);
583
87.4k
    }
584
585
109k
    i = 0;
586
406k
    for (k = 0; k <= sbr->N_Q; k++)
587
296k
    {
588
296k
        if (k != 0)
589
187k
            i = i + (sbr->N_low - i)/(sbr->N_Q + 1 - k);
590
296k
        sbr->f_table_noise[k] = sbr->f_table_res[LO_RES][i];
591
296k
    }
592
593
    /* build table for mapping k to g in hf patching */
594
7.09M
    for (k = 0; k < 64; k++)
595
6.99M
    {
596
6.99M
        uint8_t g;
597
16.2M
        for (g = 0; g < sbr->N_Q; g++)
598
11.2M
        {
599
11.2M
            if ((sbr->f_table_noise[g] <= k) &&
600
11.2M
                (k < sbr->f_table_noise[g+1]))
601
2.01M
            {
602
2.01M
                sbr->table_map_k_to_g[k] = g;
603
2.01M
                break;
604
2.01M
            }
605
11.2M
        }
606
6.99M
    }
607
608
#if 0
609
    printf("f_table_noise[%d]: ", sbr->N_Q);
610
    for (k = 0; k <= sbr->N_Q; k++)
611
    {
612
        printf("%d ", sbr->f_table_noise[k] - sbr->kx);
613
    }
614
    printf("\n");
615
#endif
616
617
109k
    return 0;
618
109k
}
619
620
/* TODO: blegh, ugly */
621
/* Modified to calculate for all possible bs_limiter_bands always
622
 * This reduces the number calls to this functions needed (now only on
623
 * header reset)
624
 */
625
void limiter_frequency_table(sbr_info *sbr)
626
25.9k
{
627
#if 0
628
    static const real_t limiterBandsPerOctave[] = { REAL_CONST(1.2),
629
        REAL_CONST(2), REAL_CONST(3) };
630
#else
631
25.9k
    static const real_t limiterBandsCompare[] = { REAL_CONST(1.327152),
632
25.9k
        REAL_CONST(1.185093), REAL_CONST(1.119872) };
633
25.9k
#endif
634
25.9k
    uint8_t k, s;
635
25.9k
    int8_t nrLim;
636
#if 0
637
    real_t limBands;
638
#endif
639
640
25.9k
    sbr->f_table_lim[0][0] = sbr->f_table_res[LO_RES][0] - sbr->kx;
641
25.9k
    sbr->f_table_lim[0][1] = sbr->f_table_res[LO_RES][sbr->N_low] - sbr->kx;
642
25.9k
    sbr->N_L[0] = 1;
643
644
#if 0
645
    printf("f_table_lim[%d][%d]: ", 0, sbr->N_L[0]);
646
    for (k = 0; k <= sbr->N_L[0]; k++)
647
    {
648
        printf("%d ", sbr->f_table_lim[0][k]);
649
    }
650
    printf("\n");
651
#endif
652
653
103k
    for (s = 1; s < 4; s++)
654
77.9k
    {
655
77.9k
        uint8_t limTable[100 /*TODO*/] = {0};
656
77.9k
        uint8_t patchBorders[64/*??*/] = {0};
657
658
#if 0
659
        limBands = limiterBandsPerOctave[s - 1];
660
#endif
661
662
77.9k
        patchBorders[0] = sbr->kx;
663
243k
        for (k = 1; k <= sbr->noPatches; k++)
664
165k
        {
665
165k
            patchBorders[k] = patchBorders[k-1] + sbr->patchNoSubbands[k-1];
666
165k
        }
667
668
469k
        for (k = 0; k <= sbr->N_low; k++)
669
391k
        {
670
391k
            limTable[k] = sbr->f_table_res[LO_RES][k];
671
391k
        }
672
165k
        for (k = 1; k < sbr->noPatches; k++)
673
87.5k
        {
674
87.5k
            limTable[k+sbr->N_low] = patchBorders[k];
675
87.5k
        }
676
677
        /* needed */
678
77.9k
        qsort(limTable, sbr->noPatches + sbr->N_low, sizeof(limTable[0]), uint8cmp);
679
77.9k
        k = 1;
680
77.9k
        nrLim = sbr->noPatches + sbr->N_low - 1;
681
682
77.9k
        if (nrLim < 0) // TODO: BIG FAT PROBLEM
683
0
            return;
684
685
479k
restart:
686
479k
        if (k <= nrLim)
687
401k
        {
688
401k
            real_t nOctaves;
