Coverage Report

Created: 2025-08-29 06:11

/proc/self/cwd/libfaad/sbr_hfadj.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3
** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
4
**
5
** This program is free software; you can redistribute it and/or modify
6
** it under the terms of the GNU General Public License as published by
7
** the Free Software Foundation; either version 2 of the License, or
8
** (at your option) any later version.
9
**
10
** This program is distributed in the hope that it will be useful,
11
** but WITHOUT ANY WARRANTY; without even the implied warranty of
12
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
** GNU General Public License for more details.
14
**
15
** You should have received a copy of the GNU General Public License
16
** along with this program; if not, write to the Free Software
17
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
**
19
** Any non-GPL usage of this software or parts of this software is strictly
20
** forbidden.
21
**
22
** The "appropriate copyright message" mentioned in section 2c of the GPLv2
23
** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
24
**
25
** Commercial non-GPL licensing of this software is possible.
26
** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
27
**
28
** $Id: sbr_hfadj.c,v 1.23 2008/09/19 22:50:20 menno Exp $
29
**/
30
31
/* High Frequency adjustment */
32
#include <float.h>
33
34
#include "common.h"
35
#include "structs.h"
36
37
#ifdef SBR_DEC
38
39
#include "sbr_syntax.h"
40
#include "sbr_hfadj.h"
41
42
#include "sbr_noise.h"
43
44
45
/* static function declarations */
46
static uint8_t estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj,
47
                                         qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch);
48
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch);
49
#ifdef SBR_LOW_POWER
50
static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch);
51
static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch);
52
#endif
53
static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj, qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch);
54
55
56
uint8_t hf_adjustment(sbr_info *sbr, qmf_t Xsbr[MAX_NTSRHFG][64]
57
#ifdef SBR_LOW_POWER
58
                      ,real_t *deg /* aliasing degree */
59
#endif
60
                      ,uint8_t ch)
61
26.8k
{
62
26.8k
    ALIGN sbr_hfadj_info adj = {{{0}}};
63
26.8k
    uint8_t ret = 0;
64
65
26.8k
    if (sbr->bs_frame_class[ch] == FIXFIX)
66
7.44k
    {
67
7.44k
        sbr->l_A[ch] = -1;
68
19.4k
    } else if (sbr->bs_frame_class[ch] == VARFIX) {
69
9.48k
        if (sbr->bs_pointer[ch] > 1)
70
2.77k
            sbr->l_A[ch] = sbr->bs_pointer[ch] - 1;
71
6.71k
        else
72
6.71k
            sbr->l_A[ch] = -1;
73
9.91k
    } else {
74
9.91k
        if (sbr->bs_pointer[ch] == 0)
75
3.30k
            sbr->l_A[ch] = -1;
76
6.61k
        else
77
6.61k
            sbr->l_A[ch] = sbr->L_E[ch] + 1 - sbr->bs_pointer[ch];
78
9.91k
    }
79
80
26.8k
    ret = estimate_current_envelope(sbr, &adj, Xsbr, ch);
81
26.8k
    if (ret > 0)
82
744
        return 1;
83
84
26.1k
    calculate_gain(sbr, &adj, ch);
85
86
#ifdef SBR_LOW_POWER
87
    calc_gain_groups(sbr, &adj, deg, ch);
88
    aliasing_reduction(sbr, &adj, deg, ch);
89
#endif
90
91
26.1k
    hf_assembly(sbr, &adj, Xsbr, ch);
92
93
26.1k
    return 0;
94
26.8k
}
95
96
static uint8_t get_S_mapped(sbr_info *sbr, uint8_t ch, uint8_t l, uint8_t current_band)
97
204k
{
98
204k
    if (sbr->f[ch][l] == HI_RES)
99
83.8k
    {
100
        /* in case of using f_table_high we just have 1 to 1 mapping
101
         * from bs_add_harmonic[l][k]
102
         */
103
83.8k
        if ((l >= sbr->l_A[ch]) ||
104
83.8k
            (sbr->bs_add_harmonic_prev[ch][current_band] && sbr->bs_add_harmonic_flag_prev[ch]))
105
57.3k
        {
106
57.3k
            return sbr->bs_add_harmonic[ch][current_band];
107
57.3k
        }
108
120k
    } else {
109
120k
        uint8_t b, lb, ub;
110
111
        /* in case of f_table_low we check if any of the HI_RES bands
112
         * within this LO_RES band has bs_add_harmonic[l][k] turned on
113
         * (note that borders in the LO_RES table are also present in
114
         * the HI_RES table)
115
         */
116
117
        /* find first HI_RES band in current LO_RES band */
118
120k
        lb = 2*current_band - ((sbr->N_high & 1) ? 1 : 0);
119
        /* find first HI_RES band in next LO_RES band */
120
120k
        ub = 2*(current_band+1) - ((sbr->N_high & 1) ? 1 : 0);
121
122
        /* check all HI_RES bands in current LO_RES band for sinusoid */
123
309k
        for (b = lb; b < ub; b++)
124
200k
        {
125
200k
            if ((l >= sbr->l_A[ch]) ||
126
200k
                (sbr->bs_add_harmonic_prev[ch][b] && sbr->bs_add_harmonic_flag_prev[ch]))
127
142k
            {
128
142k
                if (sbr->bs_add_harmonic[ch][b] == 1)
129
11.8k
                    return 1;
130
142k
            }
131
200k
        }
132
120k
    }
133
134
135k
    return 0;
135
204k
}
136
137
static uint8_t estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj,
138
                                         qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch)
139
26.8k
{
140
26.8k
    uint8_t m, l, j, k, k_l, k_h, p;
141
26.8k
    real_t nrg, div;
142
26.8k
    (void)adj;  /* TODO: remove parameter? */
143
#ifdef FIXED_POINT
144
11.7k
    const real_t half = REAL_CONST(0.5);
145
    real_t limit;
146
    real_t mul;
147
#else
148
    const real_t half = 0;  /* Compiler is smart enough to eliminate +0 op. */
149
    const real_t limit = FLT_MAX;
150
#endif
151
152
26.8k
    if (sbr->bs_interpol_freq == 1)
153
18.3k
    {
154
50.8k
        for (l = 0; l < sbr->L_E[ch]; l++)
155
32.6k
        {
156
32.6k
            uint8_t i, l_i, u_i;
157
158
32.6k
            l_i = sbr->t_E[ch][l];
159
32.6k
            u_i = sbr->t_E[ch][l+1];
160
161
32.6k
            div = (real_t)(u_i - l_i);
162
163
32.6k
            if (div <= 0)
164
1.26k
                div = 1;
165
#ifdef FIXED_POINT
166
13.4k
            limit = div << (30 - (COEF_BITS - REAL_BITS));
167
13.4k
            mul = (1 << (COEF_BITS - REAL_BITS)) / div;
168
#endif
169
170
408k
            for (m = 0; m < sbr->M; m++)
171
375k
            {
172
375k
                nrg = 0;
173
174
6.99M
                for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
175
6.61M
                {
176
6.61M
                    real_t re = QMF_RE(Xsbr[i][m + sbr->kx]) + half;
177
6.61M
                    real_t im = QMF_IM(Xsbr[i][m + sbr->kx]) + half;
178
6.61M
                    (void)im;
179
                    /* Actually, that should be MUL_R. On floating-point build
180
                       that is the same. On fixed point-build we use it to
181
                       pre-scale result (to aviod overflow). That, of course
182
                       causes some precision loss. */
183
6.61M
                    nrg += MUL_C(re, re)
184
6.61M
#ifndef SBR_LOW_POWER
185
6.61M
                        + MUL_C(im, im)
186
6.61M
#endif
187
6.61M
                        ;
188
6.61M
                }
189
190
375k
                if (nrg < -limit || nrg > limit)
191
186
                    return 1;
192
#ifdef FIXED_POINT
193
159k
                sbr->E_curr[ch][m][l] = nrg * mul;
194
#else
195
216k
                sbr->E_curr[ch][m][l] = nrg / div;
196
216k
#endif
197
#ifdef SBR_LOW_POWER
198
#ifdef FIXED_POINT
199
                sbr->E_curr[ch][m][l] <<= 1;
200
#else
201
                sbr->E_curr[ch][m][l] *= 2;
202
#endif
203
#endif
204
216k
            }
205
32.6k
        }
206
18.3k
    } else {
207
21.5k
        for (l = 0; l < sbr->L_E[ch]; l++)
208
13.6k
        {
209
88.6k
            for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
210
75.4k
            {
211
75.4k
                k_l = sbr->f_table_res[sbr->f[ch][l]][p];
212
75.4k
                k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
213
214
272k
                for (k = k_l; k < k_h; k++)
215
197k
                {
216
197k
                    uint8_t i, l_i, u_i;
217
197k
                    nrg = 0;
218
219
197k
                    l_i = sbr->t_E[ch][l];
220
197k
                    u_i = sbr->t_E[ch][l+1];
221
222
197k
                    div = (real_t)((u_i - l_i)*(k_h - k_l));
223
224
197k
                    if (div <= 0)
225
5.00k
                        div = 1;
226
#ifdef FIXED_POINT
227
101k
                    limit = div << (30 - (COEF_BITS - REAL_BITS));
228
101k
                    mul = (1 << (COEF_BITS - REAL_BITS)) / div;
229
#endif
230
231
4.38M
                    for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
232
4.18M
                    {
233
19.6M
                        for (j = k_l; j < k_h; j++)
234
15.4M
                        {
235
15.4M
                            real_t re = QMF_RE(Xsbr[i][j]) + half;
236
15.4M
                            real_t im = QMF_IM(Xsbr[i][j]) + half;
237
15.4M
                            (void)im;
238
                            /* Actually, that should be MUL_R. On floating-point build
239
                               that is the same. On fixed point-build we use it to
240
                               pre-scale result (to aviod overflow). That, of course
241
                               causes some precision loss. */
242
15.4M
                            nrg += MUL_C(re, re)
243
15.4M
#ifndef SBR_LOW_POWER
244
15.4M
                                + MUL_C(im, im)
245
15.4M
#endif
246
15.4M
                                ;
247
15.4M
                        }
248
4.18M
                    }
249
250
197k
                    if (nrg < -limit || nrg > limit)
251
558
                        return 1;
252
#ifdef FIXED_POINT
253
101k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg * mul;
254
#else
255
95.5k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
256
95.5k
#endif
257
#ifdef SBR_LOW_POWER
258
#ifdef FIXED_POINT
259
                    sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
260
#else
261
                    sbr->E_curr[ch][k - sbr->kx][l] *= 2;
262
#endif
263
#endif
264
95.5k
                }
265
75.4k
            }
266
13.6k
        }
267
8.46k
    }
268
269
26.1k
    return 0;
270
26.8k
}
sbr_hfadj.c:estimate_current_envelope
Line
Count
Source
139
11.7k
{
140
11.7k
    uint8_t m, l, j, k, k_l, k_h, p;
141
11.7k
    real_t nrg, div;
142
11.7k
    (void)adj;  /* TODO: remove parameter? */
143
11.7k
#ifdef FIXED_POINT
144
11.7k
    const real_t half = REAL_CONST(0.5);
145
11.7k
    real_t limit;
146
11.7k
    real_t mul;
147
#else
148
    const real_t half = 0;  /* Compiler is smart enough to eliminate +0 op. */
149
    const real_t limit = FLT_MAX;
150
#endif
151
152
11.7k
    if (sbr->bs_interpol_freq == 1)
153
6.96k
    {
154
20.2k
        for (l = 0; l < sbr->L_E[ch]; l++)
155
13.4k
        {
156
13.4k
            uint8_t i, l_i, u_i;
157
158
13.4k
            l_i = sbr->t_E[ch][l];
159
13.4k
            u_i = sbr->t_E[ch][l+1];
160
161
13.4k
            div = (real_t)(u_i - l_i);
162
163
13.4k
            if (div <= 0)
164
614
                div = 1;
165
13.4k
#ifdef FIXED_POINT
166
13.4k
            limit = div << (30 - (COEF_BITS - REAL_BITS));
167
13.4k
            mul = (1 << (COEF_BITS - REAL_BITS)) / div;
168
13.4k
#endif
169
170
172k
            for (m = 0; m < sbr->M; m++)
171
159k
            {
172
159k
                nrg = 0;
173
174
2.65M
                for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
175
2.49M
                {
176
2.49M
                    real_t re = QMF_RE(Xsbr[i][m + sbr->kx]) + half;
177
2.49M
                    real_t im = QMF_IM(Xsbr[i][m + sbr->kx]) + half;
178
2.49M
                    (void)im;
179
                    /* Actually, that should be MUL_R. On floating-point build
180
                       that is the same. On fixed point-build we use it to
181
                       pre-scale result (to aviod overflow). That, of course
182
                       causes some precision loss. */
183
2.49M
                    nrg += MUL_C(re, re)
184
2.49M
#ifndef SBR_LOW_POWER
185
2.49M
                        + MUL_C(im, im)
186
2.49M
#endif
187
2.49M
                        ;
188
2.49M
                }
189
190
159k
                if (nrg < -limit || nrg > limit)
191
179
                    return 1;
192
159k
#ifdef FIXED_POINT
193
159k
                sbr->E_curr[ch][m][l] = nrg * mul;
194
#else
195
                sbr->E_curr[ch][m][l] = nrg / div;
196
#endif
197
#ifdef SBR_LOW_POWER
198
#ifdef FIXED_POINT
199
                sbr->E_curr[ch][m][l] <<= 1;
200
#else
201
                sbr->E_curr[ch][m][l] *= 2;
202
#endif
203
#endif
204
159k
            }
205
13.4k
        }
206
6.96k
    } else {
207
12.0k
        for (l = 0; l < sbr->L_E[ch]; l++)
208
7.77k
        {
209
45.0k
            for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
210
37.8k
            {
211
37.8k
                k_l = sbr->f_table_res[sbr->f[ch][l]][p];
212
37.8k
                k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
213
214
138k
                for (k = k_l; k < k_h; k++)
215
101k
                {
216
101k
                    uint8_t i, l_i, u_i;
217
101k
                    nrg = 0;
218
219
101k
                    l_i = sbr->t_E[ch][l];
220
101k
                    u_i = sbr->t_E[ch][l+1];
221
222
101k
                    div = (real_t)((u_i - l_i)*(k_h - k_l));
223
224
101k
                    if (div <= 0)
225
1.27k
                        div = 1;
226
101k
#ifdef FIXED_POINT
227
101k
                    limit = div << (30 - (COEF_BITS - REAL_BITS));
228
101k
                    mul = (1 << (COEF_BITS - REAL_BITS)) / div;
229
101k
#endif
230
231
2.35M
                    for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
232
2.25M
                    {
233
11.4M
                        for (j = k_l; j < k_h; j++)
234
9.19M
                        {
235
9.19M
                            real_t re = QMF_RE(Xsbr[i][j]) + half;
236
9.19M
                            real_t im = QMF_IM(Xsbr[i][j]) + half;
237
9.19M
                            (void)im;
238
                            /* Actually, that should be MUL_R. On floating-point build
239
                               that is the same. On fixed point-build we use it to
240
                               pre-scale result (to aviod overflow). That, of course
241
                               causes some precision loss. */
242
9.19M
                            nrg += MUL_C(re, re)
243
9.19M
#ifndef SBR_LOW_POWER
244
9.19M
                                + MUL_C(im, im)
245
9.19M
#endif
246
9.19M
                                ;
247
9.19M
                        }
248
2.25M
                    }
249
250
101k
                    if (nrg < -limit || nrg > limit)
251
552
                        return 1;
252
101k
#ifdef FIXED_POINT
253
101k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg * mul;
254
#else
255
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
256
#endif
257
#ifdef SBR_LOW_POWER
258
#ifdef FIXED_POINT
259
                    sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
260
#else
261
                    sbr->E_curr[ch][k - sbr->kx][l] *= 2;
262
#endif
263
#endif
264
101k
                }
265
37.8k
            }
266
7.77k
        }
267
4.82k
    }
268
269
11.0k
    return 0;
270
11.7k
}
sbr_hfadj.c:estimate_current_envelope
Line
Count
Source
139
15.0k
{
140
15.0k
    uint8_t m, l, j, k, k_l, k_h, p;
141
15.0k
    real_t nrg, div;
142
15.0k
    (void)adj;  /* TODO: remove parameter? */
143
#ifdef FIXED_POINT
144
    const real_t half = REAL_CONST(0.5);
145
    real_t limit;
146
    real_t mul;
147
#else
148
15.0k
    const real_t half = 0;  /* Compiler is smart enough to eliminate +0 op. */
149
15.0k
    const real_t limit = FLT_MAX;
150
15.0k
#endif
151
152
15.0k
    if (sbr->bs_interpol_freq == 1)
153
11.4k
    {
154
30.6k
        for (l = 0; l < sbr->L_E[ch]; l++)
155
19.2k
        {
156
19.2k
            uint8_t i, l_i, u_i;
157
158
19.2k
            l_i = sbr->t_E[ch][l];
159
19.2k
            u_i = sbr->t_E[ch][l+1];
160
161
19.2k
            div = (real_t)(u_i - l_i);
162
163
19.2k
            if (div <= 0)
164
655
                div = 1;
165
#ifdef FIXED_POINT
166
            limit = div << (30 - (COEF_BITS - REAL_BITS));
167
            mul = (1 << (COEF_BITS - REAL_BITS)) / div;
168
#endif
169
170
235k
            for (m = 0; m < sbr->M; m++)
171
216k
            {
172
216k
                nrg = 0;
173
174
4.33M
                for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
175
4.12M
                {
176
4.12M
                    real_t re = QMF_RE(Xsbr[i][m + sbr->kx]) + half;
177
4.12M
                    real_t im = QMF_IM(Xsbr[i][m + sbr->kx]) + half;
178
4.12M
                    (void)im;
179
                    /* Actually, that should be MUL_R. On floating-point build
180
                       that is the same. On fixed point-build we use it to
181
                       pre-scale result (to aviod overflow). That, of course
182
                       causes some precision loss. */
183
4.12M
                    nrg += MUL_C(re, re)
184
4.12M
#ifndef SBR_LOW_POWER
185
4.12M
                        + MUL_C(im, im)
186
4.12M
#endif
187
4.12M
                        ;
188
4.12M
                }
189
190
216k
                if (nrg < -limit || nrg > limit)
191
7
                    return 1;
192
#ifdef FIXED_POINT
193
                sbr->E_curr[ch][m][l] = nrg * mul;
194
#else
195
216k
                sbr->E_curr[ch][m][l] = nrg / div;
196
216k
#endif
197
#ifdef SBR_LOW_POWER
198
#ifdef FIXED_POINT
199
                sbr->E_curr[ch][m][l] <<= 1;
200
#else
201
                sbr->E_curr[ch][m][l] *= 2;
202
#endif
203
#endif
204
216k
            }
205
19.2k
        }
206
11.4k
    } else {
207
9.53k
        for (l = 0; l < sbr->L_E[ch]; l++)
208
5.89k
        {
209
43.5k
            for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
210
37.6k
            {
211
37.6k
                k_l = sbr->f_table_res[sbr->f[ch][l]][p];
212
37.6k
                k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
213
214
133k
                for (k = k_l; k < k_h; k++)
215
95.5k
                {
216
95.5k
                    uint8_t i, l_i, u_i;
217
95.5k
                    nrg = 0;
218
219
95.5k
                    l_i = sbr->t_E[ch][l];
220
95.5k
                    u_i = sbr->t_E[ch][l+1];
221
222
95.5k
                    div = (real_t)((u_i - l_i)*(k_h - k_l));
223
224
95.5k
                    if (div <= 0)
225
3.72k
                        div = 1;
226
#ifdef FIXED_POINT
227
                    limit = div << (30 - (COEF_BITS - REAL_BITS));
228
                    mul = (1 << (COEF_BITS - REAL_BITS)) / div;
229
#endif
230
231
2.03M
                    for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
232
1.93M
                    {
233
8.19M
                        for (j = k_l; j < k_h; j++)
234
6.25M
                        {
235
6.25M
                            real_t re = QMF_RE(Xsbr[i][j]) + half;
236
6.25M
                            real_t im = QMF_IM(Xsbr[i][j]) + half;
237
6.25M
                            (void)im;
238
                            /* Actually, that should be MUL_R. On floating-point build
239
                               that is the same. On fixed point-build we use it to
240
                               pre-scale result (to aviod overflow). That, of course
241
                               causes some precision loss. */
242
6.25M
                            nrg += MUL_C(re, re)
243
6.25M
#ifndef SBR_LOW_POWER
244
6.25M
                                + MUL_C(im, im)
245
6.25M
#endif
246
6.25M
                                ;
247
6.25M
                        }
248
1.93M
                    }
249
250
95.5k
                    if (nrg < -limit || nrg > limit)
251
6
                        return 1;
252
#ifdef FIXED_POINT
253
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg * mul;
254
#else
255
95.5k
                    sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
256
95.5k
#endif
257
#ifdef SBR_LOW_POWER
258
#ifdef FIXED_POINT
259
                    sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
260
#else
261
                    sbr->E_curr[ch][k - sbr->kx][l] *= 2;
262
#endif
263
#endif
264
95.5k
                }
265
37.6k
            }
266
5.89k
        }
267
3.64k
    }
268
269
15.0k
    return 0;
270
15.0k
}
271
272
#ifdef FIXED_POINT
273
#define EPS (1) /* smallest number available in fixed point */
274
#else
275
199k
#define EPS (1e-12)
276
#endif
277
278
279
280
#ifdef FIXED_POINT
281
282
/* log2 values of [0..63] */
283
static const real_t log2_int_tab[] = {
284
    LOG2_MIN_INF, REAL_CONST(0.000000000000000), REAL_CONST(1.000000000000000), REAL_CONST(1.584962500721156),
285
    REAL_CONST(2.000000000000000), REAL_CONST(2.321928094887362), REAL_CONST(2.584962500721156), REAL_CONST(2.807354922057604),
286
    REAL_CONST(3.000000000000000), REAL_CONST(3.169925001442313), REAL_CONST(3.321928094887363), REAL_CONST(3.459431618637297),
287
    REAL_CONST(3.584962500721156), REAL_CONST(3.700439718141092), REAL_CONST(3.807354922057604), REAL_CONST(3.906890595608519),
288
    REAL_CONST(4.000000000000000), REAL_CONST(4.087462841250339), REAL_CONST(4.169925001442312), REAL_CONST(4.247927513443585),
289
    REAL_CONST(4.321928094887362), REAL_CONST(4.392317422778761), REAL_CONST(4.459431618637297), REAL_CONST(4.523561956057013),
290
    REAL_CONST(4.584962500721156), REAL_CONST(4.643856189774724), REAL_CONST(4.700439718141093), REAL_CONST(4.754887502163468),
291
    REAL_CONST(4.807354922057604), REAL_CONST(4.857980995127572), REAL_CONST(4.906890595608519), REAL_CONST(4.954196310386875),
292
    REAL_CONST(5.000000000000000), REAL_CONST(5.044394119358453), REAL_CONST(5.087462841250340), REAL_CONST(5.129283016944966),
293
    REAL_CONST(5.169925001442312), REAL_CONST(5.209453365628949), REAL_CONST(5.247927513443585), REAL_CONST(5.285402218862248),
294
    REAL_CONST(5.321928094887363), REAL_CONST(5.357552004618084), REAL_CONST(5.392317422778761), REAL_CONST(5.426264754702098),
295
    REAL_CONST(5.459431618637297), REAL_CONST(5.491853096329675), REAL_CONST(5.523561956057013), REAL_CONST(5.554588851677637),
296
    REAL_CONST(5.584962500721156), REAL_CONST(5.614709844115208), REAL_CONST(5.643856189774724), REAL_CONST(5.672425341971495),
297
    REAL_CONST(5.700439718141093), REAL_CONST(5.727920454563200), REAL_CONST(5.754887502163469), REAL_CONST(5.781359713524660),
298
    REAL_CONST(5.807354922057605), REAL_CONST(5.832890014164742), REAL_CONST(5.857980995127572), REAL_CONST(5.882643049361842),
299
    REAL_CONST(5.906890595608518), REAL_CONST(5.930737337562887), REAL_CONST(5.954196310386876), REAL_CONST(5.977279923499916)
300
};
301
302
// pan_log2_tab[X] = log2(2**X + 1) - X
303
static const real_t pan_log2_tab[13] = {
304
    REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362), REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339),
305
    REAL_CONST(0.044394119358453), REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878), REAL_CONST(0.002815015607054),
306
    REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247), REAL_CONST(0.000352177480301)
307
};
308
309
static real_t find_log2_E(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
310
367k
{
311
    /* check for coupled energy/noise data */
312
367k
    if (sbr->bs_coupling == 1)
313
171k
    {
314
171k
        int16_t e = sbr->E[0][k][l];
315
171k
        int16_t E = sbr->E[1][k][l];
316
171k
        uint8_t amp0 = (sbr->amp_res[0]) ? 0 : 1;
317
171k
        uint8_t amp1 = (sbr->amp_res[1]) ? 0 : 1;
318
171k
        real_t tmp, pan;
319
320
        /* E[1] should always be even so shifting is OK */
321
171k
        E >>= amp1;
322
171k
        if (e < 0 || e >= 64 || E < 0 || E > 24)
323
42.1k
            return LOG2_MIN_INF;
324
129k
        E -= 12;
325
326
129k
        if (ch != 0)  // L/R anti-symmetry
327
65.0k
            E = -E;
328
329
129k
        if (E >= 0)
330
66.2k
        {
331
            /* negative */
332
66.2k
            pan = pan_log2_tab[E];
333
66.2k
        } else {
334
            /* positive */
335
62.7k
            pan = pan_log2_tab[-E] + ((-E)<<REAL_BITS);
336
62.7k
        }
337
338
        /* tmp / pan in log2 */
339
129k
        tmp = (7 << REAL_BITS) + (e << (REAL_BITS-amp0));
340
129k
        return tmp - pan;
341
196k
    } else {
342
196k
        int16_t e = sbr->E[ch][k][l];
343
196k
        uint8_t amp = (sbr->amp_res[ch]) ? 0 : 1;
344
196k
        if (e < 0 || (e >> amp) >= 64)
345
26.8k
            return LOG2_MIN_INF;
346
169k
        return 6 * REAL_PRECISION + e * (REAL_PRECISION >> amp);
347
196k
    }
348
367k
}
349
350
static real_t find_log2_Q(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
351
252k
{
352
    /* check for coupled energy/noise data */
353
252k
    if (sbr->bs_coupling == 1)
354
121k
    {
355
121k
        int32_t q = sbr->Q[0][k][l];
356
121k
        int32_t Q = sbr->Q[1][k][l];
357
121k
        real_t tmp, pan;
358
359
121k
        if (q < 0 || q > 30 || Q < 0 || Q > 24)
360
19.6k
            return LOG2_MIN_INF;
361
101k
        Q -= 12;
362
363
101k
        if (ch != 0)  // L/R anti-symmetry
364
51.2k
            Q = -Q;
365
366
101k
        if (Q >= 0)
367
51.3k
        {
368
            /* negative */
369
51.3k
            pan = pan_log2_tab[Q];
370
51.3k
        } else {
371
            /* positive */
372
50.2k
            pan = pan_log2_tab[-Q] + ((-Q)<<REAL_BITS);
373
50.2k
        }
374
375
        /* tmp / pan in log2 */
376
101k
        tmp = (7 - q) * REAL_PRECISION;
377
101k
        return tmp - pan;
378
130k
    } else {
379
130k
        int32_t q = sbr->Q[ch][k][l];
380
130k
        if (q < 0 || q > 30)
381
23.3k
            return LOG2_MIN_INF;
382
107k
        return (6 - q) * REAL_PRECISION;
383
130k
    }
384
252k
}
385
386
static const real_t log_Qplus1_pan[31][13] = {
387
    { REAL_CONST(0.044383447617292), REAL_CONST(0.169768601655960), REAL_CONST(0.583090126514435), REAL_CONST(1.570089221000671), REAL_CONST(3.092446088790894), REAL_CONST(4.733354568481445), REAL_CONST(6.022367954254150), REAL_CONST(6.692092418670654), REAL_CONST(6.924463272094727), REAL_CONST(6.989034175872803), REAL_CONST(7.005646705627441), REAL_CONST(7.009829998016357), REAL_CONST(7.010877609252930) },
388
    { REAL_CONST(0.022362394258380), REAL_CONST(0.087379962205887), REAL_CONST(0.320804953575134), REAL_CONST(0.988859415054321), REAL_CONST(2.252387046813965), REAL_CONST(3.786596298217773), REAL_CONST(5.044394016265869), REAL_CONST(5.705977916717529), REAL_CONST(5.936291694641113), REAL_CONST(6.000346660614014), REAL_CONST(6.016829967498779), REAL_CONST(6.020981311798096), REAL_CONST(6.022020816802979) },
389
    { REAL_CONST(0.011224525049329), REAL_CONST(0.044351425021887), REAL_CONST(0.169301137328148), REAL_CONST(0.577544987201691), REAL_CONST(1.527246952056885), REAL_CONST(2.887525320053101), REAL_CONST(4.087462902069092), REAL_CONST(4.733354568481445), REAL_CONST(4.959661006927490), REAL_CONST(5.022709369659424), REAL_CONST(5.038940429687500), REAL_CONST(5.043028831481934), REAL_CONST(5.044052600860596) },
390
    { REAL_CONST(0.005623178556561), REAL_CONST(0.022346137091517), REAL_CONST(0.087132595479488), REAL_CONST(0.317482173442841), REAL_CONST(0.956931233406067), REAL_CONST(2.070389270782471), REAL_CONST(3.169924974441528), REAL_CONST(3.786596298217773), REAL_CONST(4.005294322967529), REAL_CONST(4.066420555114746), REAL_CONST(4.082170009613037), REAL_CONST(4.086137294769287), REAL_CONST(4.087131500244141) },
391
    { REAL_CONST(0.002814328996465), REAL_CONST(0.011216334067285), REAL_CONST(0.044224001467228), REAL_CONST(0.167456731200218), REAL_CONST(0.556393325328827), REAL_CONST(1.378511548042297), REAL_CONST(2.321928024291992), REAL_CONST(2.887525320053101), REAL_CONST(3.092446088790894), REAL_CONST(3.150059700012207), REAL_CONST(3.164926528930664), REAL_CONST(3.168673276901245), REAL_CONST(3.169611930847168) },