689
690
401k
            if (limTable[k-1] != 0)
691
#if 0
692
                nOctaves = REAL_CONST(log((float)limTable[k]/(float)limTable[k-1])/log(2.0));
693
#else
694
#ifdef FIXED_POINT
695
184k
                nOctaves = DIV_R((limTable[k]<<REAL_BITS),REAL_CONST(limTable[k-1]));
696
#else
697
216k
                nOctaves = (real_t)limTable[k]/(real_t)limTable[k-1];
698
0
#endif
699
0
#endif
700
0
            else
701
0
                nOctaves = 0;
702
703
#if 0
704
            if ((MUL_R(nOctaves,limBands)) < REAL_CONST(0.49))
705
#else
706
401k
            if (nOctaves < limiterBandsCompare[s - 1])
707
257k
#endif
708
257k
            {
709
257k
                uint8_t i;
710
257k
                if (limTable[k] != limTable[k-1])
711
206k
                {
712
206k
                    uint8_t found = 0, found2 = 0;
713
1.03M
                    for (i = 0; i <= sbr->noPatches; i++)
714
829k
                    {
715
829k
                        if (limTable[k] == patchBorders[i])
716
87.2k
                            found = 1;
717
829k
                    }
718
206k
                    if (found)
719
87.2k
                    {
720
87.2k
                        found2 = 0;
721
408k
                        for (i = 0; i <= sbr->noPatches; i++)
722
321k
                        {
723
321k
                            if (limTable[k-1] == patchBorders[i])
724
61.3k
                                found2 = 1;
725
321k
                        }
726
87.2k
                        if (found2)
727
61.3k
                        {
728
61.3k
                            k++;
729
61.3k
                            goto restart;
730
61.3k
                        } else {
731
                            /* remove (k-1)th element */
732
25.9k
                            limTable[k-1] = sbr->f_table_res[LO_RES][sbr->N_low];
733
25.9k
                            qsort(limTable, sbr->noPatches + sbr->N_low, sizeof(limTable[0]), uint8cmp);
734
25.9k
                            nrLim--;
735
25.9k
                            goto restart;
736
25.9k
                        }
737
87.2k
                    }
738
206k
                }
739
                /* remove kth element */
740
170k
                limTable[k] = sbr->f_table_res[LO_RES][sbr->N_low];
741
170k
                qsort(limTable, nrLim, sizeof(limTable[0]), uint8cmp);
742
170k
                nrLim--;
743
170k
                goto restart;
744
257k
            } else {
745
143k
                k++;
746
143k
                goto restart;
747
143k
            }
748
401k
        }
749
750
77.9k
        sbr->N_L[s] = nrLim;
751
360k
        for (k = 0; k <= nrLim; k++)
752
282k
        {
753
282k
            sbr->f_table_lim[s][k] = limTable[k] - sbr->kx;
754
282k
        }
755
756
#if 0
757
        printf("f_table_lim[%d][%d]: ", s, sbr->N_L[s]);
758
        for (k = 0; k <= sbr->N_L[s]; k++)
759
        {
760
            printf("%d ", sbr->f_table_lim[s][k]);
761
        }
762
        printf("\n");
763
#endif
764
77.9k
    }
765
25.9k
}
limiter_frequency_table
Line
Count
Source
626
11.4k
{
627
#if 0
628
    static const real_t limiterBandsPerOctave[] = { REAL_CONST(1.2),
629
        REAL_CONST(2), REAL_CONST(3) };
630
#else
631
11.4k
    static const real_t limiterBandsCompare[] = { REAL_CONST(1.327152),
632
11.4k