392
    { REAL_CONST(0.001407850766554), REAL_CONST(0.005619067233056), REAL_CONST(0.022281449288130), REAL_CONST(0.086156636476517), REAL_CONST(0.304854571819305), REAL_CONST(0.847996890544891), REAL_CONST(1.584962487220764), REAL_CONST(2.070389270782471), REAL_CONST(2.252387046813965), REAL_CONST(2.304061651229858), REAL_CONST(2.317430257797241), REAL_CONST(2.320801734924316), REAL_CONST(2.321646213531494) },
393
    { REAL_CONST(0.000704097095877), REAL_CONST(0.002812269143760), REAL_CONST(0.011183738708496), REAL_CONST(0.043721374124289), REAL_CONST(0.160464659333229), REAL_CONST(0.485426813364029), REAL_CONST(1.000000000000000), REAL_CONST(1.378511548042297), REAL_CONST(1.527246952056885), REAL_CONST(1.570089221000671), REAL_CONST(1.581215262413025), REAL_CONST(1.584023833274841), REAL_CONST(1.584727644920349) },
394
    { REAL_CONST(0.000352177477907), REAL_CONST(0.001406819908880), REAL_CONST(0.005602621007711), REAL_CONST(0.022026389837265), REAL_CONST(0.082462236285210), REAL_CONST(0.263034462928772), REAL_CONST(0.584962487220764), REAL_CONST(0.847996890544891), REAL_CONST(0.956931233406067), REAL_CONST(0.988859415054321), REAL_CONST(0.997190535068512), REAL_CONST(0.999296069145203), REAL_CONST(0.999823868274689) },
395
    { REAL_CONST(0.000176099492819), REAL_CONST(0.000703581434209), REAL_CONST(0.002804030198604), REAL_CONST(0.011055230163038), REAL_CONST(0.041820213198662), REAL_CONST(0.137503549456596), REAL_CONST(0.321928083896637), REAL_CONST(0.485426813364029), REAL_CONST(0.556393325328827), REAL_CONST(0.577544987201691), REAL_CONST(0.583090126514435), REAL_CONST(0.584493279457092), REAL_CONST(0.584845066070557) },
396
    { REAL_CONST(0.000088052431238), REAL_CONST(0.000351833587047), REAL_CONST(0.001402696361765), REAL_CONST(0.005538204684854), REAL_CONST(0.021061634644866), REAL_CONST(0.070389263331890), REAL_CONST(0.169925004243851), REAL_CONST(0.263034462928772), REAL_CONST(0.304854571819305), REAL_CONST(0.317482173442841), REAL_CONST(0.320804953575134), REAL_CONST(0.321646571159363), REAL_CONST(0.321857661008835) },
397
    { REAL_CONST(0.000044026888645), REAL_CONST(0.000175927518285), REAL_CONST(0.000701518612914), REAL_CONST(0.002771759871393), REAL_CONST(0.010569252073765), REAL_CONST(0.035623874515295), REAL_CONST(0.087462842464447), REAL_CONST(0.137503549456596), REAL_CONST(0.160464659333229), REAL_CONST(0.167456731200218), REAL_CONST(0.169301137328148), REAL_CONST(0.169768601655960), REAL_CONST(0.169885858893394) },
398
    { REAL_CONST(0.000022013611670), REAL_CONST(0.000088052431238), REAL_CONST(0.000350801943569), REAL_CONST(0.001386545598507), REAL_CONST(0.005294219125062), REAL_CONST(0.017921976745129), REAL_CONST(0.044394120573997), REAL_CONST(0.070389263331890), REAL_CONST(0.082462236285210), REAL_CONST(0.086156636476517), REAL_CONST(0.087132595479488), REAL_CONST(0.087379962205887), REAL_CONST(0.087442122399807) },
399
    { REAL_CONST(0.000011006847672), REAL_CONST(0.000044026888645), REAL_CONST(0.000175411638338), REAL_CONST(0.000693439331371), REAL_CONST(0.002649537986144), REAL_CONST(0.008988817222416), REAL_CONST(0.022367812693119), REAL_CONST(0.035623874515295), REAL_CONST(0.041820213198662), REAL_CONST(0.043721374124289), REAL_CONST(0.044224001467228), REAL_CONST(0.044351425021887), REAL_CONST(0.044383447617292) },
400
    { REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000087708482170), REAL_CONST(0.000346675369656), REAL_CONST(0.001325377263129), REAL_CONST(0.004501323681325), REAL_CONST(0.011227255687118), REAL_CONST(0.017921976745129), REAL_CONST(0.021061634644866), REAL_CONST(0.022026389837265), REAL_CONST(0.022281449288130), REAL_CONST(0.022346137091517), REAL_CONST(0.022362394258380) },
401
    { REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043854910473), REAL_CONST(0.000173348103999), REAL_CONST(0.000662840844598), REAL_CONST(0.002252417383716), REAL_CONST(0.005624548997730), REAL_CONST(0.008988817222416), REAL_CONST(0.010569252073765), REAL_CONST(0.011055230163038), REAL_CONST(0.011183738708496), REAL_CONST(0.011216334067285), REAL_CONST(0.011224525049329) },
402
    { REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000086676649516), REAL_CONST(0.000331544462824), REAL_CONST(0.001126734190620), REAL_CONST(0.002815015614033), REAL_CONST(0.004501323681325), REAL_CONST(0.005294219125062), REAL_CONST(0.005538204684854), REAL_CONST(0.005602621007711), REAL_CONST(0.005619067233056), REAL_CONST(0.005623178556561) },
403
    { REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043338975956), REAL_CONST(0.000165781748365), REAL_CONST(0.000563477107789), REAL_CONST(0.001408194424585), REAL_CONST(0.002252417383716), REAL_CONST(0.002649537986144), REAL_CONST(0.002771759871393), REAL_CONST(0.002804030198604), REAL_CONST(0.002812269143760), REAL_CONST(0.002814328996465) },
404
    { REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000021669651687), REAL_CONST(0.000082893253420), REAL_CONST(0.000281680084299), REAL_CONST(0.000704268983100), REAL_CONST(0.001126734190620), REAL_CONST(0.001325377263129), REAL_CONST(0.001386545598507), REAL_CONST(0.001402696361765), REAL_CONST(0.001406819908880), REAL_CONST(0.001407850766554) },
405
    { REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010834866771), REAL_CONST(0.000041447223339), REAL_CONST(0.000140846910654), REAL_CONST(0.000352177477907), REAL_CONST(0.000563477107789), REAL_CONST(0.000662840844598), REAL_CONST(0.000693439331371), REAL_CONST(0.000701518612914), REAL_CONST(0.000703581434209), REAL_CONST(0.000704097095877) },
406
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000020637769921), REAL_CONST(0.000070511166996), REAL_CONST(0.000176099492819), REAL_CONST(0.000281680084299), REAL_CONST(0.000331544462824), REAL_CONST(0.000346675369656), REAL_CONST(0.000350801943569), REAL_CONST(0.000351833587047), REAL_CONST(0.000352177477907) },
407
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010318922250), REAL_CONST(0.000035256012779), REAL_CONST(0.000088052431238), REAL_CONST(0.000140846910654), REAL_CONST(0.000165781748365), REAL_CONST(0.000173348103999), REAL_CONST(0.000175411638338), REAL_CONST(0.000175927518285), REAL_CONST(0.000176099492819) },
408
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005159470220), REAL_CONST(0.000017542124624), REAL_CONST(0.000044026888645), REAL_CONST(0.000070511166996), REAL_CONST(0.000082893253420), REAL_CONST(0.000086676649516), REAL_CONST(0.000087708482170), REAL_CONST(0.000088052431238), REAL_CONST(0.000088052431238) },
409
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002579737384), REAL_CONST(0.000008771088687), REAL_CONST(0.000022013611670), REAL_CONST(0.000035256012779), REAL_CONST(0.000041447223339), REAL_CONST(0.000043338975956), REAL_CONST(0.000043854910473), REAL_CONST(0.000044026888645), REAL_CONST(0.000044026888645) },
410
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000004471542070), REAL_CONST(0.000011006847672), REAL_CONST(0.000017542124624), REAL_CONST(0.000020637769921), REAL_CONST(0.000021669651687), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670) },
411
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002235772627), REAL_CONST(0.000005503434295), REAL_CONST(0.000008771088687), REAL_CONST(0.000010318922250), REAL_CONST(0.000010834866771), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672) },
412
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001031895522), REAL_CONST(0.000002751719876), REAL_CONST(0.000004471542070), REAL_CONST(0.000005159470220), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295) },
413
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000515947875), REAL_CONST(0.000001375860506), REAL_CONST(0.000002235772627), REAL_CONST(0.000002579737384), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876) },
414
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000000687930424), REAL_CONST(0.000001031895522), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506) },
415
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000515947875), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424) },
416
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269) },
417
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634) }
418
};
419
420
static const real_t log_Qplus1[31] = {
421
    REAL_CONST(6.022367813028454), REAL_CONST(5.044394119358453), REAL_CONST(4.087462841250339),
422
    REAL_CONST(3.169925001442313), REAL_CONST(2.321928094887362), REAL_CONST(1.584962500721156),
423
    REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362),
424
    REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339), REAL_CONST(0.044394119358453),
425
    REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878),
426
    REAL_CONST(0.002815015607054), REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247),
427
    REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122),
428
    REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667),
429
    REAL_CONST(0.000005503434331), REAL_CONST(0.000002751719790), REAL_CONST(0.000001375860551),
430
    REAL_CONST(0.000000687930439), REAL_CONST(0.000000343965261), REAL_CONST(0.000000171982641),
431
    REAL_CONST(0.000000000000000)
432
};
433
434
static real_t find_log2_Qplus1(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
435
252k
{
436
    /* check for coupled energy/noise data */
437
252k
    if (sbr->bs_coupling == 1)
438
121k
    {
439
121k
        if ((sbr->Q[0][k][l] >= 0) && (sbr->Q[0][k][l] <= 30) &&
440
121k
            (sbr->Q[1][k][l] >= 0) && (sbr->Q[1][k][l] <= 24))
441
101k
        {
442
101k
            if (ch == 0)
443
50.3k
            {
444
50.3k
                return log_Qplus1_pan[sbr->Q[0][k][l]][sbr->Q[1][k][l] >> 1];
445
51.2k
            } else {
446
51.2k
                return log_Qplus1_pan[sbr->Q[0][k][l]][12 - (sbr->Q[1][k][l] >> 1)];
447
51.2k
            }
448
101k
        } else {
449
19.6k
            return 0;
450
19.6k
        }
451
130k
    } else {
452
130k
        if (sbr->Q[ch][k][l] >= 0 && sbr->Q[ch][k][l] <= 30)
453
107k
        {
454
107k
            return log_Qplus1[sbr->Q[ch][k][l]];
455
107k
        } else {
456
23.3k
            return 0;
457
23.3k
        }
458
130k
    }
459
252k
}
460
461
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
462
11.0k
{
463
    /* log2 values of limiter gains */
464
    /* Last one less than log2(1e10) due to FIXED POINT float limitations */
465
11.0k
    static real_t limGain[] = {
466
11.0k
        REAL_CONST(-1.0), REAL_CONST(0.0), REAL_CONST(1.0), REAL_CONST(21.0)
467
11.0k
    };
468
11.0k
    uint8_t m, l, k;
469
470
11.0k
    uint8_t current_t_noise_band = 0;
471
11.0k
    uint8_t S_mapped;
472
473
11.0k
    ALIGN real_t Q_M_lim[MAX_M];
474
11.0k
    ALIGN real_t G_lim[MAX_M];
475
11.0k
    ALIGN real_t G_boost;
476
11.0k
    ALIGN real_t S_M[MAX_M];
477
478
11.0k
    real_t exp = REAL_CONST(-10);
479
480
31.4k
    for (l = 0; l < sbr->L_E[ch]; l++)
481
20.4k
    {
482
20.4k
        uint8_t current_f_noise_band = 0;
483
20.4k
        uint8_t current_res_band = 0;
484
20.4k
        uint8_t current_res_band2 = 0;
485
20.4k
        uint8_t current_hi_res_band = 0;
486
487
20.4k
        real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
488
489
20.4k
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
490
491
20.4k
        if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
492
3.57k
        {
493
3.57k
            current_t_noise_band++;
494
3.57k
        }
495
496
62.9k
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
497
42.4k
        {
498
42.4k
            real_t Q_M = 0;
499
42.4k
            real_t G_max;
500
42.4k
            uint64_t den = 0, acc1 = 0, acc2 = 0;
501
42.4k
            uint8_t current_res_band_size = 0;
502
42.4k
            uint8_t Q_M_size = 0;
503
42.4k
            real_t log_e, log_den, log_acc1, log_acc2;
504
505
42.4k
            uint8_t ml1, ml2;
506
507
            /* bounds of current limiter bands */
508
42.4k
            ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
509
42.4k
            ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
510
511
42.4k
            if (ml1 > MAX_M)
512
0
                ml1 = MAX_M;
513
514
42.4k
            if (ml2 > MAX_M)
515
0
                ml2 = MAX_M;
516
517
518
            /* calculate the accumulated E_orig and E_curr over the limiter band */
519
294k
            for (m = ml1; m < ml2; m++)
520
252k
            {
521
252k
                if ((m + sbr->kx) < sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
522
179k
                {
523
179k
                    current_res_band_size++;
524
179k
                } else {
525
72.5k
                    log_e = find_log2_E(sbr, current_res_band, l, ch);
526
72.5k
                    acc1 += pow2_int(exp + log2_int_tab[current_res_band_size] + log_e);
527
528
72.5k
                    current_res_band++;
529
72.5k
                    current_res_band_size = 1;
530
72.5k
                }
531
532
252k
                acc2 += sbr->E_curr[ch][m][l];
533
252k
            }
534
42.4k
            if (current_res_band_size) {
535
42.4k
                log_e = find_log2_E(sbr, current_res_band, l, ch);
536
42.4k
                acc1 += pow2_int(exp + log2_int_tab[current_res_band_size] + log_e);
537
42.4k
            }
538
539
540
42.4k
            if (acc1 == 0)
541
25.0k
                log_acc1 = LOG2_MIN_INF;
542
17.4k
            else
543
17.4k
                log_acc1 = log2_int(acc1);
544
545
42.4k
            if (acc2 == 0)
546
41.7k
                log_acc2 = LOG2_MIN_INF;
547
700
            else
548
700
                log_acc2 = log2_int(acc2);
549
550
            /* calculate the maximum gain */
551
            /* ratio of the energy of the original signal and the energy
552
             * of the HF generated signal
553
             */
554
42.4k
            G_max = log_acc1 - log_acc2 + limGain[sbr->bs_limiter_gains];
555
42.4k
            G_max = min(G_max, limGain[3]);
556
557
558
294k
            for (m = ml1; m < ml2; m++)
559
252k
            {
560
252k
                real_t G;
561
252k
                real_t E_curr, E_orig;
562
252k
                real_t Q_orig, Q_orig_plus1;
563
252k
                uint8_t S_index_mapped;
564
565
566
                /* check if m is on a noise band border */
567
252k
                if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
568
16.5k
                {
569
                    /* step to next noise band */
570
16.5k
                    current_f_noise_band++;
571
16.5k
                }
572
573
574
                /* check if m is on a resolution band border */
575
252k
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
576
72.5k
                {
577
                    /* accumulate a whole range of equal Q_Ms */
578
72.5k
                    if (Q_M_size > 0)
579
29.3k
                        den += pow2_int(log2_int_tab[Q_M_size] + Q_M);
580
72.5k
                    Q_M_size = 0;
581
582
                    /* step to next resolution band */
583
72.5k
                    current_res_band2++;
584
585
                    /* if we move to a new resolution band, we should check if we are
586
                     * going to add a sinusoid in this band
587
                     */
588
72.5k
                    S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
589
72.5k
                }
590
591
592
                /* check if m is on a HI_RES band border */
593
252k
                if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
594
117k
                {
595
                    /* step to next HI_RES band */
596
117k
                    current_hi_res_band++;
597
117k
                }
598
599
600
                /* find S_index_mapped
601
                 * S_index_mapped can only be 1 for the m in the middle of the
602
                 * current HI_RES band
603
                 */
604
252k
                S_index_mapped = 0;
605
252k
                if ((l >= sbr->l_A[ch]) ||
606
252k
                    (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
607
198k
                {
608
                    /* find the middle subband of the HI_RES frequency band */
609
198k
                    if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
610
103k
                        S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
611
198k
                }
612
613
614
                /* find bitstream parameters */
615
252k
                if (sbr->E_curr[ch][m][l] == 0)
616
247k
                    E_curr = LOG2_MIN_INF;
617
4.46k
                else
618
4.46k
                    E_curr = log2_int(sbr->E_curr[ch][m][l]);
619
252k
                E_orig = exp + find_log2_E(sbr, current_res_band2, l, ch);
620
621
622
252k
                Q_orig = find_log2_Q(sbr, current_f_noise_band, current_t_noise_band, ch);
623
252k
                Q_orig_plus1 = find_log2_Qplus1(sbr, current_f_noise_band, current_t_noise_band, ch);
624
625
626
                /* Q_M only depends on E_orig and Q_div2:
627
                 * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
628
                 * a change of current res band (HI or LO)
629
                 */
630
252k
                Q_M = E_orig + Q_orig - Q_orig_plus1;
631
632
633
                /* S_M only depends on E_orig, Q_div and S_index_mapped:
634
                 * S_index_mapped can only be non-zero once per HI_RES band
635
                 */
636
252k
                if (S_index_mapped == 0)
637
234k
                {
638
234k
                    S_M[m] = LOG2_MIN_INF; /* -inf */
639
234k
                } else {
640
17.7k
                    S_M[m] = E_orig - Q_orig_plus1;
641
17.7k
                    S_M[m] = min(S_M[m], limGain[3]);
642
643
                    /* accumulate sinusoid part of the total energy */
644
17.7k
                    den += pow2_int(S_M[m]);
645
17.7k
                }
646
647
648
                /* calculate gain */
649
                /* ratio of the energy of the original signal and the energy
650
                 * of the HF generated signal
651
                 */
652
                /* E_curr here is officially E_curr+1 so the log2() of that can never be < 0 */
653
                /* scaled by exp */
654
252k
                G = E_orig - max(exp, E_curr);
655
252k
                if ((S_mapped == 0) && (delta == 1))
656
192k
                {
657
                    /* G = G * 1/(1+Q) */
658
192k
                    G -= Q_orig_plus1;
659
192k
                } else if (S_mapped == 1) {
660
                    /* G = G * Q/(1+Q) */
661
40.3k
                    G += Q_orig - Q_orig_plus1;
662
40.3k
                }
663
664
665
                /* limit the additional noise energy level */
666
                /* and apply the limiter */
667
252k
                if (G_max > G)
668
155k
                {
669
155k
                    Q_M_lim[m] = Q_M;
670
155k
                    G_lim[m] = G;
671
672
155k
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
673
133k
                    {
674
133k
                        Q_M_size++;
675
133k
                    }
676
155k
                } else {
677
                    /* G >= G_max */
678
96.9k
                    Q_M_lim[m] = Q_M + G_max - G;
679
96.9k
                    G_lim[m] = G_max;
680
681
                    /* accumulate limited Q_M */
682
96.9k
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
683
84.9k
                    {
684
84.9k
                        den += pow2_int(Q_M_lim[m]);
685
84.9k
                    }
686
96.9k
                }
687
688
689
                /* accumulate the total energy */
690
                /* E_curr changes for every m so we do need to accumulate every m */
691
252k
                den += pow2_int(E_curr + G_lim[m]);
692
252k
            }
693
694
            /* accumulate last range of equal Q_Ms */
695
42.4k
            if (Q_M_size > 0)
696
23.5k
            {
697
23.5k
                den += pow2_int(log2_int_tab[Q_M_size] + Q_M);
698
23.5k
            }
699
700
42.4k
            if (den == 0)
701
31.0k
                log_den = LOG2_MIN_INF;
702
11.4k
            else
703
11.4k
                log_den = log2_int(den /*+ EPS*/);
704
705
            /* calculate the final gain */
706
            /* G_boost: [0..2.51188643] */
707
42.4k
            G_boost = log_acc1 - log_den;
708
42.4k
            G_boost = min(G_boost, REAL_CONST(1.328771237) /* log2(1.584893192 ^ 2) */);
709
710
711
294k
            for (m = ml1; m < ml2; m++)
712
252k
            {
713
                /* apply compensation to gain, noise floor sf's and sinusoid levels */
714
252k
#ifndef SBR_LOW_POWER
715
252k
                adj->G_lim_boost[l][m] = pow2_fix((G_lim[m] + G_boost) >> 1);
716
#else
717
                /* sqrt() will be done after the aliasing reduction to save a
718
                 * few multiplies
719
                 */
720
                adj->G_lim_boost[l][m] = pow2_fix(G_lim[m] + G_boost);
721
#endif
722
252k
                adj->Q_M_lim_boost[l][m] = pow2_fix((Q_M_lim[m] + G_boost) >> 1);
723
724
252k
                adj->S_M_boost[l][m] = pow2_fix((S_M[m] + G_boost) >> 1);
725
252k
            }
726
42.4k
        }
727
20.4k
    }
728
11.0k
}
729
730
#else
731
732
//#define LOG2_TEST
733
734
#ifdef LOG2_TEST
735
736
#define LOG2_MIN_INF -100000
737
738
__inline float pow2(float val)
739
{
740
    return pow(2.0, val);
741
}
742
__inline float log2(float val)
743
{
744
    return log(val)/log(2.0);
745
}
746
747
#define RB 14
748
749
float QUANTISE2REAL(float val)
750
{
751
    __int32 ival = (__int32)(val * (1<<RB));
752
    return (float)ival / (float)((1<<RB));
753
}
754
755
float QUANTISE2INT(float val)
756
{
757
    return floor(val);
758
}
759
760
/* log2 values of [0..63] */
761
static const real_t log2_int_tab[] = {
762
    LOG2_MIN_INF,      0.000000000000000, 1.000000000000000, 1.584962500721156,
763
    2.000000000000000, 2.321928094887362, 2.584962500721156, 2.807354922057604,
764
    3.000000000000000, 3.169925001442313, 3.321928094887363, 3.459431618637297,
765
    3.584962500721156, 3.700439718141092, 3.807354922057604, 3.906890595608519,
766
    4.000000000000000, 4.087462841250339, 4.169925001442312, 4.247927513443585,
767
    4.321928094887362, 4.392317422778761, 4.459431618637297, 4.523561956057013,
768
    4.584962500721156, 4.643856189774724, 4.700439718141093, 4.754887502163468,
769
    4.807354922057604, 4.857980995127572, 4.906890595608519, 4.954196310386875,
770
    5.000000000000000, 5.044394119358453, 5.087462841250340, 5.129283016944966,
771
    5.169925001442312, 5.209453365628949, 5.247927513443585, 5.285402218862248,
772
    5.321928094887363, 5.357552004618084, 5.392317422778761, 5.426264754702098,
773
    5.459431618637297, 5.491853096329675, 5.523561956057013, 5.554588851677637,
774
    5.584962500721156, 5.614709844115208, 5.643856189774724, 5.672425341971495,
775
    5.700439718141093, 5.727920454563200, 5.754887502163469, 5.781359713524660,
776
    5.807354922057605, 5.832890014164742, 5.857980995127572, 5.882643049361842,
777
    5.906890595608518, 5.930737337562887, 5.954196310386876, 5.977279923499916
778
};
779
780
static const real_t pan_log2_tab[] = {
781
    1.000000000000000, 0.584962500721156, 0.321928094887362, 0.169925001442312, 0.087462841250339,
782
    0.044394119358453, 0.022367813028455, 0.011227255423254, 0.005624549193878, 0.002815015607054,
783
    0.001408194392808, 0.000704269011247, 0.000352177480301, 0.000176099486443, 0.000088052430122,
784
    0.000044026886827, 0.000022013611360, 0.000011006847667
785
};
786
787
static real_t find_log2_E(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
788
{
789
    /* check for coupled energy/noise data */
790
    if (sbr->bs_coupling == 1)
791
    {
792
        real_t amp0 = (sbr->amp_res[0]) ? 1.0 : 0.5;
793
        real_t amp1 = (sbr->amp_res[1]) ? 1.0 : 0.5;
794
        float tmp = QUANTISE2REAL(7.0 + (real_t)sbr->E[0][k][l] * amp0);
795
        float pan;
796
797
        int E = (int)(sbr->E[1][k][l] * amp1);
798
799
        if (ch == 0)
800
        {
801
            if (E > 12)
802
            {
803
                /* negative */
804
                pan = QUANTISE2REAL(pan_log2_tab[-12 + E]);
805
            } else {
806
                /* positive */
807
                pan = QUANTISE2REAL(pan_log2_tab[12 - E] + (12 - E));
808
            }
809
        } else {
810
            if (E < 12)
811
            {
812
                /* negative */
813
                pan = QUANTISE2REAL(pan_log2_tab[-E + 12]);
814
            } else {
815
                /* positive */
816
                pan = QUANTISE2REAL(pan_log2_tab[E - 12] + (E - 12));
817
            }
818
        }
819
820
        /* tmp / pan in log2 */
821
        return QUANTISE2REAL(tmp - pan);
822
    } else {
823
        real_t amp = (sbr->amp_res[ch]) ? 1.0 : 0.5;
824
825
        return QUANTISE2REAL(6.0 + (real_t)sbr->E[ch][k][l] * amp);
826
    }
827
}
828
829
static real_t find_log2_Q(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
830
{
831
    /* check for coupled energy/noise data */
832
    if (sbr->bs_coupling == 1)
833
    {
834
        float tmp = QUANTISE2REAL(7.0 - (real_t)sbr->Q[0][k][l]);
835
        float pan;
836
837
        int Q = (int)(sbr->Q[1][k][l]);
838
839
        if (ch == 0)
840
        {
841
            if (Q > 12)
842
            {
843
                /* negative */
844
                pan = QUANTISE2REAL(pan_log2_tab[-12 + Q]);
845
            } else {
846
                /* positive */
847
                pan = QUANTISE2REAL(pan_log2_tab[12 - Q] + (12 - Q));
848
            }
849
        } else {
850
            if (Q < 12)
851
            {
852
                /* negative */
853
                pan = QUANTISE2REAL(pan_log2_tab[-Q + 12]);
854
            } else {
855
                /* positive */
856
                pan = QUANTISE2REAL(pan_log2_tab[Q - 12] + (Q - 12));
857
            }
858
        }
859
860
        /* tmp / pan in log2 */
861
        return QUANTISE2REAL(tmp - pan);
862
    } else {
863
        return QUANTISE2REAL(6.0 - (real_t)sbr->Q[ch][k][l]);
864
    }
865
}
866
867
static const real_t log_Qplus1_pan[31][13] = {
868
    { REAL_CONST(0.044383447617292), REAL_CONST(0.169768601655960), REAL_CONST(0.583090126514435), REAL_CONST(1.570089221000671), REAL_CONST(3.092446088790894), REAL_CONST(4.733354568481445), REAL_CONST(6.022367954254150), REAL_CONST(6.692092418670654), REAL_CONST(6.924463272094727), REAL_CONST(6.989034175872803), REAL_CONST(7.005646705627441), REAL_CONST(7.009829998016357), REAL_CONST(7.010877609252930) },
869
    { REAL_CONST(0.022362394258380), REAL_CONST(0.087379962205887), REAL_CONST(0.320804953575134), REAL_CONST(0.988859415054321), REAL_CONST(2.252387046813965), REAL_CONST(3.786596298217773), REAL_CONST(5.044394016265869), REAL_CONST(5.705977916717529), REAL_CONST(5.936291694641113), REAL_CONST(6.000346660614014), REAL_CONST(6.016829967498779), REAL_CONST(6.020981311798096), REAL_CONST(6.022020816802979) },
870
    { REAL_CONST(0.011224525049329), REAL_CONST(0.044351425021887), REAL_CONST(0.169301137328148), REAL_CONST(0.577544987201691), REAL_CONST(1.527246952056885), REAL_CONST(2.887525320053101), REAL_CONST(4.087462902069092), REAL_CONST(4.733354568481445), REAL_CONST(4.959661006927490), REAL_CONST(5.022709369659424), REAL_CONST(5.038940429687500), REAL_CONST(5.043028831481934), REAL_CONST(5.044052600860596) },
871
    { REAL_CONST(0.005623178556561), REAL_CONST(0.022346137091517), REAL_CONST(0.087132595479488), REAL_CONST(0.317482173442841), REAL_CONST(0.956931233406067), REAL_CONST(2.070389270782471), REAL_CONST(3.169924974441528), REAL_CONST(3.786596298217773), REAL_CONST(4.005294322967529), REAL_CONST(4.066420555114746), REAL_CONST(4.082170009613037), REAL_CONST(4.086137294769287), REAL_CONST(4.087131500244141) },
872