        REAL_CONST(1.185093), REAL_CONST(1.119872) };
633
11.4k
#endif
634
11.4k
    uint8_t k, s;
635
11.4k
    int8_t nrLim;
636
#if 0
637
    real_t limBands;
638
#endif
639
640
11.4k
    sbr->f_table_lim[0][0] = sbr->f_table_res[LO_RES][0] - sbr->kx;
641
11.4k
    sbr->f_table_lim[0][1] = sbr->f_table_res[LO_RES][sbr->N_low] - sbr->kx;
642
11.4k
    sbr->N_L[0] = 1;
643
644
#if 0
645
    printf("f_table_lim[%d][%d]: ", 0, sbr->N_L[0]);
646
    for (k = 0; k <= sbr->N_L[0]; k++)
647
    {
648
        printf("%d ", sbr->f_table_lim[0][k]);
649
    }
650
    printf("\n");
651
#endif
652
653
45.8k
    for (s = 1; s < 4; s++)
654
34.3k
    {
655
34.3k
        uint8_t limTable[100 /*TODO*/] = {0};
656
34.3k
        uint8_t patchBorders[64/*??*/] = {0};
657
658
#if 0
659
        limBands = limiterBandsPerOctave[s - 1];
660
#endif
661
662
34.3k
        patchBorders[0] = sbr->kx;
663
110k
        for (k = 1; k <= sbr->noPatches; k++)
664
76.3k
        {
665
76.3k
            patchBorders[k] = patchBorders[k-1] + sbr->patchNoSubbands[k-1];
666
76.3k
        }
667
668
211k
        for (k = 0; k <= sbr->N_low; k++)
669
176k
        {
670
176k
            limTable[k] = sbr->f_table_res[LO_RES][k];
671
176k
        }
672
76.3k
        for (k = 1; k < sbr->noPatches; k++)
673
41.9k
        {
674
41.9k
            limTable[k+sbr->N_low] = patchBorders[k];
675
41.9k
        }
676
677
        /* needed */
678
34.3k
        qsort(limTable, sbr->noPatches + sbr->N_low, sizeof(limTable[0]), uint8cmp);
679
34.3k
        k = 1;
680
34.3k
        nrLim = sbr->noPatches + sbr->N_low - 1;
681
682
34.3k
        if (nrLim < 0) // TODO: BIG FAT PROBLEM
683
0
            return;
684
685
218k
restart:
686
218k
        if (k <= nrLim)
687
184k
        {
688
184k
            real_t nOctaves;
689
690
184k
            if (limTable[k-1] != 0)
691
#if 0
692
                nOctaves = REAL_CONST(log((float)limTable[k]/(float)limTable[k-1])/log(2.0));
693
#else
694
184k
#ifdef FIXED_POINT
695
184k
                nOctaves = DIV_R((limTable[k]<<REAL_BITS),REAL_CONST(limTable[k-1]));
696
#else
697
                nOctaves = (real_t)limTable[k]/(real_t)limTable[k-1];
698
#endif
699
0
#endif
700
0
            else
701
0
                nOctaves = 0;
702
703
#if 0
704
            if ((MUL_R(nOctaves,limBands)) < REAL_CONST(0.49))
705
#else
706
184k
            if (nOctaves < limiterBandsCompare[s - 1])
707
116k
#endif
708
116k
            {
709
116k
                uint8_t i;
710
116k
                if (limTable[k] != limTable[k-1])
711
91.9k
                {
712
91.9k
                    uint8_t found = 0, found2 = 0;
713
462k
                    for (i = 0; i <= sbr->noPatches; i++)
714
370k
                    {
715
370k
                        if (limTable[k] == patchBorders[i])
716
40.4k
                            found = 1;
717
370k
                    }
718
91.9k
                    if (found)
719
40.4k
                    {
720
40.4k
                        found2 = 0;
721
194k
                        for (i = 0; i <= sbr->noPatches; i++)
722
154k
                        {
723
154k
                            if (limTable[k-1] == patchBorders[i])
724
28.1k
                                found2 = 1;
725
154k
                        }
726
40.4k
                        if (found2)
727
28.1k