    { REAL_CONST(0.002814328996465), REAL_CONST(0.011216334067285), REAL_CONST(0.044224001467228), REAL_CONST(0.167456731200218), REAL_CONST(0.556393325328827), REAL_CONST(1.378511548042297), REAL_CONST(2.321928024291992), REAL_CONST(2.887525320053101), REAL_CONST(3.092446088790894), REAL_CONST(3.150059700012207), REAL_CONST(3.164926528930664), REAL_CONST(3.168673276901245), REAL_CONST(3.169611930847168) },
873
    { REAL_CONST(0.001407850766554), REAL_CONST(0.005619067233056), REAL_CONST(0.022281449288130), REAL_CONST(0.086156636476517), REAL_CONST(0.304854571819305), REAL_CONST(0.847996890544891), REAL_CONST(1.584962487220764), REAL_CONST(2.070389270782471), REAL_CONST(2.252387046813965), REAL_CONST(2.304061651229858), REAL_CONST(2.317430257797241), REAL_CONST(2.320801734924316), REAL_CONST(2.321646213531494) },
874
    { REAL_CONST(0.000704097095877), REAL_CONST(0.002812269143760), REAL_CONST(0.011183738708496), REAL_CONST(0.043721374124289), REAL_CONST(0.160464659333229), REAL_CONST(0.485426813364029), REAL_CONST(1.000000000000000), REAL_CONST(1.378511548042297), REAL_CONST(1.527246952056885), REAL_CONST(1.570089221000671), REAL_CONST(1.581215262413025), REAL_CONST(1.584023833274841), REAL_CONST(1.584727644920349) },
875
    { REAL_CONST(0.000352177477907), REAL_CONST(0.001406819908880), REAL_CONST(0.005602621007711), REAL_CONST(0.022026389837265), REAL_CONST(0.082462236285210), REAL_CONST(0.263034462928772), REAL_CONST(0.584962487220764), REAL_CONST(0.847996890544891), REAL_CONST(0.956931233406067), REAL_CONST(0.988859415054321), REAL_CONST(0.997190535068512), REAL_CONST(0.999296069145203), REAL_CONST(0.999823868274689) },
876
    { REAL_CONST(0.000176099492819), REAL_CONST(0.000703581434209), REAL_CONST(0.002804030198604), REAL_CONST(0.011055230163038), REAL_CONST(0.041820213198662), REAL_CONST(0.137503549456596), REAL_CONST(0.321928083896637), REAL_CONST(0.485426813364029), REAL_CONST(0.556393325328827), REAL_CONST(0.577544987201691), REAL_CONST(0.583090126514435), REAL_CONST(0.584493279457092), REAL_CONST(0.584845066070557) },
877
    { REAL_CONST(0.000088052431238), REAL_CONST(0.000351833587047), REAL_CONST(0.001402696361765), REAL_CONST(0.005538204684854), REAL_CONST(0.021061634644866), REAL_CONST(0.070389263331890), REAL_CONST(0.169925004243851), REAL_CONST(0.263034462928772), REAL_CONST(0.304854571819305), REAL_CONST(0.317482173442841), REAL_CONST(0.320804953575134), REAL_CONST(0.321646571159363), REAL_CONST(0.321857661008835) },
878
    { REAL_CONST(0.000044026888645), REAL_CONST(0.000175927518285), REAL_CONST(0.000701518612914), REAL_CONST(0.002771759871393), REAL_CONST(0.010569252073765), REAL_CONST(0.035623874515295), REAL_CONST(0.087462842464447), REAL_CONST(0.137503549456596), REAL_CONST(0.160464659333229), REAL_CONST(0.167456731200218), REAL_CONST(0.169301137328148), REAL_CONST(0.169768601655960), REAL_CONST(0.169885858893394) },
879
    { REAL_CONST(0.000022013611670), REAL_CONST(0.000088052431238), REAL_CONST(0.000350801943569), REAL_CONST(0.001386545598507), REAL_CONST(0.005294219125062), REAL_CONST(0.017921976745129), REAL_CONST(0.044394120573997), REAL_CONST(0.070389263331890), REAL_CONST(0.082462236285210), REAL_CONST(0.086156636476517), REAL_CONST(0.087132595479488), REAL_CONST(0.087379962205887), REAL_CONST(0.087442122399807) },
880
    { REAL_CONST(0.000011006847672), REAL_CONST(0.000044026888645), REAL_CONST(0.000175411638338), REAL_CONST(0.000693439331371), REAL_CONST(0.002649537986144), REAL_CONST(0.008988817222416), REAL_CONST(0.022367812693119), REAL_CONST(0.035623874515295), REAL_CONST(0.041820213198662), REAL_CONST(0.043721374124289), REAL_CONST(0.044224001467228), REAL_CONST(0.044351425021887), REAL_CONST(0.044383447617292) },
881
    { REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000087708482170), REAL_CONST(0.000346675369656), REAL_CONST(0.001325377263129), REAL_CONST(0.004501323681325), REAL_CONST(0.011227255687118), REAL_CONST(0.017921976745129), REAL_CONST(0.021061634644866), REAL_CONST(0.022026389837265), REAL_CONST(0.022281449288130), REAL_CONST(0.022346137091517), REAL_CONST(0.022362394258380) },
882
    { REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043854910473), REAL_CONST(0.000173348103999), REAL_CONST(0.000662840844598), REAL_CONST(0.002252417383716), REAL_CONST(0.005624548997730), REAL_CONST(0.008988817222416), REAL_CONST(0.010569252073765), REAL_CONST(0.011055230163038), REAL_CONST(0.011183738708496), REAL_CONST(0.011216334067285), REAL_CONST(0.011224525049329) },
883
    { REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000086676649516), REAL_CONST(0.000331544462824), REAL_CONST(0.001126734190620), REAL_CONST(0.002815015614033), REAL_CONST(0.004501323681325), REAL_CONST(0.005294219125062), REAL_CONST(0.005538204684854), REAL_CONST(0.005602621007711), REAL_CONST(0.005619067233056), REAL_CONST(0.005623178556561) },
884
    { REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043338975956), REAL_CONST(0.000165781748365), REAL_CONST(0.000563477107789), REAL_CONST(0.001408194424585), REAL_CONST(0.002252417383716), REAL_CONST(0.002649537986144), REAL_CONST(0.002771759871393), REAL_CONST(0.002804030198604), REAL_CONST(0.002812269143760), REAL_CONST(0.002814328996465) },
885
    { REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000021669651687), REAL_CONST(0.000082893253420), REAL_CONST(0.000281680084299), REAL_CONST(0.000704268983100), REAL_CONST(0.001126734190620), REAL_CONST(0.001325377263129), REAL_CONST(0.001386545598507), REAL_CONST(0.001402696361765), REAL_CONST(0.001406819908880), REAL_CONST(0.001407850766554) },
886
    { REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010834866771), REAL_CONST(0.000041447223339), REAL_CONST(0.000140846910654), REAL_CONST(0.000352177477907), REAL_CONST(0.000563477107789), REAL_CONST(0.000662840844598), REAL_CONST(0.000693439331371), REAL_CONST(0.000701518612914), REAL_CONST(0.000703581434209), REAL_CONST(0.000704097095877) },
887
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000020637769921), REAL_CONST(0.000070511166996), REAL_CONST(0.000176099492819), REAL_CONST(0.000281680084299), REAL_CONST(0.000331544462824), REAL_CONST(0.000346675369656), REAL_CONST(0.000350801943569), REAL_CONST(0.000351833587047), REAL_CONST(0.000352177477907) },
888
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010318922250), REAL_CONST(0.000035256012779), REAL_CONST(0.000088052431238), REAL_CONST(0.000140846910654), REAL_CONST(0.000165781748365), REAL_CONST(0.000173348103999), REAL_CONST(0.000175411638338), REAL_CONST(0.000175927518285), REAL_CONST(0.000176099492819) },
889
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005159470220), REAL_CONST(0.000017542124624), REAL_CONST(0.000044026888645), REAL_CONST(0.000070511166996), REAL_CONST(0.000082893253420), REAL_CONST(0.000086676649516), REAL_CONST(0.000087708482170), REAL_CONST(0.000088052431238), REAL_CONST(0.000088052431238) },
890
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002579737384), REAL_CONST(0.000008771088687), REAL_CONST(0.000022013611670), REAL_CONST(0.000035256012779), REAL_CONST(0.000041447223339), REAL_CONST(0.000043338975956), REAL_CONST(0.000043854910473), REAL_CONST(0.000044026888645), REAL_CONST(0.000044026888645) },
891
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000004471542070), REAL_CONST(0.000011006847672), REAL_CONST(0.000017542124624), REAL_CONST(0.000020637769921), REAL_CONST(0.000021669651687), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670) },
892
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002235772627), REAL_CONST(0.000005503434295), REAL_CONST(0.000008771088687), REAL_CONST(0.000010318922250), REAL_CONST(0.000010834866771), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672) },
893
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001031895522), REAL_CONST(0.000002751719876), REAL_CONST(0.000004471542070), REAL_CONST(0.000005159470220), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295) },
894
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000515947875), REAL_CONST(0.000001375860506), REAL_CONST(0.000002235772627), REAL_CONST(0.000002579737384), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876) },
895
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000000687930424), REAL_CONST(0.000001031895522), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506) },
896
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000515947875), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424) },
897
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269) },
898
    { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634) }
899
};
900
901
static const real_t log_Qplus1[31] = {
902
    REAL_CONST(6.022367813028454), REAL_CONST(5.044394119358453), REAL_CONST(4.087462841250339),
903
    REAL_CONST(3.169925001442313), REAL_CONST(2.321928094887362), REAL_CONST(1.584962500721156),
904
    REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362),
905
    REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339), REAL_CONST(0.044394119358453),
906
    REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878),
907
    REAL_CONST(0.002815015607054), REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247),
908
    REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122),
909
    REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667),
910
    REAL_CONST(0.000005503434331), REAL_CONST(0.000002751719790), REAL_CONST(0.000001375860551),
911
    REAL_CONST(0.000000687930439), REAL_CONST(0.000000343965261), REAL_CONST(0.000000171982641),
912
    REAL_CONST(0.000000000000000)
913
};
914
915
static real_t find_log2_Qplus1(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch)
916
{
917
    /* check for coupled energy/noise data */
918
    if (sbr->bs_coupling == 1)
919
    {
920
        if ((sbr->Q[0][k][l] >= 0) && (sbr->Q[0][k][l] <= 30) &&
921
            (sbr->Q[1][k][l] >= 0) && (sbr->Q[1][k][l] <= 24))
922
        {
923
            if (ch == 0)
924
            {
925
                return QUANTISE2REAL(log_Qplus1_pan[sbr->Q[0][k][l]][sbr->Q[1][k][l] >> 1]);
926
            } else {
927
                return QUANTISE2REAL(log_Qplus1_pan[sbr->Q[0][k][l]][12 - (sbr->Q[1][k][l] >> 1)]);
928
            }
929
        } else {
930
            return 0;
931
        }
932
    } else {
933
        if (sbr->Q[ch][k][l] >= 0 && sbr->Q[ch][k][l] <= 30)
934
        {
935
            return QUANTISE2REAL(log_Qplus1[sbr->Q[ch][k][l]]);
936
        } else {
937
            return 0;
938
        }
939
    }
940
}
941
942
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
943
{
944
    /* log2 values of limiter gains */
945
    static real_t limGain[] = { -1.0, 0.0, 1.0, 33.219 };
946
    uint8_t m, l, k;
947
948
    uint8_t current_t_noise_band = 0;
949
    uint8_t S_mapped;
950
951
    ALIGN real_t Q_M_lim[MAX_M];
952
    ALIGN real_t G_lim[MAX_M];
953
    ALIGN real_t G_boost;
954
    ALIGN real_t S_M[MAX_M];
955
956
957
    for (l = 0; l < sbr->L_E[ch]; l++)
958
    {
959
        uint8_t current_f_noise_band = 0;
960
        uint8_t current_res_band = 0;
961
        uint8_t current_res_band2 = 0;
962
        uint8_t current_hi_res_band = 0;
963
964
        real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
965
966
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
967
968
        if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
969
        {
970
            current_t_noise_band++;
971
        }
972
973
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
974
        {
975
            real_t Q_M = 0;
976
            real_t G_max;
977
            real_t den = 0;
978
            real_t acc1 = 0;
979
            real_t acc2 = 0;
980
            uint8_t current_res_band_size = 0;
981
            uint8_t Q_M_size = 0;
982
983
            uint8_t ml1, ml2;
984
985
            /* bounds of current limiter bands */
986
            ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
987
            ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
988
989
            if (ml1 > MAX_M)
990
                ml1 = MAX_M;
991
992
            if (ml2 > MAX_M)
993
                ml2 = MAX_M;
994
995
996
            /* calculate the accumulated E_orig and E_curr over the limiter band */
997
            for (m = ml1; m < ml2; m++)
998
            {
999
                if ((m + sbr->kx) < sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
1000
                {
1001
                    current_res_band_size++;
1002
                } else {
1003
                    acc1 += QUANTISE2INT(pow2(-10 + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch)));
1004
1005
                    current_res_band++;
1006
                    current_res_band_size = 1;
1007
                }
1008
1009
                acc2 += QUANTISE2INT(sbr->E_curr[ch][m][l]/1024.0);
1010
            }
1011
            acc1 += QUANTISE2INT(pow2(-10 + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch)));
1012
1013
            acc1 = QUANTISE2REAL( log2(EPS + acc1) );
1014
1015
1016
            /* calculate the maximum gain */
1017
            /* ratio of the energy of the original signal and the energy
1018
             * of the HF generated signal
1019
             */
1020
            G_max = acc1 - QUANTISE2REAL(log2(EPS + acc2)) + QUANTISE2REAL(limGain[sbr->bs_limiter_gains]);
1021
            G_max = min(G_max, QUANTISE2REAL(limGain[3]));
1022
1023
1024
            for (m = ml1; m < ml2; m++)
1025
            {
1026
                real_t G;
1027
                real_t E_curr, E_orig;
1028
                real_t Q_orig, Q_orig_plus1;
1029
                uint8_t S_index_mapped;
1030
1031
1032
                /* check if m is on a noise band border */
1033
                if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
1034
                {
1035
                    /* step to next noise band */
1036
                    current_f_noise_band++;
1037
                }
1038
1039
1040
                /* check if m is on a resolution band border */
1041
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
1042
                {
1043
                    /* accumulate a whole range of equal Q_Ms */
1044
                    if (Q_M_size > 0)
1045
                        den += QUANTISE2INT(pow2(log2_int_tab[Q_M_size] + Q_M));
1046
                    Q_M_size = 0;
1047
1048
                    /* step to next resolution band */
1049
                    current_res_band2++;
1050
1051
                    /* if we move to a new resolution band, we should check if we are
1052
                     * going to add a sinusoid in this band
1053
                     */
1054
                    S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
1055
                }
1056
1057
1058
                /* check if m is on a HI_RES band border */
1059
                if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
1060
                {
1061
                    /* step to next HI_RES band */
1062
                    current_hi_res_band++;
1063
                }
1064
1065
1066
                /* find S_index_mapped
1067
                 * S_index_mapped can only be 1 for the m in the middle of the
1068
                 * current HI_RES band
1069
                 */
1070
                S_index_mapped = 0;
1071
                if ((l >= sbr->l_A[ch]) ||
1072
                    (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
1073
                {
1074
                    /* find the middle subband of the HI_RES frequency band */
1075
                    if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
1076
                        S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
1077
                }
1078
1079
1080
                /* find bitstream parameters */
1081
                if (sbr->E_curr[ch][m][l] == 0)
1082
                    E_curr = LOG2_MIN_INF;
1083
                else
1084
                    E_curr = -10 + log2(sbr->E_curr[ch][m][l]);
1085
                E_orig = -10 + find_log2_E(sbr, current_res_band2, l, ch);
1086
1087
                Q_orig = find_log2_Q(sbr, current_f_noise_band, current_t_noise_band, ch);
1088
                Q_orig_plus1 = find_log2_Qplus1(sbr, current_f_noise_band, current_t_noise_band, ch);
1089
1090
1091
                /* Q_M only depends on E_orig and Q_div2:
1092
                 * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
1093
                 * a change of current res band (HI or LO)
1094
                 */
1095
                Q_M = E_orig + Q_orig - Q_orig_plus1;
1096
1097
1098
                /* S_M only depends on E_orig, Q_div and S_index_mapped:
1099
                 * S_index_mapped can only be non-zero once per HI_RES band
1100
                 */
1101
                if (S_index_mapped == 0)
1102
                {
1103
                    S_M[m] = LOG2_MIN_INF; /* -inf */
1104
                } else {
1105
                    S_M[m] = E_orig - Q_orig_plus1;
1106
1107
                    /* accumulate sinusoid part of the total energy */
1108
                    den += pow2(S_M[m]);
1109
                }
1110
1111
1112
                /* calculate gain */
1113
                /* ratio of the energy of the original signal and the energy
1114
                 * of the HF generated signal
1115
                 */
1116
                /* E_curr here is officially E_curr+1 so the log2() of that can never be < 0 */
1117
                /* scaled by -10 */
1118
                G = E_orig - max(-10, E_curr);
1119
                if ((S_mapped == 0) && (delta == 1))
1120
                {
1121
                    /* G = G * 1/(1+Q) */
1122
                    G -= Q_orig_plus1;
1123
                } else if (S_mapped == 1) {
1124
                    /* G = G * Q/(1+Q) */
1125
                    G += Q_orig - Q_orig_plus1;
1126
                }
1127
1128
1129
                /* limit the additional noise energy level */
1130
                /* and apply the limiter */
1131
                if (G_max > G)
1132
                {
1133
                    Q_M_lim[m] = QUANTISE2REAL(Q_M);
1134
                    G_lim[m] = QUANTISE2REAL(G);
1135
1136
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
1137
                    {
1138
                        Q_M_size++;
1139
                    }
1140
                } else {
1141
                    /* G > G_max */
1142
                    Q_M_lim[m] = QUANTISE2REAL(Q_M) + G_max - QUANTISE2REAL(G);
1143
                    G_lim[m] = G_max;
1144
1145
                    /* accumulate limited Q_M */
1146
                    if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
1147
                    {
1148
                        den += QUANTISE2INT(pow2(Q_M_lim[m]));
1149
                    }
1150
                }
1151
1152
1153
                /* accumulate the total energy */
1154
                /* E_curr changes for every m so we do need to accumulate every m */
1155
                den += QUANTISE2INT(pow2(E_curr + G_lim[m]));
1156
            }
1157
1158
            /* accumulate last range of equal Q_Ms */
1159
            if (Q_M_size > 0)
1160
            {
1161
                den += QUANTISE2INT(pow2(log2_int_tab[Q_M_size] + Q_M));
1162
            }
1163
1164
1165
            /* calculate the final gain */
1166
            /* G_boost: [0..2.51188643] */
1167
            G_boost = acc1 - QUANTISE2REAL(log2(den + EPS));
1168
            G_boost = min(G_boost, QUANTISE2REAL(1.328771237) /* log2(1.584893192 ^ 2) */);
1169
1170
1171
            for (m = ml1; m < ml2; m++)
1172
            {
1173
                /* apply compensation to gain, noise floor sf's and sinusoid levels */
1174
#ifndef SBR_LOW_POWER
1175
                adj->G_lim_boost[l][m] = QUANTISE2REAL(pow2((G_lim[m] + G_boost) / 2.0));
1176
#else
1177
                /* sqrt() will be done after the aliasing reduction to save a
1178
                 * few multiplies
1179
                 */
1180
                adj->G_lim_boost[l][m] = QUANTISE2REAL(pow2(G_lim[m] + G_boost));
1181
#endif
1182
                adj->Q_M_lim_boost[l][m] = QUANTISE2REAL(pow2((Q_M_lim[m] + 10 + G_boost) / 2.0));
1183
1184
                if (S_M[m] != LOG2_MIN_INF)
1185
                {
1186
                    adj->S_M_boost[l][m] = QUANTISE2REAL(pow2((S_M[m] + 10 + G_boost) / 2.0));
1187
                } else {
1188
                    adj->S_M_boost[l][m] = 0;
1189
                }
1190
            }
1191
        }
1192
    }
1193
}
1194
1195
#else
1196
1197
static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
1198
15.0k
{
1199
15.0k
    static real_t limGain[] = { 0.5, 1.0, 2.0, 1e10 };
1200
15.0k
    uint8_t m, l, k;
1201
1202
15.0k
    uint8_t current_t_noise_band = 0;
1203
15.0k
    uint8_t S_mapped;
1204
1205
15.0k
    ALIGN real_t Q_M_lim[MAX_M];
1206
15.0k
    ALIGN real_t G_lim[MAX_M];
1207
15.0k
    ALIGN real_t G_boost;
1208
15.0k
    ALIGN real_t S_M[MAX_M];
1209
1210
40.1k
    for (l = 0; l < sbr->L_E[ch]; l++)
1211
25.0k
    {
1212
25.0k
        uint8_t current_f_noise_band = 0;
1213
25.0k
        uint8_t current_res_band = 0;
1214
25.0k
        uint8_t current_res_band2 = 0;
1215
25.0k
        uint8_t current_hi_res_band = 0;
1216
1217
25.0k
        real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
1218
1219
25.0k
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
1220
1221
25.0k
        if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1])
1222
4.83k
        {
1223
4.83k
            current_t_noise_band++;
1224
4.83k
        }
1225
1226
75.0k
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
1227
49.9k
        {
1228
49.9k
            real_t G_max;
1229
49.9k
            real_t den = 0;
1230
49.9k
            real_t acc1 = 0;
1231
49.9k
            real_t acc2 = 0;
1232
1233
49.9k
            uint8_t ml1, ml2;
1234
1235
49.9k
            ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k];
1236
49.9k
            ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1];
1237
1238
49.9k
            if (ml1 > MAX_M)
1239
0
                ml1 = MAX_M;
1240
1241
49.9k
            if (ml2 > MAX_M)
1242
0
                ml2 = MAX_M;
1243
1244
1245
            /* calculate the accumulated E_orig and E_curr over the limiter band */
1246
350k
            for (m = ml1; m < ml2; m++)
1247
300k
            {
1248
300k
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
1249
86.6k
                {
1250
86.6k
                    current_res_band++;
1251
86.6k
                }
1252
300k
                acc1 += sbr->E_orig[ch][current_res_band][l];
1253
300k
                acc2 += sbr->E_curr[ch][m][l];
1254
300k
            }
1255
1256
1257
            /* calculate the maximum gain */
1258
            /* ratio of the energy of the original signal and the energy
1259
             * of the HF generated signal
1260
             */
1261
49.9k
            G_max = ((EPS + acc1) / (EPS + acc2)) * limGain[sbr->bs_limiter_gains];
1262
49.9k
            G_max = min(G_max, 1e10);
1263
1264
1265
350k
            for (m = ml1; m < ml2; m++)
1266
300k
            {
1267
300k
                real_t Q_M, G;
1268
300k
                real_t Q_div, Q_div2;
1269
300k
                uint8_t S_index_mapped;
1270
1271
1272
                /* check if m is on a noise band border */
1273
300k
                if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1])
1274
19.3k
                {
1275
                    /* step to next noise band */
1276
19.3k
                    current_f_noise_band++;
1277
19.3k
                }
1278
1279
1280
                /* check if m is on a resolution band border */
1281
300k
                if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1])
1282
86.6k
                {
1283
                    /* step to next resolution band */
1284
86.6k
                    current_res_band2++;
1285
1286
                    /* if we move to a new resolution band, we should check if we are
1287
                     * going to add a sinusoid in this band
1288
                     */
1289
86.6k
                    S_mapped = get_S_mapped(sbr, ch, l, current_res_band2);
1290
86.6k
                }
1291
1292
1293
                /* check if m is on a HI_RES band border */
1294
300k
                if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1])
1295
145k
                {
1296
                    /* step to next HI_RES band */
1297
145k
                    current_hi_res_band++;
1298
145k
                }
1299
1300
1301
                /* find S_index_mapped
1302
                 * S_index_mapped can only be 1 for the m in the middle of the
1303
                 * current HI_RES band
1304
                 */
1305
300k
                S_index_mapped = 0;
1306
300k
                if ((l >= sbr->l_A[ch]) ||
1307
300k
                    (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch]))
1308
217k
                {
1309
                    /* find the middle subband of the HI_RES frequency band */
1310
217k
                    if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1)
1311
115k
                        S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band];
1312
217k
                }
1313
1314
1315
                /* Q_div: [0..1] (1/(1+Q_mapped)) */
1316
300k
                Q_div = sbr->Q_div[ch][current_f_noise_band][current_t_noise_band];
1317
1318
1319
                /* Q_div2: [0..1] (Q_mapped/(1+Q_mapped)) */
1320
300k
                Q_div2 = sbr->Q_div2[ch][current_f_noise_band][current_t_noise_band];
1321
1322
1323
                /* Q_M only depends on E_orig and Q_div2:
1324
                 * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on
1325
                 * a change of current noise band
1326
                 */
1327
300k
                Q_M = sbr->E_orig[ch][current_res_band2][l] * Q_div2;
1328
1329
1330
                /* S_M only depends on E_orig, Q_div and S_index_mapped:
1331
                 * S_index_mapped can only be non-zero once per HI_RES band
1332
                 */
1333
300k
                if (S_index_mapped == 0)
1334
287k
                {
1335
287k
                    S_M[m] = 0;
1336
287k
                } else {
1337
13.4k
                    S_M[m] = sbr->E_orig[ch][current_res_band2][l] * Q_div;
1338
1339
                    /* accumulate sinusoid part of the total energy */
1340
13.4k
                    den += S_M[m];
1341
13.4k
                }
1342
1343
1344
                /* calculate gain */
1345
                /* ratio of the energy of the original signal and the energy
1346
                 * of the HF generated signal
1347
                 */
1348
300k
                G = sbr->E_orig[ch][current_res_band2][l] / (1.0 + sbr->E_curr[ch][m][l]);
1349
300k
                if ((S_mapped == 0) && (delta == 1))
1350
250k
                    G *= Q_div;
1351
49.7k
                else if (S_mapped == 1)
1352
28.2k
                    G *= Q_div2;
1353
1354
1355
                /* limit the additional noise energy level */
1356
                /* and apply the limiter */
1357
300k
                if (G <= G_max)
1358
265k
                {
1359
265k
                    Q_M_lim[m] = Q_M;
1360
265k
                    G_lim[m] = G;
1361
265k
                } else {
1362
35.6k
                    Q_M_lim[m] = Q_M * G_max / G;
1363
35.6k
                    G_lim[m] = G_max;
1364
35.6k
                }
1365
1366
1367
                /* accumulate the total energy */
1368
300k
                den += sbr->E_curr[ch][m][l] * G_lim[m];
1369
300k
                if ((S_index_mapped == 0) && (l != sbr->l_A[ch]))
1370
272k
                    den += Q_M_lim[m];
1371
300k
            }
1372
1373
            /* G_boost: [0..2.51188643] */
1374
49.9k
            G_boost = (acc1 + EPS) / (den + EPS);
1375
49.9k
            G_boost = min(G_boost, 2.51188643 /* 1.584893192 ^ 2 */);
1376
1377
350k
            for (m = ml1; m < ml2; m++)
1378
300k
            {
1379
                /* apply compensation to gain, noise floor sf's and sinusoid levels */
1380
300k
#ifndef SBR_LOW_POWER
1381
300k
                adj->G_lim_boost[l][m] = sqrt(G_lim[m] * G_boost);
1382
#else
1383
                /* sqrt() will be done after the aliasing reduction to save a