                        {
728
28.1k
                            k++;
729
28.1k
                            goto restart;
730
28.1k
                        } else {
731
                            /* remove (k-1)th element */
732
12.2k
                            limTable[k-1] = sbr->f_table_res[LO_RES][sbr->N_low];
733
12.2k
                            qsort(limTable, sbr->noPatches + sbr->N_low, sizeof(limTable[0]), uint8cmp);
734
12.2k
                            nrLim--;
735
12.2k
                            goto restart;
736
12.2k
                        }
737
40.4k
                    }
738
91.9k
                }
739
                /* remove kth element */
740
76.4k
                limTable[k] = sbr->f_table_res[LO_RES][sbr->N_low];
741
76.4k
                qsort(limTable, nrLim, sizeof(limTable[0]), uint8cmp);
742
76.4k
                nrLim--;
743
76.4k
                goto restart;
744
116k
            } else {
745
67.3k
                k++;
746
67.3k
                goto restart;
747
67.3k
            }
748
184k
        }
749
750
34.3k
        sbr->N_L[s] = nrLim;
751
164k
        for (k = 0; k <= nrLim; k++)
752
129k
        {
753
129k
            sbr->f_table_lim[s][k] = limTable[k] - sbr->kx;
754
129k
        }
755
756
#if 0
757
        printf("f_table_lim[%d][%d]: ", s, sbr->N_L[s]);
758
        for (k = 0; k <= sbr->N_L[s]; k++)
759
        {
760
            printf("%d ", sbr->f_table_lim[s][k]);
761
        }
762
        printf("\n");
763
#endif
764
34.3k
    }
765
11.4k
}
limiter_frequency_table
Line
Count
Source
626
14.5k
{
627
#if 0
628
    static const real_t limiterBandsPerOctave[] = { REAL_CONST(1.2),
629
        REAL_CONST(2), REAL_CONST(3) };
630
#else
631
14.5k
    static const real_t limiterBandsCompare[] = { REAL_CONST(1.327152),
632
14.5k
        REAL_CONST(1.185093), REAL_CONST(1.119872) };
633
14.5k
#endif
634
14.5k
    uint8_t k, s;
635
14.5k
    int8_t nrLim;
636
#if 0
637
    real_t limBands;
638
#endif
639
640
14.5k
    sbr->f_table_lim[0][0] = sbr->f_table_res[LO_RES][0] - sbr->kx;
641
14.5k
    sbr->f_table_lim[0][1] = sbr->f_table_res[LO_RES][sbr->N_low] - sbr->kx;
642
14.5k
    sbr->N_L[0] = 1;
643
644
#if 0
645
    printf("f_table_lim[%d][%d]: ", 0, sbr->N_L[0]);
646
    for (k = 0; k <= sbr->N_L[0]; k++)
647
    {
648
        printf("%d ", sbr->f_table_lim[0][k]);
649
    }
650
    printf("\n");
651
#endif
652
653
58.1k
    for (s = 1; s < 4; s++)
654
43.5k
    {
655
43.5k
        uint8_t limTable[100 /*TODO*/] = {0};
656
43.5k
        uint8_t patchBorders[64/*??*/] = {0};
657
658
#if 0
659
        limBands = limiterBandsPerOctave[s - 1];
660
#endif
661
662
43.5k
        patchBorders[0] = sbr->kx;
663
132k
        for (k = 1; k <= sbr->noPatches; k++)
664
89.1k
        {
665
89.1k
            patchBorders[k] = patchBorders[k-1] + sbr->patchNoSubbands[k-1];
666
89.1k
        }
667
668
258k
        for (k = 0; k <= sbr->N_low; k++)
669
214k
        {
670
214k
            limTable[k] = sbr->f_table_res[LO_RES][k];
671
214k
        }
672
89.1k
        for (k = 1; k < sbr->noPatches; k++)
673
45.6k
        {
674
45.6k
            limTable[k+sbr->N_low] = patchBorders[k];
675
45.6k
        }
676
677
        /* needed */
678
43.5k
        qsort(limTable, sbr->noPatches + sbr->N_low, sizeof(limTable[0]), uint8cmp);
679
43.5k