1384
                 * few multiplies
1385
                 */
1386
                adj->G_lim_boost[l][m] = G_lim[m] * G_boost;
1387
#endif
1388
300k
                adj->Q_M_lim_boost[l][m] = sqrt(Q_M_lim[m] * G_boost);
1389
1390
300k
                if (S_M[m] != 0)
1391
8.51k
                {
1392
8.51k
                    adj->S_M_boost[l][m] = sqrt(S_M[m] * G_boost);
1393
292k
                } else {
1394
292k
                    adj->S_M_boost[l][m] = 0;
1395
292k
                }
1396
300k
            }
1397
49.9k
        }
1398
25.0k
    }
1399
15.0k
}
1400
#endif // log2_test
1401
1402
#endif
1403
1404
#ifdef SBR_LOW_POWER
1405
static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
1406
{
1407
    uint8_t l, k, i;
1408
    uint8_t grouping;
1409
    uint8_t S_mapped;
1410
1411
    for (l = 0; l < sbr->L_E[ch]; l++)
1412
    {
1413
        uint8_t current_res_band = 0;
1414
        i = 0;
1415
        grouping = 0;
1416
1417
        S_mapped = get_S_mapped(sbr, ch, l, current_res_band);
1418
1419
        for (k = sbr->kx; k < sbr->kx + sbr->M - 1; k++)
1420
        {
1421
            if (k == sbr->f_table_res[sbr->f[ch][l]][current_res_band+1])
1422
            {
1423
                /* step to next resolution band */
1424
                current_res_band++;
1425
1426
                S_mapped = get_S_mapped(sbr, ch, l, current_res_band);
1427
            }
1428
1429
            if (deg[k + 1] && S_mapped == 0)
1430
            {
1431
                if (grouping == 0)
1432
                {
1433
                    sbr->f_group[l][i] = k;
1434
                    grouping = 1;
1435
                    i++;
1436
                }
1437
            } else {
1438
                if (grouping)
1439
                {
1440
                    if (S_mapped)
1441
                    {
1442
                        sbr->f_group[l][i] = k;
1443
                    } else {
1444
                        sbr->f_group[l][i] = k + 1;
1445
                    }
1446
                    grouping = 0;
1447
                    i++;
1448
                }
1449
            }
1450
        }
1451
1452
        if (grouping)
1453
        {
1454
            sbr->f_group[l][i] = sbr->kx + sbr->M;
1455
            i++;
1456
        }
1457
1458
        sbr->N_G[l] = (uint8_t)(i >> 1);
1459
    }
1460
}
1461
1462
static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
1463
{
1464
    uint8_t l, k, m;
1465
    real_t E_total, E_total_est, G_target, acc;
1466
1467
    for (l = 0; l < sbr->L_E[ch]; l++)
1468
    {
1469
        for (k = 0; k < sbr->N_G[l]; k++)
1470
        {
1471
            E_total_est = E_total = 0;
1472
1473
            for (m = sbr->f_group[l][k<<1]; m < sbr->f_group[l][(k<<1) + 1]; m++)
1474
            {
1475
                /* E_curr: integer */
1476
                /* G_lim_boost: fixed point */
1477
                /* E_total_est: integer */
1478
                /* E_total: integer */
1479
                E_total_est += sbr->E_curr[ch][m-sbr->kx][l];
1480
#ifdef FIXED_POINT
1481
                E_total += MUL_Q2(sbr->E_curr[ch][m-sbr->kx][l], adj->G_lim_boost[l][m-sbr->kx]);
1482
#else
1483
                E_total += sbr->E_curr[ch][m-sbr->kx][l] * adj->G_lim_boost[l][m-sbr->kx];
1484
#endif
1485
            }
1486
1487
            /* G_target: fixed point */
1488
            if ((E_total_est + EPS) == 0)
1489
            {
1490
                G_target = 0;
1491
            } else {
1492
#ifdef FIXED_POINT
1493
                G_target = (((int64_t)(E_total))<<Q2_BITS)/(E_total_est + EPS);
1494
#else
1495
                G_target = E_total / (E_total_est + EPS);
1496
#endif
1497
            }
1498
            acc = 0;
1499
1500
            for (m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
1501
            {
1502
                real_t alpha;
1503
1504
                /* alpha: (COEF) fixed point */
1505
                if (m < sbr->kx + sbr->M - 1)
1506
                {
1507
                    alpha = max(deg[m], deg[m + 1]);
1508
                } else {
1509
                    alpha = deg[m];
1510
                }
1511
1512
                adj->G_lim_boost[l][m-sbr->kx] = MUL_C(alpha, G_target) +
1513
                    MUL_C((COEF_CONST(1)-alpha), adj->G_lim_boost[l][m-sbr->kx]);
1514
1515
                /* acc: integer */
1516
#ifdef FIXED_POINT
1517
                acc += MUL_Q2(adj->G_lim_boost[l][m-sbr->kx], sbr->E_curr[ch][m-sbr->kx][l]);
1518
#else
1519
                acc += adj->G_lim_boost[l][m-sbr->kx] * sbr->E_curr[ch][m-sbr->kx][l];
1520
#endif
1521
            }
1522
1523
            /* acc: fixed point */
1524
            if (acc + EPS == 0)
1525
            {
1526
                acc = 0;
1527
            } else {
1528
#ifdef FIXED_POINT
1529
                acc = (((int64_t)(E_total))<<Q2_BITS)/(acc + EPS);
1530
#else
1531
                acc = E_total / (acc + EPS);
1532
#endif
1533
            }
1534
            for(m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
1535
            {
1536
#ifdef FIXED_POINT
1537
                adj->G_lim_boost[l][m-sbr->kx] = MUL_Q2(acc, adj->G_lim_boost[l][m-sbr->kx]);
1538
#else
1539
                adj->G_lim_boost[l][m-sbr->kx] = acc * adj->G_lim_boost[l][m-sbr->kx];
1540
#endif
1541
            }
1542
        }
1543
    }
1544
1545
    for (l = 0; l < sbr->L_E[ch]; l++)
1546
    {
1547
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
1548
        {
1549
            for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
1550
                 m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
1551
            {
1552
#ifdef FIXED_POINT
1553
                 adj->G_lim_boost[l][m] = SBR_SQRT_Q2(adj->G_lim_boost[l][m]);
1554
#else
1555
                 adj->G_lim_boost[l][m] = sqrt(adj->G_lim_boost[l][m]);
1556
#endif
1557
            }
1558
        }
1559
    }
1560
}
1561
#endif
1562
1563
static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj,
1564
                        qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch)
1565
26.1k
{
1566
26.1k
    static real_t h_smooth[] = {
1567
26.1k
        FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084),
1568
26.1k
        FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582),
1569
26.1k
        FRAC_CONST(0.33333333333333)
1570
26.1k
    };
1571
26.1k
    static int8_t phi_re[] = { 1, 0, -1, 0 };
1572
26.1k
    static int8_t phi_im[] = { 0, 1, 0, -1 };
1573
1574
26.1k
    uint8_t m, l, i, n;
1575
26.1k
    uint16_t fIndexNoise = 0;
1576
26.1k
    uint8_t fIndexSine = 0;
1577
26.1k
    uint8_t assembly_reset = 0;
1578
1579
26.1k
    real_t G_filt, Q_filt;
1580
1581
26.1k
    uint8_t h_SL;
1582
1583
1584
26.1k
    if (sbr->Reset == 1)
1585
25.2k
    {
1586
25.2k
        assembly_reset = 1;
1587
25.2k
        fIndexNoise = 0;
1588
25.2k
    } else {
1589
824
        fIndexNoise = sbr->index_noise_prev[ch];
1590
824
    }
1591
26.1k
    fIndexSine = sbr->psi_is_prev[ch];
1592
1593
1594
71.6k
    for (l = 0; l < sbr->L_E[ch]; l++)
1595
45.5k
    {
1596
45.5k
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
1597
1598
#ifdef SBR_LOW_POWER
1599
        h_SL = 0;
1600
#else
1601
45.5k
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
1602
45.5k
        h_SL = (no_noise ? 0 : h_SL);
1603
45.5k
#endif
1604
1605
45.5k
        if (assembly_reset)
1606
25.2k
        {
1607
126k
            for (n = 0; n < 4; n++)
1608
100k
            {
1609
100k
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1610
100k
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1611
100k
            }
1612
            /* reset ringbuffer index */
1613
25.2k
            sbr->GQ_ringbuf_index[ch] = 4;
1614
25.2k
            assembly_reset = 0;
1615
25.2k
        }
1616
1617
855k
        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
1618
810k
        {
1619
#ifdef SBR_LOW_POWER
1620
            uint8_t i_min1, i_plus1;
1621
            uint8_t sinusoids = 0;
1622
#endif
1623
1624
            /* load new values into ringbuffer */
1625
810k
            memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1626
810k
            memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1627
1628
11.5M
            for (m = 0; m < sbr->M; m++)
1629
10.7M
            {
1630
10.7M
                qmf_t psi;
1631
1632
10.7M
                G_filt = 0;
1633
10.7M
                Q_filt = 0;
1634
1635
10.7M
#ifndef SBR_LOW_POWER
1636
10.7M
                if (h_SL != 0)
1637
3.65M
                {
1638
3.65M
                    uint8_t ri = sbr->GQ_ringbuf_index[ch];
1639
21.9M
                    for (n = 0; n <= 4; n++)
1640
18.2M
                    {
1641
18.2M
                        real_t curr_h_smooth = h_smooth[n];
1642
18.2M
                        ri++;
1643
18.2M
                        if (ri >= 5)
1644
3.65M
                            ri -= 5;
1645
18.2M
                        G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth);
1646
18.2M
                        Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth);
1647
18.2M
                    }
1648
7.05M
               } else {
1649
7.05M
#endif
1650
7.05M
                    G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1651
7.05M
                    Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1652
7.05M
#ifndef SBR_LOW_POWER
1653
7.05M
                }
1654
10.7M
#endif
1655
10.7M
                if (adj->S_M_boost[l][m] != 0 || no_noise)
1656
1.05M
                    Q_filt = 0;
1657
1658
                /* add noise to the output */
1659
10.7M
                fIndexNoise = (fIndexNoise + 1) & 511;
1660
1661
                /* the smoothed gain values are applied to Xsbr */
1662
                /* V is defined, not calculated */
1663
                //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1664
                //    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1665
10.7M
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1666
10.7M
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1667
10.7M
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
1668
9.84k
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
1669
10.7M
#ifndef SBR_LOW_POWER
1670
                //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1671
                //    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1672
10.7M
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1673
10.7M
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1674
10.7M
#endif
1675
1676
10.7M
                {
1677
10.7M
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
1678
10.7M
                    QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
1679
10.7M
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);
1680
1681
10.7M
#ifndef SBR_LOW_POWER
1682
10.7M
                    QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
1683
10.7M
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
1684
#else
1685
1686
                    i_min1 = (fIndexSine - 1) & 3;
1687
                    i_plus1 = (fIndexSine + 1) & 3;
1688
1689
                    if ((m == 0) && (phi_re[i_plus1] != 0))
1690
                    {
1691
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) +=
1692
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815)));
1693
                        if (sbr->M != 0)
1694
                        {
1695
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1696
                                (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815)));
1697
                        }
1698
                    }
1699
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1700
                    {
1701
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1702
                            (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1703
                    }
1704
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
1705
                    {
1706
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1707
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815)));
1708
                    }
1709
                    if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1710
                    {
1711
                        if (m > 0)
1712
                        {
1713
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1714
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1715
                        }
1716
                        if (m + sbr->kx < 64)
1717
                        {
1718
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) +=
1719
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815)));
1720
                        }
1721
                    }
1722
1723
                    if (adj->S_M_boost[l][m] != 0)
1724
                        sinusoids++;
1725
#endif
1726
10.7M
                }
1727
10.7M
            }
1728
1729
810k
            fIndexSine = (fIndexSine + 1) & 3;
1730
1731
            /* update the ringbuffer index used for filtering G and Q with h_smooth */
1732
810k
            sbr->GQ_ringbuf_index[ch]++;
1733
810k
            if (sbr->GQ_ringbuf_index[ch] >= 5)
1734
174k
                sbr->GQ_ringbuf_index[ch] = 0;
1735
810k
        }
1736
45.5k
    }
1737
1738
26.1k
    sbr->index_noise_prev[ch] = fIndexNoise;
1739
26.1k
    sbr->psi_is_prev[ch] = fIndexSine;
1740
26.1k
}
sbr_hfadj.c:hf_assembly
Line
Count
Source
1565
11.0k
{
1566
11.0k
    static real_t h_smooth[] = {
1567
11.0k
        FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084),
1568
11.0k
        FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582),
1569
11.0k
        FRAC_CONST(0.33333333333333)
1570
11.0k
    };
1571
11.0k
    static int8_t phi_re[] = { 1, 0, -1, 0 };
1572
11.0k
    static int8_t phi_im[] = { 0, 1, 0, -1 };
1573
1574
11.0k
    uint8_t m, l, i, n;
1575
11.0k
    uint16_t fIndexNoise = 0;
1576
11.0k
    uint8_t fIndexSine = 0;
1577
11.0k
    uint8_t assembly_reset = 0;
1578
1579
11.0k
    real_t G_filt, Q_filt;
1580
1581
11.0k
    uint8_t h_SL;
1582
1583
1584
11.0k
    if (sbr->Reset == 1)