        k = 1;
680
43.5k
        nrLim = sbr->noPatches + sbr->N_low - 1;
681
682
43.5k
        if (nrLim < 0) // TODO: BIG FAT PROBLEM
683
0
            return;
684
685
260k
restart:
686
260k
        if (k <= nrLim)
687
216k
        {
688
216k
            real_t nOctaves;
689
690
216k
            if (limTable[k-1] != 0)
691
#if 0
692
                nOctaves = REAL_CONST(log((float)limTable[k]/(float)limTable[k-1])/log(2.0));
693
#else
694
#ifdef FIXED_POINT
695
                nOctaves = DIV_R((limTable[k]<<REAL_BITS),REAL_CONST(limTable[k-1]));
696
#else
697
216k
                nOctaves = (real_t)limTable[k]/(real_t)limTable[k-1];
698
0
#endif
699
0
#endif
700
0
            else
701
0
                nOctaves = 0;
702
703
#if 0
704
            if ((MUL_R(nOctaves,limBands)) < REAL_CONST(0.49))
705
#else
706
216k
            if (nOctaves < limiterBandsCompare[s - 1])
707
141k
#endif
708
141k
            {
709
141k
                uint8_t i;
710
141k
                if (limTable[k] != limTable[k-1])
711
114k
                {
712
114k
                    uint8_t found = 0, found2 = 0;
713
573k
                    for (i = 0; i <= sbr->noPatches; i++)
714
459k
                    {
715
459k
                        if (limTable[k] == patchBorders[i])
716
46.8k
                            found = 1;
717
459k
                    }
718
114k
                    if (found)
719
46.8k
                    {
720
46.8k
                        found2 = 0;
721
213k
                        for (i = 0; i <= sbr->noPatches; i++)
722
166k
                        {
723
166k
                            if (limTable[k-1] == patchBorders[i])
724
33.2k
                                found2 = 1;
725
166k
                        }
726
46.8k
                        if (found2)
727
33.2k
                        {
728
33.2k
                            k++;
729
33.2k
                            goto restart;
730
33.2k
                        } else {
731
                            /* remove (k-1)th element */
732
13.6k
                            limTable[k-1] = sbr->f_table_res[LO_RES][sbr->N_low];
733
13.6k
                            qsort(limTable, sbr->noPatches + sbr->N_low, sizeof(limTable[0]), uint8cmp);
734
13.6k
                            nrLim--;
735
13.6k
                            goto restart;
736
13.6k
                        }
737
46.8k
                    }
738
114k
                }
739
                /* remove kth element */
740
94.2k
                limTable[k] = sbr->f_table_res[LO_RES][sbr->N_low];
741
94.2k
                qsort(limTable, nrLim, sizeof(limTable[0]), uint8cmp);
742
94.2k
                nrLim--;
743
94.2k
                goto restart;
744
141k
            } else {
745
75.7k
                k++;
746
75.7k
                goto restart;
747
75.7k
            }
748
216k
        }
749
750
43.5k
        sbr->N_L[s] = nrLim;
751
196k
        for (k = 0; k <= nrLim; k++)
752
152k
        {
753
152k
            sbr->f_table_lim[s][k] = limTable[k] - sbr->kx;
754
152k
        }
755
756
#if 0
757
        printf("f_table_lim[%d][%d]: ", s, sbr->N_L[s]);
758
        for (k = 0; k <= sbr->N_L[s]; k++)
759
        {
760
            printf("%d ", sbr->f_table_lim[s][k]);
761
        }
762
        printf("\n");
763
#endif
764
43.5k
    }
765
14.5k
}
766
767
#endif