1585
10.7k
    {
1586
10.7k
        assembly_reset = 1;
1587
10.7k
        fIndexNoise = 0;
1588
10.7k
    } else {
1589
285
        fIndexNoise = sbr->index_noise_prev[ch];
1590
285
    }
1591
11.0k
    fIndexSine = sbr->psi_is_prev[ch];
1592
1593
1594
31.4k
    for (l = 0; l < sbr->L_E[ch]; l++)
1595
20.4k
    {
1596
20.4k
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
1597
1598
#ifdef SBR_LOW_POWER
1599
        h_SL = 0;
1600
#else
1601
20.4k
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
1602
20.4k
        h_SL = (no_noise ? 0 : h_SL);
1603
20.4k
#endif
1604
1605
20.4k
        if (assembly_reset)
1606
10.7k
        {
1607
53.7k
            for (n = 0; n < 4; n++)
1608
42.9k
            {
1609
42.9k
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1610
42.9k
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1611
42.9k
            }
1612
            /* reset ringbuffer index */
1613
10.7k
            sbr->GQ_ringbuf_index[ch] = 4;
1614
10.7k
            assembly_reset = 0;
1615
10.7k
        }
1616
1617
369k
        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
1618
348k
        {
1619
#ifdef SBR_LOW_POWER
1620
            uint8_t i_min1, i_plus1;
1621
            uint8_t sinusoids = 0;
1622
#endif
1623
1624
            /* load new values into ringbuffer */
1625
348k
            memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1626
348k
            memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1627
1628
5.00M
            for (m = 0; m < sbr->M; m++)
1629
4.65M
            {
1630
4.65M
                qmf_t psi;
1631
1632
4.65M
                G_filt = 0;
1633
4.65M
                Q_filt = 0;
1634
1635
4.65M
#ifndef SBR_LOW_POWER
1636
4.65M
                if (h_SL != 0)
1637
2.01M
                {
1638
2.01M
                    uint8_t ri = sbr->GQ_ringbuf_index[ch];
1639
12.0M
                    for (n = 0; n <= 4; n++)
1640
10.0M
                    {
1641
10.0M
                        real_t curr_h_smooth = h_smooth[n];
1642
10.0M
                        ri++;
1643
10.0M
                        if (ri >= 5)
1644
2.01M
                            ri -= 5;
1645
10.0M
                        G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth);
1646
10.0M
                        Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth);
1647
10.0M
                    }
1648
2.64M
               } else {
1649
2.64M
#endif
1650
2.64M
                    G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1651
2.64M
                    Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1652
2.64M
#ifndef SBR_LOW_POWER
1653
2.64M
                }
1654
4.65M
#endif
1655
4.65M
                if (adj->S_M_boost[l][m] != 0 || no_noise)
1656
536k
                    Q_filt = 0;
1657
1658
                /* add noise to the output */
1659
4.65M
                fIndexNoise = (fIndexNoise + 1) & 511;
1660
1661
                /* the smoothed gain values are applied to Xsbr */
1662
                /* V is defined, not calculated */
1663
                //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1664
                //    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1665
4.65M
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1666
4.65M
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1667
4.65M
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
1668
2.17k
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
1669
4.65M
#ifndef SBR_LOW_POWER
1670
                //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1671
                //    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1672
4.65M
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1673
4.65M
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1674
4.65M
#endif
1675
1676
4.65M
                {
1677
4.65M
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
1678
4.65M
                    QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
1679
4.65M
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);
1680
1681
4.65M
#ifndef SBR_LOW_POWER
1682
4.65M
                    QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
1683
4.65M
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
1684
#else
1685
1686
                    i_min1 = (fIndexSine - 1) & 3;
1687
                    i_plus1 = (fIndexSine + 1) & 3;
1688
1689
                    if ((m == 0) && (phi_re[i_plus1] != 0))
1690
                    {
1691
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) +=
1692
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815)));
1693
                        if (sbr->M != 0)
1694
                        {
1695
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1696
                                (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815)));
1697
                        }
1698
                    }
1699
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1700
                    {
1701
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1702
                            (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1703
                    }
1704
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
1705
                    {
1706
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1707
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815)));
1708
                    }
1709
                    if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1710
                    {
1711
                        if (m > 0)
1712
                        {
1713
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1714
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1715
                        }
1716
                        if (m + sbr->kx < 64)
1717
                        {
1718
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) +=
1719
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815)));
1720
                        }
1721
                    }
1722
1723
                    if (adj->S_M_boost[l][m] != 0)
1724
                        sinusoids++;
1725
#endif
1726
4.65M
                }
1727
4.65M
            }
1728
1729
348k
            fIndexSine = (fIndexSine + 1) & 3;
1730
1731
            /* update the ringbuffer index used for filtering G and Q with h_smooth */
1732
348k
            sbr->GQ_ringbuf_index[ch]++;
1733
348k
            if (sbr->GQ_ringbuf_index[ch] >= 5)
1734
75.2k
                sbr->GQ_ringbuf_index[ch] = 0;
1735
348k
        }
1736
20.4k
    }
1737
1738
11.0k
    sbr->index_noise_prev[ch] = fIndexNoise;
1739
11.0k
    sbr->psi_is_prev[ch] = fIndexSine;
1740
11.0k
}
sbr_hfadj.c:hf_assembly
Line
Count
Source
1565
15.0k
{
1566
15.0k
    static real_t h_smooth[] = {
1567
15.0k
        FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084),
1568
15.0k
        FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582),
1569
15.0k
        FRAC_CONST(0.33333333333333)
1570
15.0k
    };
1571
15.0k
    static int8_t phi_re[] = { 1, 0, -1, 0 };
1572
15.0k
    static int8_t phi_im[] = { 0, 1, 0, -1 };
1573
1574
15.0k
    uint8_t m, l, i, n;
1575
15.0k
    uint16_t fIndexNoise = 0;
1576
15.0k
    uint8_t fIndexSine = 0;
1577
15.0k
    uint8_t assembly_reset = 0;
1578
1579
15.0k
    real_t G_filt, Q_filt;
1580
1581
15.0k
    uint8_t h_SL;
1582
1583
1584
15.0k
    if (sbr->Reset == 1)
1585
14.5k
    {
1586
14.5k
        assembly_reset = 1;
1587
14.5k
        fIndexNoise = 0;
1588
14.5k
    } else {
1589
539
        fIndexNoise = sbr->index_noise_prev[ch];
1590
539
    }
1591
15.0k
    fIndexSine = sbr->psi_is_prev[ch];
1592
1593
1594
40.1k
    for (l = 0; l < sbr->L_E[ch]; l++)
1595
25.0k
    {
1596
25.0k
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
1597
1598
#ifdef SBR_LOW_POWER
1599
        h_SL = 0;
1600
#else
1601
25.0k
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
1602
25.0k
        h_SL = (no_noise ? 0 : h_SL);
1603
25.0k
#endif
1604
1605
25.0k
        if (assembly_reset)
1606
14.4k
        {
1607
72.3k
            for (n = 0; n < 4; n++)
1608
57.8k
            {
1609
57.8k
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1610
57.8k
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1611
57.8k
            }
1612
            /* reset ringbuffer index */
1613
14.4k
            sbr->GQ_ringbuf_index[ch] = 4;
1614
14.4k
            assembly_reset = 0;
1615
14.4k
        }
1616
1617
486k
        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
1618
461k
        {
1619
#ifdef SBR_LOW_POWER
1620
            uint8_t i_min1, i_plus1;
1621
            uint8_t sinusoids = 0;
1622
#endif
1623
1624
            /* load new values into ringbuffer */
1625
461k
            memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
1626
461k
            memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
1627
1628
6.51M
            for (m = 0; m < sbr->M; m++)
1629
6.05M
            {
1630
6.05M
                qmf_t psi;
1631
1632
6.05M
                G_filt = 0;
1633
6.05M
                Q_filt = 0;
1634
1635
6.05M
#ifndef SBR_LOW_POWER
1636
6.05M
                if (h_SL != 0)
1637
1.64M
                {
1638
1.64M
                    uint8_t ri = sbr->GQ_ringbuf_index[ch];
1639
9.84M
                    for (n = 0; n <= 4; n++)
1640
8.20M
                    {
1641
8.20M
                        real_t curr_h_smooth = h_smooth[n];
1642
8.20M
                        ri++;
1643
8.20M
                        if (ri >= 5)
1644
1.64M
                            ri -= 5;
1645
8.20M
                        G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth);
1646
8.20M
                        Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth);
1647
8.20M
                    }
1648
4.41M
               } else {
1649
4.41M
#endif
1650
4.41M
                    G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1651
4.41M
                    Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m];
1652
4.41M
#ifndef SBR_LOW_POWER
1653
4.41M
                }
1654
6.05M
#endif
1655
6.05M
                if (adj->S_M_boost[l][m] != 0 || no_noise)
1656
523k
                    Q_filt = 0;
1657
1658
                /* add noise to the output */
1659
6.05M
                fIndexNoise = (fIndexNoise + 1) & 511;
1660
1661
                /* the smoothed gain values are applied to Xsbr */
1662
                /* V is defined, not calculated */
1663
                //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1664
                //    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1665
6.05M
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1666
6.05M
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
1667
6.05M
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
1668
7.66k
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
1669
6.05M
#ifndef SBR_LOW_POWER
1670
                //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1671
                //    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1672
6.05M
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
1673
6.05M
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
1674
6.05M
#endif
1675
1676
6.05M
                {
1677
6.05M
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
1678
6.05M
                    QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine];
1679
6.05M
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);
1680
1681
6.05M
#ifndef SBR_LOW_POWER
1682
6.05M
                    QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine];
1683
6.05M
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
1684
#else
1685
1686
                    i_min1 = (fIndexSine - 1) & 3;
1687
                    i_plus1 = (fIndexSine + 1) & 3;
1688
1689
                    if ((m == 0) && (phi_re[i_plus1] != 0))
1690
                    {
1691
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) +=
1692
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815)));
1693
                        if (sbr->M != 0)
1694
                        {
1695
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1696
                                (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815)));
1697
                        }
1698
                    }
1699
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1700
                    {
1701
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1702
                            (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1703
                    }
1704
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0))
1705
                    {
1706
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1707
                            (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815)));
1708
                    }
1709
                    if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0))
1710
                    {
1711
                        if (m > 0)
1712
                        {
1713
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
1714
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815)));
1715
                        }
1716
                        if (m + sbr->kx < 64)
1717
                        {
1718
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) +=
1719
                                (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815)));
1720
                        }
1721
                    }
1722
1723
                    if (adj->S_M_boost[l][m] != 0)
1724
                        sinusoids++;
1725
#endif
1726
6.05M
                }
1727
6.05M
            }
1728
1729
461k
            fIndexSine = (fIndexSine + 1) & 3;
1730
1731
            /* update the ringbuffer index used for filtering G and Q with h_smooth */
1732
461k
            sbr->GQ_ringbuf_index[ch]++;
1733
461k
            if (sbr->GQ_ringbuf_index[ch] >= 5)
1734
99.1k
                sbr->GQ_ringbuf_index[ch] = 0;
1735
461k
        }
1736
25.0k
    }
1737
1738
15.0k
    sbr->index_noise_prev[ch] = fIndexNoise;
1739
15.0k
    sbr->psi_is_prev[ch] = fIndexSine;
1740
15.0k
}
1741
1742
#endif